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Abstract

Adaptive generation of spacing intervals in learning using
response times improves learning relative to both adaptive
systems that do not use response times and fixed spacing
schemes (Mettler, Massey & Kellman, 2016). Studies have
often used limited presentations (e.g., 4) of each learning
item. Does adaptive practice benefit learning if items are
presented until attainment of objective mastery criteria? Does
it matter if mastered items drop out of the active learning set?
We compared adaptive and non-adaptive spacing under
conditions of mastery and dropout. Experiment 1 compared
random presentation order with no dropout to adaptive
spacing and mastery using the ARTS (Adaptive
Response-time-based Sequencing) system. Adaptive spacing
produced better retention than random presentation.
Experiment 2 showed clear learning advantages for adaptive
spacing compared to random schedules that also included
dropout. Adaptive spacing performs better than random
schedules of practice, including when learning proceeds to
mastery and items drop out when mastered.
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Introduction

The spacing effect is a simple and powerful driver of gains
in learning, requiring only changes in the temporal
distribution of practice across time (Pashler, Bain, Bottge,
Graesser, Koedinger, McDaniel, & Metcalfe, 2007). A
prominent theoretical account of spacing effects - the
retrieval effort hypothesis (Pyc & Rawson, 2009; c.f. Bjork,
1994) - suggests that benefits from spacing arise because of
the difficulty of retrievals after a spacing delay. According
to this theory difficult retrievals are due to partial forgetting
of information across widely spaced presentations. ARTS
(Adaptive Response-Time-based Sequencing) is a technique
for adaptively adjusting the spacing delays between trials
during a learning session to encourage the greatest possible
benefits of spacing (Mettler, Massey & Kellman, 2016;
Mettler & Kellman, 2014). ARTS produces spacing delays
that tend to optimize learning in light of ongoing learning
strength for individual items and learners, using reaction
time along with accuracy as a proxy for learning strength.
ARTS attempts to stretch spacing up to, but just short of, the
point of forgetting, an approach that has been shown to
increase retention of information in a variety of domains

including fact learning and perceptual learning (Mettler &
Kellman, 2014).

Mettler, Massey & Kellman (2016) showed that in factual
learning, adaptive spacing in ARTS outperformed fixed
spacing schedules in which the total number of
presentations per item in a session was limited (e.g. 4
presentations per item), consistent with other studies of the
spacing effect (Karpicke & Roediger, 2007). In the studies
presented here we asked whether the benefits of adaptive
spacing apply under conditions more consistent with
“real-world” learning, where learning sessions are not
limited to a few presentations per item. Instead,
presentations continued until learning reached a standard of
proficiency, i.e., mastery learning. We compared adaptive
schedules to random schedules and observed how mastery
learning affects learning gains.

Mastery Learning

Mastery learning (Bloom, 1974) treats learners as
individuals having different learning requirements,
especially in terms of the amount of time needed to achieve
similar performance standards, unlike contemporary
instruction where learners are graded on units of instruction
whether or not successful mastery has been accomplished.
Mastery learning motivated the development of adaptive
learning techniques and adaptive curricula such as
“programmed instruction” (Holland and Skinner, 1961;
Keller, 1967), and curricula implementing mastery learning
have resulted in learning gains superior to traditional
instruction (Kulik, Kulik & Bangert-Drowns, 1990).

Mastery learning is ripe for revival. In computer-based
adaptive learning, technological advances have made
tracking of individual learning items and assessment of
instructional objectives easier to achieve; mastery has
become a goal of many adaptive learning systems (Ritter et
al., 2016). At the same time, advances in our understanding
of spacing effects are revealing crucial interactions between
spacing and learning conditions including criterion learning
levels that mediate effects of spacing (Vaughn, Dunlosky &
Rawson, 2016).

