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SUMMARY

In multicenter research, individual-level data are often protected against sharing across sites.
To overcome the barrier of data sharing, many distributed algorithms, which only require shar-
ing aggregated information, have been developed. The existing distributed algorithms usually
assume the data are homogeneously distributed across sites. This assumption ignores the im-
portant fact that the data collected at different sites may come from various sub-populations
and environments, which can lead to heterogeneity in the distribution of the data. Ignoring the
heterogeneity may lead to erroneous statistical inference. In this paper, we propose distributed
algorithms which account for the heterogeneous distributions by allowing site-specific nuisance
parameters. The proposed methods extend the surrogate likelihood approach (Wang et al., 2017;
Jordan et al., 2018) to the heterogeneous setting by applying a novel density ratio tilting method
to the efficient score function. The proposed algorithms maintain the same communication cost
as the existing communication-efficient algorithms. We establish a non-asymptotic risk bound
for the proposed distributed estimator and its limiting distribution in the two-index asymptotic
setting which allows both sample size per site and the number of sites to go to infinity. In addi-
tion, we show that the asymptotic variance of the estimator attains the Cramér-Rao lower bound
when the number of sites is in rate smaller than the sample size at each site. Finally, we use
simulation studies and a real data application to demonstrate the validity and feasibility of the
proposed methods.

Some key words: Data integration; distributed inference; efficient score; surrogate likelihood; two-index asymptotics

1. INTRODUCTION

The growth of availability and variety of clinical data has induced the trend of multicenter
research (Sidransky et al., 2009). Multicenter research confers many distinct advantages over
single-center studies, including the ability to study rare exposures/outcomes that require larger
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sample sizes, accelerating the discovery of more generalizable findings, and bringing together
investigators who share and leverage resources, expertise, and ideas (Cheng et al., 2017). Since
individual-level information is often protected by privacy regularities and rules, directly pooling
data across multiple clinical sites is less feasible or requires large amount of operational efforts
(Barrows Jr & Clayton, 1996). As a consequence, healthcare systems need more effective tools
for evidence synthesis across clinical sites.

Distributed algorithms, also known as “divide-and-conquer” procedures, have been applied to
multicenter studies. In the classical divide-and-conquer framework, the entire data set is split into
multiple subsets and the final estimator is obtained by averaging the local estimators computed
using the data from each subset (Li et al., 2013; Chen & Xie, 2014; Lee et al., 2017; Tian & Gu,
2016; Zhao et al., 2016; Lian & Fan, 2017; Battey et al., 2018; Wang et al., 2019). The class of
methods adopts the same principle as meta-analysis in the area of evidence synthesis and sys-
tematic review, where the local estimates are combined through a fixed effect or random effects
model (DerSimonian & Laird, 1986). When the number of research sites is relatively small, these
averaging type of methods are able to perform equally well as the combined analysis using data
from all the sites (Hedges, 1983; Olkin & Sampson, 1998; Battey et al., 2018). When the num-
ber of research sites is large, as we will demonstrate in the simulation studies, these averaging
methods may not be as good as the combined analysis. More importantly, when studying rare
conditions, some clinical sites do not have enough number of cases to achieve the asymptotic
properties. In such cases, the averaging methods can be suboptimal.

Recently, Wang et al. (2017) and Jordan et al. (2018) proposed a novel surrogate likelihood
approach, which approximates the higher order derivatives of the global likelihood by using the
likelihood function in a local site. This method has low communication cost and improves the
performance of the average method especially when the number of sites is large, see Duan et al.
(2019) for a real data application to pharamcoepidemiology. From the practical perspective, the
surrogate likelihood approach endowed a highly feasible framework for sharing sensitive data in
a collaborative environment, especially in biomedical sciences, where the lead investigators often
have access to the individual-level data in their home institute, and the collaborative investigators
from other sites are willing to share summary statistics but not individual-level information.

Most of the aforementioned distributed algorithms assumed that the data at different sites are
independently and identically distributed. However, a prominent concern in multi-center anal-
ysis is that there may exist a non-negligible degree of heterogeneity across sites because the
samples collected in different sites may come from different sub-populations and environments.
One concrete example is the Observational Health Data Sciences and Informatics consortium,
which contains over 82 clinical databases from over 20 countries around the world (Hripcsak
et al., 2015). The amount of heterogeneity cannot be ignored when implementing distributed
algorithms in such healthcare networks.

To the best of our knowledge, Zhao et al. (2016) is the only work in this area that considers a
similar heterogeneous setting. They generalized the divide-and-conquer approach by averaging
all the local estimators and studied theoretical properties under the partially linear model. Dif-
ferent from this work, we propose to account for the heterogeneous distributions via a general
parametric likelihood framework by allowing site-specific nuisance parameters. In particular,
we extend the surrogate likelihood function approach to a surrogate estimating equation ap-
proach, and propose a density-ratio tilted surrogate efficient score function which only requires
the individual-level data from a local site and summary statistics from the other sites. To reduce
the influence of estimation of the site-specific nuisance parameters, we propose to use the ef-
ficient score function for distributed inference rather than the score function as in Jordan et al.
(2018). We further adjust for the degree of heterogeneity by applying a novel density ratio tilt-
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Heterogeneity-aware distributed inference 3

ing method to the efficient score function. We refer the resulting score function to the surrogate
efficient score function. The estimator is defined as the root of this function. We show that the
communication cost of the proposed algorithm is of the same order as Jordan et al. (2018) as-
suming no heterogeneity and therefore is communication-efficient. Theoretically, we show that
our estimator approximates the global maximum likelihood estimator with a faster rate than the
average approach in the two-index asymptotic setting; see Remarks 3 and 4. From the inference
perspective, our estimator attains the Cramér-Rao lower bound whereas the average approach has
larger asymptotic variance and is not efficient when the number of sites is less than the sample
size at each site; see Remark 6. We show that the proposed estimator outperforms the average
approach in numerical studies.

