Submitted to the Annals of Statistics

ADAPTIVE ESTIMATION OF MULTIVARIATE
REGRESSION WITH HIDDEN VARIABLES

By XIN BING AND YANG NING AND YAOSHENG XU

Cornell University

A prominent concern of scientific investigators is the presence of
unobserved hidden variables in association analysis. Ignoring hidden
variables often yields biased statistical results and misleading scien-
tific conclusions. Motivated by this practical issue, this paper studies
the multivariate regression with hidden variables, Y = (U*)TX +
(BT Z+ E, where Y € R™ is the response vector, X € RP is the ob-
servable feature, Z € R¥ represents the vector of unobserved hidden
variables, possibly correlated with X, and E is an independent error.
The number of hidden variables K is unknown and both m and p are
allowed but not required to grow with the sample size n.

Though ¥* is shown to be non-identifiable due to the presence of
hidden variables, we propose to identify the projection of ¥* onto
the orthogonal complement of the row space of B*, denoted by ©*.
The quantity (©*)7X measures the effect of X on Y that cannot
be explained through the hidden variables, and thus ©* is treated
as the parameter of interest. Motivated by the identifiability proof,
we propose a novel estimation algorithm for ©*, called HIVE, under
homoscedastic errors. The first step of the algorithm estimates the
best linear prediction of Y given X, in which the unknown coeffi-
cient matrix exhibits an additive decomposition of ¥* and a dense
matrix due to the correlation between X and Z. Under the sparsity
assumption on U* we propose to minimize a penalized least squares
loss by regularizing U™ and the dense matrix via group-lasso and
multivariate ridge, respectively. Non-asymptotic deviation bounds of
the in-sample prediction error are established. Our second step es-
timates the row space of B* by leveraging the covariance structure
of the residual vector from the first step. In the last step, we esti-
mate ©F via projecting Y onto the orthogonal complement of the
estimated row space of B* to remove the effect of hidden variables.
Non-asymptotic error bounds of our final estimator of ©*, which are
valid for any m,p, K and n, are established. We further show that
under mild assumptions the rate of our estimator matches the best
possible rate with known B* and is adaptive to the unknown sparsity
of © induced by the sparsity of ¥*. The model identifiability, estima-
tion algorithm and statistical guarantees are further extended to the
setting with heteroscedastic errors. Thorough numerical simulations
and two real data examples are provided to back up our theoretical
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results.

1. Introduction. Multivariate regression has been widely used to eval-
uate how predictors are associated with multiple response variables and is
ubiquitous in many areas including genomics, epidemiology, social science
and economics [3]. Most of the existing research on multivariate regression
assumes that the collected predictors are sufficient to explain the responses.
However, due to cost constraints or ethical issues, oftentimes there exist un-
measured hidden variables that are associated with the responses as well.
Ignoring the hidden variables often leads to biased estimates.

In this paper, we consider the following multivariate regression with hid-
den variables. Let Y € R™ denote the response vector, X € RP denote the
observable predictors and Z € RX be the unobservable hidden variables.
The multivariate regression model postulates

(1.1) Y = (@'X + (B Z+E,

where ¥* € RP*™ and B* € RE*™ are unknown deterministic matrices
and E € R™ is a stochastic error with zero mean and a diagonal covariance
matrix X pg. The random error E is independent of (X, Z) and the hidden
variable Z is possibly correlated with X. The number of hidden variables, K,
is unknown and assumed to be less than m. As we can subtract means from
both sides of (1.1), we consider Y, X and Z have mean zero. Without loss
of generality, we assume ¥ = Cov(X) and ¥z = Cov(Z) are strictly positive
definite and rank(B*) = K. Otherwise, one might reduce the dimensions of
X and Z such that these conditions are met.

Assume that we observe n i.i.d. copies of (X,Y") and stack them together
as a design matrix X € R™*P and a response matrix Y € R™*™_ In practice,
the number of response variables m or the number of features p or both of
them can be greater than the sample size n.

The proposed model unifies and generalizes the following two strands of
research that emerges in a variety of applications.

1. Surrogate variable analysis (SVA) in genomics. The measurements of
high-throughput genomic data are often confounded by unobserved factors.
To remove the influence of unobserved confounders, surrogate variable anal-
ysis (SVA) based on model (1.1) has been proposed for the analysis of biolog-
ical data [38, 39, 45, 19, 28, 31, 44]. In these applications, the response vector
Y is often the gene expression or DNA methylation levels at m sites, which
is usually much larger than the sample size n. The covariate X is a small set
of exposures (e.g., treatment variables), whose dimension p is assumed to
be fixed in the theoretical analysis [37, 47, 41]. Since p is small, the existing
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SVA methods apply the ordinary least squares (OLS) (X7 X)7'XTY to
estimate the main regression effect and then remove the bias of the OLS
estimator, originated from the correlation between Z and X. However, to
avoid confounding issues, researchers tend to collect as many features as
possible and then adjust them in the regression model. In this case, p can
be large and even much larger than n, whence the existing SVA methods
are not applicable as the OLS estimator may not exist. Our work extends
the scope of the SVA in the sense that a unified estimation procedure and
theoretical justification are developed under model (1.1) where both p and
m are allowed, but not required, to grow with n. We refer to Section 1.2 for
detailed comparisons with existing SVA literature.

2. Structural equation model in causal inference. Model (1.1) can be also
framed as linear structural equation models [32]. Suppose the causal struc-
ture among (X, Z,Y) is represented by the directed acyclic graph (DAG)
in Figure 1. As shown in this graph, both observed variables X and hid-
den variables Z are the causes of Y, as (X, Z) are the parents of Y. Under
the linearity assumption, the causal structure of (X, Z) — Y is modeled by
equation (1.1). Similarly, the DAG in Figure 1 also implies that X is the
cause of Z, which can be further modeled via

(1.2) Z=D"X+W,

where D € RP*K is a deterministic matrix and W € R¥ is a random noise
independent of X and E. Since Z is not observable, model (1.1) and (1.2)
can be viewed as linear structural equation models with hidden variables
[22]. Using the terminology in causal mediation analysis, the parameter U*
in (1.1) represents the direct causal effect of X on Y. It is worthwhile to
note that the proposed framework is more general than linear structural
equation models because model (1.2) is not imposed. In particular, we allow
an arbitrary dependence structure between X and Z, whereas the linear
structural equation model assumes X is a cause of Z with the independence
between X and W.

1.1. Our contributions.

Identifiability. Our first contribution is to investigate the identifiabil-
ity of model (1.1). We show that U* in model (1.1) is not identifiable in
Proposition 1 of Section 2.1. This motivates us to focus on an alternative
estimand, the projection of ¥* onto the orthogonal complement of row space
of B*, which is identifiable and has desirable interpretations.
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Fig 1: Illustration of the DAG under model (1.1) and (1.2)

We start by rewriting model (1.1). Denote by (A*)” X the Lo projection
of Z onto the linear space of X and by W = Z — (A*)T X its residual, where

(1.3) A= {E[xXT)} B [x27] e RPK.

We emphasize that we do not require model (1.2), or equivalently, the inde-
pendence between W and X. For this reason, we use a different notation A*
rather than D to denote the coefficient of the Lo projection. We then de-
compose the effect of hidden variable Z as (B*)TZ = (A*B*)T X + (B*)TW.
Plugging this into (1.1) yields

Y = (W +A*'BY'X + (B)ITW+ E

_ * pl * * ¥\ T *\T
(1.4) = (U*Ph +0* Py +AL*B) X+ (B)TW + E,
O* 5

where Pg: = B*T(B*B*T)~1B* € R™*™ is the projection matrix onto the
row space of B*, Pﬁ* = I,, — Pp~, L* = A*B* and the residual vector
e = (B*)TW + E satisfies E[¢] = 0 and Cov(X,¢) = 0.

In (1.4), we decompose ¥* into two components \II*Pé* and U*Pp«. The
former denoted by ©* is the projection of U* onto the orthogonal comple-
ment of row space of B*. Since ©*7 X is orthogonal to B*7Z, ©*T X mea-
sures the effect of X on Y in the multivariate regression (1.1) that cannot
be explained through the hidden variable effect. In the mediation analysis,
we can refer to ©* as “partial” direct effect of X on Y.

In Propositions 2 and 3 of Section 2.1 we establish the sufficient and
necessary conditions for the identifiability of ©* when the error E is ho-
moscedastic, that is ¥ = 72I,,. This covariance structure of the residual
vector ¢ is crucial to show the results, as detailed in Section 2.1. However,
the sufficiency no longer holds in the presence of heteroscedastic error, when
Y g is a diagonal matrix with unequal entries. Inspired by [50], we introduce
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a mild incoherence condition on the right singular vectors of B* to iden-
tify the row space of B*, which is an important intermediate step towards
identifying ©*. We show in Proposition 9 of Section 4 that this incoherence
condition guarantees the identifiability of ©* in the heteroscedastic case.

Summarizing, the parameter ©* is identifiable under both homoscedastic
and heteroscedastic errors. We focus on the estimation of ©* throughout
the paper. It is worth mentioning that our analysis of ©* carries over to ¥*,
under ¥*Pg« — 0 as m = m(n) — oo, a common condition of U* in the
SVA literature [37]. Indeed, even if U* is of primary interest, the information
in ©* may still be helpful to infer ¥*; see Section 5.5 for details.

Estimation of ©*. Our second contribution is to propose a new method
for estimating ©*. In particular, our approach can handle the case when
p > n and the OLS commonly used in the SVA literature does not exist.
To deal with the high dimensionality of ©*, we assume that there exists a
small subset of X that are associated with Y in model (1.1). Such a row-
wise sparsity assumption on the coefficient matrix has been widely used in
multivariate regression, for instance, [11, 14, 40, 42, 49], just to name a few.
While ¥* is not identifiable, we assume ¥* lies in the space €2

(1.5) U e Q= {M €RP™ || M||g /e, < 54}

where s, < p and ||[M|s /0, = Z?:l L1{|M;. |20} is the number of nonzero
rows. As a result, (1.5) implies that ©* € Q as

(1.6) 10%(leg /e, = 1" P llgy ey < -

Our estimation procedure consists of three steps: first estimate the best
linear prediction of Y given X; then estimate the row space of B* and
finally estimate ©*.

The first step is critical but challenging especially when p is large. In
Section 2.2.1, we propose a new optimization-based approach with a com-
bination of the group-lasso penalty [49] and the multivariate ridge penalty.
The group-lasso penalty aims to exploit the row-wise sparsity of ¥* in (1.5),
while the multivariate ridge penalty regularizes the additional dense signal
L* due to the hidden variables Z (see model (1.4)). The proposed proce-
dure is easy to implement and has almost the same complexity as solving
a group-lasso problem. We refer to Section 2.2.1 for detailed discussions of
computational and theoretical advantages of our estimator over other com-
peting methods.

Our second step is to estimate the row space of B* or equivalently Pp-.
When the noise is homoscedastic, we directly apply the principle component
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analysis (PCA) to the sample covariance matrix of the estimated residuals
(see Section 2.2.2). The resulting first K eigenvectors are then used to esti-
mate Pp+. However, PCA may lead to biased estimates under heteroscedastic
error, especially when m is fixed. To deal with heteroscedasticity, we adapt
the HeteroPCA algorithm originally proposed by [50] to our setting.

In the last step, we project Y onto the orthogonal complement of the
estimated row space of B* to remove the effect of hidden variables, and then
recover ©F by applying group-lasso to the projected Y.

Our entire procedure is summarized in Algorithm 1, called HIVE, rep-
resenting Hldden Variable adjustment Estimation. Similarly, the algorithm
tailored for the heteroscedastic error is referred to as H-HIVE in Algorithm 3.
For the convenience of practitioners, we also provide detailed discussions on
practical implementations in Section 5, including estimation of the number
of hidden variables (K), the consequence of overestimating/underestimating
K, the choice of tuning parameters, data standardization and practical usage
of ©* for inferring U*.