Learning Criteria How do learning (mastery) criteria
affect learning? Studies show learning criteria positively
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affect associative retrieval and that increases in the
stringency of learning criteria have a logarithmic
relationship with later recall (Vaughn & Rawson, 2011).
Stronger criteria result in greater learning, but with
diminishing returns on learning for every unit increase in the
strictness of the criterion. Criterion level also interacts with
spacing. Pyc and Rawson (2009) had participants learn
Swahili-English word pairs under two spacing conditions
(long and short spacing) and a number of criterion levels -
roughly 1 to 10 correct retrievals. Long spacing intervals
generally improved learning and increases in the strictness
of the criterion level produced increasing but diminishing
learning gains. The greatest learning gains came from the
highest criterion levels and longest spacing. In these
studies, however spacing was not adaptive. Learning
criteria need to be evaluated in relation to the kinds of
ongoing schedule dynamics during learning interventions
using adaptive spacing of learning events.

In ARTS, learning criteria include both accuracy and
speed. Further, accurate and fast responses cause future
items to have longer spacing between presentations. The
result is that the criteria enforce widely spaced, difficult
retrievals, not just correct or fast ones.

Dropout How does retirement or “dropout” - the removal
of well-learned items during learning - affect performance?
Criteria that poorly estimate learning strength may harm
learning when combined with dropout. For instance,
Kornell and Bjork (2007) found that dropout was a common
strategy that students employed while studying, but that
students’ mis-estimations of their learning resulted in
dropout lowering their overall learning gains. Dropping
items based on objective learning criteria seems to fare
better. Pyc and Rawson (2011) showed that dropout based
on learning criteria improved learning as measured by
efficiency (the amount retained at a test per trial of training
invested) compared to fixed schedules of practice where
there was no dropout. This result was not without caveats.
Recall accuracy was better for fixed schedules than for
dropout schedules possibly due to a weak criterion (1
correct response), and non-dropout schedules may have
undergone overlearning - a condition where learners benefit
from further practice even when performance is at ceiling
(Underwood, 1964). Unsophisticated dropout algorithms
may lead to either difficult items dropping out prematurely
or well-learned items being overpracticed without
undergoing overlearning (Vaughn, Rawson, & Pyc, 2013).
In adaptive learning, dropout would likely benefit from
criteria that also include reaction time. We know of no
previous studies or learning systems other than ARTS that
have used response-time criteria in dropout, or any kind of
dropout criteria that relate to adaptive spacing. In the
following studies we attempt to compare and contrast
reasonable combinations of such features across adaptive
spacing vs. fixed spacing schedules.
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Current Studies

We compared adaptive and random schedules. In the
adaptive schedule condition, using ARTS, learning
continued until each item met mastery criteria, after which
individual items were dropped from the learning set. In the
random schedule condition, learning items were presented
randomly and items were not dropped from the session;
instead the session was terminated after every item had met
mastery criteria. In a second experiment, we compared
adaptive presentation with random presentation, where the
adaptive and random conditions had identical learning
criteria and both schedules included dropout. We compared
the efficiency of learning across the two scheduling
conditions at both immediate and delayed tests of retention.

Random Schedules Despite the focus in the experimental
literature on organized retrieval practice (e.g. adaptive or
fixed expanding spacing), it bears mentioning that random
schedules naturally implement a form of spaced practice.
Spacing intervals for items in random schedules are on
average as large as the number of items in the learning set.
In addition, random practice increases encoding context
variability relative to more constrained fixed schedules.
That is, each practice with an item is usually preceded by
and followed by a different set of items; conditions that
some theories of spacing claim are beneficial for learning
(Howard & Kahana, 1999; Maddox, 2016). Interestingly,
few studies in the literature on scheduling and spacing
include random practice as a comparison. Random
schedules are understudied and may provide a window into
conditions of practice that are beneficial for learning.