2. WANG ET AL. (2017) AND JORDAN ET AL. (2018)’S SURROGATE LIKELIHOOD
APPROACH FOR HOMOGENEOUS DISTRIBUTIONS

In this section, we briefly review the surrogate likelihood approach for distributed inference by
Wang et al. (2017) and Jordan et al. (2018). Consider a general parametric likelihood framework,
where the random variable Y follows the density function f(y; θ) indexed by a finite dimensional
unknown parameter θ. In the distributed inference problem, we suppose there are K different
sites. Denote {Yij} to be the i-th observation in the j-th site. For notation simplicity, we assume
that each site has equal sample size n. The existing works on distributed inference such as Wang
et al. (2017) and Jordan et al. (2018) further assume that all the observations are independently
and identically distributed across sites, Yij ∼ f(y; θ). Under this assumption, the combined log
likelihood function can be written as

L(θ) =
1

Kn

K∑
j=1

n∑
i=1

log f(yij ; θ) :=
1

K

K∑
j=1

Lj(θ),

where Lj(θ) =
∑n

i=1 log f(yij ; θ)/n is the log-likelihood function obtained at each site. Due
to the communication constraint and privacy concerns, one cannot directly combine data across
multiple sites to compute the maximum likelihood estimator. Motivated by the following Taylor
expansion of the combined likelihood function around some initial value θ̄,

L(θ) = L(θ̄) +∇L(θ̄)T(θ − θ̄) +

∞∑
k=2

1

k!
∇kL(θ̄)(θ − θ̄)⊗k, (1)

Wang et al. (2017) and Jordan et al. (2018) proposed to construct a surrogate likelihood func-
tion by approximating all the higher-order derivatives in equation (1) using the individual-level
data in one of the K sites (such as the first site). When the data are identically and inde-
pendently distributed across sites, it holds that ∇kL1(θ̄)−∇kL(θ̄) = oP (1) for any k ≥ 0,
where L1(θ) is the log-likelihood at the first site. Thus, ∇kL1(θ̄) is an asymptotically unbi-
ased surrogate of ∇kL(θ̄). However, in a distributed framework, communicating ∇Lj(θ) from
site j to site 1 requires to transfer only O(d) numbers where d is the dimension of θ, whereas
communicating higher order derivatives can be very costly. Replacing ∇kL(θ̄) with ∇kL1(θ̄),
the communication of the higher-order derivatives across sites can be avoided. Hence, by re-
placing

∑∞
k=2∇kL(θ̄)(θ − θ̄)⊗k/k! with

∑∞
k=2∇kL1(θ̄)(θ − θ̄)⊗k/k!, which also equals to

L1(θ)−∇L1(θ̄)T(θ − θ̄) and dropping the terms independent of θ, the surrogate likelihood is
defined as

L̃(θ) := L1(θ) + {∇L(θ̄)−∇L1(θ̄)}Tθ. (2)
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4

From the perspective of estimating equations, the surrogate likelihood approach is equivalent to
a surrogate score approach which approximates the combined score function ∇L(θ) by

S̃(θ) := ∇L(θ̄) +∇L1(θ)−∇L1(θ̄).

The theoretical properties of the estimator obtained by maximizing the surrogate likelihood func-
tion (or solving the surrogate score function) have been thoroughly studied; see Wang et al.
(2017) and Jordan et al. (2018) for details. The theoretical properties of the estimator obtained
by maximizing the surrogate likelihood function (or solving the surrogate score function) have
been thoroughly studied; see Wang et al. (2017) and Jordan et al. (2018) for details.

3. SURROGATE EFFICIENT SCORE METHOD FOR HETEROGENEOUS DISTRIBUTIONS

We consider a heterogeneous setting by assuming the i-th observation in the j-th site satisfies

Yij ∼ f(y; θj), for i ∈ {1, . . . , n} and j ∈ {1, . . . ,K},

where the unknown parameter θj can be decomposed into θj = (β, γj) ∈ Rd. In this partition, β
is a p-dimensional parameter of interest assumed to be common in every site, which is the main
motivation of evidence synthesis, and the (d− p)-dimensional nuisance parameter γj is allowed
to be different across sites. The true value of θj is denoted by θ∗j .

If all patient-level data could be pooled together, the combined log-likelihood function is

LN (β,Γ) =
1

Kn

K∑
j=1

n∑
i=1

log f(yij ;β, γj) :=
1

K

K∑
j=1

Lj(θj),

where Lj(θ) =
∑n

i=1 log f(yij ; θj)/n and Γ = {γj}j∈{1,...,K} ∈ R(d−p)K . In a distributed set-
ting, the method reviewed in Section 2 is not directly applicable due to the following two reasons:
the higher order derivatives of the log likelihood function in any site is a biased surrogate of the
corresponding higher order derivatives of LN (β,Γ), and the total number of nuisance parameters
dim(Γ) = (d− p)K increases with sample size n if we allow K to increase with n.