Statistical guarantees. Our third contribution is to establish theo-
retical properties of our procedure. In Theorem 4 of Section 4, we derive
non-asymptotic deviation bounds of the in-sample prediction error, which
are valid for any finite n, p, m and K. The error bounds consist of three
components: bias and variance terms from the ridge regularization and an
error term from the group-lasso regularization. To understand the advantage
of our estimator, we particularize to the orthogonal design and show that
our estimator enjoys the optimal rate of group-lasso when there is no hidden
variable (i.e., L* = 0 in model (1.4)) and it also achieves the optimal rate of
the ridge estimator when W* = 0. Thus, the rate of our estimator matches
the best possible rate even if L* = 0 or W* = 0 were known a priori.

We further provide theoretical guarantees for the estimation of ©*. In par-
ticular, we establish in Theorem 6 a general non-asymptotic upper bound of
the estimation error of our estimator © based on any estimator P of Pg..
As expected, the estimation error of 5) depends on how accurately P esti-
mates Pp«. When Pp+ can be estimated accurately enough, our estimator
© achieves the optimal rate in the oracle case with known B* (see the sub-
sequent paragraph of Theorem 6). However, if the estimation error of Pp«
is relatively large, we can balance this term with the error of the group-
lasso to attain a more refined rate via a suitable choice of the regularization
parameter. In Theorem 7 of Section 3.2 and Theorem 10 of Section 4, we
further establish the non-asymptotic error bounds of our proposed estima-
tors of Pp« for both homoscedastic and heteroscedastic errors. These results
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together with Theorem 6 provide the final upper bounds of the estimation
error of ©. To deal with heteroscedastic errors, we develop a new robust
sin © theorem in Appendix A to control the perturbation of eigenspaces in
the Frobenius norm. This theorem is essential to the proof of Theorem 10
and can be of its own interest.

1.2. Related literature. 'This work is most related to the literature on
surrogate variable analysis (SVA) in which the parameter of interest is U*.
Though our target ©* = \IJ*PB%* is different from ¥*, our analysis of ©*
is applicable to U* under the condition ¥*Pg+ = 0 (or ¥*Pg- — 0). We
thus compare our results under ¥* Pg+ = 0 with the existing SVA literature.
For the identifiability of W*, [28, 47] assumed that there exists a known
subset J € {1,...,m} such that the p x |J| submatrix U* = 0. This set
J is known as “negative control” in the microarray studies. However, this
side information is usually unknown in other settings. Another approach by
[47, 41] assumes that each row W7 € R™ is sparse with ||¥7 [[o < (m —a)/2
for some ¢ > K and any K xa submatrix of B* is of rank K. This assumption
rules out the possibility that B* could be sparse and the resulting sparsity
pattern of U* differs from (1.5), considered in this work. [37] assumed the
condition ¥*Pp« — 0 as m — oo. In contrast, our identifiability result of
©* (which is ¥* under ¥*Pp- = 0) holds for any finite n,p, m and K. To
show the estimation consistency, all existing SVA methods require that m
grows with n and is typically much larger than n, meanwhile p is fixed and
small, whereas our method provides a more general theoretical framework
in which both p and m are allowed, but not required, to grow with n.

[20] studied the estimation of Gaussian graphical models with latent vari-
ables. In their setting, one can rewrite their estimand as the sum of a low-
rank matrix and a sparse matrix (see [33, 17] for other related examples).
The regularized maximum likelihood approach is proposed with a combi-
nation of the lasso penalty and the nuclear norm penalty. Our problem is
related to theirs, because model (1.4) is a regression problem where the co-
efficient matrix has an additive decomposition of a sparse and a low-rank
matrix when K is much smaller than p and m. However, our work differs
significantly from this strand of research in the following aspects. First, the
parameter of interest is ©*, and thus we do not need the identifiability
assumptions in [20]. To see this, consider a simple example based on the
regression model (1.4) with p = m and K = 1. Let A* = ¢; and B* = ¢!,
where e; is the ¢th canonical basis vector of RP. The identifiability assump-
tion in [20] does not hold, because the low rank matrix L* = A*B* = e;el
is too sparse and cannot be distinguished from the sparse matrix ¥*. How-
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ever, our target ©* € {U*(I, — e;el’) : U* € RP*P} is still identifiable when
the error is homoscedastic. One explanation is that the covariance structure
of ¢ = (B*)TW + E from model (1.4) can assist the identification of ©*,
whereas this information is ignored if one directly applies the approach in
[20]. Second, due to the differences of identifiability, our estimation algo-
rithm (HIVE or H-HIVE) is fundamentally different from their regularized
maximum-likelihood approach. In particular, our regularized estimation in
the first step of our algorithm combines the group-lasso penalty and the
ridge penalty. We provide a technical comparison of the ridge penalty and
the nuclear norm penalty in Appendix D.

Recently, [22] applied SVA to estimate the causal effect under the struc-
tural equation models with hidden variables. As discussed previously, the
structural equation models assume (1.2), which is not needed in our mod-
eling framework. Our model (1.4) is derived without imposing any specific
model between X and Z. For instance, we allow the true dependence struc-
ture between X and Z to be very complicated and highly nonlinear. The
estimation method of [22] is adapted from the SVA literature, and therefore
has the same drawback as SVA. In another recent paper, [18] proposed a
new spectral deconfounding approach to deal with high-dimensional linear
regression with hidden confounding variables. In particular, their model can
be written as a perturbed linear regression Y = X7 (8 + b) + ¢ where ¢ € R
is a random noise, 8 € RP is an unknown sparse vector and b € RP is a
small perturbation vector. In order to identify [, they assumed that ||b]|2
is sufficiently small. Their estimation method generalizes the lava estimator
[21]. Unlike this work, we consider a different setting where the response
Y is multivariate and, consequently, both our identifiability and estimation
procedures (HIVE and H-HIVE) are completely different from theirs. Our
theoretical results in Corollary 8 and its subsequent Remark 6 imply that
the convergence rate of our estimator benefits substantially from the mul-
tivariate nature of the response, which can be viewed as the blessing of
dimensionality.

1.3. Outline. In Section 2, we study the identifiability and estimation of
O* under homoscedastic error. Sufficient and necessary conditions for the
identifiability of ©* are established in Section 2.1. Section 2.2 contains three
steps of our estimation procedure. The estimation of U*+4 L* in model (1.4) is
stated in Section 2.2.1 and the estimation of the row space of B* is discussed
in Section 2.2.2. The final step of estimating ©* is stated in Section 2.2.3.
Section 3.1 is dedicated to the deviation bounds of the in-sample prediction
error. The estimation errors of our estimator of ©* together with the errors
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for estimating the row space of B* are given in Section 3.2. The extension to
heteroscedastic case is studied in Section 4. In Section 5, we discuss several
practical considerations, including the selection of K, the consequence of
overestimating and underestimating K, the choice of tuning parameters,
data standardization and practical usage of ©* for inferring U*. Simulation
results and real data applications are presented in Sections 6 and 7. All
proofs and supplementary simulation results are deferred to Supplement to
“Adaptive Estimation of Multivariate Regression with Hidden Variables”.

1.4. Notation. For any set S, we write |S| for its cardinality. For any
vector v € R% and some real number ¢ > 0, we define its ¢, norm as
vl = (Z;lzl lvj|9)1/9. For any matrix M € R%*d2 [ C {1,...,d;} and
J C{1,...,d2}, we write My; as the |I| x |J| submatrix of M with row
and column indices corresponding to I and J, respectively. In particular,
M. denotes the |I| x dy submatrix and M; denotes the dy x |J| subma-
trix. Further write ||Mly, /0, = (2?1:1 HMJ‘HZ)UP and denote by ||M|g,,
| M||op, |M]||F and || M||s, respectively, the element-wise ¢y norm, the op-
erator norm, the Frobenius norm and the element-wise sup-norm of M. For
any symmetric matrix M, we write A\;(M) for its kth largest eigenvalue. For
any two sequences a,, and b,, we write a, < b, if there exists some positive
constant C' such that a, < Cb,. Both a, =< b, and a, = Q(by,) stand for
an = O(b,) and b, = O(ay). Denote a Vb = max(a, b) and a Ab = min(a,b).
Throughout the paper, we will write ¥ = n~! X7 X with non-zero eigenval-
ues 01 > 09 > -+ > 04 and ¢ := rank(X).

2. Identifiability and estimation under homoscedastic noise. As
seen in the Introduction, ¥* is not identifiable under model (1.1) due to the
presence of hidden variables. The following proposition formally shows this.

PROPOSITION 1. Under model (1.1), or equivalently (1.4), suppose Z €
RX has continuous support and A* # 0. Then U* is not identifiable.

Despite of the non-identifiability of W*, we proceed to show that ©* =
\Il*Pﬁ* is identifiable when the error E is homoscedastic. Our identifiability
procedure is constructive and leads to a computationally efficient estimation
algorithm for ©*.

2.1. Identifiability of ©*. We start by describing our procedure of iden-
tifying ©* from model (1.4) in three steps:

(1) identify the coefficient matrix
F*:=U"+ A*"B* =U* + L%
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(2) identify Y. := Cov(e) with e = (B*)TW + E and use it to construct
Pp+, the projection matrix onto the row space of B*;
(3) identify ©* from (I, — Pp~)Y.

Recall that W = Z—(A*)T X is independent of E with A* defined in (1.3).
In step (2), a key observation from model (1.4) is that, under homoscedastic
error, the covariance matrix of ¢ = (B*)TW + E satisfies

(2.1) Y. = (BY'SwB* + g = (B)'SwB* + 1,

where Yy = Cov(W). Recall that rank(B*) = K < m. Provided that Xy
has full rank, (2.1) implies that the row space of B* coincides with the space
spanned by the eigenvectors of ¥, corresponding to its largest K eigenvalues.
We thus propose to identify Pp~ via the eigenspace of .. Step (3) uses

Pg.Y = (UPg)T'X + (B*Pg)"Z + Py E
(2.2) = (09X 4 Pa.E,

where Pé-* = I,, — Pp~. This further implies
0" = [Cov(X)] ' Cov (X, P§*Y) .

The following proposition summarizes the identifiability of ©@* under the
homoscedastic error.

PROPOSITION 2.  Under model (1.4), ©* is identifiable if either of the
following holds:

(1) ¥*Pp« + A*B* = 0;
(2) rank(Sw) = K and Xg = 721,,.

Case (1) implies that U* Pp~, the direct effect of X on Y explained by Z,
can be exactly offset by the indirect effect A*B*. In this case, ©* can be re-
covered by regressing Y on X directly. Since this is rarely the case in practice,
we will focus on W* Pg« + A*B* # 0. Case (2) requires rank(Xy) = K in ad-
dition to ¥ = 72I,,,. We show, in Proposition 3 below, that rank(Xy) = K
is also necessary for identifying ©* if E[W|X] = 0 and ¥U*Pp+ + A*B* # 0.

PROPOSITION 3.  Under model (1.4) with E[W|X] =0, assume U* P« +
A*B* #£ 0. If rank(Xw) < K, then ©* is not identifiable.

Combining Propositions 2 and 3 concludes that, under homoscedastic er-
ror, U*Pp« + A*B* # 0 and E[W|X] = 0, ©* is identifiable if and only if
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rank(Xy ) = K. The condition E[W|X] = 0 is satisfied in many interesting
scenarios, such as the structured equation model (1.2) and the multivari-
ate Gaussian model for (Z, X). In practice, recalling that W = Z — A*T X
rank(Xy) = K is a reasonable assumption as the hidden variable Z usually
contains information that cannot be perfectly explained by a linear com-
bination of the observable feature X. Therefore, throughout the paper, we
assume rank(Xy ) = K.

REMARK 1. In the SVA literature, [37] assumed U*Pp« — 0 as m =
m(n) — oo. Under this condition, we obtain ©* ~ ¥* for sufficiently large
m. In this case, Propositions 2 and 3 provide sufficient and necessary condi-
tions for the identifiability of W* for m large enough. Therefore, our analysis
provides complete identifiability results for SVA and it further generalizes
to the setting that ¥*Pp- /4 0.

REMARK 2. Our identifiability results are established when the rows of
X € R™P are viewed as i.i.d. realizations of a random vector X € RP,
When X is treated as a fixed design matrix, Proposition 1 in [41] provides
sufficient conditions on ¥* and other quantities (such as the sparsity of rows
of ¥* and the magnitude of B*) under which ¥* becomes identifiable for n
sufficiently large.