Dependent Measures and Data Analysis Our primary
measure of learning performance was learning efficiency,
defined as accuracy gain from pretest to posttest divided by
the number of trials invested in learning and multiplied by
the number of learning items. Efficiency gives a way of
measuring learning that incorporates variations in both
posttest performance and the number of learning trials
required to reach mastery criteria. It may be thought of as a
rate measure, indicating performance improvement per item
per learning trial, with a maximum value of 1. We also
examined learning at equivalent points during the learning
phase, and raw accuracy change scores between pre and
posttests. All measures were assessed using standard
parametric  statistics such as ANOVA and planned
comparisons between conditions. All statistical tests were
two-tailed, with a 95% confidence level; all effect sizes are
Cohen’s d; and all error bars in graphs show +/- 1 standard
error of the mean.



Experiment 1: Random vs. Adaptive
Scheduling

Method

Participants Participants were 48 UCLA undergraduates
who participated for course credit.

Design The experiment used a pretest/posttest design.
There was a pretest, training phase, immediate posttest and a
delayed posttest administered after 1 week. There were 2
between-subjects conditions, Adaptive and Random, that
manipulated the scheduling of items during the training
phase. Adaptive scheduling was determined dynamically for
each participant using the ARTS algorithm. After every
response, ARTS calculates a priority score for each learning
item and compares scores across items to determine which
item will be presented next. Equation 1 shows the priority
score calculation.

() P, =a(N; - D)[b(1 - o) Log(RT,/ 1) + a; V]

Detailed description of the ARTS algorithm can be found in
previous work (Mettler, Massey & Kellman, 2011, 2016).
The parameters of the adaptive algorithm were the same as
those in Mettler, Massey & Kellman (2016).

Random scheduling consisted of purely random
presentation where on each trial for each participant, a
random item was selected for presentation.

Materials The learning items were 24 African countries
participants were required to identify on a map of Africa.
There were no filler items. All material was presented on a
computer within a web-based application. Participants saw a
500 x 800-pixel map of Africa on the left side of the screen
and a two-column list of African countries alphabetically
organized by column then row. Each list label was a
software button that could be selected independently.

Procedure In all sessions of the experiment, learning items
were presented singly, in the form of interactive test trials.
Participants were shown a map of Africa featuring an
outlined country and were asked to select, using a mouse,
from a list of 24 names the name matching the highlighted
country. In the Adaptive condition each item was learned
until it reached mastery criteria and was then dropped from
the set. In the Random condition, each item was tracked so
that the experiment session ended after every item had
reached mastery criteria, or after the learning session
reached 45 minutes, whichever came first. There was no
dropout of items during the learning session in the Random
condition. The learning criterion was five out of the last five
presentations of an item correct with all five response-times
less than seven seconds.
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Figure 1: Learning efficiency in pretest and delayed posttest
by scheduling condition in Experiment 1.

Results

Pretest Accuracy Pretest accuracies were roughly equal
across conditions (Adaptive: M=0.078, SD=0.051; Random:
M=0.083, SD=0.117) and not significantly different
(t(46)=0.2, p=.84; d=0.06).

Learning Efficiency Results for efficiency at immediate
and delayed posttests are shown in Figure 1. A 2x2 mixed
factor ANOVA comparing efficiency across scheduling
condition (adaptive vs. random) and posttest phase
(immediate vs. delayed) found significant main effects of
condition (F(1,46)=33.83, p<.001, 1,’=0.424), a main effect
of posttest phase (F(1,46)=89.69, p<.001, n,’=0.661), and a
significant scheduling condition by test phase interaction
(F(1,46)=36.6, p<.001, 1,’=0.443). At immediate posttest,
efficiencies were higher in the adaptive condition (M=0.109,
SD=0.03) than the random condition (M=0.054, SD=0.012)
a significant difference (t(46)=8.53, p<.001, d=2.68). This
outcome represents 102% greater efficiency in the adaptive
condition at immediate posttest. At delayed posttest,
efficiencies were also higher in the adaptive condition
(M=0.067, SD=0.04) than the random condition (M=0.045,
SD=0.015), a significant difference (t(46)=2.87, p=.006,
d=0.892). These differences comprise 50% greater
efficiency in the adaptive condition at delayed posttest.
Comparing means between the two test phases, the
difference between efficiencies at each test phase for both
the adaptive and random condition were significant
(adaptive imm. vs. delayed, t(23)=5.88, p<.001, d=0.68;
random immediate vs. delayed, t(23)=8.11, p<.001, d=1.29).
The interaction appeared to be the result of declining
efficiency in the adaptive condition from immediate to