With the site-specific nuisance parameters, we propose to approximate the efficient score func-
tion instead of the score function. Motivated from theories of semiparametric models, the effi-
cient score function is a way of reducing the influence of the less accurate estimation of the
site-specific γj which is essentially a projection of the score function of β on the space that is
orthogonal to the space spanned by the score function of nuisance parameter γj (Van der Vaart,
2000). In our setting, it is defined as

sj(y;β, γj) = ∇β log f(y;β, γj)− I(j)
βγ I

(j)
γγ

−1∇γ log f(y;β, γj)

where I(j)
γγ and I(j)

γβ are the corresponding submatrices of the information matrix in the j-th site,
i.e., I(j) = E{−∇2Lj(θ

∗
j )}. In parametric models, the estimator of β obtained from solving

the efficient score function defined above has the asymptotic variance reaching the Cramer-
Rao lower bound, which is considered as an efficient estimator. In addition, it satisfies that
E{∇γsj(y;β, γj)} = 0, which shows it is less sensitive to small perturbations of the nuisance
parameter γj . We then define

S(β,Γ) =
1

Kn

K∑
j=1

n∑
i=1

sj(yij ;β, γj).
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Heterogeneity-aware distributed inference 5

Treating the above combined efficient score function as a target function, we aim to construct a
surrogate efficient score equation to approximate the target function using individual-level data
from the first site and summary-level data from the other sites. To explain the origin of our
estimator, we first consider an ideal situation where we know the true parameter value γ∗j . Using
the key idea of the surrogate likelihood approach, we aim to construct a function g∗(y;β) in the
first site such that

Eθ∗1{∇
k
βg
∗(Yi1;β)} = E{∇kβS(β,Γ∗)}, (3)

holds for any k ≥ 1, where we use Eθ∗j (·) to denote the expectation with respect to the distribu-
tion f(y, β∗, γ∗j ), E(·) to denote the expectation with respect to the joint distribution of the full
data, and Γ∗ to denote the true value of Γ. The right hand side of equation (3) can be written as

E{∇kβS(β,Γ∗)} =
1

K

K∑
j=1

Eθ∗j {∇
k
βsj(Yij ;β, γ

∗
j )}.

However, the function g∗(Yi1;β) only involves samples in the first local site, which follows
the distribution f(y, β∗, γ∗1) different from f(y, β∗, γ∗j ) for j 6= 1. To achieve equation (3), we
propose to construct g∗(y;β) by using the density ratio tilting method

g∗(y;β) =
1

K

K∑
j=1

f(y;β∗, γ∗j )

f(y;β∗, γ∗1)
sj(yij ;β, γ

∗
j ),

where the density ratio f(y;β∗, γ∗j )/f(y;β∗, γ∗1) is the adjustment that accounts for the hetero-
geneity of the distributions. It can be shown that Eθ∗1{∇

k
βg
∗(Yi1;β)} = E{∇kβS(β,Γ∗)} holds

for any k ≥ 0 and observation Yi1 in the first local site (see Supplementary Material for details).
The map g∗(y;β) cannot be computed in practice as it depends on the unknown parameters

β∗, γ∗j , and the information matrix I(j). Nevertheless, a natural surrogate can be used instead, by
plugging in some initial estimators β̄ and γ̄j , and replacing the matrix I(j) by its density ratio
tilting estimator H̃(1,j), defined as

H̃(1,j) = − 1

n

n∑
i=1

∇2 log f(yi1; β̄, γ̄j)
f(yi1; β̄, γ̄j)

f(yi1; β̄, γ̄1)
.

We then have

g(y;β, β̄, Γ̄) =
1

K

K∑
j=1

[
f(y; β̄, γ̄j)

f(y; β̄, γ̄1)

{
∇β log f(y;β, γ̄j)− H̃(1,j)

βγ {H̃
(1,j)
γγ }−1∇γ log f(y;β, γ̄j)

}]
.

We denote U1(β; β̄, Γ̄) =
∑n

i=1 g(yi1;β, β̄, Γ̄)/n, and define the surrogate efficient score func-
tion as

Ũ(β; β̄, Γ̄) = U1(β; β̄, Γ̄) +
1

K

K∑
j=1

{∇βLj(β̄, γ̄j)− H̄
(j)
βγ (H̄(j)

γγ )−1∇γLj(β̄, γ̄j)} − U1(β̄; β̄, Γ̄),

where H̄(j)
βγ = ∇βγLj(β̄, γ̄j) and H̄(j)

γγ = ∇γγLj(β̄, γ̄j). Recall that U1(β; β̄, Γ̄) is constructed
based on the samples in Site 1. Thus the surrogate efficient score only requires to transfer a p-
dimensional score vector Sj(β̄, γ̄j) = ∇βLj(β̄, γ̄j)− H̄

(j)
βγ (H̄

(j)
γγ )−1∇γLj(β̄, γ̄j) from each site

together with some initial estimators. The surrogate efficient score estimator β̃ is obtained by
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6

solving the following equation for β within Site 1,

Ũ(β; β̄, Γ̄) = 0. (4)

In Section 4, we show that the estimation accuracy of the above estimator β̃ can be further
improved by iterating the above surrogate efficient score procedures. The method is summarized
in the following algorithm. The estimator β̃ defined in equation (4) is equivalent to the estimator
with T = 1 in the following algorithm, which is also known as a oneshot procedure.