2.2. Estimation of ©*. Given the data matrices X € R"P and Y €
R™ ™ our estimation procedure follows the same steps in the analysis of
the model identifiability: (1) first estimate X F™*; (2) then estimate Y. and
Pp~; (3) finally estimate ©*.

2.2.1. Estimation of XF*. Recall that F* = U* 4+ L* is identifiable,
where L* = A"B* is a dense matrix and ¥* is a row-wise sparse matrix
satisfying (1.5). We propose to estimate F™* by F = U+ L where ¥ and L
are obtained by solving the following optimization problem

~ o~ 1
(23) (¥, L) = argmin = [ ¥ = X (¥ + L)%+ M1, e, + Al L]

with some tuning parameters A1, Ay > 0. Our estimator is designed to recover
both the sparse matrix U* via the group-lasso regularization [49] and the
dense matrix L* via the multivariate ridge regularization. Since our goal in
this step is to estimate the best linear predictor X F'*, there is no need to
separate U* from L*. Computationally, solving (2.3) is efficient with almost
the same complexity of solving a group-lasso problem. Specifically, we have
the following lemma.
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LEMMA 1. Let (U, L) be any solution of (2.3), and denote

(2.4) Py, =X (X"X +n\L) X7, Qu=1I,- Py,

2
for any A2 > 0 such that Py, exists. Then U is the solution of the following
problem

~ 2
(2.5) \IJ—argmmeQA/Q (¥ = X0)|| + Al

and L = (XTX-I—n)\QIp)_lXT(Y—X\T/), where QZQ is the principal matriz
square root of Qx,. Moreover, we have

(2.6) XF=XU+L)=P,Y +Q,,XV.

Lemma 1 characterizes the role of the regularization parameters A and A;.
When Xy — 0, we have Py, ~ X (X7 X)* X7 and Q,X ~ 0 with (X7 X)"
being the Moore-Penrose inverse of XTX. Thus, XF ~ X(XTxX)*xTy
and F reduces to the minimum norm ordinary least squares estimator (see,
for instance, [15]). On the other hand, when Ay — oo, we have Q», ~ I, and
L =~ 0 whence F' =~ V¥ essentially becomes the group-lasso estimator. Later
in Remark 4 of Section 3.1, we will take a closer look at this phenomenon
in terms of the convergence rates of || XF — X F*||p under the orthogonal
design. The tuning parameter \; only appears in (2.5) and its magnitude
controls the sparsity level of the group-lasso estimator ¥. Lemma 1 also
implies that the estimator (\Tl, E) is unique if and only if the solution of the
group-lasso problem (2.5) is unique. Even if (2.5) has multiple solutions, we

can define (\If L) to be any of the solutions and the resulting best linear
predictor X F=X (\Il + L) satisfies the desired deviation bounds stated in
Theorem 4 of Section 3.1.

In applications when both m and p are large while K is small, L* can
be also viewed as a low-rank matrix with rank K. One common approach
of estimating a low-rank matrix is to either impose a rank constraint on
the matrix known as the reduced-rank approach [35] or regularize its nu-
clear norm. We emphasize that, under model (1.4), our approach with the
ridge penalty has both theoretical and computational advantages over these
two methods. We defer to Appendix D for both theoretical and numerical
comparisons.

Finally, we comment that our method (2.3) can be viewed as the multi-
variate generalization of the lava approach proposed by [21]; see also [18].
Lava estimates the sum of a sparse vector 8 and a dense vector b in linear
regression problem y = X (5 + b) 4+ € by minimizing the least squares loss
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plus the penalty A1]|S]|1 + A2||b||3. As explained in [21], lava is intrinsically
different from the elastic net as lava penalizes both 8 and b and the estimate
of (B+b) is non-sparse, whereas elastic net uses the penalty A|| 3|1+ Az2||3||3
and typically yields a sparse estimate of 8. These differences naturally ex-
tend to our multivariate setting.

2.2.2. Estimation of Pp~. In this section, we discuss how to estimate
the projection matrix Pg-. Consider the singular value decomposition B* =
VDUT, where V€ REXK and U € R™*K are the left and right singular
vectors of B* and D is the diagonal matrix of the non-increasing singular
values. It is easily seen that Pg- = UU?T. Recall that, from (2.1), U also
coincides with the first K eigenvectors of ¥. up to an orthogonal matrix.
We thus propose to first estimate 3. by

~ 1 T ~
(2.7) B = <Y — XF) (Y — XF)
with F obtained from (2.3) and then estimate Pp- by Pp- = UUT, where
U consists of the eigenvectors of 2‘5 corresponding to the K largest eigen-
values. We assume K is known for now and defer to Section 5.1 for detailed
discussions of selecting K.

2.2.3. Estimation of ©*. After estimating Pp« by ]33*, motivated by
(2.2), we propose to estimate ©* by

_ 1 ~ 2
(2.8) 0= argr%nﬁ HY <Im — PB*) — X@HF + /\3“6"61/52

with some tuning parameter A3 > 0. Solving the problem in (2.8) is equiv-
alent to s/(\)lving a group-lasso problem with the projected response matrix
Y (I, — Pp~).

For the reader’s convenience, we summarize our procedure, HIdden Variable
adjustment Estimation (HIVE), in Algorithm 1.

Algorithm 1 The HIVE procedure for estimating ©*.

Require: Data X € R"*? and Y € R"*™, rank K, tuning parameters A1, A2 and \s.
1: Estimate X F' with F' = ¥ + L by solving (2.3).

2: Obtain &, from (2.7).

3: Compute 183* — UUT where U are the first K eigenvectors of ig.

4: Estimate ©* by © obtained from (2.8).
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3. Statistical guarantees. In this section, we provide theoretical guar-
antees for our estimation procedure. In our theoretical analysis, the design
matrix X is considered to be deterministic and the analysis can be done
similarly for random design by first conditioning on X. Recall from model
(1.4) that W is uncorrelated with X. To simplify the analysis under the
fixed design scenario, we assume the independence between X and W in
order to derive the deviation bounds of their cross product. We expect that
the same theoretical guarantees hold under Cov(X, W) = 0 by using more
tedious arguments. We start with the following assumptions on the error
matrices W € R™*K and E € R"*™,

ASSUMPTION 1. Let v, and 7. denote some positive constants.

(1) Assume {Z;Vlﬂm.}?:l are i.i.d. 7y, sub-Gaussian random vectors',
where Xy = Cov(W.).

(2) For any fizred 1 < j < m, {Eij}?zl are i.4.d. 7. sub-Gaussian®. For
any fired 1 <i<n, {Eij };nzl are independent.

Since part (2) of Assumption 1 does not assume E;; are identically dis-
tributed across 1 < j < m, this assumption is applicable to both ho-
moscedastic and heteroscedastic errors, provided that max;<;<, Var(E;;) <
72. We assume Y = Cov(E) = 721, throughout this section and defer the
dicussion of the heteroscedastic case to Section 4. Finally, recall from (1.5)
that H\IJ*||ZO/£2 S Sx.

3.1. Statistical guarantees of estimating X F*. To establish theoretical
properties for X F obtained from (2.5), we first generalize the design impact
factor of X in [21] to multivariate regression settings. Denote X = Qié ’x ,
where @), is defined in (2.4). For notational simplicity, we suppress the
dependence of X on Ao. For any constant ¢ > 0 and matrix ¥y € RP*™,
define the design impact factor as
(3.1)
| XAllr/vn

K1 C,\I/(],)\l,)\g = inf s
( )= per B o TToller s — 190+ Allyes + Ao

'A random vector X is v sub-Gaussian if (u, X) is v sub-Gaussian for any |jull2 = 1.
®A centered random variable X is v sub-Gaussian if it satisfies E[exp(tX)] <
exp(y*t?/2) for all t > 0.
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where

(3.2)  R(c,Wo, A1, o) = {A e RP*™\ {0} :
IXAle /v < 220 (1%l ey = %0+ Alleje, + el Ale,es) }-

It is well known that when p > n the matrix XTX is singular and the least
squares loss is not strictly convex. The design impact factor x1(c, ¥g, A1, A2)
is used to characterize the minimum curvature of the least squares loss in
(2.5) when the matrix A is restricted in a feasible set R(c, ¥o, A1, A2). It
generalizes the widely used Restricted Eigenvalue (RE) condition in high-
dimensional regression [8] and is more suitable for prediction [7, 21]. We
refer to Remark 3 for its connection with the RE condition.

Define the following quantity which characterizes the total variation of
the multivariate regression in (1.4),

(3.3) V. = tr(T,), with T.:=+2 B*ISyB* ++2 I,

where tr(-) stands for the trace. Let r.(I':) = tr(I';)/||[I'z|lop denote the
effective rank of I'.. Write M = n‘lXTQ§2X and & = n~ !XT X. Recall
that Py, and @), are defined in (2.4). The following theorem provides the
deviation bounds of || X F — X F*||p.

THEOREM 4. Under model (1.4) and Assumption 1, choose

_ ~ 2log(p/€') \ [Ve
(3.4) A =4 /llgjaécpMN <1 + 77"6(1}) .

for any € > 0 and choose any Ao > 0 in (2.83) such that Py, exists. With
probability 1 — e — €,

1 ~ 2
- HXF—XF*
n

2 ~ 2 2 ~ 2
< inf —HX -1 H *H X(U—v H
F (\I!tr,lLo): [n ( 0) F+ n @ X ) F

Yo+ Lo=F*

< it [4Rem + 36]Qu, lopRems(Lo) + 8]Qx, lop Rems (o).
\I/0+()[7/Uil:7’*

where [|Qx,|lop < 1 and

2V,
Remy = (/tr(PE,) + y/210g(m/)| P, lop) ==
Remg(Lo) = )\2 tr [Lgi(i + AQIp)_1L0:|
Remy(Wo) = A [k1(1/2, W, A1, A2)] 2.
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Since ¥* is not identifiable, neither ¥* nor L* can be identified individ-
ually. Nevertheless, our estimator F minimizes the error over all possible
combinations of ¥y and Lg satisfying g 4+ Lo = F™*. As expected from
(2.3), the prediction error in Theorem 4 comes from two sources: estimating
L* from the multivariate ridge regression and estimating ¥* from the group-
lasso. Specifically, Rem; and Remsy(Lg) are, respectively, the variance and
bias terms from the ridge regression while Rems (W) corresponds to the es-
timation error of the group-lasso. In the following, we provide more insights
on these three terms.

REMARK 3 (Design impact factor and A;). The remainder term Rems(W¥g)
depends on the design impact factor k1(c, Ug, A1, A2) and the tuning parame-
ter A;. We first discuss the connection of k1(c, Ug, A1, A2) and the Restricted
Eigenvalue (RE) condition of X defined as

| XAlr

3.5 K(s, ) = min min @ ————,
(3:5) (s,) SC{12,..p}IS|<s AeC(S,a) v/l As.||F

where o > 1 is a constant, 1 < s < p is some integer and C(S,a) := {A €
RP>XMA {0} = af|As.lle, e, > [[Aselg, e, }- Similarly, denote by &(s,«) the

RE condition of X = Q}\é ’X. In Lemma 6 of Appendix C, we show that,
for any constant ¢ € (0, 1),

[F(s0, ac)]? A [K(s0, 0)]?
(3.6) [r51(c, Wo, Ay, A2)]* > (1+0)2sg ~ o1+ (1+0c)2sp’

where a. = (1 +¢)/(1 —c¢), so = [|[Vollge, and o1 is the leading eigen-
value of & = n~ !XT X. The first inequality is proved in [21] for m = 1.
Here we extend it to m > 2, and we further establish the second inequality
which characterizes the relation between x1(c, Up, A1, A2) and k(sg, o). It
is well known that k(sg, a.) is lower bounded by a positive constant with
high probability when the rows of X are i.i.d. sub-Gaussian vectors with
Amin(X) > ¢ for some constant ¢ > 0 and sp = O(n) [43]. Together with the
second inequality in (3.6), we obtain [r1(c, Wo, A1, A2)]2 = A2/[s0(01 + A2)].
Thus, when Ay dominates o1, k1(c, Uo, A1, A2) scales as 1/,/s0.

