
FormulaZero: Distributionally Robust Online Adaptation via
Offline Population Synthesis

Aman Sinha*1 Matthew O’Kelly∗2 Hongrui Zheng∗2

Rahul Mangharam2 John Duchi1 Russ Tedrake3

1Stanford University
2University of Pennsylvania

3Massachusetts Institute of Technology

amans@stanford.edu, {mokelly,hongruiz,rahulm}@seas.upenn.edu,
jduchi@stanford.edu, russt@mit.edu

Abstract

Balancing performance and safety is crucial to deploying autonomous vehicles in multi-
agent environments. In particular, autonomous racing is a domain that penalizes safe but
conservative policies, highlighting the need for robust, adaptive strategies. Current approaches
either make simplifying assumptions about other agents or lack robust mechanisms for online
adaptation. This work makes algorithmic contributions to both challenges. First, to generate
a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-
exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit
optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs
about opponents behaviors. We rigorously quantify the tradeoffs in performance and robustness
when approximating these computations in real-time motion-planning, and we demonstrate
our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to
Formula One racecars.

1 Introduction

Current autonomous vehicle (AV) technology still struggles in competitive multi-agent scenarios,
such as merging onto a highway, where both maximizing performance (negotiating the merge with-
out delay or hesitation) and maintaining safety (avoiding a crash) are important. The strategic
implications of this tradeoff are magnified in racing. During the 2019 Formula One season, the
race-winner achieved the fastest lap in only 33% of events [28]. Empirically, the weak correlation
between achieving the fastest lap-time and winning suggests that consistent and robust performance
is critical to success. In this paper, we investigate this intuition in the setting of autonomous rac-
ing (AR). In AR, an AV must lap a racetrack in the presence of other agents deploying unknown
policies. The agent wins if it completes the race faster than its opponents; a crash automatically
results in a loss.

AR is a competitive multi-agent game, a general setting challenging for a number of reasons,
especially in robotics applications. First, failures are expensive and dangerous, so learning-based
approaches must avoid such behavior or rely on simulation while training. Second, the agents
only partially observe their opponent’s state, and these observations do not uniquely determine the
opponent’s behavior. Finally, the agents must make decisions online; the opponent’s strategy is a
tightly-held secret and cannot be obtained by collecting data before the competition.

*Equal contribution

1

ar
X

iv
:2

00
3.

03
90

0v
2

 [c
s.L

G
]

22
 A

ug
 2

02
0

Problem: We frame the AR challenge in the context of robust reinforcement learning. We
analyze the system as a partially-observed Markov decision process (POMDP) (S,A, Psa,O, r, λ),
with state space S, action space A, state-action transition probabilities Psa, observation space O,
rewards r : O → R, and discount factor λ. Furthermore, we capture uncertainty in behaviors of
other agents through an ambiguity1 set P for the state-action transitions. Then the AV’s objective
is

maximize inf
Psa∈P

∑
t

λtE[r(o(t))]. (1)

The obvious price of robustness [16] is that a larger ambiguity set ensures a greater degree of safety
while sacrificing performance against a particular opponent. If we knew the opponent’s behavior,
we would need no ambiguity set; equivalently, the ambiguity set would shrink to the nominal
state-action transition distribution. Our goal is to automatically trade between performance and
robustness as we play against opponents, which breaks down into two challenges: parametrizing
the ambiguity set to allow tractable inference and computing the robust cost efficiently online.

Contributions: The paper has three contributions: (i) a novel population-based self-play method
to parametrize opponent behaviors, (ii) a provably efficient approach to estimate the ambiguity set
and the robust cost online, and (iii) a demonstration of these methods on real autonomous vehicles.
The name of our approach—FormulaZero—alludes both to the Formula One racing league and the
fact that we use self-play (and no demonstrations) to learn competitive behaviors, similar to the
approach of AlphaZero [80].

Section 1.1 gives context to our learning problem, including connections to classical control
techniques. In Section 2, we describe the first challenge: learning how to parametrize the ambi-
guity set P. Rather than directly consider the continuous action space of throttle and steering
outputs, we synthesize a library of “prototype” opponent behaviors offline using population-based
self-play. When racing against a particular opponent, the agent maintains a belief vector w(t) of
the opponent’s behavior patterns as a categorical distribution over these prototype behaviors. We
then parametrize the ambiguity set as a ball around this nominal belief w(t).

The second challenge, presented in Section 3, is an online optimization problem, wherein the
agent iteratively updates the ambiguity set (e.g. updates w(t)) and computes the robust cost of
this set. In other words, the agent attempts to learn the opponent’s behavior online to maximize
its competitive performance. Since this optimization occurs on a moving vehicle with limited
computational resources, we provide convergence results that highlight tradeoffs of performance
and robustness with respect to these budgets. Finally, Section 4 details the practical implications
of the theoretical results, emergent properties of the method, and the experimental performance of
our approach.

1.1 Related work

Reinforcement learning (RL) has achieved unprecedented success on classic two-player games [e.g.
80], leading to new approaches in partially-observable games with continuous action spaces [6, 15].
In these works, agents train via self-play using Monte Carlo tree search [18, 87] or population-based
methods [45, 46]. The agents optimize expected performance rather than adapt to individual vari-

1Ambiguity is a synonym for uncertainty [36]. Formal descriptions in this paper use the term ambiguity.

2

ations in opponent strategy, which can lead to poor performance against particular opponents [10].
In contrast, our method explicitly incorporates adaptivity to opponents.

Robust approaches to RL and control (like this work) explicitly model uncertainty. In RL,
this amounts to planning in a robust MDP [69] or a POMDP [47]. Early results Bagnell et al. [9]
and Nilim and El Ghaoui [69] describe solutions for robust planning in (PO)MDPs with tabular
state/action spaces. Equivalent results in control are analytical formulations applicable to uncer-
tainty in linear time-invariant systems [26, 93, 99]. Recent works [89, 74, 62, 37] describe minimax
and adversarial RL frameworks for nonlinear systems and continuous action spaces. Like our ap-
proach, these methods fall broadly under the framework of robust optimization. Unlike these works,
which consider worst-case planning under a fixed uncertainty distribution, our approach updates
the distribution online.

Our approach is designed to adjust the agent’s evaluation of short-term plans relative to un-
certainty in the opponent’s behavior rather than provide worst-case guarantees. Complementary
to and compatible with our approach are techniques which provide the latter guarantees, such as
robust model predictive control [12]. Extensions of robust control for nonlinear systems and com-
plex uncertainty models are also compatible (e.g. Majumdar and Tedrake [61], Althoff and Dolan
[3], Gao et al. [33]). In contrast to formal approaches which explicitly guarantee robustness, some
authors have proposed multitask or meta-learning approaches (e.g. Caruana [20], He et al. [39], Finn
et al. [30]) can implicitly learn to play against multiple opponents. However, such techniques do
not explicitly model uncertainty or quantify robustness, which we deem necessary in the high-risk,
safety-critical regime.

Planning in belief space is closely related to our approach and is well-studied in robotics [see
e.g. 53]. Specifically in the AV domain, Galceran et al. [32] and Ding and Shen [25] use a Bayesian
approach to plan trajectories for AVs in belief space; like this work, both of these approaches
characterize the other agent’s behavior in the environment categorically. Also similar to this work,
Van Den Berg et al. [91] use a sampled set of goals obtained by planning from other agents’
perspectives. The main difference in this work from standard belief-space planning formulations is
inspired by recent results from distributionally robust optimization (DRO) in supervised-learning
settings [13, 68]. These methods reweight training data to reduce the variance of the training loss
[68]. While others apply DRO to episodic RL for training offline [82, 83], we reweight the belief
online.

Online methods for control fall under the umbrella of adaptive control [55, 7]. Dean et al. [24]
and Agarwal et al. [2] establish regret bounds for adaptive control methods applied to LTI systems,
tightening the relationship to online learning. Due to the more general nature of our problem, we
draw from the adversarial multi-armed bandit framework of online learning [1, 19, 79].

Our belief state corresponds to a categorical distribution of polices governing an opponent’s next
action; the goal is to predict which strategy the opponent is using and compute the best response.
This approach is similar to game-theoretic methods for AR and AV decision making that use the
standard heuristic of iterated best response. Our work is distinct from previous work, which either
assumes that all agents act with respect to the same cost function, simplifying the structure of the
game [56, 95]; or, without this simplifying assumption, that uses demonstrations to learn possible
sets of policies [77, 97]. In constrast, we learn the set of policies without demonstrations and use
DRO to robustly score the AV’s plans.

We convert the problem of predicting opponent behavior in a continuous action space into an
adversarial bandit problem by learning a set of cost functions that characterize a discrete set of

3

policies. As a result, we would like the opponent models to be both near-optimal and diverse. We
use determinantal point processes (DPPs) [54] to sample diverse configurations of the parameter
space. However, first we must learn a DPP kernel, which requires that we efficiently sample com-
petitive cost functions from the larger configuration space. Since we assume no structure to the set
of competitive cost functions, we employ a Markov-chain Monte Carlo (MCMC) method. Comple-
mentary methods include variational-inference (e.g. Arenz et al. [5]) and evolutionary (e.g. Mouret
and Clune [66]) approaches, which can be challenging to scale up to unstructured, high-dimensional
settings of which we have little prior domain knowledge. In our approach, we update the classic
simulated tempering method [63] with a novel annealing scheme [52, 21] designed for population
diversity. We describe this approach next.

2 Offline population synthesis

The goal of offline population synthesis is to generate a diverse set of competitive agent behaviors.
Formally, we would like to sample pairs (x, θ) ∈ X × Θ that are both diverse as well as achieve
small values for a function f(x, θ). In our AV application, θ parametrizes a neural network used to
sample trajectories to follow, x is a weighting of various cost functions that the vehicle uses to select
trajectories from the samples, and f is the simulated lap time. With this motivation, we treat the
method in more generality assuming (as in our application) that while we can differentiate f(x, θ)
with respect to θ, x represents hyperparameters and admits only function evaluations f(x, θ) rather
than first-order developments. The key challenge is that we do not a priori know a metric with
which to evaluate diversity (e.g., a kernel for a DPP) nor do we know a base value of f that is
deemed acceptable for competitive performance.

We make this problem more tractable via temperature-based Markov-chain Monte Carlo (MCMC)
and annealing methods [64, 38, 52, 21, 44, 43]. Our goal is to sample from a Boltzmann distri-
bution g(x, θ;β(t)) ∝ e−β(t)f(x,θ), where β(t) is an inverse “temperature” parameter that grows
(or “anneals”) with iterations t. When β(t) = 0, all configurations (x, θ) are equally likely and
all MCMC proposals are accepted; as β(t) increases, accepted proposals favor smaller f . Unlike
standard hyperparameter optimization methods [14, 45] that aim to find a single near-optimal con-
figuration, our goal is to sample a diverse population of (x, θ) achieving small f(x, θ). As such,
our approach—annealed adaptive population tempering (AAdaPT)—maintains a population of
configurations and employs high-exploration proposals based on the classic hit-and-run algorithm
[84, 11, 57].