delayed posttest, but smaller decline in the random
condition.

Trials to Criterion Learning took differing amounts of time
across participants and conditions, so the number of trials to
criterion (Figure 2) was analyzed. The random condition
took on average 429 trials to reach the end of the session
(SD=97.7). The adaptive condition took on average 197
trials  (SD=43.5). This difference was significant
(t(46)=10.6, p<.001, d=3.29). Two participants in the
random condition and one participant in the adaptive
condition did not retire all items (16, 9, and 1 items were
retired respectively).

Equivalent Learning Trials Analysis To assess whether
differing numbers of learning trials were the only driver of
learning differences between conditions, we carried out an
additional analysis comparing conditions at points when
they had the same number of learning trials. Specifically, we
determined the mean number of trials to criterion in the
adaptive condition (197) and compared accuracy between
conditions at that number of trials and at earlier points.
Using blocks of trials consisting of 3 trials per item, we
performed the equivalent trials analysis starting at 5 blocks
prior to trial 197. As can be seen in Figure 3, results showed
higher accuracies at all points in the adaptive condition.

A 2X4 mixed factor ANOVA on schedule condition and
trial block was conducted (trial block 5 was not included
since some participants did not have a 5th trial block). The
ANOVA found main effects of scheduling condition
(F(1,46)=11.9, p<.01) and trial block (F(3,138)=128.5,
p<.001), but no condition by trial block interaction
(F(3,138)=1.88, p=.14). Independent t-tests were conducted
at each trial block. Accuracies were reliably higher for the
adaptive condition than the random condition at blocks 1, 2,
and 3 (ts(46)=5.83, 2.5, and 3.43 respectively, all ps<.05)
but not at blocks 4 and 5 (block 4, t(46)=1.16, p=.25; block
5, t(35)=0.354, p=.73).

Accuracy Change Between Pretest and Posttests
Accuracy was compared across conditions using a change
score between pre and posttests (Posttest accuracy minus
pretest accuracy). A 2X2 mixed factor ANOVA on
scheduling condition and posttest phase showed a
significant main effect of condition (F(1,46)=17.75, p<.001,
np2:0.28), a main effect of posttest phase (F(1,46)=105.49,
p<.001, n,>=0.70), and a significant test phase by condition
interaction (F(1,46)=10.92, p=.001, np2:0.19). At
immediate posttest change scores were higher for the
random condition (M=0.93, SD=0.09) than for the adaptive
condition (M=0.85, SD=0.12), a significant difference
(t(46)=2.55, p=.01, d=0.746). At delayed posttest, change
scores were also higher for the random condition (M=0.76,
SD=0.16), than for the adaptive condition (M=0.52,
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Figure 2: Learning trials by condition in Experiment 1.

d=2.68). Comparing conditions across test phases, the
difference between immediate and delayed change scores
for the random condition was significant (t(23)=5.38,
p<.001, d=1.374) as was the difference for the adaptive
condition (t(23)=8.9, p<.001, d=1.967).