Algorithm 1. Algorithm for the proposed surrogate efficient score estimator

1. In Site j = 1 to j = K
2. Obtain and broadcast (β̄j , γ̄j) = arg maxβ,γj Lj(β, γj);
3. Choose a proper weight wj and obtain β̄ =

∑K
j=1wj β̄j/{

∑K
j=1wj};

4. Calculate and transfer Sj(β̄, γ̄j) to Site 1;
5. In Site 1
6. Construct Ũ(β; β̄, Γ̄) using β̄, {γ̄j}, and {Sj(β̄, γ̄j)};
7. Obtain β̃(1) by solving Ũ(β; β̄, Γ̄) = 0;
8. If T = 1, output β̃(1);
9. If T ≥ 2, for t = 2 to t = T :
10. Broadcast β̄(t) = β̃(t−1);
11. In Site j = 1 to j = K

12. Transfer γ̄(t)
j = arg maxγj Lj(β̄

(t), γj) and Sj(β̄(t), γ̄
(t)
j ) to Site 1;

13. In Site 1
14. Construct Ũ(β; β̄(t), Γ̄(t)) using β̄(t), {γ̄(t)

j } and {Sj(β̄(t), γ̄
(t)
j )};

15. Obtain β̃(t) by solving Ũ(β; β̄(t), Γ̄(t)) = 0;
16. Output β̃(T )

Remark 1. The broadcast step (line 2) in the above algorithm can be done by transferring θ̄j
from each site to Site 1, and Site 1 returns the initial estimator β̄ to all the sites. It can also
be done by uploading all θ̄j to a shared repository and obtaining β̄ at each site. The initial
estimator β̄ is chosen as a weighted average of the local estimators β̄j . When wj = 1 for all
j, β̄ =

∑K
j=1 β̄j/K is the average estimator (Zhao et al., 2016). We can also choose wj to be

the sample size of each site in the unbalanced design. When wj is chosen as the inverse of the
estimated variance of β̄j , the resulting estimator β̄ is referred to as the fixed effect meta-analysis
estimator. In this paper, we simply choose wj = 1. The total communication cost per iteration is
to transferO(Kd) numbers across all sites, where d is the dimension of θj = (β, γj). Comparing
to the homogeneous setting, the communication cost is of the same order as Jordan et al. (2018),
and is communication-efficient.

Remark 2. To further reduce the computational complexity of solving the surrogate efficient
score function, we can approximate the combined efficient score function S(β,Γ) via one-step
Taylor expansion,

S(β,Γ) ≈ S(β̄, Γ̄) +∇βS(β̄, Γ̄)(β − β̄) +∇ΓS(β̄, Γ̄)(Γ− Γ̄).

First, the property of the efficient score implies ∇ΓS(β̄, Γ̄) ≈ 0 so that the last term can be
neglected. Next, we replace the Hessian matrix ∇βS(β̄, Γ̄) computed by pooling over all the
samples with the local surrogate ∇βǓ1(β̄), where Ǔ1(β) = U1(β; β̄, Γ̄). The resulting linear
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Heterogeneity-aware distributed inference 7

approximation S(β̄, Γ̄) +∇βǓ1(β̄)(β − β̄) as an estimating function of β defines the following
estimator

β̃O = β̄ − {∇βǓ1(β̄)}−1S(β̄, Γ̄).

If we treat β̄ as an initial estimator, the above estimator β̃O can be also viewed as a one-step
estimator with a local surrogate of the Hessian matrix. Hereafter, our discussion will be focused
on the estimator from Algorithm 1, as we show in Lemma S12 in Supplementary Materials that
this one-step estimator shares the same theoretical properties as the estimator from Algorithm 1.
When calculating the inverse of (H̄

(j)
γγ )−1 becomes a bottleneck of computation, we proposed a

modified algorithm in Appendix A of Supplementary Material.

4. MAIN RESULTS

In this section, we study the theoretical properties of the surrogate efficient score estima-
tor β̃(T ) obtained from Algorithm 1. For convenience, we use C,C1 and C2 to denote positive
constants which can vary from place to place. For sequence {an} and {bn}, we write an . bn
(an & bn) if there exist a constant C such that an ≤ Cbn (an ≥ Cbn) for all n. We first introduce
the following assumptions.

Assumption 1. The parameter space of β, denoted by B, is a compact and convex subset of
Rp. The true value β∗ is an interior point of B.

Assumption 2 (Local Strong Convexity). Define the expected second-order derivative of the
negative log likelihood function to be I(j)(θj) = Eθ∗j {−∇

2 log f(Yij ; θj)}. There exist positive

constants (µ−, µ+), such that for any j ∈ {1, . . . ,K}, the population Hessian matrix I(j)(θ∗j )
satisfies

µ−Id � I(j)(θ∗j ) � µ+Id,

where Id is the d dimensional identity matrix. Here, we use the notation that A � B for two
matrices A and B if A−B is positive semi-definite.

Assumption 3. For all j ∈ {1, . . . ,K} and i ∈ {1, . . . , n}, all components in∇ log f(Yij , θ
∗
j )

and ∇2 log f(Yij , θ
∗
j ) are sub-exponential random variables.

Assumption 4 (Identifiability). For any j ∈ {1, . . . ,K}, we denote Fj(β, γj) =
Eθ∗j {log f(Yij ;β, γj)}. The parameter (β∗, γ∗j ) is the unique maximizer of Fj(β, γj).