2.1 AAdaPT

AAdaPT builds upon replica-exchange MCMC, also called parallel tempering, which is a standard
approach to maintaining a population of configurations [88, 35]. In parallel tempering, one main-
tains replicas of the system at L different temperatures β1 ≥ β2... ≥ βL (which are predetermined
and fixed), defining the density of the total configuration as

∏L
i=1 g(xi, θi;βi). The configurations

at each level perform standard MCMC steps (also called “vertical” steps) as well as “horizontal”
steps wherein particles are swapped between adjacent temperature levels (see Figure 1). Horizontal
proposals consist of swapping two configurations in adjacent temperature levels uniformly at ran-
dom; the proposal is accepted using standard Metropolis-Hastings (MH) criteria [38]. The primary
benefit of maintaining parallel configurations is that the configurations at “colder” levels (higher

4

Algorithm 1 AAdaPT

input: annealing parameter α, vertical steps V , horizontal exchange steps E, temperature levels L,

population size d, initial samples {xi,j , θi,j}j∈{1,D}i∈{1,L} , iterations T

Evaluate f(xi,j , θi,j)
for t = 1 to T

for j = 1 to L do anneal βL−j+1(t) (problem (2))
for k = 1 to V asynchronously, in parallel

for each population i asynchronously, in parallel
Sample x̂i,j according to hit-and-run proposal
Evaluate f(x̂i,j , θi,j)
Apply MH criteria to update xi,j

Train θi,j via SGD
for e = 1 to E do horizontal swaps (Appendix A)

β) can exploit high-exploration moves from “hotter” levels (lower β) which “tunnel” down dur-
ing horizontal steps [35]. This approach allows for faster mixing times, particularly when parallel
MCMC proposals occur concurrently in a distributed computing environment.

Maintaining a population: In AAdaPT (Algorithm 1), we maintain a population of D configu-
rations at each separate temperature level. Note that this design always maintains D individuals at
the highest performance level (highest β). The overall configuration density is

∏L
i=1

∏D
j=1 g(xi,j , θi,j ;βi(t)).

Similar to parallel tempering, horizontal proposals are chosen uniformly at random from configura-
tions at adjacent temperatures (see Appendix A). We get the same computational benefits of fast
mixing in distributed computing environments and a greater ability to exploit high-temperature
“tunneling” due to the greater number of possible horizontal exchanges between adjacent temper-
ature levels. The benefit of the horizontal steps is even more pronounced in the RL setting as only
vertical steps require new evaluations of f (e.g. simulations).

High-exploration vertical proposals: Another benefit of maintaining parallel populations is
to improve exploration. We further improve exploration by using hit-and-run proposals [84, 11, 57]
for the vertical MCMC chains. Namely, from a current point (x, θ) we sample a uniformly random
direction û and then choose a point uniformly on the segment X ∩({x+R · û}×{θ}). This approach
has several guarantees for efficient mixing [57, 58, 59]. Note that in our implementation the MCMC
steps are only performed on x, while θ updates occur via SGD (see below).

Adaptively annealed temperatures: A downside to parallel tempering is the need to deter-
mine the temperature levels βi beforehand. In AAdaPT. we adaptively update temperatures.
Specifically, we anneal the prescribed horizontal acceptance probability of particle exchanges be-
tween temperature levels as αt/(L−1) for a fixed hyperparameter α ∈ (0, 1). Define the empirical
acceptance probability of swaps of configurations between levels i− 1 and i as

pi−1,i :=
1

D2

D∑
j=1

D∑
k=1

(yj,ki−1,i)
βi−1−βi

yj,ki−1,i := min
(

1, ef(xi−1,j ,θi−1,j)−f(xi,k,θi,k)
)
.

5

Figure 1. Illustration of AAdaPT. Vertical MCMC steps (jagged black arrows) occur in parallel
for xi,j , followed by gradient descent for trainable parameters θi,j (magenta arrows) and horizontal
MCMC configuration swaps between populations (curved black arrows). Temperatures βi(t) are then
updated by problem (2).

Then, at the beginning of each iteration (in which we perform a series of vertical and horizontal
MCMC steps), we update the βi(t) sequentially; we fix βL(t) := βL = 0 and for a given βi, we set
βi−1 by solving the following convex optimization problem:

minimize
{βi−1≥βi, pi−1,i≤α

t
(L−1) }

βi−1, (2)

using binary search. This adaptive scheme is crucial in our problem setting, where we a priori have
no knowledge of appropriate scales for f and, as a result, β. In practice, we find that forcing βi to
monotonically increase in t yields better mixing, so we set βi(t) = max(βi(t− 1), β̂i(t)), where β̂i(t)
solves problem (2).

Evaluating proposals via self-play: We apply AAdaPT to a multi-agent game. It is only
possible to evaluate f(x, θ) in the context of other agents, but we consider the setting where
demonstrations from potential opponents are either difficult to obtain or held secret. Thus, we
iteratively evaluate f via self-play. For each configuration (x, θ), we perform a race in the simulated
environment between two vehicles with the same policy (with f(x, θ) being the lap time of the
agent that starts behind the other). Vertical MCMC steps propose new x, which are then accepted
according to MH criteria. After a number of vertical iterations, a stochastic gradient descent
(SGD) step is applied to θ (which maximizes the likelihood of the trajectories chosen by the agent

6

with cost functions parametrized by x). Following this process, the updated agents in adjacent
temperature levels are exchanged via horizontal MCMC steps. Although we choose f(x, θ) as the
laptime, explicit entropic terms can also be included to further encourage diversity within a single
vertical chain or across the population.

At the conclusion of AAdaPT, we use the coldest population of D agents at inverse temperature
β1(T) to build a DPP sampler. Specifically, define the matrix H via configurations x1,· at the lowest
temperature

Hab = ‖x1,a − x1,b‖. (3)

Then we define the DPP kernel K as Kab = exp
(
−H2

ab/σ
2
)

with a scale parameter σ = 0.5, and
we sample d ≤ D configurations from this DPP.

3 Online learning with computation budgets

Now we exploit the population of d learned prototype behaviors to enable robust performance. The
agent’s (our) goal is to act robustly against uncertainty in opponent behaviors and adapt online
to a given opponent. We parametrize the agent’s (stochastic) policy as follows. At each time step,
we sample goal states (consisting of pose and velocity) via a generative model G(θ) parametrized
by θ (as in Section 2). For a given goal state, we compute the parameters of a cubic spline that
reaches the goal by solving a nonconvex trajectory optimization problem [65]; on this proposed
trajectory we evaluate a collection of cost functions (such as the maximum curvature or minimum
acceleration along the path) weighted by the vector x (recall Section 2), similar to Sadat et al. [76]
(see Appendix D for a description of all costs). Finally, we choose the sampled goal trajectory with
minimum robust cost and perform an action to track this trajectory.

Some of the costs that evaluate the utility of a goal state involve beliefs about the opponent’s
future trajectory. For a goal p, we rewrite the performance objective at time t with respect to a
protoype opponent i as a receding-horizon cost

ci(t; p) := −
∑
s>t

λs−tE[r(o(s); p)],

where we omit dependence on the agent’s cost weights x for convenience. We parametrize the
agent’s belief of the opponent’s behavior as a categorical distribution of beliefs over the prototypes.
Specifically, let w(t) ∈ ∆ be a weight vector at a given time t, where ∆ := {a ∈ Rd+ | aT1 = 1},
and let P0(t) := Categorical(w(t)). Then P0(t) is the nominal distribution describing the agent’s
belief about the opponent. Furthermore, we consider ambiguity sets P(t) defined by divergence
measures on the space of probability measures over ∆. For a convex function φ with φ(1) = 0,
the φ-divergence between distributions P and Q is Dφ (P ||Q) =

∫
φ(dPdQ)dQ. We use sets P(t) :=

{Q : Dφ (Q||P0) (t) ≤ ρ} where ρ > 0 is a specified constant. Our implementation employs the
χ2-divergence φ(t) = t2 − 1.

Having defined the ambiguity set P(t) and the cost with respect to each prototype opponent,
we rewrite the robust performance objective (1) to clearly illustrate the optimization problem.
Let C(t; p) be a random variable representing the expected cost with respect to the belief of the
opponent (and goal state p). Then the robust cost at time t is

sup
Q∈P(t)

EQ[C(t; p)] = sup
q:
∑
i wiφ(

qi
wi

)≤ρ

∑
i

qici(t; p). (4)

7

When ρ = 0, this is the expected cost under P0; larger ρ adds robustness. Solving the convex
optimization problem (4) first requires computing the costs ci(t). Using λ ≥ 0 for the constraint
Dφ (Q||P0) ≤ ρ, a partial Lagrangian is

L(q, λ) =
∑
i

qici(t)− λ

(∑
i

wiφ (qi/wi)− ρ

)
.

The corresponding dual function is v(λ) = supq∈∆ L(q, λ), and minimizing v(λ) via bisection yields
the solution to problem (4). Maximizing L(q, λ) with respect to q for a given λ requires O(d) time
using a variant of median-based search [27] (see Appendix B). Thus, computing an ε-suboptimal
solution uses O(d log(1/ε)) time.

The supremum in the robust cost (4) is over belief ambiguity. Thus, our approach generalizes
beyond the goal-sampling and trajectory-optimization approach presented at the beginning of this
section; it is compatible with any policy that minimizes a cost ci(t) with respect to a parametrization
for opponent i’s policy. In this way, it is straightforward to combine our framework with robust
model predictive control formulations that have rigorous stability guarantees.

In order to perform competitive actions, the agent updates the ambiguity set P(t) and computes
the robust cost (4) on an embedded processor on board the vehicle in real-time (e.g. within 100
milliseconds). In the next two subsections, we describe how to perform both operations in the
presence of a severely limited computational budget, and we quantitatively analyze the implications
of the budget on the robustness/performance tradeoff.

3.1 Approximating the robust cost

For a large library of prototypical opponents (large d), computing every ci in the objective (4) is
prohibitively expensive. Instead, we consider an empirical approximation of the objective, where

we draw Nw indices Jk
i.i.d.∼ P0(t) (where Nw < d) and consider the weighted sum of these costs cjk .

Specifically, we define the empirical approximation PNw := {q : Dφ (q||1/Nw) ≤ ρ} to P and solve
the following empirical version of problem (4):

maximize
q∈PNw

∑
k

qkcjk(t; p). (5)

This optimization problem (5) makes manifest the price of robustness in two ways. The first
involves the setup of the problem—computing the cjk . First, we denote the empirical distribution

as ŵ(t) with ŵi(t) =
∑Nw

k 1{jk = i}/Nw. Even for relatively small Nw/d, ŵ(t) concentrates closely
around w(t) (see e.g. Weissman et al. [96] for a high-probability bound). Thus, when the vehicle’s
belief about its opponent w(t) is nearly uniform, the jk values have few repeats. Conversely, when
the belief is peaked at a few opponents, the number of unique indices is much smaller than Nw,
allowing faster computation of cjk . The short setup-time enables faster planning or, alternatively,
the ability to compute the costs cjk with longer horizons. Therefore, theoretical performance auto-
matically improves as the vehicle learns about the opponent and the robust evaluation approaches
the true cost.

The second way we illustrate the price of robustness is by quantifying the quality of the approx-
imation (5) with respect to the number of samples Nw. For shorthand, define the true expected

8

and approximate expected costs for goal p and distributions Q and q respectively as

R(Q; p) := EQ[C(t; p)], R̂(q; p) :=
1

Nw

Nw∑
k=1

qkcjk(t; p).