Note that Rems(W¥() also depends on the tuning parameter A; which
is further related to the choice of Ay via the diagonal entries of M =
n_lXTQ§\2X. To simplify Rems(¥p), in Lemma 6 of Appendix C we prove

~ by 2
(3.7) max M;; < max Y;; (2> ,
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where o, is the smallest non-zero eigenvalue of 5. Combining (3.6) and (3.7),
we obtain that

A2(01 + A2) S 50 log(p/€) | Ve
R o) < 2201t A2) Y |1+ —= | —.
em3(Wo) < (0q + A2)? gfgp 77 [k(s0,3)]2 ( + re(Te) n

The first two remainder terms Rem; and Remsa(Lg) depend on the choice
of A9 in a more complicated way. To make the remainder terms more trans-
parent, we can bound them from above via the eigenvalues of 3. To save
space, we collect all the results and only present the simplified deviation
bounds of | XF — XF *||2 in the following corollary. Recall that o1 > --- >

o4 denote the non-zero eigenvalues of S with q = rank(X).

COROLLARY 5. Under model (1.4) and Assumption 1, with probability
1—e—¢€, one has

2 : 0'1)\2 9

< inf ol

F ™ (o,Lo): {(01 o) (g + o) 2|l Lol
Yo+ Lo=F*

i(gkfm<012A2)2log<m/e>

k=1

Ve
n
2
1
+0’1 + Ao Ao max Z]j og p/e
oq+ A9 oq+ Ao ) 1<5<p 307

where k(so,3) is defined in (3.5) with so = H\I/0||g0/g2.

1 HXﬁ—XF*
n

_|_

REMARK 4 (Orthonormal design). To draw connections with existing
results on group-lasso and ridge estimators, we consider the orthonormal
design S = I,. The deviation bounds in Corollary 5 reduce to (after ignoring
the logarithmic factors)

(38)
1 \’pV: X\ e X \? soVs
< L
(1+>\2) n +(1+>\2> | °HF+<1+>\2> n’

for any (¥g, L) satisfying o+ Lo = F*. The first two terms are the variance
and bias due to the ridge penalty while the third term is the error of the
group-lasso. As Ay increases, the variance term of the ridge decreases whereas
the bias term of the ridge and the error of group-lasso increase. Optimizing
the right hand side of (3.8) over A2 yields

pVe/n
| Lol|% + soVz/n

- HXF x|’

(3.9) Ao =
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(a) When L* = 0, model (1.4) reduces to Y = (U*)TX + ¢. By choosing
(\I/O,Lo) (T, O), we have Ay = p/s, from (3.9) and max; M;; < p*/(p +
s«)? from (3.7). Consequently, the choice of A\; in (3.4) satisfies

A = (S*ZP)Q <1+ l‘i(g/:)')) \/%

and (3.8) reduces to
to (- e (Lp VsV sV
P+ Sy n P+ Sy n ~ n

which is the optimal rate of the group-lasso estimator.

(b) When ¥* = 0, model (1.4) reduces to Y = (L*)7X + ¢. By choosing
(Wo, Lo) = (0,L*), we have Ao = pV./(n||L*||%) from (3.9). After simple

calculations, (3.8) yields
2 V. V.
Smin (25 1271E) 5 2,
F n n

which is the optimal rate of the ridge regression [34].

Combining scenarios La) and (b), we conclude that the convergence rate
(3.8) of our estimator F' with the optimal tuning parameters \; and Ay
matches the best possible rate even if L* = 0 or ¥* = 0 were known a
priori. For this reason, we refer to our estimator F as an adaptive estimator.

When ¥* = 0 and K is much smaller than both p and m, model (1.4)
is a multivariate regression with the coefficient matrix L* exhibiting a low-
rank structure. A natural approach is to use a reduced-rank estimator to
estimate L*. In Appendix D, we show that our ridge-type estimator could
have a faster rate than the reduced-rank estimator in our problem.

- HXF x|

1 N
(3.10) - HXF _XF*
n

3.2. Statistical guarantees of estimating ©*. It is seen from (2.8) that
5) depends on PB* the estimator of Ppg«. In the following, we first state
a _general theorem which establishes the non-asymptotic upper bounds of
|6 — O Hgl/gQ for © obtained from (2.8) by using any estimator P of Pg+ in

lieu of PB*. Let A denote the largest eigenvalue of BTy B*.

THEOREM 6. Under model (1.4) and Assumption 1, assume £(s,4) > 0.
Let € O be any solution of problem (2.8) by using estimator P e Rmxm jp place
of PB*. Choose any A3 > A3 in (2.8) with

\/21
(3.11) A3 = 47, max E“ Vim + °8 p/e

<j<p
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On the event {||ﬁ — Pp+||p < &} for some proper sequence &,, with proba-
bility 1 — € — 2e= K for some constant ¢ > 0, one has

N (X3)? Sx
(3.12) 1© = ©%l¢y /¢, S max {)‘3’ Xs [ K2(s4,4)

where

Yy L * E H(S*74)
(3.13) A3 = {\/EHXF llop + VA <1 + \/;> } Vo &n.

If K is small, one can replace /K /n in (3.13) by /K log(n)/n and the

resulting probability of (3.12) will become 1 — ¢ — 2n~¢K which, by choosing
e = n~ !, tends to one as n — oco. The same argument is applicable to the
subsequent theorems.

Theorem 6 holds for any estimator P of Pg- with convergence rate |1P -
Pp-||r < &, The effect of P on the estimation error of © is characterized
by the term (A3)2s,/[A3k2(sx,4)] in (3.12) via the choice of A3. When Pp-
can be estimated very accurately, for instance when B* is known, &, is fast
enough such that Xg < A3. We can take A\3 = A3 to obtain the convergence
rate A3s./k2(s4,4). We refer to this as the oracle rate since it is the optimal
rate for estimating ©* from Y Pg. = X©* + EPz. when B* is known (cf.
[40]). On the other hand, when P has a slow rate such that A3 > A3, one
needs to take a larger A3 to achieve the best trade-off between the two terms
n (3.12). It is easy to see that in this scenario the optimal A3 is equal to A3
and the resulting convergence rate is A3s./k%(sx,4).

REMARK 5 (On the benefit of group-lasso). As seen above, when s <
A3, the convergence rate (3.12) reduces to the oracle rate A3s./k?(sy,4). If
logp = o(m ) and max; fljj = O(1) hold, (3.11) implies A3 = O(y/m/n) by
choosing € = p~*. As a result, provided that [r(s.,4)]”! = O(1), the average
error per response satisfies 2?21[ m= Y (0 — @;fe)Q]l/z = m~ 2|0 —
©*(|¢, /¢, = O(s+/+/n), which does not depend on logarithmic factors of the
feature dimension p and is faster than the standard rate of the lasso applied
separately to each column of Y. Such a phenomenon is known as the benefit
of the group-lasso [40]. Recall that we also use the group-lasso in our first
step (2.3) for estimating X F™*. This benefit of the group-lasso remains and
can be seen from the choice of A\j in (3.4). Indeed, if log p = o(r.(T'¢)) holds,
by choosing € = p~! in (3.4), the log p term in ); is negligible. The quantity
re(I'2) is the effective rank of I'. and it depends on the interplay of B*T Xy, B*
and Y. If \{(B*T Sy, B*) is small (e.g., upper bounded by a constant), then
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re(I'2) < m, whereas if \{(B*" Sy B*) < Ag(B*'SwB*) < m, we have
re(Te) < K and logp = o(r¢(T's)) reduces to logp = o( K).

In the following theorem, we establish non-asymptotic upper bounds of
the estimation error of our estimator ]33* obtained from Section 2.2.2. The
proof is based on a variant of the Davis-Kahan theorem [48] together with
careful control of the estimation error of f]e. Let A denote the Kth largest
eigenvalue of (B*)T Xy, B*.

THEOREM 7. Under model (1.4) and Assumption 1, assume m < e™.
For some constants c¢,¢ > 0, one has

/

IP’{H]_BB* — Ppe||p < c-Rem(PB*)} >1-¢ —5m~°,
where, with V. and T defined in (5.3),

. logm )\20'1 (o
Rem(Pg+) = inf {Vey/ L
em(Pp~) (\I’tr,llzo):{ SY e H ”FJFZU +A2 -

Yo+ Lo=F*

Aalor+de) log(p/€’) so Ve
(3.14) T e ) pmax 55 (H re(T2) ) [1(s0, )2 n }

Recall that ﬁB* relies on the estimates of both X. and X F*. The first term
Vey/logm/n in Rem(Pp~) is the oracle error of estimating Y. in Frobenius
norm even if X F'* were known. The other three terms in Rem/(Pp+) originate
from the errors of estimating X F'* in Corollary 5.

When © is obtained from (2.8) by using Pg-, combining Theorem 6 and
Theorem 7 yields the final rate of ||© — O ¢, /¢, With explicit dependency on
all quantities. To simplify its expression, we introduce the parameter space

(3.15) (W L%) € {(¥,L): ¥+ L=F"[|¥]g, <sullLIE < R}

for some R, > 0. Without loss of generality, we standardize the design matrix
such that ¥;; =1 for 1 < j < p. We assume the following conditions.

ASSUMPTION 2.

(a) [K(s5,4)]71 = O(1), n | X F*[|3, = O(m + s.);
(b) Ay < Ag < m with Ay and Ak being the first and Kth eigenvalues of
(B*) TSy B,

The verification of Assumption 2 is deferred to Section 3.4. Under As-
sumption 2, the following Corollary 8 simplifies the rates of [|© — ©* ||, /¢,
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obtained by combining Theorem 6 with Theorem 7. For two sequences a,,
and by, we write a, S b, for a, = O(b,) up to multiplicative logarithmic
factors of m or p. Recall that ¢ = rank(X).

COROLLARY 8. Under model (1.4) and Assumptions 1 & 2, assume
k(Sx,4) > 0 and K = O(n). For any (¥*, L*) satisfying (3.15), there exists
a suitable choice of Ao in (2.3) such that the following holds with probability
tending to one,

S«(m + s4)

1  ~ N Sy
(3.16) ﬁﬂ@—@ lle, /e, S max{\/ﬁ, — .Err(PB*)},

where

Err(PB*):min{alR* +Ks*7qK’\/(p+a18*)KR*+Ks*}+K'
n .’ n nm n vn

In view of (3.16), s./y/n is the oracle rate for estimating ©* as discussed
after Theorem 6. The term Err(Pp+) quantifies the minimum price to pay
for estimating Pp« by Ppg« over all choices of As. Recalling that Rem(Pp+) in
Theorem 7 depends on the choice of the tuning parameter \a, the derivation
of Err(Pp~) minimizes Rem(Pp~) with respect to Ag. The three error terms
in Err(Pp+) correspond to different choices of Ag depending on the interplay
of the terms in Rem(Pp+) (see the proof of Corollary 8 for more details).
To facilitate understanding, we further simplify (3.16) in low- and high-
dimensional settings.

REMARK 6 (Further simplified rates of [|© — O|¢, /,)-

(i) Suppose p < n, p < s, 01 = O(1) and K = O(\/pA \/n/pAm). Then
(3.16) becomes

1 ~ *
ﬁ’\@—@ lere, = NG when p = O(m);

\/17%’ < %Jr (\%)2, when m = O(1).

Recall that the oracle rate in this case is p/y/n. As long as p/y/n = o(1)
which is the minimum requirement for consistent estimation of ©* in ¢y //s

norm, our estimator © achieves the oracle rate. If m grows, we also allow K
to grow but no faster than /p A y/n/p Am.

CRN

LA
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(ii) Suppose p > n, s, < n and K = O(y/s« A y/n/s« A m). The upper
bound in (3.16) becomes

\S/ﬁ—l—\/sm mln{o”/m, V(p—i-anw)}’ if s, = O(m);

;%+<j%> +s*\/>mm{al\/7*, p+018*}, if m = O(1).