Assumption 5 (Smoothness). For each j ∈ {1, . . . ,K}, let η̄j = (β̄, γ̄1, γ̄j), and define

H(θj ; y) = ∇2 log f(y;β, γj),

and

H̃(β, η̄j ; y) = ∇2 log f(y;β, γ̄j)
f(y; β̄, γ̄j)

f(y; β̄, γ̄1)
.

Define Uθ(ρ) = {θ; ‖θ − θ‖2 ≤ ρ} for some radius ρ > 0. There exist some function m1(y) and
m2(y), wherem1(Yij) andm2(Yij) are sub-exponentially distributed for all j ∈ {1, . . . ,K} and
i ∈ {1, . . . , n}, such that for any θj and θ′j ∈ Uθj (ρ), we have

‖H(θj ; y)−H(θ′j ; y)‖2 ≤ m1(y)‖θ − θ′j‖2.
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And for any β, β′ ∈ Uβ(ρ), η̄j , η̄′j ∈ Uηj (ρ), we have

‖H̃(β, η̄j ; y)− H̃(β′, η̄′j ; y)‖2 ≤ m2(y){‖β − β′‖2 + ‖η̄j − η̄′j‖2}.

Assumptions 1, 2, 4, and 5 are standard assumptions in the distributed inference literature; see
Jordan et al. (2018). Assumption 3 is a general distributional requirements of the data, which
covers a wide range of parametric models.

When all individual-level data can be pooled together, the global maximum likelihood estima-
tor (β̂, Γ̂) = arg maxβ,Γ LN (β,Γ) is considered as the gold standard in practice. The asymptotic
property of the global estimator has been studied in Li et al. (2003) under the asymptotic regime
K/n→ c ∈ (0,∞). Our first result characterizes a non-asymptotic bound for the distance be-
tween the global maximum likelihood estimator β̂ and the true parameter value β∗.

LEMMA 1. Under Assumptions 1-5, the global maximum likelihood estimator β̂ satisfies

E‖β̂ − β∗‖2 ≤
C1

(Kn)1/2
+
C2

n

for some positive constants C1 and C2 not related to n and K.

To the best of our knowledge, this is one of the first nonasymptotic results on the rate of conver-
gence of the maximum likelihood estimator in the presence of site-specific nuisance parameters.
Under the classical two-index asymptotics setting, we allow the number of sites K to grow with
the sample size n. As a result, the dimension of nuisance parameters Γ also increases with n. Let
N = Kn denote the total sample size. This lemma implies that the convergence rate of β̂ is of
orderOp(N−1/2) whenK/n = O(1), which attains the optimal rate of convergence with known
nuisance parameters. However, when K/n→∞, the estimator has a slower rate Op(1/n). In
particular if n is fixed, the global maximum likelihood estimator is no longer consistent, which
is known as the Neyman-Scott problem (Neyman et al., 1948).

In the following, we characterize the difference between the proposed estimator and the max-
imum likelihood estimator β̂. We first focus on the estimator β̃ defined in equation (4), which is
identical to β̃(1) in algorithm 1 with the number of iterations T = 1.

THEOREM 1. Suppose Assumptions 1-5 hold. In Algorithm 1, if the number of iterations T =
1, assuming n & logK, we have

E‖β̃(1) − β̂‖2 ≤
C

n
.

where C is a positive constant not related to n and K.

The above theorem shows that the proposed estimator with only one iteration converges to the
global estimator β̂ with a rate only depending on n. Together with Lemma 1, we obtain E‖β̃(1) −
β∗‖2 . 1/(Kn)1/2 + 1/n. In other words, the estimator has the same rate of convergence as the
global maximum likelihood estimator.

Remark 3. When K/n→ 0, we showed in Lemma S.10 of Supplementary Material that
the average estimator β̄(1) =

∑K
j=1 β̄

(1)
j /K defined in algorithm 1 satisfies E‖β̄(1) − β̂‖2 &

1/(Kn)1/2. By comparing with the bound in Theorem 1, we have

E‖β̃(1) − β̂‖2 ≤ C
(K
n

)1/2
E‖β̄(1) − β̂‖2. (5)
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Heterogeneity-aware distributed inference 9

Thus our estimator β̃(1) is closer to the global maximum likelihood estimator than the average
estimator under the condition K/n→ 0.

Our next result shows that after at least one iteration the estimator β̃(T ) in Algorithm 1 with
T ≥ 2 has a tighter bound than β̃(1) in Theorem 1.

THEOREM 2. Suppose all the assumptions in Theorem 1 hold. In Algorithm 1, if the number
of iterations T ≥ 2, we have

E‖β̃(T ) − β̂‖2 ≤
C1

(K)1/2n
+

C2

n3/2
,

where C1 and C2 are positive constants not related to n and K.

Remark 4. The above theorem implies that when K/n→ 0, for any T ≥ 2

E‖β̃(T ) − β̂‖2 ≤ Cn−1/2E‖β̄(1) − β̂‖2, (6)

which improves the result in equation (5). When K is relatively small, our estimator β̃(T ) with
T ≥ 2 is closer to the global maximum likelihood estimator by a factor of n−1/2 than the average
estimator. We also see an interesting fact that the dimension of the nuisance parameters has
no effect on the relative error E‖β̃(T ) − β̂‖2/E‖β̄(1) − β̂‖2. This dimension-free phenomenon
provides an explanation of why the proposed estimator consistently outperforms the average
method in our simulation studies in Section 6.

