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Abstract: Action selection policies (ASPs), used to compose low-level robot
skills into complex high-level tasks are commonly represented as neural networks
(NNs) in the state of the art. Such a paradigm, while very effective, suffers from
a few key problems: 1) NNs are opaque to the user and hence not amenable to
verification, 2) they require significant amounts of training data, and 3) they are
hard to repair when the domain changes. We present two key insights about ASPs
for robotics. First, ASPs need to reason about physically meaningful quantities
derived from the state of the world, and second, there exists a layered structure
for composing these policies. Leveraging these insights, we introduce layered
dimension-informed program synthesis (LDIPS) — by reasoning about the physical
dimensions of state variables, and dimensional constraints on operators, LDIPS
directly synthesizes ASPs in a human-interpretable domain-specific language that
is amenable to program repair. We present empirical results to demonstrate that
LDIPS 1) can synthesize effective ASPs for robot soccer and autonomous driving
domains, 2) enables tractable synthesis for robot action selection policies not pos-
sible with state of the art synthesis techniques, 3) requires two orders of magnitude
fewer training examples than a comparable NN representation, and 4) can repair
the synthesized ASPs with only a small number of corrections when transferring
from simulation to real robots.
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1 Introduction

End-users of service mobile robots want the ability to teach their robots how to perform novel
tasks, by composing known low-level skills into high-level behaviors based on demonstrations and
user preferences. Learning from Demonstration (LfD) [1], and Inverse Reinforcement Learning
(IRL) [2] have been applied to solve this problem, to great success in several domains, including
furniture assembly [3], object pick-and-place [4], and surgery [5, 6]. A key driving factor for these
successes has been the use of Neural Networks (NNs) to learn the action selection policy (ASP)
directly [7, 8], or the value function from which the policy is derived [9]. Unfortunately, despite
their success at representing and learning policies, LfD using NNs suffers from the following well-
known problems: 1) they are extremely data-intensive, and need a variety of demonstrations before
a meaningful policy can be learned [10]; 2) they are opaque to the user, making it hard to understand
why they do things in specific ways or to verify them [11]; 3) they are quite brittle, and very hard to
repair when parameters of the problem change, or when moving from simulation to real robots [12].

We present the following observations about ASPs independent of their representation: 1) The input
states to a policy consist of physically meaningful quantities, e.g., velocities, distances, and angles.
2) The structure of a policy has distinct levels of abstraction, including computing relevant features
from the state, composing several decision-making criteria, and making decisions based on task-
and domain- specific parameters. 3) A well-structured policy is easy to repair in terms of only the
parameters that determine the decision boundaries, when the domain changes.

Based on these insights we build on program synthesis as a means to address the shortcomings
of neural approaches. Program synthesis seeks to automatically find a program in an underlying
programming language that satisfies some user specification [13]. Synthesis directly addresses these
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concerns by learning policies as human-readable programs, that are amenable to program repair,
and can by do so with only a small number of demonstrations as a specification. However, due to
two major limitations, existing state of the art synthesis approaches are not sufficient for learning
robot programs. First, these approaches are not designed to handle non-linear real arithmetic, vector
operations, or dimensioned quantities, all commonly found in robot programs. Second, synthesis
techniques are largely limited by their ability to scale with the search space of potential programs,
such that ASP synthesis is intractable for existing approaches.

To address these limitations and apply synthesis to solving the LfD problem we propose Layered
Dimension-Informed Program Synthesis (LDIPS). We introduce a domain-specific language (DSL)
for representing ASPs where a type system keeps track of the physical dimensions of expressions,
and enforces dimensional constraints on mathematical operations. These dimensional constraints
limit the search space of the program, greatly improving the scalability of the approach and the
performance of the resulting policies. The DSL structures ASPs into decision-making criteria for
each possible action, where the criteria are repairable parameters, and the expressions used are
derived from the state variables. The inputs to LDIPS are a set of sparse demonstrations and an
optional incomplete ASP, that encodes as much structure as the programmer may have about the
problem. LDIPS then fills in the blanks of the incomplete ASP using syntax-guided synthesis [14]
with dimension-informed expression and operator pruning. The result of LDIPS is a fully instanti-
ated ASP, composed of synthesized features, conditionals, and parameters.

We present empirical results of applying LDIPS to robot soccer and autonomous driving, showing
that it is capable of generating ASPs that are comparable in performance to expert-written ASPs that
performed well in a (ommitted for double-blind review) competition. We evaluate experimentally
the effect of dimensional constraints on the performance of the policy and the number of candidate
programs considered. We further show that LDIPS is capable of synthesizing such ASPs with two
orders of magnitude fewer examples than an NN representation. Finally, we show that LDIPS can
synthesize ASPs in simulation, and given only a few corrections, can repair the ASPs so that they
perform almost as well on the real robots as they did in simulation.