In high-dimensional case, the dimension m plays a more significant role.
When m is fixed, one needs o15.Rx = 0(1) or su\/Ru(p+ 015+) = o(y/n)
for estimation consistency. This requirement is much more relaxed when
s« = O(m) as m tends to infinity. The benefit of a large m can be viewed as
the blessing of dimensionality. In the sequel, we focus on s, = O(m), which
leads to the following sub-cases:

,/s*alR . R, p+o184) K

\ﬁH@ O oy e, S \f - if s (ot o15,)K o )
1

~ * * K * . * * K

18— 0%y, S+ ARy R 18R
D ~n nm m noy

Intuitively, the first case is more likely to occur if o1, the largest eigenvalue
of £, has moderate magnitude, such as o1 = O(p/n). We refer to Section 3.4
for more comments on this order of o;. In this case, assuming m < n® for
some constant o > 1/2, the rate matches the oracle rate s,./\/n if o1 R, =
O(V/s«n?a=1). The larger « is, the weaker the requirement on R, becomes.
On the other hand, when S has spiked eigenvalues, for instance o1 =< p,
the second case in the display above is more likely to hold. In this case,
assuming o1 < p and K = O(1), our estimator © achieves the oracle rate
s«/v/n if Ry = O(m/p). In Section 3.4, we provide examples under which
R, = O(m/p) holds.

3.3. A special case under the condition ¥*Pg+» = 0. Asseen in Remark 1,
if U*Pg+ = 0 holds, then U* = ©* is identifiable. The estimator U obtained
in (2.3) can be viewed as an initial estimator of ¥*. The convergence rate of
|W — W*||g, /¢, is shown in Lemma 5 of Appendix B.6. Because of ¥* = ©*,

© can be viewed as a refined estimator of U* and its rate of convergence
has been analyzed in Theorem 6 and Corollary 8. In the following remark,
we elaborate the improvement of © over the initial estimator ¥ in terms of
their convergence rates. Empirical comparisons of these two estimators are
presented in Section 6.
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REMARK 7 (Comparison of ¥ and ©). Assume conditions of Corollary
5 and Assumption 2 hold. With suitable choices of A\ and Ay, ¥ obtained
from (2.3) satisfies

s VK rn 01R

(3.17) T =y 2
Comparing this rate to (3.16) (notice that ¥* = ©*), the advantage of O over
the initial estimator W is substantial. For instance, in the low-dimensional
case (i) of Remark 6, we have m~1/2||© — U*|g, /e, S p/+/n provided that
p/v/n = o(1). In contrast, m_1/2|’(1\/—\11*||gl/g2 =< py/ K /n which has an extra
VK factor even if o1 R, /m is sufficiently small. In the high-dimensional case
(ii), one has

1~ S« [sx(m + s4) [ 01Rx S
_ _ U* < 7F -~
\/Fn”@ v Hfl/@%\/ﬁ—i_ m < m +\/ n>

which is always faster than (3.17) provided that o1 R. = o(m/ss) and s, =
O(mK). Note that in (3.17) we need o1 R, = o(m/s,) for the consistency of
U. For further illustration, suppose s, = O(m), m =< n® for some a > 1/2
and 01 R, = O(v/5,n20=1), then m~1/2||©— ‘I/*Hgl/gz < $+/+/n corresponds to
the oracle rate, whereas (3.17) becomes m 1/2H\II U e, S 5. (K /)2 +

V(s /mA.

3.4. Validity of Assumption 2 and conditions in Remark 6. In this sec-
tion we provide theoretical justifications for Assumption 2 as well as some
conditions on o1 and the radius R, that we mentioned in Remark 6.

Part (a) of Assumption 2 contains standard conditions on the design
matrix. Suppose the rows of XX 71/2 are i.i.d. sub-Gaussian random vectors
with bounded sub-Gaussian constant. The validity of [x(s«,4)~! = O(1) is
already discussed in Remark 3. Regarding condition n™ || X F*||2, = O(m+

S«), suppose s, = O(n), K = O(n) and A\;1(Xz) = O(1). We show in Lemma
8 of Appendix C that n™'| X F*||2, = Op(m + s,) provided that |[U*||2, =
O(ss+m), | B*||2, = O(m) and ||Ss, s, lop = O(1) where S, is the set of non-
zero rows of U*. Recall that ||[W*||s, /e, < s« and B* € REX™ with K < m,
[W*]|2, = O(m + s.) and || B*||2, = O(m) hold when either | ¥* ., = O(1)
and || B*|lcc = O(1) or entries of ¥* and B* are i.i.d. samples from a mean-
zero distribution with bounded fourth moment [6].

Condition (b) is standard when m (and also K) is fixed. When m grows
with n, we note that e = W B* 4+ E follows a factor model where W is
the matrix of K stochastic factors and B* is the factor loading matrix.
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Condition (b) is known as the pervasiveness assumption in the factor model
literature for identification and consistent estimation of the row space of
the factor loading B* [4, 25, 26, 27]. In particular, condition (b) holds if
¢ < Agk(Zw) < M (Ew) < C for some constants ¢, C' > 0, and the columns
of B* are i.i.d. copies of a K-dimensional sub-Gaussian random vector whose
covariance matrix has bounded eigenvalues. It is worth mentioning that this
assumption is only used to simplify the order of A3 in (3.13) and Rem(Pg-)
in (3.14). If A; and Ax have different rates, we can replace them by the
corresponding rates and simplify the error bounds of 5) accordingly. We also
verify the empirical performance of our procedure in Appendix E when some
of A1,..., Ak are moderate or small.

Regarding conditions on o in part (ii) of Remark 6, when ||X]|,, = O(1),
one has o1 = O,(p/n) by 1= — Ellop = Op(/p/nV (p/n)) from [46]. To see
when o7 =< p holds, suppose ||X||op < p and logp = o(n). Since 1= — llop <
[ Op(p+/logp/n) (for instance, see the argument in Lemma 14 of
Appendix C.6), one can deduce that o1 =< p with high probability.

In the end, we comment on the magnitude of R,, the upper bound of
|L*||% in (3.15). In the mediation analysis via structural equation models,
L* = A*B* is known as the indirect effect of X on Y. Under model (1.4), the
estimation of the non-sparse coeflicient matrix U* 4 L* becomes challenging
in high dimension when || L*||% is large, and the estimation error is further
accumulated in the rates of the final estimator © as shown in Corollary
8. Thus, intuitively |L*||% cannot grow too fast in order to guarantee the
consistency of ©. This can be compared to the standard results in linear
regression. For instance, in linear regression y = X3 + € where y € R"
and 8 € RP is dense, one needs ||3||3 = o(1) for consistent estimation when
p > n; see [34, 23] for the minimax lower bound.

In the following, we discuss under what conditions ||L*||% is small and how
small it can be. Provided that ||B*[|2, = O(m), we first have ||L*||7,/m <
|A*||%1B*|12,/m = O(| A*[|%). Since A* = ¥~1Cov(X, Z), intuitively || A*||r
is small when either (1) Cov(X, Z) is close to zero or (2) X is “large”.

To show when case (1) holds, suppose the smallest eigenvalue of ¥ is
bounded away from zero. When Cov (X, Z) is sparse with ||Cov(X, Z)|l¢, =
O(1) and max; ; |Cov(Xj, Zx)| < &, one has ||A*||% = O(&?) which vanishes
if £ = o(1). When Cov(X, Z) is dense with ||Cov(X, Z)||¢, > ¢ (pK) for some
small constant ¢’ > 0, if the range of the nonzero entries of Cov(X,Z) is
bounded, an application of Pélya-Szegd’s inequality (see, for instance, [24])
yields |Cov(X, Z)||r < [|Cov(X, Z)|¢, /e, /vVPK. Therefore, provided that
|Cov(X, Z) e, e, = O(1), one has | L*[3,/m = O(|A7||2) = O(1/(pK)).

To show when case (2) holds, we consider the setting that X follows
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an approximate factor model X = I'F' + W', where the noise W’ and the
factor F' are independent, Cov(F') and Cov(W’) have bounded eigenvalues
and the loading matrix I' € RP*X satisfies the pervasiveness assumption
A (TTT) > p. The number of factors, K, is often much smaller than p. In this
scenario, ¥ = I'Cov(F)['T + Cov(W’) has K spiked eigenvalues with order
at least p. To show the order of || L*||%, we consider the eigen-decomposition
of ¥ = Z§:1 djvjva with di > -+ > dp. Further write Viz) = (v1,...,v5) €
RP*E and Vicg) = (g1, 0p) € RP*(P=K)  Provided that

(3.18) HV&})COV(X, 7)

<e¢y/p and HV(F‘CK)COV(X,Z)H <¢/\/p,
P op

O

for some sufficiently small constant ¢ > 0, we obtain

14" lop = |27 Cov(X, 2)

op

< dlK HV(,II:{)COV(X, )

o ;p [V s Covtx, Z)Hop — 0(1//p).
We thus have| L*||%/m = O(||A*||%) = O(K/p). Also notice that this setting
does not conflict with part (b) of Assumption 2. Indeed, provided that ¢ <
Me(B2) € M(Zz) < C and em < A\g(B*B*T) < \(B*B*T) < Cm for
some constants ¢, C' > 0, one can deduce ¢/2 < Ag(Zw) < M(Zw) < C
from By = Xz — Cov(Z, X)X~ 1Cov(X, 2).

Condition (3.18) requires that: (1) the order of ||Cov(X,Z)|op cannot
be greater than \/p; (2) the columns of Cov(X,Z) and V|_, are approxi-
mately orthogonal. From a practical perspective, under the structural equa-
tion model (1.2), condition (3.18) implies that the causal effect of X on
Z (i.e., the matrix A*) is weak due to the spiked eigenvalues of ¥ in high
dimension. However, in view of the factor model X = I'F + W', the associ-
ation between the hidden variable Z and the low dimensional factor F' can
be strong. Though || L*||r or |A*||sp is required to be small when p is large,
our analysis allows nontrivial dependence between Z and F', which could be
reasonable in many practical situations.

4. Extension to heteroscedastic noise. We have discussed the iden-
tifiability and estimation in model (1.1) when the errors are homogeneous.
In practice, the multivariate response Y may correspond to measurement
of different properties (e.g., phenotypes) whose values could differ in scales.
To deal with this problem, in this section we extend the model by allowing
heteroscedastic errors, X = diag(rZ,...,72), and discuss how to modify

r'm
our approach correspondingly.
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4.1. Identifiability. From the identifiability in Section 2.1, we observe
that the heteroscedasticity only affects the identification of Pp« in step (2).

When g = diag(7Z,...,72), one has

(41) 25 = (B*)TZWB* + diag(T%, ... 77—731)'

In contrast to the homoscedastic case, the eigenspace of ¥, corresponding
to the first K eigenvalues, in general, no longer coincides with the row space
of B*. Consequently, one cannot identify Pp« via the eigenspace of X, as
in Section 2.1. To overcome this difficulty, we resort to a newly developed
procedure called HeteroPCA proposed by [50]. For completeness, we restate
their procedure in Algorithm 2. The main idea is to iteratively perform the
singular value decomposition (SVD) on the estimates of ¥. to impute its
diagonal. Under a mild incoherence condition on the row space of B*, Pp«
can be recovered by applying Algorithm 2 to .. Thus ©* is identifiable
from (2.2). We summarize the identifiability below in Proposition 9.

Recall that Pg- = UU”T with U := U(K) € R™*K being the first K right
singular vectors of B*, and A; and Ag are the first and Kth eigenvalues of
(B*)TSw B*, respectively. Let {ej}]L; denote the canonical basis of R™.

PROPOSITION 9.  Under model (1.4), assume Yg = diag(T?,...,72%) and
rank(Xw) = K. Further assume
Ay Trr2
. — ; <
(4.2) A 12 llej Ullz < Co

for some constant Cy > 0. Then Pp+ can be uniquely determined via Algo-
rithm 2 with input % = X, r = K and some sufficiently large number of
iterations T. As a result, ©* is identifiable.

An application of Theorem 3 in [50] guarantees the recovery of Pp+ from
Y. and the rest of the proof follows the same lines as the proof of Proposition
2. Compared to the homoscedastic case, we need an extra condition (4.2)
for identifying Ppg+, which can be viewed as the price to pay for allowing
heteroscedasticity. Inherent from the HeteroPCA algorithm, this condition
is to rule out matrices U that are well aligned with canonical basis vectors.
Otherwise, one cannot separate (B*)T Yy B* from a diagonal matrix with
unequal entries. We also note that 72 maxi<j<m ||e]TUH§ is known as the
incoherence constant in the matrix completion literature [16, 17]. When A =<
Ak, (4.2) requires maxi<j<m He]TUHg = O(1) which is much weaker than
the typical incoherence condition maxi<j<m ||e;-rU |2 = O(K/m), assumed
in the matrix completion literature. Finally, Proposition 3 in [50] implies
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that condition (4.2) in general cannot be further relaxed in order to recover
Pp« from X..