Our next theorem establishes the asymptotic normality of the proposed estimator.

THEOREM 3. Suppose all the assumptions in Theorem 1 hold. Define Iβ|γ =
∑K

j=1 I
(j)
β|γ/K,

where I(j)
β|γ is the partial information matrix of β defined as I(j)

β|γ = I
(j)
ββ − I

(j)
βγ (I

(j)
γγ )−1I

(j)
γβ . As-

suming K = Cnr for some fixed r ∈ [0, 1), we have for any T ≥ 1, as n→∞,

Kn(β̃(T ) − β∗)TIβ|γ(β̃(T ) − β∗)→ χ2
p.

To obtain the
√

(Kn)-asymptotic normality of the proposed estimator β̃(T ), we have to restrict
to the setting K = Cnr for some r ∈ [0, 1). In particular, when K/n→ C ∈ (0,∞) or equiva-
lently r = 1, Li et al. (2003) showed that the maximum likelihood estimator β̂ is asymptotically
biased, that is (Kn)1/2I

1/2
β|γ (β̂ − β∗)→ N(b, Ip), for some b 6= 0. Since the proposed estimator

β̃(T ) (with T ≥ 2) satisfies β̃(T ) − β̂ = Op(K
−1/2n−1 + n−3/2) by Theorem 2, it implies that

the same asymptotic distribution holds for β̃(T ), (Kn)1/2I
1/2
β|γ (β̃(T ) − β∗)→d N(b, Ip) for the

same b 6= 0 if r = 1. The same limiting distribution also holds for T = 1. This leads to a phase
transition of the limiting distribution of β̃(T ) at r = 1. As a result, the condition r ∈ [0, 1) is
essential for the asymptotic unbiasedness of β̃(T ) and cannot be further relaxed.

Remark 5. The choice of the initial value θ̄(1)
j in line 3 of Algorithm 1 is not necessarily

restricted to the local maximum likelihood estimator. Due to the use of the efficient score, the
impact of the initial estimators of the nuisance parameters is alleviated. We can show that the
conclusions of Theorem 1-3 still hold if θ̄(1)

j is replaced with any
√
n-consistent estimator.

It is well known that the average estimator is fully efficient under the homogeneous setting;
see e.g., Battey et al. (2018) and Jordan et al. (2018). However, the following proposition shows
that this estimator is no longer efficient under the considered heterogeneous setting.
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PROPOSITION 1. Recall that the average estimator is β̄ =
∑K

j=1 β̄j/K, where (β̄j , γ̄j) =

arg maxβ,γj Lj(β, γj). Suppose all the conditions in Theorem 3 hold. We have as n→∞,

Kn(β̄ − β∗)T
 1

K

K∑
j=1

I
(j)
β|γ
−1


−1

(β̄ − β∗)→ χ2
p.

Remark 6. In this remark, we compare the asymptotic variance of β̃(T ) in Theorem 3 and β̄ in
Proposition 1. Our proposed estimator β̃(T ) is efficient in the sense that its asymptotic variance is
equal to the Cramér-Rao lower bound, i.e., limK→∞ Iβ|γ = limK→∞{

∑K
j=1 I

(j)
β|γ/K}

−1, for any

T ≥ 1. On the other hand, the average estimator is not efficient as limK→∞
∑K

j=1 I
(j)
β|γ
−1
/K �

limK→∞ I
−1
β|γ .

Finally, to construct the confidence interval of β∗, we need to provide a consistent estimator
for the averaged partial information matrix Iβ|γ . In the following theorem, we apply the density
ratio tilting approach to estimate the variance using data only from the first local site.

THEOREM 4. Suppose all the assumptions in Theorem 3 hold. Define

Ĩ(j) = − 1

Kn

K∑
j=1

n∑
i=1

f(yi1, β̃
(T ), γ̄

(T )
j )

f(yi1, β̃(T ), γ̄
(T )
1 )
∇2 log f(yi1; β̃(T ), γ̄

(T )
j ),

and Ĩ(j)
β|γ = Ĩ

(j)
ββ − I

(j)
βγ (Ĩ

(j)
γγ )−1Ĩ

(j)
γβ . We have as n→∞,

Kn(β̃(T ) − β∗)TĨ(j)
β|γ(β̃(T ) − β∗)→ χ2

p.

5. REDUCE THE INFLUENCE OF THE LOCAL SITE

In a practical collaborative research network, each site can act as the local site and obtain
an estimate using Algorithm 1. To further reduce the impact of the choice of the local site and
improve the stability of the algorithm, we can combine these estimates in Algorithm 1 by an
average approach. At the j-th site, we define the site-specific surrogate score function to be

Ũj(β; β̄, Γ̄) = Uj(β; β̄, Γ̄) +
1

K

K∑
k=1

{∇βLk(β̄, γ̄k)− H̄
(k)
βγ (H̄(k)

γγ )−1∇γLk(β̄, γ̄j)} − Uj(β̄; β̄, Γ̄),

where

Uj(β; β̄, Γ̄) =
1

Kn

K∑
k=1

n∑
i=1

f(yij ; β̄, γ̄k)

f(yij ; β̄, γj)

{
∇β log f(yij ;β, γ̄k)− H̃

(j,k)
βγ {H̃

(j,k)
γγ }−1∇γ log f(yij ;β, γ̄k)

}
and

H̃(j,k) = − 1

n

n∑
i=1

∇2 log f(yij ; β̄, γ̄k)
f(yij ; β̄, γ̄k)

f(yij ; β̄, γ̄j)
.