Experiment 1 Discussion

We found significantly greater learning efficiency in
conditions where learning was scheduled using ARTS with
learning to criterion and dropout than in a random
presentation condition that had no adaptive, mastery or
dropout features. Efficiencies were higher in the adaptive
condition for both immediate and delayed posttests.
Efficiencies were 102 percent higher for adaptive than
random at immediate posttest and 50 percent higher at
delayed posttest, and the effect sizes of these differences
were large. In addition, when compared at equivalent points
during learning, average accuracies were higher in the
adaptive than in the random condition. Delayed gains
persisted in the adaptive condition despite a degree of
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Figure 3: Learning session accuracy at equivalent points by
blocks of 3 presentations of each item in Experiment 1.



overlearning that occurred in random schedules - nearly
twice as many presentations of each item, and overall higher
accuracies in the random condition. Experiment 1 shows
that adaptive scheduling with dropout provides a robust
advantage in learning efficiency over random scheduling.

In a second experiment we compared adaptive sequencing
to a random schedule of practice that also included dropout.

Experiment 2: Random vs. Adaptive
Presentation (Random With Dropout)

Method

Participants Participants were 48 UCLA undergraduates,
some of whom participated for course credit and some of
whom were recruited and paid $16 for their time.

Design The design was identical to Experiment 1, except
that the random condition was altered to include dropout.
After each item reached a learning criterion it was removed
from the set of learning items. The learning criteria were the
same as in Experiment 1.

Materials & Procedure The materials and procedure were
identical to Experiment 1.

Results

Learning Efficiency Results for efficiency at immediate
and delayed posttests are shown in Figure 4. A 2x2 mixed
factor ANOVA comparing efficiencies across scheduling
condition (Adaptive vs. Random) and posttest phase
(Immediate vs. Delayed) found significant main effects of
condition (F(1,46)=10.6, p=.002, np2=0.188), a main effect
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Figure 4: Efficiency at immediate and delayed posttests by
scheduling condition in Experiment 2.
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of posttest phase (F(1,46)=163.28, p<.001, np2=0.78), but no
significant scheduling condition by test phase interaction
(F(1,46)=1.83, p=.18, np2=0.039). At immediate posttest,
efficiencies were higher in the Adaptive condition (M=0.12,
SD=0.02) than the Random condition (M=0.09, SD=0.02) a
significant difference (t(46)=4.07, p<.001, d=1.17). At
delayed posttest, efficiencies were also higher in the
Adaptive condition (M=0.084, SD=0.03) than the Random
condition (M=0.064, SD=0.064), a significant difference
(1(46)=2.31, p=.025, d=0.67). The difference in efficiency
between the two phases (immediate vs. delayed) was
significant for both adaptive (t(23)=9.05, p<.001, d=1.35)
and random scheduling (t(23)=9.14, p<.001, d=1.207).

Trials To Criterion Despite identical dropout features,
trials to criterion varied with condition (see Figure 5). The
random condition took on average 231 trials to reach the
end of the session (SD=48.3). The adaptive condition took
on average 183 trials (SD=35.1). This difference was
significant (t(46)=3.88, p<.001, d=1.13). Two participants
in the random condition and one participant in the adaptive
condition did not retire all items (23, 21 and 23 items were
retired respectively).

Equivalent Learning Trials Analysis Accuracies were
compared at equivalent points between Adaptive and
Random conditions. A 2X3 mixed factor ANOVA on
schedule condition and trial block was conducted (trial
blocks 4 and 5 were not included because some participants
did not have a complete 4th or 5th trial block). The ANOVA
found main effects of scheduling condition (F(1,46)=45.1,
p<.001) and trial block (F(2,92)=285.7, p<.001), and a
significant  condition by trial block interaction
(F(2,92)=24.9, p<.001). Comparisons were conducted at
each trial block. Accuracies were higher for the adaptive
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Figure 5: Number of trials in learning session for each
scheduling condition in Experiment 2.
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Figure 6: Learning session accuracy at equivalent points by
blocks of 3 presentations of each item in Experiment 2.

condition than the random condition at blocks 1, 2, and 3
(ts(46)=3.91, 4.71, and 7.38 respectively, all p’s<.001) but
not at blocks 4 and 5 (block 4, t(45)=1.04, p=.30; block 5,
t(26)=1.14, p=.26).