REMARK 8 (Identification via PCA when m — oo0). We propose to use
HeteroPCA to identify Pp+ in the presence of heteroscedasticity since it
guarantees the identifiability of ©* for any m > K under condition (4.2).
Directly applying PCA to X, as in Section 2.1 may not recover Pp+ hence
not identify ©*. However, we remark that PCA is robust against the de-
parture from homoscedasticity, and even from the diagonal structure of
Y g, when Ag, the Kth eigenvalue of (B*)T Sy B*, diverges fast enough as
m — 0o. Specifically, at the population level, applying PCA to 3. identifies
Pp+ asymptotically provided that vVK|Xg|lop = 0o(Ak), as m — oo. This
phenomenon is known as the blessing of dimensionality in the factor model
literature [4, 26, 27]. Most of the SVA methods, for instance [37, 41], rely on
this robustness of PCA. Their methods thus only guarantee the asymptotic
identifiability when m — oo, and are not applicable if m is fixed.

Algorithm 2 HeteroPCA(f)7 r,T)

1: Input: matrix f], rank 7, number of iterations 7.

2: Set N =;; for all i # j and N = 0.

3: fort=0,1,...,7 do

4: Calculate SVD: N = Z )\(t) (t)(vzm)T, where )\gt) > )\(2” >...>0.
5

6

7

Let N = i Ay (v(t))
Set Ni(;ﬂ) 2” for all i # j and Ni(itﬂ) = fo).
: Output U™ = [u§T>, . ,ugT)].

4.2. Estimation. Our estimation procedure under heteroscedasticity re-
mains the same except estimating U by HeteroPCA in Algorithm 2. To be
specific, we consider the estimator PB* =UU T, where U is obtained from
Algorithm 2 with the input y = EE, r = K and a large T for the algorithm
to converge. Our simulation reveals that T' = 5 usually yields satisfactory
results. We still assume K is known and defer the discussion of selecting K
to Section 5.1. We state the modified algorithm in Algorithm 3, named as
Heteroscedastic HIdden Variable adjustment Estimation (H-HIVE).

4.3. Statistical guarantees. Our estimation algorithm enjoys similar sta-
tistical guarantees as in Section 3. First, since F is the same estimator
obtained from (2.3), the deviation bounds of | X F — X F*||p in Theorem 4
and Corollary 5 still hold under Assumption 1. Second, Theorem 10 below
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Algorithm 3 The H-HIVE procedure for estimating ©*.

Require: Data X € R™? and Y € R™ ™, rank K, number of iterations 7', tuning
parameters A1, A2 and Az.

: Estimate X F' with F' = ¥ + L by solving (2.3).

. Obtain 3. from (2.7).

: Compute Pg+ = UUT with U obtained from HeteroPCA(i57 K,T) in Algorithm 2.

: Estimate ©* by solving (2.8) with 153* in lieu of ﬁB*.

> W N =

provides non-asymptotic upper bounds for | Pg- — Pp+||F with Pg. =UUT
and U obtained from Algorithm 2. Finally, since © is obtained from the
same criterion in (2.8) by using Pp+ in place of Pp~, the convergence rate of
||€)—@* ¢, /¢, immediately follows from the following theorem in conjunction
with Theorem 6.

THEOREM 10. Under the same conditions of Theorem 7, assume con-
dition (4.2) holds and Rem(Pg+) < cV/K for some constant ¢ > 0 with
Rem(Pp~) defined in (3.14). For some constants ¢’,c’ > 0, the estimator
Pg. = UUT with U obtained from Algorithm 2 satisfies

/1

IP{||15B* — Ppelp < Rem(PB*)} >1-¢ —5m~".

The proof of Theorem 10 mainly relies on a new robust sin © theorem
stated in Appendix A, which provides upper bounds for the Frobenius norm
of sin®(U,U) := UTU, where U is the output of Algorithm 2 and U is its
orthogonal complement. The new sin © theorem complements Theorem 3 in
[50] which controls the operator norm of sin ©(U,U). In order to establish
the rate of ©, we need this new result to control the Frobenius norm of the
estimated eigenspace. This technical tool can be of its own interest and is
potentially useful for many other problems.

The validity of Theorem 10 also hinges on the condition Rem(Pp+) <
¢V K. Under conditions of Corollary 8 and Remark 6, by inspecting their
proofs in Appendix C.3, one can verify that Rem(Pp+) = O(v/K) holds
for a suitable choice of Ay provided that, up to a multiplicative logarithmic
factor, pv/K = O(n) in the low-dimensional case or (s, V VK)VK = O(n)
and o1 R, = O(mV/K) in the high-dimensional case.

REMARK 9 (Effect of heteroscedasticity on estimating ©). Heteroscedas-
ticity affects the estimation error of 5) implicitly via V. defined in (3.3) and
A3 in (3.11). For simplicity of presentation, we assumed {E;; };”:1 shares the
same sub-Gaussian constant . in Assumption 1. To illustrate the effect of
heteroscedasticity, one could instead assume E;;/7; is 7. sub-Gaussian for
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1 < j < m. Then by inspecting the proof and using modified arguments in
Lemmas 9 — 12 in Appendix C.6, it is straightforward to show that the same
results in Theorems 4, 6, 7 and 10 hold with V. and A3 replaced by

\ 21

<t<p

where 72 = m~! Z;ﬂ:l 7']-2. The quantity 72 reduces to 72 in the homoscedas-
tic case. But in the presence of strong heteroscedasticity, 72 can be of order
different from O(1).

To conclude this section, we compare the estimation errors of ﬁB* and the
PCA-based estimator Pp« in Section 2.2.2 in the presence of heteroscedas-
ticity. Recall that Ax denotes the Kth eigenvalue of B*T' Sy, B*.

THEOREM 11. Suppose the same conditions of Theorem 7 hold. Then
P{||133* — Pp-llp <ec- Rem(h)(PB*)} >1—¢ —b5m™°

for some constants ¢, > 0, where

1/2
m /

(4.3) Rem"(Pp-) = Rem(Pp-) +7 Z 7' —72
j=1

with Rem(Pp+) defined in (3.14).

Comparing (4.3) with (3.14), the last term in (4.3) is the bias of PCA due
to heteroscedasticity and it is exactly zero when the error E is homoscedas-
tic. In general, this bias term could vanish if Ag is large and the degree of
heteroscedasticity is small, such as Ax 2 m and ZTZI(TJQ —72)2 = O(m)
as m — oo. This can be viewed as the sample analog of the robustness of
PCA in Remark 8. However, we note that, even if the bias term converges
to 0, it may have a slower rate than Rem(PB*) which renders the rate of

PB* slower than that of PB* from HeteroPCA.

5. Practical considerations. In this section, we address several prac-
tical concerns. First, we consider how to select K, the number of hidden
variables. Then, we discuss the effect of overestimating/underestimating K
on the estimation of ©*. Selection of tuning parameters and recommenda-
tion of standardization are discussed subsequently. In the end, we discuss in
details the practical usage of our estimator of ©* for inferring U*.
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5.1. Selection of K. Recall that e = W B* + FE and K corresponds to
the rank of the unknown coefficient matrix B*. When € and W are both
observable, estimation of the rank of coefficient matrix has been studied by
[13, 14, 29, 9] in the framework of multivariate regression. However, since
€ and W are both unobserved, we view ¢ = W B* + E as a factor model
with K being the number of factors. [5] proposed information based criterion
to select K. However, both this approach and the aforementioned ones in
the regression setting require to know the noise level quantified by || Xg|ep-
While it might be possible to estimate X in view of (4.1), the theoretical
justification of this class of methods is unclear under our model.

In the following we consider an eigenvalue ratio approach originally devel-
oped by [36, 1] for factor models. Specifically, we estimate & bye=Y-X F
with F obtained from (2.3) and construct 5. as (2.7). We then propose to
estimate K by

(5.1) K =arg max B\\j//)\\j+1,
je{1,2,... K}
where Xl > Xg > --- are the eigenvalues of f)e and K is a pre-specified num-

ber, for example, K = |(n A m)/2] [36] with |z| standing for the largest
integer that is no greater than x. This procedure does not require the knowl-
edge of any unknown quantity, such as the noise level | Xg||op. The following
theorem provides theoretical justification for the above procedure.

THEOREM 12.  Under model (1.1) or equivalently (1.4) with heteroscedas-

tic noise Ng = dz’ag(le,...,Tfn) suppose condition (b) in Assumption 2

holds. Assume maxi<j<m7; = O(1), Rem(Pp«) = o(1) with Rem(Pp-)
defined in (3.14). Then wzth probability 1 — € — 5m=<" for some constant
>0,

5, 5
L =1, for1<j<K-—1, and @:O(Rem(PB*)+m_l).
Aj+1 AK

Under Assumption 2, K = O(1), s, = o(n) and o1R,. = o(m), one can
deduce from the proof of Corollary 8 that Rem(Pp~) = o(1) for a suitable
choice of \s. In addltlon if m — oo, we obtain AK/)\K+1 — 00. Thus the
maximizer of \; i/ )\]H is no smaller than K asymptotically, i.e., K > K,
which partially justifies the criterion in (5.1).

The criterion (5.1) is also related to the “elbow” approach, which is often
used to determine the number of principle components in PCA. If we plot
the ratio A\j/Aj41 against j, we expect that the curve has a sharp increase

7
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at j = K (since XK//)\\KH — 00), giving an angle in the graph. We can then
select this value j as an estimate of K. In our simulation, this simple elbow
approach and the criterion (5.1) usually yield the same results. In Section
6.2, we conduct extensive simulations to compare our criterion (5.1) with
some other existing methods for selecting K [12].

5.2. Consequence of overestimating or underestimating K. It is of inter-
est to understand the effect of selecting an incorrect K on the estimation
of ©. Recall that, after estimating K by K, we construct Pp = U IA(U[Z;

and use it in lieu of ]33* in (2.8) to estimate ©*. For illustration purpose,
we consider the case that K = r for some fixed integer 1 < r < m. At the
population level, suppose we know the orthogonal matrix U, = (u1,...,u,)
such that when r < K, U, is simply the first » columns of U := Uk, the right
singular vectors of B*, and when r > K, the first K columns of U, align
with those of Ug and the rest of r — K columns are arbitrary but orthogonal
to Uk . Similar to P+ = UKUIIS, P. = UTUTT is also a projection matrix. The
following lemma demonstrates that the effect of using P, to estimate ©* is
characterized by the difference of two projection matrices P, and Pp=.

LEMMA 2.  Under model (1.4), P+Y is equal to

[0 4+ (¥*Pg« + A*B*) (Pg- — P)]" X + PX[(BY)T™W + E|, ifr < K;
097X — (P, — Pp-)(0")TX + PLE, ifr>K;
©9"'X + PrE, ifr =K.

As we can see, if r < K, the estimand of (2.8) is @*+(V* Pg«+A*B*)(Pp+—
P,) = ©* + [U* BT (B*B*T)~! + A*](B*)(_,) where we apply SVD to B* =
> djujv;fp with d; being non-increasing singular values and (B*)_,) =
disr djujva. Thus, the estimator in (2.8) has bias [U*B*T(B*B*T)~1 +
A*[(B*)(~)- Intuitively, if the last K — r singular values of B*, dyy1, ..., d,
are relatively small and close to zero, we expect the bias to be negligible.
In this case, underestimating K may still lead to a reasonably accurate es-
timate of ®*. On the other hand, if r > K, our estimator is also biased,
and the bias is equal to — (P, — Pp+)(0*)T = —P.(0*)T (the equality holds
by the orthogonality between P+ and Pﬁ*). Its magnitude depends on the
angle between rows of ©®* and the last r — K columns of U,..

