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An equivariant Hilbert basis theorem

DANIEL ERMAN, STEVEN V SAM, AND ANDREW SNOWDEN

We prove a version of the Hilbert basis theorem in the setting of
equivariant algebraic geometry.

1. Introduction

A topological space X equipped with an action of a group G is G-noetherian
if every descending chain of G-stable closed subsets of X stabilizes. If X
is a scheme equipped with an action of G, one says X is topologically
G-noetherian if the topological space |X| is G-noetherian. The notion of
G-noetherianity has received much attention in recent years due to its con-
nection to representation stability. We recall a few examples:

e Cohen [Coh67, Coh87] proved that the scheme X = m A? (or even
X™, for any n > 0) is topologically S..-noetherian®, and used this to
prove certain results in universal algebra. This result was rediscov-
ered some decades later by Aschenbrenner, Hillar, and Sullivant [AHO7,
HS12], with applications to combinatorial algebra and algebraic statis-
tics.

e Draisma-Eggermont [DE16] considered the scheme X of co x oo matri-
ces, and showed that X" is topologically G-noetherian for any n > 0,
with G = GLy X GL4. This result was crucial to their study the equa-
tions of so-called Pliicker varieties. See [DK14] for related results and
applications.

e Following work of Eggermont [Eggl5] and Derksen—Eggermont—
Snowden [DES17|, Draisma [Dral9] proved that if V' is any polyno-
mial representation of GL, then V* is topologically GL.-noetherian.
This result has been applied by the present authors [ESS] to prove a
general finiteness result in commutative algebra.

DE was partially supported by NSF DMS-1302057. SS was partially supported
by NSF DMS-1500069 and DMS-1651327 and a Sloan Fellowship. AS was partially
supported by NSF DMS-1303082 and DMS-1453893 and a Sloan Fellowship.

n fact, Cohen’s result is stronger and applies at the level of rings.
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Unfortunately, there are few general tools for proving that a space is equiv-
ariantly noetherian. The purpose of this paper is to establish one such tool:
we view our main theorem as a version of the classical Hilbert basis theorem
in the setting of equivariant noetherianity.

Recall that the classical Hilbert basis theorem states that if A is a noethe-
rian ring then the polynomial ring A[x] is again noetherian. This can be
recast in the language of schemes as follows: if S is a noetherian scheme
and X — S is a finite type map of schemes then X is noetherian. Our main
theorem is the following equivariant version of this statement.

Theorem 1.1. Let X — S be a G-equivariant finite type map of schemes.
Suppose S s topologically G-noetherian. Then X is topologically G-
noetherian.

We emphasize that there are no finiteness assumptions in the above
theorem except for those stated. Indeed, the theorem is most interesting
for infinite dimensional schemes like those mentioned above. We note the
following useful corollary:

Corollary 1.2. Let X be a scheme equipped with an action of a group G
and a commuting algebraic action of a finite type algebraic group H. Suppose
that X is topologically G x H noetherian. Then it is also topologically G-
noetherian.

Example 1.3. Let X be a scheme that is topologically G-noetherian. Then
any finite rank equivariant vector bundle over X is also G-noetherian. For
example, if G is one of Oy, Spy,, o GLs, and V is a finite length al-
gebraic representation of G (in the sense of [SS15]) then X = Gr,(V*) is
G-noetherian by [ES17] (extending the main result of [Dral9]), and so any
finite sum of finite tensor products of the rank r tautological bundle and its
dual is also G-noetherian. 0

1.1. Overview of proof

Let notation be as in Theorem 1.1. The idea of the proof is as follows. First,
we can proceed by noetherian induction on S, that is, we can assume that
for every G-stable closed subset S’ of S such that S’ # S, the space Xg is
topologically G-noetherian. This allows us to freely pass to open subsets of
S. Second, finite type schemes over an arbitrary base behave similarly (at
least in the ways that we care about) to finite type schemes over a field,
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assuming we are always allowed to replace the base with an open subset.
Combining these two observations, we can in effect pretend that S is the
spectrum of a field, and then the result is obvious. The technical details of
the actual proof are more complicated, but this is at least the intuition.