Then, we have the following bound:

Proposition 1 (Approximation quality). Suppose C(t; p) ∈ [−1, 1] for all t, p. Let Aρ = 2(ρ+1)√
1+ρ−1

and Bρ =
√

8(1 + ρ). Then with probability at least 1− δ over the Nw samples Jk
i.i.d.∼ P0,

∣∣∣∣ sup
q∈PNw

R̂(q; p)− sup
Q∈P

R(Q; p)

∣∣∣∣ ≤ 4Aρ

√
log(2Nw)

Nw
+Bρ

√
log 2

δ

Nw

See Appendix B for the proof. Intuitively, increasing accuracy of the robust cost requires more
samples (larger Nw), which comes at the expense of computation time. Similar to computing the
full cost (4), ε-optimal solutions require O(Nu log(1/ε)) time for Nu ≤ Nw unique indices jk. In
our experiments (cf. Section 4), most of the computation time involves the setup to compute the
Nu costs cjk .

3.2 Updating the ambiguity set

To maximize performance against an opponent, the agent updates the ambiguity set P as the
race progresses. Since we consider φ-divergence balls of fixed size ρ, this update involves only
the nominal belief vector w(t). As with computation of the robust cost, this update must occur
efficiently due to time and computational constraints.

For a given sequence of observations of the opponent oHopp(t) := {oopp(t), oopp(t− 1), ..., oopp(t−
h + 1)} over a horizon h, we define the likelihood of this sequence coming from the ith prototype
opponent as

lhi (t) = log dP
(
ohopp(t)|G(θ1,i)

)
, (6)

where G(θ1,i) is a generative model of goal states for the ith prototype opponent. Letting l̄ be a
uniform upper bound on lhi (t), we define the losses Li(t) := 1− lhi (t)/l̄.

If we had enough time/computation budget, we could compute Li(t) for all prototype opponents
i and perform an online mirror descent update with an entropic Bregman divergence [79]. In a
resource-constrained setting, we can only select a few of these losses, so we use EXP3 [8] to update
w(t). Unlike a standard adversarial bandit setting, where we pull just one arm (e.g.compute a loss
Li(t)) at every time step, we may have resources to compute up to Nw losses in parallel at any given
time (the same indices Jk discussed in Section 3.1). Denote our unbiased subgradient estimate as
γ(t):

γi(t) =
1

Nw

Nw∑
k=1

Li(t)

wi(t)
1{Jk = i}. (7)

Algorithm 2 describes our slightly modified EXP3 algorithm, which has the following expected
regret.

Proposition 2. Let z := d−1
Nw

+ 1. Algorithm 2 run for T iterations with stepsize η =

√
2 log(d)
zT has

expected regret bounded by
∑T

t=1 E
[
γ(t)T (w(t)− w?)

]
≤
√

2zT log(d).

9

Algorithm 2 EXP3 with Nw arm-pulls per iteration

Input: Stepsize sequence ηt, w(0) := 1/d, steps T
for t = 0 to T − 1

Sample Nw indices Jk
i.i.d.∼ Categorical(w(t))

Compute γ(t) (Equation (7))

wi(t+ 1) := wi(t) exp(−ηtγi(t))∑d
j=1 wj(t) exp(−ηtγj(t))

See Appendix B for the proof. This regret bound looks similar to that if we simply ran Nw

standard EXP3 steps per iteration t (in which case z = d/Nw). However, our approach enables
parallel computation which is critical in our time-constrained setting. Note that the “multiple-play”
setting we propose here has been studied before with better regret bounds but higher computational
complexity per iteration [90, 98]. We prefer our approach for its simplicity and ability to be easily
combined with the robust-cost computation.

4 Experiments

In this section we first describe the AR environment used to conduct our experiments. Next we
explore the hyperparameters of the algorithms in Section 2 and 3, identifying a preferred configura-
tion. Then we consider the overarching hypothesis: online adaptation can improve the performance
of robust control strategies. We show the statistically significant results affirming the theory and
validate the approach’s performance on real vehicles.

The experiments use an existing low-cost 1/10th-scale, Ackermann-steered AV (Figure 2). Ad-
ditionally, we create a simulator and an associated OpenAI Gym API [17] suitable for distributed
computing. The simulator supports multiple agents as well as deterministic executions. We exper-
imentally determine the physical parameters of the agent models for simulation and use SLAM to
build the virtual track as a mirror of a real location (see Figure 4). The hardware specifications,
software, and simulator are open-source 2 (see Appendices C and D for details).

The agent software uses a hierarchical planner [34] similar to Ferguson et al. [29]. The key
difference is the use of a masked autoregressive flow (MAF) [75] which provides the generative
model for goal states, G(θ). Belief inference and robust cost computation require sampling and
evaluating the likelihood of goal states. MAFs can evaluate likelihoods quickly but generate samples
slowly. Inspired by Oord et al. [72] we overcome this inefficency by training a “student” inverse
autogressive flow (IAF) [51] on MAF samples. Given a sample of goals from the IAF, the agent
synthesizes dynamically feasible trajectories following McNaughton [65]. Each sample is evaluated
according to Equation 4; the weights of the cost functions are learned by AAdaPT (and formal
definitions of the cost components are in Appendix D). Belief updates use Algorithm 2 using the
MAF to compute the losses Li(t).

4.1 Offline population synthesis

We run AAdaPT with L = 5 populations, D = 160 configurations per population, and T = 100
iterations. For vertical MCMC steps, we randomly sample 16 configuratons per population and
perform V = 2 iterations of 5 hit-and-run proposals. Furthermore, we perform E = DL2/αt/(L−1)

2https://github.com/travelbureau/f0_icml_code

10

https://github.com/travelbureau/f0_icml_code

Figure 2: Components of the 1/10-scale vehicle

(a) Performance vs. iteration

0 20 40 60 80 100
620

640

660

680

700

720

740

760

780

(b) Diversity vs. iteration

Figure 3. Hyperparameter selection for AAdaPT. (a) 95%-confidence intervals for f(x, θ) in the
coldest temperature level. (b) Frobenius norm of the Mahalanobis distance matrix H (3). The value
α = 0.9 achieves the best performance and diversity.

horizontal steps (motivated by the fact fact that “tunneling” from the highest-temperature level to
the coldest takes O(L2) accepted steps). Finally, for training θ, we use Adam [50] with a learning
rate of 10−4.

Figure 3 shows results with 5 choices for the most influential hyperparameter, the annealing
rate: α ∈ {0.75, 0.80, 0.85, 0.90, 0.95}. Figure 3(a) displays 95%-confidence intervals for the mean
laptime in the coldest level. The annealing rates α ∈ {0.75, 0.80, 0.90} all result in comparable
performance of 22.95±0.14 (mean ± standard error) seconds at the end of the two-lap run. Figure
3(b) illustrates a metric for measuring diversity, the Frobenius norm of the Mahalanobis distance
matrix (3). We see that α = 0.9 results in the highest diversity while also attaining the best
performance. Thus, in further experimentation, we use the results from the run conducted with
α = 0.9.

Figure 4 illustrates qualitative differences between cost functions. Figure 4(a) displays trajecto-

11

(a) Rollouts from 5 agents

(b) Snapshot trajectories
Figure 4. Qualitative illustrations of multimodal behavior in the learned population of cost functions

ries for agents driven using 5 cost functions sampled from the learned DPP. The cornering behavior
is quite different between the trajectories. Figure 4(b) displays the trajectories chosen by all 160
agents in the population at β1(T) at various snapshots along the track. There is a wider spread of
behavior near turns than areas where the car simply drives straight.

12

Table 1: The effect of distributional robustness on aggressiveness

Agent % of iTTC values < 0.5s

ρ/Nw = 0.001 7.86± 0.90
ρ/Nw = 0.025 6.46± 0.78
ρ/Nw = 0.2 4.75± 0.65
ρ/Nw = 0.4 5.41± 0.74
ρ/Nw = 0.75 5.50± 0.82
ρ/Nw = 1.0 5.76± 0.84

Table 2: The effect of adaptivity on win-rate

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.593± 0.025 0.588± 0.025 0.84
ρ/Nw = 0.025 0.593± 0.025 0.600± 0.024 0.77
ρ/Nw = 0.2 0.538± 0.025 0.588± 0.025 0.045
ρ/Nw = 0.4 0.503± 0.025 0.573± 0.025 0.0098
ρ/Nw = 0.75 0.513± 0.025 0.593± 0.025 0.0013
ρ/Nw = 1.0 0.498± 0.025 0.590± 0.025 0.00024

4.2 Simulated experiments

We conduct a series of tests in simulation to determine the effects of distributional robustness and
adaptivity on overall safety and performance. For a given robustness level ρ/Nw ∈ {0.001, 0.025, 0.2,
0.4, 0.75, 1.0} (with Nw = 8 for all experiments), we simulate 40 two-lap races against each of the
d = 10 diverse opponents sampled from the DPP. For fair comparisons, half of the races have
the opponent starting on the outside and the other half with the opponent on the inside of the
track. Importantly, these experiments involve only the most elite policies from the temperature
level β1(T). Since the physical characteristics of the vehicles are identical, win rates between elite
policies significantly greater than 0.5 are meaningful. In contrast, against a set of weaker opponents
sampled via DPP from the 3rd temperature level β3(T), the win-rate (fraction of races that our
agent from the coldest temperature wins) is 0.848± 0.012.

Effects of distributional robustness We test the hypothesis that distributional robustness
results in more conservative policies. For every race both agents have a fixed robustness level ρ
and no adaptivity. To measure aggressiveness/conservativeness, we consider instantaneous time-to-
collision (iTTC) of the vehicles during the race (see Appendix F). Smaller iTTC values imply more
dangerous scenarios and more aggressive policies. In Table 1, we track the rate at which iTTC
< 0.5 seconds. As expected, aggressiveness decreases with robustness (the rate of small iTTC values
decreases as ρ increases). The trend is a + b log(ρ), where a = 5.16 ± 0.34 and b = −0.36 ± 0.10
(R2 = 0.75).

Effects of adaptivity Now we investigate the effects of online learning on the outcomes of
races. Figure 5(a) shows that Algorithm 2 identifies the opponent vehicle within approximately

13

(a) Simulation (b) Real

Figure 5. 95%-confidence intervals for regret using Nw = 8 arms in (a) simulation and (b) reality.
The legend in (a) denotes opponent id and the opponent in (b) has id 22. Our agent has id 33.

150 timesteps (15 seconds), as illustrated by the settling of the regret curve.3 Given evidence that
the opponent model can be identified, we investigate whether adaptivity improves performance, as
measured by win-rate. Table 2 displays results of paired t-tests for multiple robustness levels (with
a null-hypothesis that adaptivity does not change the win-rate). Each test compares the effect
of adaptivity for our agent on the 400 paired trials (and the opponents are always nonadaptive).
Adaptivity significantly improves performance for the larger robustness levels ρ/Nw ≥ 0.2. As
hypothesized above, adaptivity automatically increases aggressiveness as the agent learns about its
opponent and samples fewer of the other arms to compute the empirical robust cost (5). This effect
is more prominent when robustness levels are greater, where adaptivity brings the win-rate back
to its level without robustness (ρ/Nw = 0.001). Thus, the agent successfully balances safety and
performance by combining distributional robustness with adaptivity.