5.3. Choosing tuning parameters A1, Ao and A3. Recall that our proce-
dure (Algorithms 1 and 3) requires three tuning parameters A1, Ao and As.
Since the first two parameters (A1, A2) and the third one A3 appear in two
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optimization problems (2.3) and (2.8), respectively, we propose to select
(A1, A2) and A3 separately by cross validation. When estimating F™* in (2.3),
we can search A; and A9 over a two-way grid to minimize the mean squared
prediction error via k-fold cross validation.? Similarly, when estimating ©*
in (2.8), we can tune A3 by k-fold cross validation over a grid of As.

5.4. Standardization. In steps (2.3) and (2.8) of our estimation proce-
dure, the tuning parameters A; and A3 depend on maxi<;<p 2;; from Theo-
rems 4 and 6. This dependency comes from the union bounds argument for
controlling maxi<j<, HXJTP)QSHQ. To tighten the bound in practice, we rec-
ommend standardizing the columns of X to unit variance. Since the means
of Y and X do not affect the estimation of ©*, one can center both X and
Y before fitting the model.

5.5. Practical usage of ©* for inferring V*. When the parameter W* is
of primary interest, the information in the parameter ©* = \I’*Pé* is still
helpful to infer ¥*. In the following, we discuss this usage of ©* in two
scenarios. The first scenario corresponds to ©* ~ ¥* whence one can use ©
to estimate U*. We also provide sufficient conditions for ©* ~ ¥*. We then
suggest further usage of ©* when ©* % U* in the second scenario. Finally,
we offer our recommendations to practitioners.

Case (1): ©* = ¥*. In this case, our estimator of ©* also estimates ¥*
consistently. To see when ©* ~ U* holds, recall that ¥* — @* = U*Pp-.
Then U* =~ ©* is implied by ¥* P+« — 0 as m — oo. The following two lem-
mas provide different sets of sufficient conditions for maxi<;<, [|Pp« ¥} [|2 =

o(y/m) whence
1

— * 0, =
— max |0 6] 2 = o(0)
Their proofs can be found in Appendix C.5. Recall that U € R™*¥ contains
the right singular vectors of B* € RE*™,

LEMMA 3. Suppose the columns of U are uniformly distributed over the
families of K orthonormal vectors. Provided that K = o(m), for any 1 <

j <p, one has
* * K
225 3= 0 (31 5).

3When both p and m are large, searching (A1, A2) over a fine two-way grid could be
computationally intensive, we offer an alternative way of selecting A; and A2 in Appendix
E which costs less computation.
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If [|[¥*||oo = O(1) holds additionally, then

1 ) K
— ||Pp- W[, = Op <m> ~

Lemma 3 states that when the directions of columns of U are random
enough (more specifically, uniformly distributed) and K = o(m), the matrix
Pp+ is incoherent to V7. The uniformity assumption of U is commonly
made in the matrix completion literature, under which [17, 16] prove that
maxi<j<m || Pe+€jl|3 = Op(K/m) where {e;}1<j<m is the canonical basis
of R™. Our result in Lemma 3 reduces to this existing result when W7 is
aligned with canonical vectors.

LEMMA 4. Suppose maxi<j<p || lo < d and |[¥*|| < c for some

constant ¢ > 0 and integer 1 < d < m. Further assume /\K(m_lB*B*T) >c
and || B*||s < " for some constants ¢/, ¢”" > 0. Then, for any 1 < j <p,

(ed"? dK

/

1 2
Lpgewy | < (P

From Lemma 4, under certain regularity conditions on ¥* and B*, one
has mlePB*\I/;‘»,H% = o(1) if dK/m? = o(1) which holds when either v
is sufficiently sparse or K is much smaller than m. Sparsity of rows of U*
is commonly assumed in the SVA literature and is practically meaningful
in many biological applications, see, for instance, [28, 47, 41]. In particular,
similar sets of sufficient conditions for m*1HPB*‘II;,H§ = o(1) are given in
[41, 47].

Case (2): ©* % U*. We provide two ways of using the estimator of ©*
to infer ¥* in this scenario.

(i) Suppose we are interested in U*C' for some known constraint matrix
C € R™*4, Then provided that Pg«C' is small, one could use OC to es-
timate W*C' because ©*C = V*C — ¥U*Pg«C ~ U*(C. In practice, since
Pp+ can be estimated by ]33* or 153* (see Section 2.2.2 for homoscedas-
tic error and Section 4.2 for heteroscedastic error), researchers could
empirically decide whether or not using OC to estimate ¥*C by com-
paring the magnitude of || Pg-C||r /+/mq with a small tolerance level.
As a simple yet important example, suppose B* = [B; 0] for some
By € RE*™1 and 1 < my < m. From model (1.1), this structure of B*
implies that there are my responses affected by the hidden variables
Z.Let S C{1,...,m} denote the index set of columns of By and write
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S¢={1,...,m}\S. Since the set S can be estimated from the sparsity
pattern of Pp«, we assume S is known for simplicity. Then it is easy
to see that, for any 1 < j < p,

)

O = Py} = [Pélfj?s]
jse
which further implies ©%, = V7, for any £ € S° and 1 < j < p. Intu-
itively, since the fth response is not associated with hidden variables,
the parameter ¥, € R? in the multivariate regression is identifiable
and is indeed identical to our estimand ©7,. In this case, for any given
constraint matrix C' = [0 C1]T € R"™*9 with C; € RI*(m="1) and the
index set of rows of C{ in C being S¢, we can use our estimator ec

to infer ¥*C.

(ii) Another usage of ©* is to further infer the non-zero rows of ¥* based
on the fact that ©] # 0 implies W% 7 0. Specifically, for any j such
that ©. # 0, the first display in Section 2.1 yields F; = W7 +B*T A3
When V7 is sufficiently sparse, one could resort to the robust regres-
sion to estimate W7 (see details in [47]). Our procedure yields the index
of non-zero rows of U* as well as the estimates of F* and the row space
of B*. A full exploration of this approach is beyond the scope of this
work and is left for future investigation.

In practice, we suggest to first check whether the conditions in Lemmas
3 and 4 are reasonable. If this is the case, our estimator O can be directly
used for estimating W*. For example, the uniformity of U in Lemma 3 can
be verified by comparing ||PB*U||2 with K /m for some randomly generated
unit vector v € R". Here PB* is the estimate of Pg+ and K is the estimated
number of hidden variables. For conditions in Lemma 4, one could use A,
the Kth eigenvalue of B*TZWB* as a surrogate of )\K(B*B*T) The former
can be estimated from the Kth eigenvalue of the residual matrix ZE, see
Section 2.2.2 for details. Even if there is no prior information on the sparsity
of rows of U*, Lemma 4 may still hold if K is much smaller than m.

When conditions in Lemmas 3 and 4 seem questionable, we recommend
to apply the procedure in (i) of Case (2) to check if © could be used to
infer W*C for some constraint matrix C with scientific interest. If this is not
the case either, one may possibly apply the robust regression in (ii) of Case
(2) to estimate certain rows of W*.

6. Simulation study. In this section, we conduct simulations to verify
our theoretical results. As mentioned in the Introduction, the SVA methods



ADAPTIVE ESTIMATION WITH HIDDEN VARIABLES 35

such as [37] require the condition ¥*Pg- — 0. To compare with [37] and
other competing methods introduced below, we force W*Pp« = 0 so that
©* = U* throughout this section.

Methods. We consider both HIVE and H-HIVE in Algorithms 1 and 3. All
tuning parameters A1, Ao and A are chosen via 10-fold cross validation as
described in Section 5.3. We set the number of iterations T' = 5 for H-HIVE,
as the algorithm converges quickly in our simulation.

Depending on the setting, we compare our method with competitors from
the following list:

e Oracle: the estimator from (2.8) by using Pg = BT (BTB)~!B with
the true B.

Lasso: the group-lasso estimator from R-package glmnet.

Ridge: the multivariate ridge estimator from R-package glmnet.
HIVE-init: ¥ obtained from solving (2.3) in step (1) of Algorithm 1.
SVA: the surrogate variable analysis summarized in the following three
steps: (i) compute O, = (XTX)'XTY; (ii) obtain P by the first K
right singular vectors of ¥ — X O pg; (iii) estimate ©* by © (I, — P).4
e OLS: the ordinary least squares estimator © g = (X7 X) ' XTY.

The Oracle estimator requires the knowledge of true B and is used as a
benchmark to show the effect of estimating Pp+« on the estimation of ©* in
(2.8). We also consider HIVE-init, which is used as an initial estimator in
Algorithms 1 and 3, to illustrate the improvement of HIVE (H-HIVE) via
(2.8) (see more discussions in Remark 7).

To make fair comparison, we provide the true K for SVA, HIVE and H-
HIVE in Section 6.1. We then show the performance of selecting K by using
the criterion (5.1) and the permutation test by [12] in Section 6.2.

Data generating mechanism. Weset K = s, = 3 throughout the simulation
settings. The design matrix is sampled from X; ~ N,(0,%) for 1 <i <n
where ¥p = (—1)7Hpli=! for all 1 < j,£ < p. Under Z = ATX + W, to
generate A and B, we sample Aj;, ~ n- N(0.5,0.1) and By, ~ N(0.1,1)
independently for all 1 < 7 <p, 1 <k < K and 1 </ < m. We use 1 to
control the magnitude of A hence the dense matrix L = AB. We generate the
first s, rows of ©,4, by sampling each entry independently from N (ue, 0(29)
and set the rest rows to 0. The final © is chosen as 0,4y, (I, — BT (BT B)~!B)
which has the same row sparsity as 0,4, and satisfies ©Pg = 0. For the

4This procedure is based on [37]. There are other variants of SVA in the literature, for
instance, [47, 41]. Since they have similar performances in our setting, we only consider the
aforementioned one. A detailed comparison with other SVA-related procedures is given in
Appendix E.
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error terms, we independently generate Wy, ~ N(0,1) for all 1 <i <n and
1 < k < K. For homoscedastic case, E;; for 1 <i <nand 1 <j <m
are i.i.d. realizations of N (0, 1). For heteroscedastic case, we independently
generate E;; ~ N (O,sz), where, to vary the degree of heterogeneity, we
follow the simulation setting in [50] and choose 7']2 = muf/ 3, ;‘, where
V1, ..., U are i.i.d. Unif[0, 1]. This choice of T guarantees ZJ 1T 2/m =1
and « controls the degree of heterogeneity: a larger « corresponds to more

heterogeneity.

6.1. Comparison with existing methods. In this section, we compare the
performance of Oracle, Lasso, Ridge, SVA, HIVE-init, HIVE and H-HIVE
in three different settings: (1) small p and small m (m = p = 20); (2) small
p and large m (m = 150, p = 20); (3) large p and small m (m = 20,
p = 150). For each setting, we fix n = 100 and consider both homoscedastic
and heteroscedastic cases.

We choose g = 3 and o0g = 0.1 and vary p € {0,0.5} across all settings.
For the homoscedastic case we vary n € {0.1,0.3,0.5,...,1.1,1.3}, while for
the heteroscedastic case we vary a € {0,3,6,...,12,15} and fix n = 0.5.
Within each combination of n and p (or o and p), we generate X, A, B and
© once and generate 100 replicates of the stochastic errors W and E. For
cach method with their estimator © and the prediction X F (if available),
we record the averaged Root Sum Squared Error (RSSE) ||© — O] and the
averaged Prediction Mean Squared Error (PMSE) ||Xﬁ—XFH%/(nm) We
only report the results for p = 0.5 as the ones for p = 0 are similar.

6.1.1. RSSE. The averaged RSSE of all methods are reported in Figure 2
for homoscedastic cases and Figure 3 for heteroscedastic cases. To illustrate
the difference, we take the log;, transformation.

Homoscedastic cases: HIVE dominates the other methods and has the
closest performance to the Oracle across all settings. H-HIVE is the second
best and has similar performance to HIVE when p is small. This is expected
since H-HIVE also works when the errors are homoscedastic. However, when
p is large, its performance deteriorates comparing to HIVE as 7 increases
such that the dense matrix L has larger magnitude. The reason is that the
condition Rem(Pp+) < ¢v/K in Theorem 10 becomes restrictive for large p,
small m and large n (say n > 0.8), since in this scenario the prediction error
gets larger and so does Rem/(Pp-«).