1.2. Application

We mention one (now defunct) application of our theorem. In [ESS], we
used Draisma’s theorem mentioned above to prove a vast generalization
of Stillman’s conjecture: we showed that any invariant of ideals satisfying
certain natural conditions is “degreewise bounded” (Stillman’s conjecture
being the case where the invariant is projective dimension). A preliminary
version of [ESS], written prior to Draisma’s theorem, proved that Draisma’s
theorem was in fact equivalent to our generalization of Stillman’s conjecture.
Our proof that “generalized Stillman” implies Draisma’s theorem required
Corollary 1.2, which is what propelled us to prove Theorem 1.1 in the first
place.
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2. Preliminaries from topology

We omit proofs of the following, which are all standard exercises in topology.

Proposition 2.1. Let f: X — S be an open map of topological spaces and
let U be a dense open subset of S. Then f~1(U) is a dense open subset of X .

Proposition 2.2. Let X be a topological space, let Z be a proper closed
set, and let U be a dense open subset of X. Then Z NU is a proper closed
subset of U.

Proposition 2.3. Let X be a topological space, and let X1,..., X, be sub-
spaces whose union is X. Suppose that each X; is noetherian. Then X 1is
noetherian.

Remark 2.4. Let X be a topological space on which G acts. We can then
consider the quotient space X/G. The G-stable open (or closed, or irre-
ducible) subsets of X correspond to the open (or closed, or irreducible) sub-
sets of X/G. Thus we can translate G-properties of X to usual properties of
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X/G. For instance, X is G-noetherian if and only if X/G is noetherian. In
this way, the above results can be applied in the G-noetherian setting. [

3. Dimension vectors

Let 2 be the set of finite sequences 6 = (01, ..., dy), of variable length, where
01 > 69 > --- and each 0; is a non-negative integer. By convention, for § € &
of length n, we put §; = —oc for i > n. We order Z lexicographically, so that
§ < ¢ if §; < 07, or if §; = 0] and d2 < 05, and so on. The unique minimal
element of & is the sequence ¢ of length 0; it has §; = —oo for all .

Lemma 3.1. (Z,<) is a well-order.

Proof. Tt suffices to show that any strictly decreasing chain A! > A2 > ...
must be finite. We prove this statement by induction on A}. If A = 0, this
is clear as the chain can only consist of 1 element. So suppose A\l > 0 and
that there is an infinite decreasing chain. Then the sequence of non-negative
integers A > A} > A} > ... is eventually constant, say equal to ¢; remove
the finitely many A’ which do not have this first term and renumber the
partitions A! > A2 > ... So there is a value k < £(\!) so that the sequence
(A")y, is constant for i < k and (A}),, converges to ¢ < c. In that case, remove
the finitely many A such that /\2 # ¢’ and again renumber them A\! > \? >
---. Define i’ by removing the first k¥ — 1 parts from A’. By induction, u' >
p? > .- is finite, which is a contradiction. O

The following result allows for induction on elements of Z:

Proposition 3.2. For each 6 € 9, let P(6) be a boolean value. Suppose
that P(8") is true for all 8" < & implies P(d) is true. Then P() is true for
alld € 9.

Proof. Let S C 2 be the set of 0 for which P(¢) is false. Since < is a well-
order, if S were non-empty then there would be a minimal element § € S. But
then P(¢’) is true for all " < §, so P(§) would be true as well, a contradiction.
So S is empty. O

Let X be a finite type scheme over a field k, and let X1,..., X, be the
irreducible components of X, ordered by dimension (with dim(X7) largest).
We define the dimension vector of X, denoted 6(X), to be the sequence
(01,...,0n), where 0; = dim(X;). We regard it as an element of 2. If k is
separably closed, J is invariant under extension to a larger field. For a finite
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type morphism of schemes X — S and s € S, we let §5(X) be 6(X5), where
S is a separably closed point at s. We say that X — S is d-constant if 0,(X)
is independent of s, and then write 6(X) for the common value.