4.3 Real-world validation

The real world experiments consist of races between agents 22 and 33; we examine the transfer of
the opponent modeling approach from simulation to reality. In Figure 5(b) we plot 33’s cumulative
regret; it takes roughly 4 times as many observations relative to simulation-based experiments to
identify the opponent (agent 22). We demonstrate the qualitative properties of the experiments
in a video of real rollouts synchronized with corresponding simulations.4 State estimation error
and measurement noise drive the gap between simulated and real performance. First, both vehicle
poses are estimated with a particle filter, whereas simulation uses ground-truth states. Since we
infer beliefs about an opponent’s policy based on a prediction of their actions at a given state,
pose estimation error negatively impacts the accuracy of this inference. Second, the simulator only
captures the geometry of the track; in reality glass and metal surfaces significantly affect the LIDAR
range measurements, which in turn impact the MAF and IAF networks. The convergence of the
cumulative regret in Figure 5(b) reflects that, despite the simulation/reality gap, our simulation-

3We omit 3 of the regret lines for clarity in the plot.
4https://youtu.be/7Yat9FZzE4g

14

https://youtu.be/7Yat9FZzE4g

(a) Difference in regret (b) Difference in planning time

Figure 6. 95%-confidence intervals for the (a) difference in regret and (b) percent difference in
cumulative planning time when using sampling approximations vs. online mirror descent. Online
mirror descent yields lower regret at the expense of longer planning times.

trained approach transfers to the real world. Diminishing the effect of the simulation/reality gap
is the subject of future work (see Appendix E).

4.4 Approximation analysis

SamplingNw indices Jk
i.i.d.∼ P0(t) allows us to quickly compute the approximate robust cost (Section

3.1) and perform a bandit-style update to the ambiguity set (Section 3.2). Now we analyze the time-
accuracy tradeoff of performing this sampling approximation rather than using all d prototypical
opponents at every time step. Figure 6(a) shows the difference in regret for the same experiments
as in Figure 5(a) if we perform full online mirror-descent updates. Denoting the simulations in
Figure 5(a) as S and those with the full mirror descent update as M , we compute difference as
RegretS − RegretM . As expected, the difference is positive, since receiving the true gradient is
better than the noisy estimate (7). Similarly, Figure 6(b) shows the percent increase in cumulative
planning time for the same pairs (sampling vs. full online mirror descent), where percent increase
is given by 100(TimeM −TimeS)/TimeS . As the agent learns who the opponent is, it draws many
repeats in the Nw arms, whereas the full mirror descent update always performs d computations.
As a result, the percent increase in cumulative iteration time approaches a contant of approximately
1.5×. All of these comparisons are done in simulation, where the agent is not constrained to perform
actions in under 100 milliseconds. Performing a full mirror descent update is impossible on the real
car, as it requires too much time.

4.5 Out-of-distribution opponents

Now we measure performance against two agents—OOD1 and OOD2—that are not in the dis-
tribution developed by our offline population synthesis approach (see Appendix F.2 for details on
each agent’s policy). We perform only simulated experiments, as we are unable to perform fur-
ther real-world experimentation at the time of writing due to the COVID-19 pandemic. For given

15

Table 3: The effect of adaptivity on win-rate vs. OOD1

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.633±0.036 0.683±0.035 0.280
ρ/Nw = 1.0 0.483±0.037 0.717±0.034 5.721E-6

Table 4: The effect of adaptivity on win-rate vs. OOD2

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.494±0.037 0.589±0.037 0.059
ρ/Nw = 1.0 0.572±0.037 0.739±0.033 0.001

robustness levels ρ/Nw ∈ {0.001, 1.0} and Nw = 8 for all experiments, we perform 180 two-lap
races against each of the two human-created racing agents. Again, for fair comparison, half of
the experiments have the opponent start on the outside and half on the inside. Tables 3 and 4
show the results. Overall, the trends match those of the in-distribution opponents. Namely, adap-
tivity significantly increases the win-rate when robustness is high (ρ/Nw = 1.0), whereas for low
robustness (ρ/Nw = 0.001) there is no significant change. Interestingly, adaptivity with robustness
not only recovers but surpasses the win-rate of the non-adaptive non-robust policy. We hypoth-
esize that, because out-of-distribution opponents do not match any of the learned prototypes,
maintaining an uncertainty over belief automatically helps the agent plan against the “surprising”
out-of-distribution actions. Validation of this hypothesis by comparing performance against more
out-of-distribution opponents is an interesting direction for future work. Overall, we observe that
even against out-of-distribution opponents, we achieve the overall goal of balancing performance
and safety.

5 Conclusion

The central hypothesis of this paper is that distributionally robust evaluation of plans relative to
the agent’s belief state about opponents, which is updated as new observations are made, can lead
to policies achieving the same performance as non-robust approaches without sacrificing safety.
To evaluate this hypothesis we identify a natural division of the underlying problem. First, we
parameterize the set of possible opponents via population-based synthesis without requiring expert
demonstrations. Second, we propose an online opponent-modeling framework which enables the
application of distributionally robust optimization (DRO) techniques under computational con-
straints. We provide strong empirical evidence that distributional robustness combined with adap-
tivity enables a principled method automatically trading between safety and performance. Also,
we demonstrate the transfer of our methods from simulation to real autonomous racecars. The
addition of recursive feasibility arguments for stronger safety guarantees could improve the appli-
cability of these techniques to real-world settings. Furthermore, although autonomous racing is
the current focus of our experiments, future work should explore the generality of our approach in
other settings such as human-robot interaction.

16

References

[1] J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. In 2009
Information Theory and Applications Workshop, pages 280–289. IEEE, 2009.

[2] N. Agarwal, B. Bullins, E. Hazan, S. M. Kakade, and K. Singh. Online control with adversarial
disturbances. arXiv preprint arXiv:1902.08721, 2019.

[3] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using reachability
analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

[4] M. Althoff, M. Koschi, and S. Manzinger. Commonroad: Composable benchmarks for motion
planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 719–726. IEEE,
2017.

[5] O. Arenz, M. Zhong, G. Neumann, et al. Efficient gradient-free variational inference using
policy search. 2018.

[6] K. Arulkumaran, A. Cully, and J. Togelius. Alphastar: An evolutionary computation perspec-
tive. arXiv preprint arXiv:1902.01724, 2019.

[7] K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation, 2013.

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[9] J. A. Bagnell, A. Y. Ng, and J. G. Schneider. Solving uncertain markov decision processes.
2001.

[10] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch. Emergent complexity via
multi-agent competition. arXiv preprint arXiv:1710.03748, 2017.

[11] C. J. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for generating multi-
variate distributions. Mathematics of Operations Research, 18(2):255–266, 1993.

[12] A. Bemporad and M. Morari. Robust model predictive control: A survey. In Robustness in
identification and control, pages 207–226. Springer, 1999.

[13] A. Ben-Tal, D. den Hertog, A. D. Waegenaere, B. Melenberg, and G. Rennen. Robust solutions
of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–
357, 2013.

[14] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(Feb):281–305, 2012.

[15] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dkebiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[16] D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53, 2004.

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[19] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

17

http://arxiv.org/abs/1902.08721
http://arxiv.org/abs/1902.01724
http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1912.06680

[20] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[21] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient simu-
lation algorithm. Journal of optimization theory and applications, 45(1):41–51, 1985.

[22] R. C. Coulter. Implementation of the pure pursuit path tracking algorithm. Technical report,
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

[24] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. Regret bounds for robust adaptive control
of the linear quadratic regulator. In Advances in Neural Information Processing Systems, pages
4188–4197, 2018.

[25] W. Ding and S. Shen. Online vehicle trajectory prediction using policy anticipation network
and optimization-based context reasoning. arXiv preprint arXiv:1903.00847, 2019.

[26] J. Doyle, K. Glover, P. Khargonekar, and B. Francis. State-space solutions to standard h2 and
h∞ control problems. In 1988 American Control Conference, pages 1691–1696. IEEE, 1988.

[27] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto thel1-ball
for learning in high dimensions. Proceedings of the 25th international conference on Machine
learning - ICML ’08, 2008. doi: 10.1145/1390156.1390191. URL http://dx.doi.org/10.

1145/1390156.1390191.

[28] Federation Internationale de l’Automobile. Formula one 2019 results. https://www.formula1.
com/en/results.html/2019/, 2019.

[29] D. Ferguson, T. M. Howard, and M. Likhachev. Motion planning in urban environments.
Journal of Field Robotics, 25(11-12):939–960, 2008.

[30] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Advances in
Neural Information Processing Systems, pages 9516–9527, 2018.

[31] S. Fujimoto, H. Van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. arXiv preprint arXiv:1802.09477, 2018.

[32] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson. Multipolicy decision-making
for autonomous driving via changepoint-based behavior prediction. In Robotics: Science and
Systems, volume 1, 2015.

[33] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli. A tube-based robust nonlinear predictive control
approach to semiautonomous ground vehicles. Vehicle System Dynamics, 52(6):802–823, 2014.

[34] E. Gat, R. P. Bonnasso, R. Murphy, et al. On three-layer architectures. Artificial intelligence
and mobile robots, 195:210, 1998.

[35] C. J. Geyer. Markov chain monte carlo maximum likelihood. 1991.

[36] I. Gilboa and M. Marinacci. Ambiguity and the bayesian paradigm. In Readings in formal
epistemology, pages 385–439. Springer, 2016.

[37] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell. Adversarial policies:
Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

[38] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
1970.

[39] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep reinforcement

18

http://arxiv.org/abs/1903.00847
http://dx.doi.org/10.1145/1390156.1390191
http://dx.doi.org/10.1145/1390156.1390191
https://www.formula1.com/en/results.html/2019/
https://www.formula1.com/en/results.html/2019/
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1905.10615

learning. In International conference on machine learning, pages 1804–1813, 2016.

[40] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in 2d lidar slam. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 1271–1278. IEEE,
2016.

[41] P. Hintjens. ZeroMQ: messaging for many applications. ” O’Reilly Media, Inc.”, 2013.

[42] T. M. Howard. Adaptive model-predictive motion planning for navigation in complex environ-
ments. Carnegie Mellon University, 2009.

[43] J. Hu and P. Hu. Annealing adaptive search, cross-entropy, and stochastic approximation in
global optimization. Naval Research Logistics (NRL), 58(5):457–477, 2011.

[44] L. Ingber. Simulated annealing: Practice versus theory. Mathematical and computer modelling,
18(11):29–57, 1993.

[45] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, et al. Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

[46] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beat-
tie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, et al. Human-level performance in 3d
multiplayer games with population-based reinforcement learning. Science, 364(6443):859–865,
2019.

[47] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[48] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894, 2011.

[49] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via parametric optimal
control. The International Journal of Robotics Research, 22(7-8):583–601, 2003.

[50] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[51] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved
variational inference with inverse autoregressive flow. In Advances in neural information pro-
cessing systems, pages 4743–4751, 2016.

[52] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. science,
220(4598):671–680, 1983.

[53] M. J. Kochenderfer. Decision making under uncertainty: theory and application. MIT press,
2015.

[54] A. Kulesza, B. Taskar, et al. Determinantal point processes for machine learning. Foundations
and Trends R© in Machine Learning, 5(2–3):123–286, 2012.

[55] P. R. Kumar. A survey of some results in stochastic adaptive control. SIAM Journal on
Control and Optimization, 23(3):329–380, 1985.

[56] A. Liniger and J. Lygeros. A noncooperative game approach to autonomous racing. IEEE
Transactions on Control Systems Technology, 2019.

[57] L. Lovász. Hit-and-run mixes fast. Mathematical Programming, 86(3):443–461, 1999.

[58] L. Lovász and S. Vempala. Hit-and-run is fast and fun. preprint, Microsoft Research, 2003.