Among the competing methods, when n > p (the first two panels of Fig-
ure 2), SVA also has good performance but is still outperformed by HIVE
since SVA does not adapt to the sparsity structure of ©*. OLS is compa-
rable to Ridge. Lasso has clear advantage over Ridge when the signal is
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sparse enough, that is, when 7 is small. HIVE-init outperforms both Lasso
and Ridge. When n < p, SVA and OLS are not well defined and become
infeasible in the third panel of Figure 2. HIVE-init has similar performance
as Lasso but has larger error when 7 increases. HIVE and H-HIVE dramat-
ically reduce the error of the initial estimator HIVE-init in all setting. This
agrees with the theoretical results in Remark 7.
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Method
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Fig 2: RSSE under the homoscedastic settings with n = 100.

Heteroscedastic cases: Figure 3 shows that H-HIVE, tailored for the
heteroscedastic error, has the smallest RSSE among all the methods and its
advantage over the second best method, HIVE, becomes evident when m is
small (see the first and third panels) and the degree of heteroscedasticity
is moderate or large (i.e., & > 9). This agrees with our theoretical analysis
that the HIVE estimator may not be consistent when m is finite under
heteroscedastic errors. It is worth mentioning that when m is large (see
the second panel), HIVE is nearly identical to H-HIVE suggesting similar
performance between PCA and HeteroPCA. This is expected in light of
Remark 8. Finally, Ridge, Lasso and HIVE-init are robust to the degree
of heteroscedasticity in all cases, whereas SVA shows inflated RSSE as the
degree of heteroscedasticity («) increases when m is small (see the first
panel).

6.1.2. PMSE. The PMSE for different methods are reported in Figure
4 for both homoscedastic cases and heteroscedastic cases. Notice that OLS
and SVA have the same PMSE and so do HIVE-init, HIVE and H-HIVE.

Homoscedastic cases: As seen in the top row of Figure 4, when n <

p (the third panel), HIVE has much smaller PMSE than both Lasso and
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Fig 3: RSSE under the heteroscedastic settings with n = 100.

Ridge. This demonstrates the advantage of the proposed procedure in (2.3)
for prediction. When p < n (the first two panels), HIVE and Lasso have
comparable performance and clearly outperform OLS and Ridge for small
n (i.e. the signal © + L is approximately sparse). These findings are in line
with Theorem 4 and its subsequent remarks.

Heteroscedastic cases: The bottom row of Figure 4 shows that all
methods have robust prediction performance under the heteroscedastic cases
and the advantage of HIVE (H-HIVE) becomes more evident when p > n
(the last panel).

6.2. Performance of selecting K. We report our simulation results of
selecting K by using (5.1) (Ratio) and the permutation test (PA) in [12]. In
the setting of n = 100, m = 150, p = 20, both methods select K consistently,
which is expected for large m and small p.

We mainly investigate the selection of K in two settings: n = 100, m = 20,
p = 20 and n = 100, m = 20, p = 150. For each setting, we fix pg =
oe = 1,7 = 0.3, p= 0.3 and vary the signal-to-noise ratio (SNR) defined
as Ak (BTZwB)/(m7?), where 72 = 1 and By; ~ N(0.1,1). We choose
Sw = o Ik with o € {0.1,0.3,0.5,...,1.3,1.5} such that SNR ~ o3,.
Recall that the true K is equal to 3. Figure 5 shows the boxplot of the
selected K by using Ratio and PA over 100 simulations. It is clear that as
long as the SNR is large enough, both methods consistently select K. By
comparing the two panels, we can see that when p is large, we need stronger
SNR. in order to consistently select K.

In practice, we recommend using PA when m is small, say around 20.
When m is large or moderate, PA becomes computationally expensive due
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Fig 4: PMSE under the homoscedastic (the top row) and heteroscedastic
(the bottom row) settings with n = 100.

to the implementation of SVD on the permuted data. For this reason, we
recommend Ratio for moderate or large m.

7. Real data application. We apply our procedures, Algorithms 1
and 3, to two real world datasets: the Norwegian dataset and the yeast cross
dataset. While prediction is not the main focus of our procedures, due to the
lack of knowledge of the ground truth in real data application, we compare
the performance of our procedures with several competing methods in terms
of their prediction errors.

Norwegian dataset. This dataset available in [35] was collected to study
the effect of three variables X, X5 and X3 on the quality of the paper
from a Norwegian paper factory. The quality of the paper is measured by 13
continuous responses while all X; taking values in {—1,0, 1} represent the lo-
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Fig 5: Boxplots of the selected K using PA and Ratio in two settings.

cation of the design point. In addition to the main effect terms (X1, X2, X3),
six second order interaction terms (X2, X2, X2 X; Xy, X; X3, XoX3) were
also considered as predictors. In total, the dataset consists of n = 29 fully
observed observations with m = 13 responses and p = 9 predictors. The de-
sign matrix is centered and standardized to unit variance while the response
matrix is centered.

[13] showed that the data may exhibit a low-rank structure with estimated
rank K = 3 via reduced-rank regression. This finding is consistent with [2]
based on the smallest leave-one-out cross-validation (LOOCYV) error, which
is 326.2 (total sum of squared errors), over all possible ranks. A later analysis
of [14] via the sparse reduced-rank regression (SSR) further reduces the
LOOCYV error to 304.5. Specifically, [14] estimated the coefficient matrix of
the multivariate linear regression by

o 2
(7.1) Fe= min_ [[Y = XFI}+27|Fl,

with & = 3 and A > 0 selected from CV. The resulting estimator ﬁk is both
low-rank and row-sparse, and selects 6 predictors by excluding the following
three terms X12, X1X9 and XoX3.

To compare the prediction performance, we applied HIVE in Algorithm
1 to this dataset and the permutation test in Section 5.1 for estimating K
as m is small. Our procedure yields K = 3. The results from the H-HIVE
algorithm are similar and thus omitted. For comparison, we also applied
Ridge, group-lasso (Lasso) and SVA to this dataset (note that the predic-
tion of SVA is the same as OLS). The LOOCV errors for all methods are
summarized in Table 1. The HIVE algorithm has the smallest LOOCYV error

among all methods. Thus, our approach yields the most accurate prediction.
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TABLE 1
LOOCYV errors of HIVE, ridge, group-lasso (Lasso), SVA, reduced-rank regression
(RRR) and sparse reduced-rank regression in (7.1) (SRR) on Norwegian dataset

Method HIVE Ridge Lasso SVA RRR SRR
LOOCV error | 288.9 3243 3173 338.1 326.2 304.5

In addition, the results in Table 1 imply that the low-rank structure of
the coefficient matrix in RRR and SRR may not be sufficient to model
the association between the predictors and responses. [13] showed that the
reduced-rank regression by using all p predictors can explain 86.9% of the
total variation of Y quantified by tr(Y7X(XTX) ' XTY) (see [35] for
the definition). Note that we can rewrite model (1.4) as a reduced-rank
regression of Y — XW¥ on X. By replacing ¥ with our estimator (I\', we
can show that our model (1.4) can explain 98.6% of the total variation,
a much higher percentage than the reduced-rank regression. This implies
that our model may provide a better fit to the data than the reduced-rank
regression. The main reason is that model (1.4) is able to capture the sparse
signal that cannot be explained by the low rank structure. To quantify this
statement, we calculate, in Table 2, the £5 norm of rows of our estimator
U+ corresponding to all the predictors. As a comparison, we also compute
the reduced-rank estimator L by regressing Y on X directly. The results are
also shown in Table 2. Similar to the results from the SRR, the estimator
L corresponding to the three predictors X 12, X1X9 and X9X3 has small /5
norm. However, the association between the three predictors and responses
is indeed strong as shown by our estimator U + L when the sparse signal T is
taken into account. This suggests that model (1.1) can successfully capture
both the low rank signal and the sparse signal, whereas the latter is omitted
in the (sparse) reduced-rank regression.

TABLE 2
ly norms of rows of L and U + L. The bold numbers correspond to the three excluded
predictors, X7, X1 X2 and X2X3 in [14].
X1 X X3 XZ2 X2 X7 X1Xe Xi1X3 XoXs3
1.33 0.60 1.05 0.28 0.44 0.64 0.14 0.71 0.35
+L | 161 094 115 0.59 0.56 0.78 0.23 0.88 0.54

)

Yeast cross dataset. The yeast cross dataset® consists of 1,008 prototrophic
haploid segregants from a cross between a laboratory strain and a wine strain
of yeast. This dataset was collected via high-coverage sequencing and con-

The dataset is downloaded from http://genomics-pubs.princeton.edu/
YeastCross_BYxRM/home.shtml.
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sists of genotypes at 30,594 high-confidence single-nucleotide polymorphisms
(SNPs) that distinguish the strains and densely cover the genome. There are
46 traits in this dataset corresponding to the measured growth under mul-
tiple conditions, including different temperatures, pHs and carbon sources,
as well as addition of metal ions and small molecules [10]. The goal is to
study the relationship between genotypes and traits, which could be used
for predicting traits or selecting significant genotypes for further scientific
investigation [10]. A multivariate linear regression by regressing traits on
genotypes could be suitable for this purpose. However, it is likely that there
exist hidden factors that also affect traits. We thus fit our model (1.4) for
prediction and variable selection. After removing the segregants with miss-
ing values in traits and SNPs which have Pearson correlations above 0.97,
we end up with n = 303 segregants with m = 46 traits and p = 571 SNPs.
To evaluate the prediction performance, we randomly split the data into
70% training set and 30% test set. We center and normalize the SNPs in the
training set to zero mean and unit variance. Traits in the training set are also
centered. The corresponding means and scales from the training set are used
to standardize the test set. We then apply the HIVE Algorithm 1 together
with group-lasso (Lasso) and Ridge to the training set and evaluate the
fitted model on the test set. The test mean square errors (MSE) of Lasso
and Ridge are 7.29 and 6.29, respectively, while HIVE has a smaller test
MSE 5.92. This suggests that HIVE has better prediction performance than
Lasso and Ridge. We then refit the model to the whole dataset and apply
HIVE, H-HIVE and Lasso for variable selection. Lasso and HIVE select,
respectively, 261 and 259 SNPs with 205 common ones. For H-HIVE, it
selects 263 SNPs in which 222 SNPs are identical to those selected from
Lasso. The difference of the selected SNPs between HIVE (H-HIVE) and
Lasso is due to the fact that Lasso does not account for the potential hidden
variables. We expect that the results from HIVE (H-HIVE) may provide new
insight on understanding how SNPs are associated with different traits. For
instance, further confirmatory analysis such as controlled experiments can
be conducted by the investigators to study the effect of the selected SNPs.

8. Discussion. In this paper, we study the high-dimensional multivari-
ate regression model with hidden variables. We establish sufficient and neces-
sary conditions for model identifiability. We propose the HIVE algorithm for
estimating the coefficient matrix ©*, which is adaptive to the unknown spar-
sity of ©*. The algorithm is further extended to settings with heteroscedastic
noise. Theoretically, we establish non-asymptotic upper bounds for the er-
rors of our estimator, which are valid for any finite n, p, m and K.
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There are several future directions that are worthy of further investiga-
tion. First, it is appealing to study the variable selection property of the
proposed algorithm. In this paper, we focus on the adaptive estimation of
the coefficient matrix. To establish the variable selection consistency prop-
erty, a different set of conditions (e.g., minimum signal strength condition)
are required. Second, it is of great interest to construct confidence intervals
or hypothesis tests for the high-dimensional matrix ©* [30]. The inference
results can be further used to control the false discovery rate (FDR) in mul-
tiple testing, which is of central importance in many biological applications.
We refer to the SVA literature for discussions on the FDR control. Third,
our model (1.1) also covers a particular yet important model, the confound-
ing model [18], which, in addition to (1.1), assumes X = D'Z + W’ for
some random noise W’ € RP independent of Z. As a result, the coefficient
U* represents the causal effect of X on Y. Both our methods and analysis
are directly applicable to this case. But it is also worth mentioning that
assuming this extra structure brings the advantage of predicting Z by using
X when p is large. The predicted Z in turn could potentially be used to
improve the estimation of U*, especially when m is small. We do not pursue
this direction in this paper and leave it to future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptive Estimation of Multivariate Regres-
sion with Hidden Variables”:
(doi: TBA). The supplementary document includes the proofs, the compar-
ison with reduced-rank estimator and additional numerical results.
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