4. Preliminaries from algebraic geometry

Proposition 4.1. Let S = Spec(A) be an affine scheme, and write A =
Uicr Ai (directed union) where each A; is finitely generated as a Z-algebra.
Put S; = Spec(4;).

(a) Let X — S be a morphism of finite presentation. Then there exists i € I
and a morphism of finite type X; — S; such that X = (X;)s.

(b) Let X; and Y; be schemes of finite type over S;, and let ¢: (X;)s —
(Y;)s be a morphism of schemes over S. Then there exists j > i and a
morphism @;: (X;)s, — (Yi)s, such that ¢ is the base change of @; to
S.

(c) Let X; — S; be a finite type morphism such that (X;)s — S is flat. Then
there exists some j > i in I such that (X;)s, — S; is flat.

(d) Let X be a scheme of finite presentation over S and let' Y be a closed
subscheme of X that is also of finite presentation over S. Then there
exists i € I, a finite type scheme X; over S;, and a closed subscheme Y;
of X; such that Y C X 1is the base change of Y; C X;.

Proof. Parts (a) and (b) are parts of [Stacks, Tag 01ZM)]. Part (c) is a special
case of [Stacks, Tag 05LY]. Part (d) follows from [Stacks, Tag 0B8W]. O

Proposition 4.2. Let X — S be a finite type morphism, with S reduced.
Then there is a dense open subset U of S such that Xy — X is flat of finite
presentation.

Proof. This follows from a general version of generic flatness [Stacks, Tag
052B]. O

Proposition 4.3. Let X — S be a finite type morphism of noetherian
schemes. Then there are open sets Uy, ..., U, of S with dense union such
that Xy, — U; is 6-constant.

Proof. This proof follows [Stacks, Tag 055A] closely (this proposition is re-
ally just a refinement of loc. cit.). Since S is noetherian, we can replace
it with an open dense subscheme in which no two irreducible components
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intersect. Thus S is the disjoint union of its irreducible components, so we
may just assume S is irreducible. By [Stacks, Tag 0551], after replacing S
with a non-empty open subset, we can find a surjective finite étale morphism
S" — S with S irreducible such that all irreducible components of X, are ge-
ometrically irreducible, where 7 is the generic point of " and X' = X xg 5.
Since S’ — S is open, we may as well replace S with S’. We may further
assume S is integral, as § is insensitive to nilpotents.

Let Xy,,..., X, be the irreducible components of X,. These are all
geometrically irreducible by our reductions. Let X; be the closure of the
image of X;, in X. After replacing S with a non-empty open subset, we
can assume X is the union of the X; [Stacks, Tag 054Y]. After shrinking
S again, we can assume that X; ¢ is geometrically irreducible for all s € §
[Stacks, Tag 0559]. After shrinking S yet again, we can assume that each
fiber of X — S has at least n irreducible components [Stacks, Tag 0554].
Since Xy = X1 sU---UX,,, it follows that for every s € §, the fiber X
has exactly n irreducible components, namely the X;,, and they are each
geometrically irreducible. Finally, by [Stacks, Tag 05F6], we can find an
open subset of S such that the fibers of X; — S have constant dimension
for each . O

Proposition 4.4. Let X — S be a finite type morphism of non-empty re-
duced schemes. Then there is a non-empty open subset U C S such that
Xy — U is flat of finite presentation and §-constant.