Pretest Accuracy Pretest accuracies were roughly equal
across conditions (Adaptive: M=0.083, SD=0.12; Random:
M=0.071, SD=0.08) and not significantly different
(t(46)=0.48, p=.63; d=0.14).

Accuracy Change  Accuracy change was computed
between pretest and posttest. No difference between
conditions was found (F(1,46)=0.106, p=.746, npz =0.002)
and there was no interaction with test phase (F(1,46)=0.006,
p=937,7,<0.001).

Experiment 2 Discussion

As in Experiment 1, efficiencies were higher for adaptive
scheduling than random scheduling despite both schedules
having identical mastery criteria (including both accuracy
and reaction time criteria). The efficiencies in the Adaptive
condition were 33 percent higher than the Random
condition at immediate posttest, and 31 percent higher than
the random condition at delayed posttest, with large and
medium effect sizes respectively. An analysis of learning
session accuracies at equivalent points in training found that
learners were on average more accurate in the Adaptive
condition than in the Random condition. These differences
provide strong evidence that the superiority of adaptive
schedules in learning derives from advantageous spacing
above and beyond efficiency gains due to dropout during
learning. Learning was enhanced by dropout as noted by
accuracy increases in the random condition between
Experiment 1 vs 2. However, the effect of dropout was not
greater than the benefits of adaptive scheduling.
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Conclusion

In two experiments we demonstrated learning advantages
for adaptive schedules of practice under conditions of
mastery learning. Learning efficiency improved when the
schedule of presentation of items was determined by an
adaptive method of spacing vs. a random schedule of
practice. Adaptive spacing was generated using ARTS,
Adaptive, Response-Time based Sequencing (Mettler,
Massey, Kellman 2016) where learning items were
individually spaced according to measures of ongoing
learning strength estimated by response time. Experiment 1
demonstrated that adaptive sequencing with dropout
produces greater learning than random presentations without
dropout of items. In Experiment 2, random schedules
included dropout with identical retirement criteria to the
adaptive condition. Experiment 2 showed that adaptive
schedules were more efficient than random schedules even
when schedules were equated for learning criteria and
dropout.

Mastery learning is thought to promote the best learning
outcomes, and the present results indicate that adaptivity of
spacing delays drives efficient learning when individual
learners are tracked until reaching competence with each
item. Dropout also showed positive effects on learning. As
this outcome does not always occur (Vaughn, Rawson, &
Pyc, 2013), the results suggest that dropout might be most
advantageous when combined with efficient learning
schedules and well-chosen mastery criteria.

Adaptive schedules performed better than random, fixed
schedules. Among a variety of possible fixed schedule
types, random schedules produce the longest absolute
spacing delays and the most spacing variability. By some
theories of spacing, these advantages should produce the
best performance (Karpicke & Bauernschmidt, 2011;
Glenberg, 1976; Maddox, 2016). Despite these advantages
of random spacing, ARTS produces better learning because
spacing is appropriate to the needs of individual learners and
items during learning. Appropriate delays appear to be
those that stress the learner’s ability to remember across the
spacing delay but do not result in forgetting during learning.
Using both response times and accuracy data allows ARTS
to dynamically adjust spacing intervals to meet these criteria
for individual learners, items, and their interactions.
Random schedules, which also include a robust set of
spacing delays for each item, cannot match these specific
and fluctuating needs of learners during learning. Similar
results have been found when adaptive schedules are
compared with fixed equal and fixed expanding schedules
(Mettler, Massey & Kellman, 2016).

Adaptive schedules outperform fixed (predetermined)
spacing schedules and random schedules of practice, both
during the course of learning and when learning proceeds to
objective criteria of mastery. The strength and generality of



these results has important implications for the design of
learning interventions and learning technology.
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