The surrogate score function Ũj(β; β̄, Γ̄) is obtained using the individual-level data in the j-
th site and summary-level data from the other K − 1 sites. In this case, each site can obtain a
surrogate efficient score estimator β̃j by solving Ũj(β; β̄, Γ̄) = 0, and we further combine these
estimators by β̃all =

∑K
j=1 β̃j/K. The algorithm is summarized below.
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Heterogeneity-aware distributed inference 11

Algorithm 2. Algorithm for computing β̃all

1. In Site j = 1 to j = K
2. Obtain an initial estimator θ̄j = (β̄j , γ̄j) for the parameter β and γj ;
3. Broadcast θ̄j ;
4 Choose w(1)

j and obtain β̄(1) =
∑K

j=1w
(1)
j β̄j/{

∑K
j=1w

(1)
j };

5 Obtain and broadcast Sj(β̄, γ̄j);
6 Construct Ũj(β; β̄, Γ̄) using β̄, {γ̄j} and {Sk(β̄, γ̄k)}1≤k≤K ;
7 Obtain and broadcast β̃j ;
8 Obtain and output β̃all

6. SIMULATION STUDY

We consider a logistic regression between a binary outcome Y and a binary exposure X ,
controlling for a confounding variable Z. It is assumed that for data in the k-th site, we have

logit{Pr(Y = 1 | X,Z)} = γ0k + βX + γ1kZ.

We set the true value of β = −1 for all the K sites. The nuisance parameters γ0k and γ1k are
generated from the uniform distribution U(a− 1, a+ 1) and the uniform distribution U(−2, 2),
respectively. The binary exposure X is generated from a Bernoulli distribution with probability
b, and the confounder variable is generated by Z ∼ N(X − 0.3, 1). Under each setting, we set
the sample size n to be 100 and the number of sites K to be 10 or 50. We compare the perfor-
mance of five different methods: (1) The estimator from averaging all local maximum likelihood
estimators (Average); (2) The surrogate likelihood method in Jordan et al. (2018) assuming the
homogeneous model (Homo); (3) The proposed estimator in Algorithm 1 with T = 1 (i.e., the
oneshot algorithm) (M1); (4) The proposed estimator in Algorithm 1 with T = 2 (M2), and (5)
The proposed estimator in Algorithm 2 (M3).

We first investigate how the prevalence of binary events in a regression model influences the
performance of the compared methods. We vary the value of a and the probability b which con-
trol the prevalence of the exposure and the outcome, and consider the following four scenarios:
(1) both the outcome and the exposure are common; (2) the outcome is rare and the exposure
is common; (3) the outcome is common and the exposure is rare; (4) both the outcome and the
exposure are rare. The parameter values for a and b are presented in Table S1 of Supplementary
Material. We observed from Figure 1 that the surrogate likelihood method which ignores the het-
erogeneity has substantial bias in all settings. When both the outcome and exposure are common,
all the proposed estimators and the average estimator perform well. The average estimator starts
to show large bias when either the outcome or the exposure is rare. Our oneshot estimator (M1)
reduces the bias of the average estimator in all settings. However, when both outcome and expo-
sure are rare, the oneshot algorithm illustrates non-negligible bias and relatively large variation.
Through only one more iteration, our estimator (M2) has sizeably improved performance and
becomes more stable in the rare outcome or exposure setting. The estimator in Algorithm 2 (M3)
also outperforms the oneshot method in terms of reducing the bias and variance, especially when
both the outcome and the exposure are rare. When we increase the number of sites, the bias of
the average method remains the same while the variation is smaller. Our proposed algorithms,
however, are able to take advantage of the increased total sample size and provide estimates with
smaller bias.
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We then investigate whether the level of heterogeneity influences the performance of the com-
pared methods. To alter the level of heterogeneity, we generate the nuisance parameters γ0k from
the uniform distribution U(−v, v), and γ1k from the uniform distribution U(−2v, 2v). We in-
crease v from 0.1 to 4. When v is 0.1, the heterogeneity of the values of nuisance parameters is
small across sites. We observe from Figure 2 that all methods work comparably well, including
the surrogate likelihood method which ignores the heterogeneity. As v increases from 0.1 to 4,
the bias of the surrogate likelihood method is increasing. The average approach, in theory, is a
consistent estimator, but is shown to have larger bias and variation when v is increasing. The
proposed three methods have similar performance under all settings. We can observe a slightly
increasing variation and more outlying points of the proposed methods when v is large. Overall,
the proposed methods are more robust to the change of v compared to the other two methods.

Finally, we investigate how the dimension of the nuisance parameters affects the performance
of the compared methods. We generateZ fromN(0, Iq), and the corresponding coefficient vector
γ1k is generated from q independent uniform distributions U(−1, 1). Including the intercept, the
total dimension of the nuisance parameters is denoted as dγ = q + 1. We increase dγ from 2 to
14. From Figrue 3, we see as dγ increases, the estimation errors of all compared methods become
larger. M2 has slightly better performance compared to M1 and M3, implying that iterations
might help reduce the bias. The average approach, however, has the worst performance compared
to the other approaches when dγ is large.