Proof. By Proposition 4.2, after replacing S with a dense open subscheme,
we can assume X — S is flat of finite presentation. Replacing S with some
affine open, we can assume S is affine. By Proposition 4.1, we can find a finite
type morphism X’ — S” with S’ noetherian such that X is the base change of
X’ along a morphism f: S — S’. We may as well replace S’ with the scheme-
theoretic image of f, which is just the reduced subscheme structure on f(.5)
[Stacks, Tag 056B]. In particular, f has dense image. By Proposition 4.3,
there is a non-empty open subset U’ of S’ such that X[, — U’ is -constant.
Since f(S) is dense in S’ it must meet U’. Therefore U = f~1(U’) is a non-
empty open subset of S such that Xy — U is d-constant (and still flat of
finite presentation). O

Proposition 4.5. Let f: X — S be a flat morphism of finite presentation,
let U be an open dense subset of S, and let Y be a proper closed subset of
X. Then Yy is a proper closed subset of Xy.
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Proof. Since f is flat of finite presentation, it is open [Stacks, Tag 01UA].
Thus f~}(U) is a dense open subset of X (Proposition 2.1). It follows
that Yy = f~}(U)NY is a proper closed subset of Xy = f~1(U) (Propo-
sition 2.2). O

Proposition 4.6. Let X — S be a flat finite type morphism of noetherian
schemes. Assume there is a dense subset A of S such that s — d5(X) is
constant for s € A. Then there is an open dense subset U of S such that
Xy — U 1is §-constant.

Proof. Applying Proposition 4.3, there are open subsets Uy,...,U, of S
such that U =U; U---UU, is dense and Xy, — U; is d-constant. Since A
is dense, it meets each U;, and so §(Xy,) is independent of i. It follows that
Xy — U is d-constant. O

Proposition 4.7. Let f: X — S be a finite type morphism of reduced
noetherian schemes that is flat and d-constant. Let Y be a proper closed

subscheme of X. Then there exists a non-empty open subset U of S such
that Y — U is §-constant and 6(Yy) < §(Xy).

Proof. By Proposition 4.3, there are open subsets Vi, ..., V, of S such that
Yy, = V; is é-constant and V =V, U---UV, is dense in S. By Proposi-
tion 4.5, Yy is a proper closed subset of Xy . Thus Yy, is a proper subset
of Xy, for some i. Put U =V, for this i. Thus Yy is a proper closed subset
of Xy and Yy — U is d-constant. It remains to show that 6(Yy) < 0(Xy).
Since both are §-constant, we can verify this over a generic point of U.

So assume that X is a reduced finite type scheme over a field and Y
is a closed subscheme. Let Xi,..., X, be the irreducible components of X
which have largest possible dimension n. Suppose one of them is not an
irreducible component of Y. Then §(X) = (n,n,...,n,...) with n repeated
d times, but §(Y") has < d instances of n, so 6(Y) < 6(X). In the other case,
all of the X; are irreducible components of Y. Then both §(Y) and 6(X)
begin with d instances of n, and we replace X and Y with the union X’ and

Y of their components not equal to one of Xi,..., Xy4. In particular, X’ #
Y’, and by induction on dimension, we have §(X’) > §(Y”’) which implies
0(X) > o(Y). O

Proposition 4.8. Let f: X — S be a flat morphism of finite presenta-
tion between reduced schemes that is d-constant. Let Y be a proper closed
subscheme of X. Then there is a non-empty open subset U of S such that
Y — U is flat of finite presentation and 0-constant with §(Yy) < 6(Xv).
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Furthermore, if X, S are G-schemes such that f is G-equivariant and Y
and U are G-stable, then we can take U to be G-stable.

Proof. Since Y is a closed subscheme of X and X is finite type over S, it
follows that Y is finite type over S. Thus, by Proposition 4.2, we can find an
open dense subset U of S such that Yy — U is flat of finite presentation. By
Proposition 4.5, Yy is a proper closed subset of Xy. Thus we may as well
replace S with U, and just assume that Y is flat and of finite presentation
over S.