19

http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1412.6980

[59] L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM Journal on Computing, 35(4):
985–1005, 2006.

[60] D. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.

[61] A. Majumdar and R. Tedrake. Robust online motion planning with regions of finite time
invariance. In Algorithmic foundations of robotics X, pages 543–558. Springer, 2013.

[62] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese. Adversarially robust policy
learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 3932–3939. IEEE,
2017.

[63] E. Marinari and G. Parisi. Simulated tempering: a new monte carlo scheme. EPL (Europhysics
Letters), 19(6):451, 1992.

[64] J. Matyas. Random optimization. Automation and Remote control, 26(2):246–253, 1965.

[65] M. McNaughton. Parallel algorithms for real-time motion planning. 2011.

[66] J.-B. Mouret and J. Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

[67] B. Nagy and A. Kelly. Trajectory generation for car-like robots using cubic curvature polyno-
mials. Field and Service Robots, 11, 2001.

[68] H. Namkoong and J. C. Duchi. Variance regularization with convex objectives. In Advances
in Neural Information Processing Systems 30, 2017.

[69] A. Nilim and L. El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

[70] J. Norden, M. O’Kelly, and A. Sinha. Efficient black-box assessment of autonomous vehicle
safety. arXiv preprint arXiv:1912.03618, 2019.

[71] M. O’Kelly, H. Zheng, J. Auckley, A. Jain, K. Luong, and R. Mangharam. Technical Report:
TunerCar: A Superoptimization Toolchain for Autonomous Racing. Technical Report UPenn-
ESE-09-15, University of Pennsylvania, September 2019. https://repository.upenn.edu/

mlab_papers/122/.

[72] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driessche,
E. Lockhart, L. Cobo, F. Stimberg, et al. Parallel wavenet: Fast high-fidelity speech synthesis.
In International Conference on Machine Learning, pages 3918–3926, 2018.

[73] G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density estima-
tion. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.

[74] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learn-
ing. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2817–2826. JMLR. org, 2017.

[75] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proceedings of
the 32nd International Conference on International Conference on Machine Learning-Volume
37, pages 1530–1538. JMLR. org, 2015.

[76] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun. Jointly learnable
behavior and trajectory planning for self-driving vehicles. arXiv preprint arXiv:1910.04586,
2019.

20

http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1912.03618
https://repository.upenn.edu/mlab_papers/122/
https://repository.upenn.edu/mlab_papers/122/
http://arxiv.org/abs/1910.04586

[77] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for autonomous cars that
leverage effects on human actions. In Robotics: Science and Systems, volume 2. Ann Arbor,
MI, USA, 2016.

[78] P. Samson. Concentration of measure inequalities for Markov chains and φ-mixing processes.
Annals of Probability, 28(1):416–461, 2000.

[79] S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

[80] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[81] A. Sinha and J. C. Duchi. Learning kernels with random features. In Advances in Neural
Information Processing Systems, pages 1298–1306, 2016.

[82] A. Sinha, H. Namkoong, and J. Duchi. Certifiable distributional robustness with principled
adversarial training. In Proceedings of the Fifth International Conference on Learning Repre-
sentations, 2017. arXiv:1710.10571 [cs.LG].

[83] E. Smirnova, E. Dohmatob, and J. Mary. Distributionally robust reinforcement learning. arXiv
preprint arXiv:1902.08708, 2019.

[84] R. L. Smith. Efficient monte carlo procedures for generating points uniformly distributed over
bounded regions. Operations Research, 32(6):1296–1308, 1984.

[85] J. M. Snider et al. Automatic steering methods for autonomous automobile path tracking.
Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

[86] S. Sontges, M. Koschi, and M. Althoff. Worst-case analysis of the time-to-react using reachable
sets. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1891–1897. IEEE, 2018.

[87] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[88] R. H. Swendsen and J.-S. Wang. Replica monte carlo simulation of spin-glasses. Physical
review letters, 57(21):2607, 1986.

[89] A. Tamar, S. Mannor, and H. Xu. Scaling up robust mdps using function approximation. In
International Conference on Machine Learning, pages 181–189, 2014.

[90] T. Uchiya, A. Nakamura, and M. Kudo. Algorithms for adversarial bandit problems with
multiple plays. In International Conference on Algorithmic Learning Theory, pages 375–389.
Springer, 2010.

[91] J. Van Den Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning for
robots with motion uncertainty and imperfect state information. The International Journal
of Robotics Research, 30(7):895–913, 2011.

[92] B. Vedder. Vedder electronic speed controller. URL https://vesc-project.com/

documentation.

[93] G. Vinnicombe. Frequency domain uncertainty and the graph topology. IEEE Transactions
on Automatic Control, 38(9):1371–1383, 1993.

[94] C. Walsh and S. Karaman. Cddt: Fast approximate 2d ray casting for accelerated localization.
abs/1705.01167, 2017. URL http://arxiv.org/abs/1705.01167.

[95] Z. Wang, R. Spica, and M. Schwager. Game theoretic motion planning for multi-robot racing.

21

http://arxiv.org/abs/1710.10571
http://arxiv.org/abs/1902.08708
https://vesc-project.com/documentation
https://vesc-project.com/documentation
http://arxiv.org/abs/1705.01167

In Distributed Autonomous Robotic Systems, pages 225–238. Springer, 2019.

[96] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger. Inequalities for the
l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, 2003.

[97] G. Williams, B. Goldfain, P. Drews, J. M. Rehg, and E. A. Theodorou. Autonomous racing
with autorally vehicles and differential games. arXiv preprint arXiv:1707.04540, 2017.

[98] D. P. Zhou and C. J. Tomlin. Budget-constrained multi-armed bandits with multiple plays.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[99] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. 1996.

22

http://arxiv.org/abs/1707.04540

A Offline population synthesis

Here we provide extra details for Section 2.

Horizontal steps Horizontal steps occur as follows. Two random particles are sampled uniformly
at random from adjacent temeprature levels. This forms a proposal for the swap, which is then
accepted via standard MH acceptance conditions. Because the rest of the particles remain as-is,
the acceptance condition reduces to a particualrly simple form (cf. Algorithm 3).

Algorithm 3 Horizontal swap

Sample i ∼ Uniform(1, 2, . . . , L− 1).

Sample j, k
i.i.d.∼ Uniform(1, 2, . . . , D).

Sample p ∼ Uniform([0, 1])

Let a = min
(

1, ef(xi,j ,θi,j)−f(xi+1,k,θi+1,k)
)

if p < aβi−βi+1

swap configurations (xi,j , θi,j) and (xi+1,k, θi+1,k)

We ran our experiments on a server with 88 Intel Xeon cores @ 2.20 GHz. Each run of 100
iterations for a given hyperparameter setting α took 20 hours.

B Online robust planning

Here we provide extra details for Section 3.

B.1 Solving problem (5)

We can rewrite the constraint Dφ (q||1/Nw) ≤ ρ as ‖q − 1/Nw‖2 ≤ ρ/Nw. Then, the partial
Lagrangian can be written as

L(q, λ) =
∑
i

qici(t)−
λ

2

(
‖q − 1/Nw‖2 − ρ/Nw

)
.

By inspection of the right-hand side, we see that, for a given λ, finding v(λ) = supq∈∆ L(q, λ) is
equivalent to a Euclidean-norm projection of the vector 1/Nw+c(t)/λ onto the probability simplex
∆. This latter problem is directly amenable to the methods of Duchi et al. [27].

B.2 Proof of Proposition 1

We redefine notation to suppress dependence of the cost C on other variables and just make explicit
the dependence on the random index J . Namely, we let C : J → [−1, 1] be a function of the random
index J . We consider the convergence of

sup
Q∈PNw

EQ[C(J)] to sup
Q∈P

EQ[C(J)].

To ease notation, we hide dependence on J and for a sample J1, . . . , JNw of random vectors Jk, we
denote Ck := C(Jk) for shorthand, so that the Ck are bounded independent random variables. Our

23

proof technique is similar in style to that of Sinha and Duchi [81]. We provide proofs for technical
lemmas that follow in support of Proposition 1 that are shorter and more suitable for our setting
(in particular Lemmas 1 and 3).

Treating C = (C1, . . . , CNw) as a vector, the mapping C 7→ supQ∈PNw EQ[C] is a
√
ρ+ 1/

√
Nw-

Lipschitz convex function of independent bounded random variables. Indeed, letting q ∈ RNw+ be

the empirical probability mass function associated with Q ∈ PNw , we have 1
Nw

∑Nw
i=1(Nwqi)

2 ≤ ρ+1

or ‖q‖2 ≤
√

(1 + ρ)/Nw. Using Samson’s sub-Gaussian concentration inequality [78] for Lipschitz
convex functions of bounded random variables, we have with probability at least 1− δ that

sup
Q∈PNw

EQ[C] ∈ E

[
sup

Q∈PNw
EQ[C]

]
± 2
√

2

√
(1 + ρ) log 2

δ

Nw
. (8)

By the containment (8), we only need to consider convergence of

E

[
sup

Q∈PNw
EQ[C]

]
to sup

Q∈P
EQ[C],

which we do with the following lemma.

Lemma 1 (Sinha and Duchi [81]). Let Z = (Z1, . . . , ZNw) be a random vector of independent

random variables Zi
i.i.d.∼ P0, where |Zi| ≤M with probability 1. Let Cρ = 2(ρ+1)√

1+ρ−1
. Then

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]− 4CρM

√
log(2Nw)

Nw

and

E

[
sup

Q∈PNw
EQ[Z]

]
≤ sup

Q∈P
EQ[Z].

See Appendix B.3 for the proof.
Combining Lemma 1 with containment (8) gives the result.

B.3 Proof of Lemma 1

Before beginning the proof, we first state a technical lemma.

Lemma 2 (Ben-Tal et al. [13]). Let φ be any closed convex function with domain domφ ⊂ [0,∞),
and let φ∗(s) = supt≥0{ts − φ(t)} be its conjugate. Then for any distribution P and any function
g :W → R we have

sup
Q:Dφ(Q||P)≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

{
λ

∫
φ∗
(
g(w)− η

λ

)
dP (w) + ρλ+ η

}
.

See Appendix B.4 for the proof.
We prove the result for general φ-divergences φ(t) = tk−1, k ≥ 2. To simplify algebra, we work

with a scaled version of the φ-divergence: φ(t) = 1
k (tk − 1), so the scaled population and empirical

constraint sets we consider are defined by

P =
{
Q : Dφ (Q||P0) ≤ ρ

k

}
and PNw :=

{
q : Dφ (q||1/Nw) ≤ ρ

k

}
.

24

Then by Lemma 2, we obtain

E

[
sup

Q∈PNw
EQ[Z]

]
= EP0

[
inf
λ≥0,η

1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

≤ inf
λ≥0,η

EP0

[
1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

= inf
λ≥0,η

{
EP0

[
λφ∗

(
Z − η
λ

)]
+
ρ

k
λ+ η

}
= sup

Q∈P
EQ[Z].

This proves the upper bound in Lemma 1.

Now we focus on the lower bound. For the function φ(t) = 1
k (tk−1), we have φ∗(s) = 1

k∗ [s]k
∗

+ + 1
k ,

where 1/k∗ + 1/k = 1, so that the duality result in Lemma 2 gives

sup
Q∈PNw

EQ[Z] = inf
η

{
(1 + ρ)

1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗

+

) 1
k∗

+ η

}
.