In sum, the increase of the rareness of the disease or exposure, the level of heterogeneity
and the dimension of the model can increase the estimation errors of all compared methods.
Ignoring heterogeneity in a distributed setting can lead to substantial amount of bias, and our
proposed methods can greatly improve the estimation accuracy based on the commonly used
average approach.

7. REAL DATA APPLICATION

We applied the proposed algorithms to a dataset from a distributed research network. We aim to
use data from five sites to quantify the association between mental disorders, including major de-
pression and anxiety, with the risk of opioid use disorder using a logistic regression model. Each
participating site extracted electronic health records between 01/01/2012 and 03/01/2019 for pa-
tients who had opioid prescription (including Codeine, Fentanyl, Hydromorphone, Meperidine,
Methadone, Morphine, Oxycodone, Tramadol, Hydrocodone, Buprenorphine), and no cancer or
diagnosis of opioid use disorder before their first prescription. Among these patients who were
exposed to opioid, a case of opioid use disorder is defined as having first diagnosis of opioid
use disorder within 12 months after their first prescription and a control is defined as having no
diagnosis of opioid use disorder in the entire time window. We obtained in total 1458 cases from
the five clinical sites, and we randomly selected 2908 controls to maintain a case-control ratio
of 1:2. In addition to the two risk factors of interest (i.e., major depression and anxiety), we re-
quested a list of relevant covariate variables to be adjusted in the regression model, including age,
gender, race (non-Hispanic White vs others), alcohol-related disorders, pain, cannabis-related
disorder, cocaine-related disorder, nicotine-related disorder, smoking status (ever-smoker, non-
smoker, and unknown), as well as the Charlson comorbidity index (Quan et al., 2005). Records
with missing values were removed, resulting in sample sizes of 680, 1311, 920, 270, and 1106
from Site 1 to Site 5, respectively; see Appendix C of Supplementary Material for more infor-
mation about data processing.

In the logistic regression model, we treated the coefficients of major depression and anxiety
to be common parameters across sites, and all the other coefficients including the intercept were
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Heterogeneity-aware distributed inference 13

Fig. 1. Boxplots of the estimates (subtracted by the true
parameter value) under the four parameter settings in Ta-
ble 1. Each site has a sample size 100, and each setting is

replicated 1000 times.

assumed to be site-specific. We chose Site 1 as the local site and applied our methods M1, M2,
M3, and the average approach. The estimated log odds ratios with their 95% confidence inter-
vals are shown in Figure 4. We observed consistent results from the three proposed methods for
both anxiety and depression, suggesting one round of communication already led to stable esti-
mation results. Anxiety was identified to be statistically significantly associated with opioid use
disorder by all the methods. The relative difference based on the point estimates is about 18.4%
comparing the average approach to M1. All methods failed to identify significant association
between depression and opioid use disorder, possibly due to the relatively low prevalence (9%)
of depression in the overall sample and the limited sample size. We observed opposite signs of
the point estimates obtained from the proposed methods and the average approach, leading to a
large relative difference of 164.3%. Since it has been shown in many studies that depression is
associated with increased risk of developing opioid use disorder (Martins et al., 2012; Sullivan,
2018), the negative association estimated by the average approach can be less reliable. More
details of model fitting results can be found in the Appendix C of Supplementary Material.

This real data application demonstrated the feasibility of implementing the proposed dis-
tributed algorithms in real-world distributed research networks. Although the average approach
is easy to implement in practice, the proposed methods provide more reliable parameter estimates
with only one extra step of sharing aggregate data.
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Fig. 2. Boxplots of the estimates (subtracted by the true
parameter value) when v takes values in (0.1, 1, 2, 4), and
K varies from 10 to 50. Each site has a sample size 100,

and each setting is replicated 1000 times.

8. DISCUSSION

Motivated from a practical consideration that the data stored at different clinical sites are often
heterogeneously distributed, we propose a surrogate efficient score approach for distributed in-
ference. Our approach provides flexibility to allow site-specific nuisance parameters, and bridges
the gap in the current research on healthcare distributed research networks. There are several fu-
ture research directions. To account for the large number of clinical, environmental and genetic
related variables in the modern healthcare datasets, it will be interesting to extend our method
to the high-dimensional settings where either the dimension of β or the dimension of the nui-
sance parameters is larger than the sample size. Moreover, to extend the scope of the proposed
framework, it would be of interest to relax the parametric assumption by using methods such
as the generalized estimating equations (Liang & Zeger, 1986) and the generalized methods of
moments (Hansen, 1982). However, as the density ratio tilting relies on the distributional as-
sumption, it may require new methodological development to adjust for the heterogeneity under
these new settings. Another practical challenge is that some sites only have a subset of all covari-
ates. Recent work including Kundu et al. (2019) and Zhang et al. (2020) proposed novel methods
to integrate summary statistics from external datasets with different covariate information. It is
of interest to develop distributed inference that can handle heterogeneity and account for incom-
plete covariate information across sites. These topics are currently under investigation and will
be reported in the future.
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Heterogeneity-aware distributed inference 15

Fig. 3. Boxplots of the estimates (subtracted by the true
parameter value) when dγ takes values in (2, 6, 10, 14),
and K varies from 10 to 50. Each site has a sample size

100, and each setting is replicated 1000 times.

Fig. 4. Estimated log odds ratios of anxiety and depression,
with 95% confidence intervals from the four methods.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional results of simula-
tion and real data application, and proofs for Theorems 1-4, Lemma 1 and Proposition 1.
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