2 Related Work

The problem of constructing ASPs from human demonstrations has been extensively studied in
the LfD, and inverse reinforcement learning (IRL) settings [15, 10, 1]. In this section, we focus on
1) alternative approaches to overcome data efficiency, domain transfer, and interpretability problems;
2) concurrent advances in program synthesis; 3) recent work on symbolic learning similar to our
approach; 4) synthesis and formal methods applied to robotics. . We conclude with a summary of
the our contributions compared to the state of the art.

The field of transfer learning attempts to address generalization and improve learning rates to reduce
data requirements [16]. Model-based RL can also reduce the data requirements on real robots,
such as by using dynamic models to guide simulation [17]. Other work addresses the problem of
generalizing learning by incorporating corrective demonstration when errors are encountered during
deployment [18]. Approaches to solving the Sim-to-Real problem have modified the training process
and adapted simulations [12], or utilized progressive nets to transfer features [19]. Recent work on
interpreting policies has focused on finding interpretable representations of NN policies, such as
with Abstracted Policy Graphs [11], or by utilizing program synthesis to mimic the NN policy [20].

SyGusS is a broad field of synthesis techniques that have been applied in many domains [14]. The
primary challenge of SyGusS is scalability, and there are many approaches for guiding the synthesis
in order to tractably find the best programs. A common method for guiding synthesis is the use of
sketches, where a sketch is a partial program with some holes left to be filled in via synthesis [21].
Another approach is to quickly rule out portions of the program space that can be identified as
incorrect or redundant, such as by identifying equivalent programs given examples [22], by learning
to recognize properties that make candidate programs invalid [23], or by using type information
to identify promising programs [24]. A similar approach is to consider sets of programs at once,
such as by using a special data structure for string manipulation expressions [25], or by using SMT
alongside sketches to rule out multiple programs simultaneously [26].

Recent symbolic learning approaches have sought to combine synthesis and deep learning by lever-
aging NNs for sketch generation [27, 28], by guiding the search using neural models [29], or by



Pre F [pr Ur, pp, 03] — Post

Goto F [(—.1, .05, {0,.1}, (0, 0), (0, 0)] — Kick
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Goto F [{0,0),(0,0), {.5,.5), (—.1,.1)] — Goto

(a) RoboCup SSL robot that runs the ASP. (b) Demonstrations.

1if (a.==Kick || (pr —ps| < 72p 1 if (as==Kick || (|pr — ps| < 150

2 && |v, —wp| < ?x,)): Kick 2 && |v. —wp| < 100)): Kick

3elif (7e >7z,): Inter 3 elif (Juvs| > 100): Inter

4 else: Goto 4 else: Goto

(c) Incomplete ASP provided by a user. (d)y LDIPS-completed ASP from user sketch.
1 if (a;==Goto && |p,. — ps| < 150

1if (as==GoTo && 7h): Kick ) && v, — wvp| < 100): Kick

2 else if (a;,==Inter && 7h): Kick 3elif (as,==Inter &&

3 else if (a;==Kick && 7b): Kick 4 |vr — vp| < 150 && |pr — pu| < 150): Kick

4 else if (a,;==GoTo && 7h): Inter 5 elif (as==Goto && |v,| > 200): Inter

5 else if (a,==Inter && 7b): Inter 6 elif (a;,==Inter && |vy| > 100): Inter

6 else if (a;==Kick && 7h): Inter 7 elif (a,==Kick && |vp| < 100): Kick

7 else: return GoTo 8 else: Goto

(e) Incomplete ASP generated by LDIPS. (f) LDIPS-completed ASP from LDIPS sketch.

Figure 1: Using the SSL robot (a), the user demonstrates an expected behavior. Each demonstration is a
transition from one action to another given the position and velocity of the robot and ball (b). Then, the user
may write an incomplete sketch (c), that has blanks for LDIPS to fill out (highlighted in blue). LDIPS then
uses the demonstration to fill in the blanks in the incomplete ASP (d). If the user provides no sketch, then
LDIPS generates a sketch from the demonstrations (e), and fills in the blanks to form a complete program (f).
leveraging purely statistical models to generate programs [30]. Alternatively, synthesis has been
used to guide learning, as in work that composes neural perception and symbolic program execution
to jointly learn visual concepts, words, and semantic parsing of questions [31]. While symbolic
learning leveraging program synthesis produces interpretable ASPs in restricted program spaces,
these approaches often still require large amounts of data.

State-of-the-art work for synthesis in robotics focuses on three primary areas. The most related work
uses SMT-based parameter repair alongside human corrections for adjusting transition functions
in robot behaviors [32]. Similar work utilizes SyGuS as part of a symbolic learning approach to
interpret NN policies as PID controllers for autonomous driving [20, 33]. A different, but more
common synthesis strategy in robotics is reactive synthesis. Reactive synthesis produces correct-
by-construction policies based on Linear Temporal Logic specifications of behavior by generating
policies as automata without relying on a syntax [34, 35, 36, 37].