Because |Zi| ≤M for all i, we claim that any η minimizing the preceding expression must satisfy

η ∈

[
−1 + (1 + ρ)

1
k∗

(1 + ρ)
1
k∗ − 1

, 1

]
·M. (9)

For convenience, we first define the shorthand

SNw(η) := (1 + ρ)1/k

(
1

Nw

Nw∑
i=1

[Zi − η]k
∗

+

) 1
k∗

+ η.

Then it is clear that η ≤M , because otherwise we would have SNw(η) > M ≥ infη SNw(η). Let the
lower bound be of the form η = −cM for some c > 1. Taking derivatives of the objective SNw(η)
with respect to η, we have

S′Nw(η) = 1− (1 + ρ)1/k
1
Nw

∑Nw
i=1 [Zi − η]k

∗−1
+(

1
Nw

∑Nw
i=1 [Zi − η]k

∗

+

)1− 1
k∗

≤ 1− (1 + ρ)1/k

(
(c− 1)M

(c+ 1)M

)k∗−1

= 1− (1 + ρ)1/k

(
c− 1

c+ 1

)k∗−1

.

For any c > cρ,k := (1+ρ)
1
k∗ +1

(1+ρ)
1
k∗ −1

, the preceding display is negative, so we must have η ≥ −cρ,kM . For

the remainder of the proof, we thus define the interval

U := [−Mcρ,k,M] , cρ,k =
(1 + ρ)

1
k∗ + 1

(1 + ρ)
1
k∗ − 1

,

and we assume w.l.o.g. that η ∈ U .

25

Again applying the duality result of Lemma 2, we have that

E

[
sup

Q∈PNw
EQ[Z]

]
= E

[
inf
η∈U

SNw(η

]
= E

[
inf
η∈U
{SNw(η)− E[SNw(η)] + E[SNw(η)]}

]
≥ inf

η∈U
E[SNw(η)]− E

[
sup
η∈U
|SNw(η)− E[SNw(η)]|

]
. (10)

To bound the first term in expression (10), we use the following lemma.

Lemma 3 (Sinha and Duchi [81]). Let Z ≥ 0, Z 6≡ 0 be a random variable with finite 2p-th moment
for 1 ≤ p ≤ 2. Then we have the following inequality:

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2, (11a)

and if ‖Z‖∞ ≤ C, then

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n
. (11b)

See Appendix B.5 for the proof. Now, note that [Z − η]+ ∈ [0, 1+cρ,k]M and (1 + ρ)1/k(1+cρ,k) =:
Cρ,k. Thus, by Lemma 3 we obtain that

E[SNw(η)] ≥ (1 + ρ)1/kE
[
[Z − η]k

∗

+

]1/k∗

+ η − Cρ,kM
k∗ − 1

k∗

√
2

Nw
.

Using that k∗−1
k∗ = 1

k , taking the infimum over η on the right hand side and using duality yields

inf
η
E[SNw(η)] ≥ sup

Q∈P
EQ[Z]− Cρ,k

M

k

√
2

Nw
.

To bound the second term in expression (10), we use concentration results for Lipschitz func-
tions. First, the function η 7→ SNw(η) is

√
1 + ρ-Lipschitz in η. To see this, note that for 1 ≤ k? ≤ 2

and X ≥ 0, by Jensen’s inequality,

E[Xk?−1]

(E[Xk?])1−1/k?
≤ E[X]k

?−1

(E[Xk?])1−1/k?
≤ E[X]k

?−1

E[X]k?−1
= 1,

so S′Nw(η) ∈ [1−(1+ρ)
1
k , 1] and therefore SNw is (1+ρ)1/k-Lipschitz in η. Furthermore, the mapping

T : z 7→ (1 + ρ)
1
k (1

Nw

∑Nw
i=1 [zi − η]k

∗

+)
1
k∗ for z ∈ RNw is convex and (1 + ρ)

1
k /
√
Nw-Lipschitz. This

26

is verified by the following:

∣∣T (z)− T (z′)
∣∣ ≤ (1 + ρ)1/k

∣∣∣∣∣
(

1

Nw

Nw∑
i=1

∣∣∣[zi − η]+ −
[
z′i − η

]
+

∣∣∣k∗) 1
k∗
∣∣∣∣∣

≤ (1 + ρ)1/k

Nw
1/k∗

∣∣∣∣∣
(Nw∑
i=1

∣∣zi − z′i∣∣k∗) 1
k∗
∣∣∣∣∣

≤ (1 + ρ)1/k

√
Nw

‖z − z′‖2,

where the first inequality is Minkowski’s inequality and the third inequality follows from the fact

that for any vector x ∈ Rn, we have ‖x‖p ≤ n
2−p
2p ‖x‖2 for p ∈ [1, 2], where these denote the

usual vector norms. Thus, the mapping Z 7→ SNw(η) is (1 + ρ)1/k/
√
Nw-Lipschitz continuous

with respect to the `2-norm on Z. Using Samson’s sub-Gaussian concentration result for convex
Lipschitz functions, we have

P (|SNw(η)− E[SNw(η)]| ≥ δ) ≤ 2 exp

(
− Nwδ

2

2C2
ρ,kM

2

)
for any fixed η ∈ R and any δ ≥ 0. Now, let N (U, ε) = {η1, . . . , ηN(U,ε)} be an ε cover of the set U ,

which we may take to have size at most N(U, ε) ≤M(1 + cρ,k)
1
ε . Then we have

sup
η∈U
|SNw(η)− E[SNw(η)] ≤ max

i∈N (U,ε)
|SNw(ηi)− E[SNw(ηi)]|+ ε(1 + ρ)1/k.

Using the fact that E[maxi≤n |Xi|] ≤
√

2σ2 log(2n) for Xi all σ2-sub-Gaussian, we have

E
[

max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|
]
≤ Cρ,k

√
2
M2

Nw
log 2N(U, ε).

Taking ε = M(1 + cρ,k)/Nw gives that

E

[
sup
η∈U
|SNw(η)− E[SNw(η)]

]
≤
√

2MCρ,k

√
1

Nw
log(2Nw) +

Cρ,kM

Nw
.

Then, in total we have (using Cρ ≥ Cρ,k, k ≥ 2, and Nw ≥ 1),

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]− CρM

√
2√

Nw

(
1

k
+
√

log(2Nw) +
1√

2Nw

)

≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw
.

This gives the desired result of the lemma.

27

B.4 Proof of Lemma 2

Let L ≥ 0 satisfy L(w) = dQ(w)/dP (w), so that L is the likelihood ratio between Q and P . Then
we have

sup
Q:Dφ(Q||P)≤ρ

∫
g(w)dQ(w) = sup∫

φ(L)dP≤ρ,EP [L]=1

∫
g(w)L(w)dP (w)

= sup
L≥0

inf
λ≥0,η

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
= inf

λ≥0,η
sup
L≥0

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
,

where we have used that strong duality obtains because the problem is strictly feasible in its non-
linear constraints (take L ≡ 1), so that the extended Slater condition holds [60, Theorem 8.6.1 and
Problem 8.7]. Noting that L is simply a positive (but otherwise arbitrary) function, we obtain

sup
Q:Dφ(Q||P)≤ρ

∫
g(w)dQ(w)

= inf
λ≥0,η

∫
sup
`≥0
{(g(w)− η)`− λφ(`)} dP (w) + λρ+ η

= inf
λ≥0,η

∫
λφ∗

(
g(w)− η

λ

)
dP (w) + η + ρλ.

Here we have used that φ∗(s) = supt≥0{st− φ(t)} is the conjugate of φ and that λ ≥ 0, so that we
may take divide and multiply by λ in the supremum calculation.

B.5 Proof of Lemma 3

For a > 0, we have

inf
λ≥0

{
ap

pλp−1
+ λ

p− 1

p

}
= a,

(with λ = a attaining the infimum), and taking derivatives yields

ap

pλp−1
+ λ

p− 1

p
≥ ap

pλp−1
1

+ λ1
p− 1

p
+
p− 1

p

(
1− ap

λp1

)
(λ− λ1).

Using this in the moment expectation, by setting λn = p

√
1
n

∑n
i=1 Z

p
i , we have for any λ ≥ 0

that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
= E

[∑n
i=1 Z

p
i

pnλp−1
n

+ λn
p− 1

p

]
≥ E

[∑n
i=1 Z

p
i

pnλp−1
+ λ

p− 1

p

]
+
p− 1

p
E
[(

1−
∑n

i=1 Z
p
i

nλp

)
(λn − λ)

]
.

28

Now we take λ = ‖Z‖p, and we apply the Cauchy-Schwarz inequality to obtain

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p
E

(1−
1
n

∑n
i=1 Z

p
i

‖Z‖pp

)2
 1

2

E

((1

n

n∑
i=1

Zpi

) 1
p

− ‖Z‖p

)2
 1

2

= ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

((1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 1

2

≥ ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

[(
1

n

n∑
i=1

Zpi

) 2
p

+ E[Zp]
2
p

] 1
2

≥ ‖Z‖p −
p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2,

where the last inequality follows by the fact that the norm is non-decreasing in p.
In the case that we have the unifom bound ‖Z‖∞ ≤ C, we can get tighter guarantees. To that

end, we state a simple lemma.

Lemma 4. For any random variable X ≥ 0 and a ∈ [1, 2], we have

E[Xak] ≤ E[Xk]2−aE[X2k]a−1

Proof For c ∈ [0, 1], 1/p+ 1/q = 1 and A ≥ 0, we have by Holder’s inequality,

E[A] = E[AcA1−c] ≤ E[Apc]1/pE[Aq(1−c)]1/q

Now take A := Xak, 1/p = 2− a, 1/q = a− 1, and c = 2
a − 1.

First, note that E[Z2p] ≤ CpE[Zp]. For 1 ≤ p ≤ 2, we can take a = 2/p in Lemma 4, so that we
have

E[Z2] ≤ E[Zp]
2− 2

pE[Z2p]
2
p
−1 ≤ ‖Z‖ppC2−p.

Now, we can plug these into the expression above (using VarZp ≤ E[Z2p] ≤ Cp‖Z‖pp), yielding

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n

as desired.

B.6 Proof of Proposition 2

We utilize the following lemma for regret of online mirror descent.

Lemma 5. The expected regret for online mirror descent with unbiased stochastic subgradient γ(t)
and stepsize η is

T∑
t=1

E
[
γ(t)T (w(t)− w?)

]
≤ log(d)

η
+
η

2
E

 T∑
t=1

d∑
j=1

wj(t)γj(t)
2

 (12)

29

See Appendix B.7 for the proof. Now we bound the right-hand term of the regret bound (12)
in our setting. For this we utilize the following:

E
[
γi(t)

2|w(t)
]

=
1

N2
w

L2
i (t)

w2
i (t)

E

(Nw∑
k=1

1 {Jk = i}

)2 ∣∣∣∣w(t)


=

1

N2
w

L2
i (t)

w2
i (t)

(
Nw(Nw − 1)wi(t)

2 +Nwwi(t)
)
,

where the latter fact is simply the second moment for the sum of Nw random variables
i.i.d.∼

Bernoulli(wi(t)). Then,

d∑
i=1

wi(t)E
[
γi(t)

2|w(t)
]

=
d∑
i=1

Li(t)
2

(
Nw − 1

Nw
wi(t) +

1

Nw

)

≤
d∑
i=1

(
Nw − 1

Nw
wi(t) +

1

Nw

)
=
Nw − 1

Nw
+

d

Nw
=: z.