Replace S with an affine open so that Y is still a proper closed sub-
scheme of X. By Proposition 4.1(d), there is a noetherian scheme S’, a
finite type morphism X’ — S/, a closed subscheme Y’ of X', and a mor-
phism g: S — S’ such that Y C X is the pullback of Y’ ¢ X’. By Propo-
sition 4.1(c), we can assume that X’ — S’ is flat. We may as well replace
S’ with the scheme-theoretic image of g, which is just g(S) with the re-
duced subscheme structure, so we can assume that g(S) is dense in S’
Since g5 (X') = 65(X) is constant for s € S and g(S) is dense, it follows
from Proposition 4.6 that there is a dense open subset V' of S’ such that
X{,, = V' is é-constant. By Proposition 4.5, Y{,, is a proper closed subset
of X7{,,. By Proposition 4.7, there is a non-empty open subset U’ of V' such
that Y, — U’ is d-constant with 6(Y{},) < 6(X7;,). Since g(S) is dense in S,
it meets U’, and so U = ¢g~!(U’) is a non-empty open subset of S. Clearly,
Yy — U is é-constant with §(Y) < §(X).

For the last statement, we use the above proof to get an open set V and

then take U = {J,cq gV O

5. Proof of main results

Consider the following statement, for 6 € Z.

Statement P(§). Let X — S be a G-equivariant map of
reduced schemes that is flat of finite presentation and -
constant with §(X) = J. Suppose that S is topologically G-
noetherian, and that for every proper G-stable closed subset
S’ of S the scheme Xg is topologically G-noetherian. Then
X is topologically G-noetherian.

Lemma 5.1. Statement P(9) is true for all d.

Proof. We proceed by induction on § (Proposition 3.2). Thus let 6 € Z and
X — S as in Statement P(§) be given, and assume P(¢’) holds for all &' < 4.
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It suffices to show that every proper G-stable closed subset of X is topo-
logically G-noetherian. Thus let such a Y be given, and endow Y with the
reduced subscheme structure. By Proposition 4.2, there is a non-empty open
subset (which we may assume G-stable) V so that Yy, — V is flat of finite
presentation. By Proposition 4.8 there is a non-empty G-stable open subset
U of V such that Yy — U is flat of finite presentation and J-constant with
0 =6(Yy) <6 =96(Xyp). Thus by P(8'), we have that Yy is G-noetherian.
Since Xg\¢y is topologically G-noetherian, by the hypothesis of P(J), the
space Yg\y is also topologically G-noetherian. It follows that Y is topologi-
cally G-noetherian (Proposition 2.3), which completes the proof. O

Proof of Theorem 1.1. Let X — S be the given G-equivariant map of
schemes. Since the statement is topological, we may assume that X and S
are reduced. We proceed by noetherian induction on S: that is, we assume
that for every proper closed subset S’ of S the space Xg is topologically G-
noetherian. By Propositions 4.2, 4.6, and 4.8 there is a non-empty G-stable
open subset U of S such that Xy — U is flat of finite presentation and
0-constant. Put ¢ = 0(X). By P(6), it follows that Xy is topologically G-
noetherian. By the inductive hypothesis, Xq\;s is topologically G-noetherian.
Thus X is topologically G-noetherian (Proposition 2.3). O

Proof of Corollary 1.2. Suppose that X is topologically G x H noetherian,
where G is an arbitrary group and H is a finite type algebraic group acting
algebraically on X. Consider the action map f: H x X — X. Let H act
on Hx X by h-(h,z)=(hh,z), and let G act on H x X by g- (h,z) =
(h,gx). Then f is G x H equivariant. Since H is finite type, so is f. The
theorem therefore implies that H x X is topologically G x H noetherian. If
Zo C X is a descending chain of G-stable closed subsets then H x Z, C H %
X is a descending chain of G x H stable closed subsets, and thus stabilizes.
Thus Z, stabilizes, and so X is topologically G-noetherian. [l
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