Plugging in the prescribed η =

√
2 log(d)
zT into the bound (12) yields the result.

B.7 Proof of Lemma 5

We first show the more general regeret of online mirror descent with a Bregman divergence and
then specialize to the entropic regularization case. Let ψ(w) be a convex fuction and ψ∗(θ) its
Fenchel conjugate. Define the Bregman divergence Bψ(w,w′) = ψ(w)−ψ(w′)−∇ψ(w′)T (w−w′).
In the following we use the subscript ·t instead of (·)(t) for clarity. The standard online mirror
descent learner sets

wt = argmin
w

(
γTt w +

1

η
Bψ(w,wt)

)
.

Using optimality of wt+1 in the preceding equation, we have

γTt (wt − w∗) = γTt (wt+1 − w∗) + γTt (wt − wt+1)

≤ 1

η
(∇ψ(wt+1)−∇ψ(wt))

T (w∗ − wt+1)

+ γTt (wt − wt+1)

=
1

η
(Bψ(w∗, wt)−Bψ(w∗, wt+1)−Bψ(wt+1, wt))

+ γTt (wt − wt+1).

30

Summing this preceding display over iterations t yields

T∑
t=1

γTt (wt − w∗) ≤
1

η
Bψ(w∗, w1)

+
T∑
t=1

(
−1

η
Bψ(wt+1, wt) + γTt (wt − wt+1)

)
Now let ψ(w) =

∑
iwi logwi. Then, with w1 = 1/d, Bψ(w∗, w1) ≤ log(d). Now we bound the

second term with the following lemma.

Lemma 6. Let ψ(x) =
∑

j xj log xj and x, y ∈ ∆ be defined by: yi = xi exp(−ηgi)∑
j xj exp(−ηgj) where g ∈ Rd+

is non-negative. Then

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i xi.

See Appendix B.8 for the proof. Setting y = wt+1, x = wt, and g = γt in Lemma 6 yields

T∑
t=1

γTt (wt − w∗) ≤
log(d)

η
+
η

2

T∑
t=1

d∑
j=1

wj(t)γj(t)
2.

Taking expectations on both sides yields the result.

B.8 Proof of Lemma 6

Note that Bψ(y, x) =
∑

i yi log yi
xi

. Substituting the values for x and y into this expression, we have

∑
i

yi log
yi
xi

= −ηgT y −
∑
i

yi log

∑
j

xje
−ηgj


Now we use a Taylor expansion of the function g 7→ log

(∑
j xje

−ηgj
)

around the point 0. If we

define the vector pi(g) = xie
−ηgi/

(∑
j xje

−ηgj
)

, then

log

∑
j

xje
−ηgj

 = log(1Tx)− ηp(0)T g+

η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g

where g̃ = λg for some λ ∈ [0, 1]. Noting that p(0) = x and 1Tx = 1T y = 1, we obtain

Bψ(y, x) = ηgT (x− y)− η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g,

whereby

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i pi(g̃). (13)

31

Figure 7: Components of the 1/10 Scale Vehicle

Lastly, we claim that the function

s(λ) =

d∑
i=1

g2
i

xie
−λgi∑

j xje
−λgj

is non-increasing on λ ∈ [0, 1]. Indeed, we have

s′(λ) =

(∑
i gixie

−λgi
) (∑

i g
2
i xie

−λgi
)

(
∑

i xie
−λgi)

2 −
∑

i g
3
i xie

−λgi∑
i xie

−λgi

=

∑
ij gig

2
jxixje

−λgi−λgj −
∑

ij g
3
i xixje

−λgi−λgj

(
∑

i xie
−λgi)

2

Using the Fenchel-Young inequality, we have ab ≤ 1
3 |a|

3 + 2
3 |b|

3/2 for any a, b so gig
2
j ≤ 1

3g
3
i + 2

3g
3
j .

This implies that the numerator in our expression for s
′
(λ) is non-positive. Thus, s(λ) ≤ s(0) =∑d

i=1 g
2
i xi which gives the result when combined with inequality (13).

C Hardware

The major components of the vehicle used in experiments are shown in Figure 7. The chassis of the
1/10-scale vehicles used in experiments are based on a Traxxas Rally 1/10-scale radio-controlled
car with an Ackermann steering mechanism. An electronic speed controller based on an open
source design [92] controls the RPM of a brushless DC motor and actuates a steering servo. A
power distribution board manages the power delivery from a lithium polymer (LiPo) battery to
the onboard compute unit and sensors. The onboard compute unit is a Nvidia Jetson Xavier, a
system-on-a-chip that contains 8 ARM 64 bit CPU cores and a 512 core GPU. The onboard sensor
for localization is a planar LIDAR that operates at 40Hz with a maximum range of 30 meters. The
electronic speed controller also provides odometry via the back EMF of the motor.

32

Figure 8. FormulaZero implementation on vehicle. Online each agent measures the world using
onboard sensors such as a planar LIDAR. Given the sensor measurement the vehicle performs oppo-
nent prediction via the use of a masked autoregressive flow and simultaneously selects motion planner
goals using an inverse autoregressive flow. Given the set of goals each is evaluated within our DRO
framework, the best goal is chosen, and a new control command is applied to the vehicle. Then, the
process occurs again.

D Vehicle Software Stack

This section gives a detailed overview of the software used onboard the vehicles. Figure 8 gives a
graphical overview.

D.1 Mapping

We create occupancy grid maps of tracks using Google Cartographer [40]. The map’s primary use is
as an efficient prior for vehicle localization algorithms. In addition, maps serve as a representation
of the static portion of the simulation environment describing where the vehicle may drive and
differentiating which (if any) portions of the LIDAR scan have line-of-sight to other agents. A
feature of our system useful to other researchers is that any environment which can be mapped
may be trivially added to the simulator described in Appendix E.

D.2 Localization

Due to the speeds at which the vehicles travel, localization must provide pose estimates at a rate
of at least 20 Hz. Thus, to localize the vehicle we use a particle filter [94] that implements a
ray-marching scheme on the GPU in order to efficiently simulate sensor observations in parallel.
We add a small modification which captures the covariance of the pose estimate. We do not use
external localization systems (e.g. motion capture cameras) in any experiment.

D.3 Planning

The vehicle software uses a hierarchical planner [34] similar to that of Ferguson et al. [29]. At the
top level the planner receives a map and waypoints representing the centerline of the track; the goal

33

is to traverse the track from start to finish. Unlike route planning in road networks, there are no
routing decisions to be made. In more complex instances of our proposed environment, this module
could be necessary for making strategic decisions such as pit stops. The second key difference
is the mid-level planner. Whereas Ferguson et al. [29] uses a deterministic lattice of points, our
vehicle draws samples from a neural autoregressive flow. Each sample contains a goal pose and
speed profile. Given this specification, the local planner calculates a trajectory parameterized as a
cubic spline, evaluates static and dynamic costs of the proposed plan in belief space, and selects
the lowest cost option.

D.3.1 Sampling behavior proposals

There are two advantages to using a neural autoregressive flow in our planning framework. First,
each agent in the population weights the individual components of its cost function differently; the
flow enables the goal generation mechanism to learn a distribution which places more probability
mass on the agent’s preferences. Second, as planning takes place in the context of the other agent’s
actions, the ego-agent’s beliefs can be updated by inverting the flow and estimating the likelihood
of the other agent’s actions under a given configuration of the cost function.

The goal-generation process utilizes an inverse autoregressive flow (IAF) [51]. The IAF samples
are drawn from a density conditioned on a 101-dimensional observation vector composed of a
subsampled LIDAR scan and current speed. Each sample is a 6 dimensional vector: ∆t, the
perpendicular offset of the goal pose from the track’s centerline; ∆s, the arc-length along the track’s
centerline relative to the vehicle’s current pose; ∆θ, the difference between the goal pose’s heading
angle and the current heading angle; three velocity offsets from the vehicle’s current velocity at
three equidistant knot points along the trajectory.

The second benefit of using a generative model for sampling behavior proposals is the ability to
update an agent’s beliefs about the opponent’s policy type. As noted in Section 4, masked [73] and
inverse autoregressive flows (MAF and IAF respectively) have complementary strengths. While
sampling from a MAF is slow, density estimation using this architecture is fast. Thus, we use a
MAF network trained to mimic the samples produced by the IAF for this task. The architectures
of each network are the same, and we describe this architecture below.

The IAF and MAF networks used in this paper have 5 MADE layers [73] each containing: a
masked linear mapping (R6 → R100), RELU layer, masked linear mapping (R100 → R100), RELU
layer, and a final masked linear layer (R100 → R12). Note that output of a MADE layer includes
both the transformed sample and the logarithm of the absolute value of the determinant of the
Jacobian of the transformation. For sampling, the latter is discarded, and the transformed sample
is passed to the next layer. In addition, the masking pattern is sequential and held constant during
both training and inference. This choice was made to aid in debugging of experiments and to
simplify communication during distributed training.

Each population member has a dedicated IAF model, which is trained iteratively according
to the AAdaPT algorithm described in Section 2 using the hyperparameters given in Section 4.
We initialize each IAF with a set of weights which approximate an identity transformation for
random pairs of samples from a normal distribution and simulated observations. In addition each
population member also has a MAF model, which is trained using the same hyperparameters as
the IAF but only after AAdaPT has finished. The code submitted in the supplementary materials

34

Table 5: The resolution and ranges of the Trajectory Generator Look-up Table

Index Resolution Min Max

∆x 0.1 m -1.0 m 10.0 m
∆y 0.1 m -8.0 m 8.0 m
∆θ π/32 rad −π/2 rad π/2 rad
κ0 0.2 rad/m -1.0 rad/m 1.0 rad/m

Figure 9: Sample trajectories from the look-up table

extends an existing library5 created by other authors; we add support for the IAF architecture as
well as generalize the network architecture to 3-dimensional tensors. The latter extension enables
sampling from multiple agents’ IAF models simultaneously and efficiently.

D.3.2 Model Predictive Control

The goal of the trajectory generator is to compute kinematically and dynamically feasible trajec-
tories that take the vehicle from its current pose to a set of sampled poses from the IAF. The
trajectory generator combines approaches from [42, 67, 49, 65]. Each trajectory is represented by
a cubic spiral with five parameters p = [s, a, b, c, d] where s is the arc length of the spiral, and
(a, b, c, d) encode the curvature at equispaced knot points along the trajectory. Powell’s method
or gradient descent can be used to find the spline parameters that (locally) minimize the sum of
the Euclidean distance between the desired endpoint pose and the forward simulated pose. Offline,
a lookup table of solutions for a dense grid of goal poses is precomputed, enabling fast trajectory
generation online. Each trajectory is associated with an index which selects the ∆x, ∆y, and the
∆θ of the goal pose relative to the current pose (where positive x is ahead of the vehicle and postiive
y is to the left), and κ0, the initial curvature of the trajectory. The resolution and the range of the
table is listed in Table 5. Figure 9 shows a selection of trajectories. The point on the left of the
figure is the starting pose of the vehicle, and the collection of goal poses is shown as the points on
the right of the figure.

D.3.3 Trajectory Cost Functions

Each of the generated trajectories is evaluated with the weighted sum of the following cost functions.
Note, in order to ensure safety, goals which would result in collision result in infinite cost and

5https://github.com/kamenbliznashki/normalizing_flows

35

https://github.com/kamenbliznashki/normalizing_flows

are automatically rejected prior to computing the robust cost, which operates only on finite-cost
proposals.

1. Trajectory length: cal = s, where 1/s is the arc length of each trajectory. Short and myopic
trajectories are penalized.

2. Maximum absolute curvature: cmc = maxi{|κi|}, where κi are the curvatures at each
point on a trajectory. Large curvatures are penalized to preserve smoothness of trajectories.

3. Mean absolute curvature: cac = 1
N

∑N
i=0 |κi|, the notation is the same as cmc and the

effect of this feature is similar, but less myopic.

4. Hysteresis loss: Measured between the previous chosen trajectory and each of the sampled

trajectories, chys = ||θ[n1,n2]
prev − θ[0,n2−n1]||22, where θprev is the array of heading angles of each

pose on the previous selected trajectory by the vehicle, θ is the array of heading angles of
each pose on the trajectory being evaluated, and the ranges [n1, n2] and [0, n2 − n1] define
contiguous portions of trajectories that are compared. Trajectories dissimilar to the previously
selected trajectory are penalized.

5. Lap progress: Measured along the track from the start to the end point of each trajectory in
the normal and tangential coordinate system, cp = 1

send−sstart , where send is the corresponding
position in the tangential coordinate along the track of the end point of a trajectory, and sstart
is that of the start point of a trajectory. Shorter progress in distance is penalized.

6. Maximum acceleration: cma = maxi |∆vi∆ti
| where ∆v is the array of difference in velocity

between adjacent points on a trajectory, and ∆t is the array of corresponding time intervals
between adjacent points. High maximum acceleration is penalized.

7. Maximum absolute curvature change: Measured between adjacent points along each
trajectory, cdk = maxi |∆κi∆ti

|. High curvature changes are penalized.

8. Maximum lateral acceleration: cla = maxi{|κ|iv2
i }, where κ and v are the arrays of

curvature and velocity of all points on a trajectory. High maximum lateral accelerations are
penalized.

9. Minimum speed: cms = 1
(mini{vi})+ . Low minimum speeds are penalized.

10. Minimum range: cmr = mini{ri}, where r is the array of range measurements (distance
to static obstacles) generated by the simulator. Smaller minimum range is penalized, and
trajectories with minimum ranges lower than a threshold are given infinite cost and therefore
discarded.

11. Cumulative inter-vehicle distance short:

cdyshort =

{
∞, if d(egoi, oppi) ≤ thresh∑Nshort

i=0 d(egoi, oppi), otherwise

Where the function d() returns the instantaneous minimum distance between the two agents
at point i, Nshort is a point that defines the shorter time horizon for a trajectory of N
points. Trajectories with infinite cost on the shorter time horizon are considered infeasible
and discarded.

36

12. Discounted cumulative inter-vehicle distance long: cdylong =
∑Nlong

i=Nshort
0.9i−Nshort 1

d(egoi,oppi)
,

where Nlong is a point that defines the longer time horizon for a trajectory of N points. Note
that Nshort < Nlong < N . Lower minimum distances between agents on the longer time
horizon are penalized.

13. Relative progress: Measured along the track between the sampled trajectories’ endpoints
and the opponent’s selected trajectory’s endpoint, cdp = (sopp end − send)+, where sopp end
is the position along the track in tangential coordinates of the endpoint of the opponent’s
chosen trajectory. Lagging behind the opponent is penalized.

D.3.4 Path tracker

Once a trajectory has been selected it is given to the path-tracking module. The goal of the path
tracker is to compute a steering input which drives the vehicle to follow the desired trajectory.
Our implementation uses a simple and industry-standard geometrical tracking method called pure
pursuit [22, 85]. Due to the decoupling of the trajectory generation and tracking modules it is
possible for the tracker to run at a much higher frequency than the trajectory generator; this is
essential for good performance.

D.4 Communication and system architecture

The ZeroMQ [41] messaging library is used to create interfaces between the FormulaZero software
stack and the underlying ROS nodes that control and actuate the vehicle test bed. Unlike in the
simulator, some aspects of the FormulaZero planning function operate non-deterministicaly and
asynchronously. In particular we use a sink node to collect observations from ROS topics related
to the various sensors on the vehicle in order to approximate the step-function present in the Gym
API. When a planning cycle is complete, the trajectory is published back to ROS and tracked
asynchronously using pure-pursuit as new pose estimates become available. Because perception is
not the primary focus of this project we simplify the problem of detecting and tracking the other
vehicle. In particular, each vehicle estimates its current pose in the map obtained by its onboard
particle filter, and this information is communicated to the other vehicle via ZeroMQ over a local
wireless network. Since tracking and detection has been well studied in robotics, solutions which
rely less on communication could be explored by other future work which builds upon this paper.

E Simulation Stack

The simulation stack includes a lightweight 2D physics engine with a dynamical vehicle model.
Then on top of the physics engine, a multi-agent simulator with an OpenAI Gym [17] API is used
to perform rollouts of the experiments.

E.1 Vehicle Dynamics

The single-track model in Althoff et al. [4] is chosen because it considers tire slip influences on
the slip angle, which enables accurate simulation at physical limits of the vehicle test bed. It is
also easily enables changes to the driving surface friction coefficient in simulation which allows the
simulator to model a variety of road surfaces.

37

E.2 System Identification

Parameter identification was performed to derive the following vehicle parameters: mass, center of
mass, moment of inertia, surface friction coefficient, tire cornering stiffness, and maximum acceler-
ation/deceleration rates following the methods described in O’Kelly et al. [71].

E.3 Distributed Architecture

Due to the nature of the AAdaPT algorithm, the rollouts in a single vertical step do not need to
be in sequence. The ZeroMQ messaging library is used to create a MapReduce [23] pattern between
the task distributor, result collector, and the workers. Each worker receives the description of the
configuration to be simualted, e.g. (x, θ). Then the workers asynchronously perform simulations
and send results to the collector.

E.4 Addressing the simulation/reality gap

As noted in Section 4 there are several differences between the observations in simulated rollouts
and reality. First, pose estimation errors are not present in the simulator. A simple fix would be
to add Gaussian white noise to the pose observations returned by the simulator. We avoided this
and other domain randomization techniques in order to preserve the determinism of the simulator,
but we will investigate its effect in further experiments. Second, the LIDAR simulation does not
account for material properties of the environment. In particular, surfaces such as glass do not
produce returns, causing subsets of the LIDAR beams to be dropped. We hypothesize that simple
data augmentation schemes which select a random set of indices to drop from simulated LIDAR
observations would improve the robustness to such artifacts when the system is deployed on the
real car; we are currently investigating this hypothesis.

F Experiments

Additional videos of simulation runs are available.6

F.1 Instantaneous time-to-collision (iTTC)

Let Ti(t) be the instantaneous time-to-collision between the ego vehicle and the i-th environment
vehicle at time step t. The value Ti(t) can be defined in multiple ways (see e.g. Sontges et al.
[86]). Norden et al. [70] define it as the amount of time that would elapse before the two vehicles’
bounding boxes intersect assuming that they travel at constant fixed velocities from the snapshot
at time t. Time-to-collision captures directly whether or not the ego-vehicle was involved in a crash.
If it is positive no crash occurred, and if it is 0 or negative there was a collision.

F.2 Out-of-distribution agent strategies

In the following sections, we describe the human-created algorithms used in our out-of-distribution
analysis.

6https://youtu.be/8q0lZssbEI4

38

https://youtu.be/8q0lZssbEI4

F.2.1 OOD1: RRT* with MPC-based Opponent Prediction

This approach exploits the fact that the two-car racing scenario is similar to driving alone on the
track with the only exception being during overtaking the opponent. This approach uses a costmap-
based RRT* [48] planning algorithm. The agent first uses the opponent’s current pose and velocity
in the world, and uses Model-Predictive Control to calculate an open loop trajectory of N optimal
inputs resulting in N+1 states based on a given cost function and constraints. Specifically, the
optimization problem is constrained by a linearized version of the single track model described
in Althoff et al. [4], and by the boundary values of the inputs and states of the vehicle. The
cost function that the optimization tries to minimize consists of the trajectory length and input
power requirement. The costmap used by RRT* also incorporates this predicted trajectory of the
opponent vehicle by inflating the two-dimensional spline representing the prediction, and weighting
the portion of the spline closer to the ego vehicle higher. RRT* samples the two dimensional
space that the vehicle lies in. The path generated by RRT* is then tracked with the Pure Pursuit
controller [22].

F.2.2 OOD2: RL-based Lane Switching

Figure 10: Lanes that cover the track

The second algorithm is based on a lane-switching planning strategy that uses an RL algorithm
to make lane switching decisions, and filters out unsafe decisions using a collision indicator. First,
as shown in 10, different lanes going through numerous checkpoints on the track are created to
cover the entirety of the race track. Then a network is trained to make lane switching decisions.
The state of the RL problem consists of the sub-sampled LIDAR scans of the ego vehicle; the
pose (x, y, θ) of the opponent car with respect to the ego vehicle; velocity (vx, vy) of the opponent
vehicle with respect of the ego vehicle; projected distance from the ego vehicle’s current position
to all pre-defined paths. The reward of a rollout is zero in the beginning. At each timestep, the
timestep itself is subtracted from the total reward. A rollout receives -100 as the reward when the
ego agent collide with the environment or the other agent. And finally, if both agents finish 2 laps,
the difference between lap times (positive if the ego agent wins) of the two agents are added to
the reward. Clipped Double Q-Learning [31] is used to estimate the Q function and make the lane
switching decisions. iTTC defined in Appendix F.1 is used as an indicator for future collisions. If
any decisions made by the RL network would result in a collision indicated by the iTTC value,
the safety function kicks in and makes the lane switching decision based on the collision indicator.

39

Finally, ego vehicle actuation is provided by the same Pure Pursuit controller [22] tracking the
selected lane. We used an existing implementation7 of this algorithm.

7https://github.com/pnorouzi/rl-path-racing

40

https://github.com/pnorouzi/rl-path-racing

	1 Introduction
	1.1 Related work

	2 Offline population synthesis
	2.1 AAdaPT

	3 Online learning with computation budgets
	3.1 Approximating the robust cost
	3.2 Updating the ambiguity set

	4 Experiments
	4.1 Offline population synthesis
	4.2 Simulated experiments
	4.3 Real-world validation
	4.4 Approximation analysis
	4.5 Out-of-distribution opponents

	5 Conclusion
	A Offline population synthesis
	B Online robust planning
	B.1 Solving problem (5)
	B.2 Proof of Proposition 1
	B.3 Proof of Lemma 1
	B.4 Proof of Lemma 2
	B.5 Proof of Lemma 3
	B.6 Proof of Proposition 2
	B.7 Proof of Lemma 5
	B.8 Proof of Lemma 6

	C Hardware
	D Vehicle Software Stack
	D.1 Mapping
	D.2 Localization
	D.3 Planning
	D.3.1 Sampling behavior proposals
	D.3.2 Model Predictive Control
	D.3.3 Trajectory Cost Functions
	D.3.4 Path tracker

	D.4 Communication and system architecture

	E Simulation Stack
	E.1 Vehicle Dynamics
	E.2 System Identification
	E.3 Distributed Architecture
	E.4 Addressing the simulation/reality gap

	F Experiments
	F.1 Instantaneous time-to-collision (iTTC)
	F.2 Out-of-distribution agent strategies
	F.2.1 OOD1: RRT* with MPC-based Opponent Prediction
	F.2.2 OOD2: RL-based Lane Switching