In this work, we present an LfD approach that addresses data-efficiency, verifiability, and repairabil-
ity concerns by utilizing SyGuS, without any NN components. LDIPS builds on past SyGusS tech-
niques by introducing dimensional-constraints. While past work in the programming languages
community has leveraged types for synthesis [24], to the best of our knowledge none has incorpo-
rated dimensional analysis. Further, LDIPS extends prior approaches by supporting non-linear real
arithmetic, such as trigonmetric functions, as well as vector algebra.

3 Synthesis for Action Selection

This section presents LDIPS, using our RoboCup soccer-playing robot as an example (Figure 1a).
We consider the problem of learning an action selection policy (ASP) that directs our robot to inter-
cept a moving ball and kick it towards the goal. An ASP for this task employs three low-level actions
(a) to go to the ball (Goto), intercept it (Inter), and kick it toward the goal (Kick). The robot runs
the ASP repeatedly, several times per second, and uses it to transition from one action to another,
based on the observed the position and velocity of the ball (py, v) and robot (p,, v,-). Formally, an
ASP for this problem is a function that maps a previous action and a current world state to a next
action: a X w — a. The world state definition is domain-dependent: for robot soccer, it consists of
the locations and velocities of the ball and the robot (w = (py, Vs, Pr, U )).



Action Selection Policy
P ::= returna Unary Operators_
Types and Dimensions | if (B): Pr else Pp opy = abs | sin | norm | - -
Su=le: T] Type Environment Predicates Binary Operators
wu=[L, T, M] Length, Time, Mass b ::=True | False opy =+ |- | *|dist |-
| [0,0,0] Dimensionless | ai1==a2 Skills
T'::= bool Boolean | e>h a = |kick|cruise|---
| Scalar with dimensionw, | €<h . . .
| Vec(u) Vector with u-elements | b1 && by Types and Dimensions for Operations
Acti | b1 || be abs : u—u
c”ljns Domain-specific action | ?b : bool Blank Predicate | horm  : Vec(u) — u
a F a c lt 'spt‘ ! 190 pxpressions sin - [0,0,0] — [0,0,0]
Gs Val urrent action eun=1xy: T Input Variable + U XU —u
Constant Values | e:T Constant + Vec(u) x Vec(u) — Vec(u)
hi= xp:u Threshold Value | opy(e) * w1 X us — w1 + us
| Txp:iu Blank Parameter | e lop2 o ; u1 X Vec(uz) — Vec(ui + u2)
o . . Uy X Uz — U1 — U
| ?e:T Blank Expression /i Vee(ur) X us — Vec(ui — us)
(a) The language of action selection policies. (b) The RoboCup domain.

Figure 2: We write action selection policies in a simple, structured language (Figure 2a). The language it
supports several kinds of blanks (?b, 7z, 7e), that LDIPS fills in. Every ASP relies on a set of primtive actions
and operators that vary across problem domains. For example, Figure 2b shows the actions and operators of
RoboCup ASPs. When LDIPS synthesizes an ASP, it uses the domain definition to constrain the search space.

An ASP can be decomposed into three logical layers: 1) expressions that compute features (e.g., the
distance to the ball, or its velocity relative to the robot); 2) the construction of decision logic based
on feature expressions (e.g., the features needed to determine whether to kick or follow the ball);
and 3) the parameters that determine the decision boundaries (e.g., the dimensions of the ball and
robot determines the distance at which a kick will succeed).

Given only a sequence of demonstrations, LDIPS can synthesize an ASP encoded as a structured
program. For example, Figure 1b shows a set of nine demonstrations, where each is a transition from
one action to another, given a set of observations. Given these demonstrations, LDIPS generates an
ASP in three steps. 1) It generates a sequence of if-then-else statements that test the current
action (as) and return a new action (Figure 1e). However, this is an incomplete ASP, that has blank
expressions (7e), and blank parameters (?x,). 2) LDIPS uses bounded program enumeration to
generate candidate features. However, these features have blank parameters for decision boundaries.
3) LDIPS uses an SMT solver to find parameter values that are consistent with demonstrations. If
the currently generated set of features is inadequate, then LIDPS will not find parameter values. In
that case, the algorithm will return to step (2) to generate new features. Eventually, the result is a
complete ASP that we can run on the robot (Figure 1f). Compared to other LfD approaches, a unique
feature of LDIPS is that it can also synthesize parts of an ASP with varying amounts of guidance.
For example, in addition to the demonstrations, the user may also provide an incomplete ASP. For
example, the user can write the ASP shown in Figure 1c, which has several blank parameters (7)),
e.g., to determine the maximum distance at which a Kick will succeed. It also has blank expressions
(?e) and predicates (7b), e.g., for the conditions under which the robot should kick a moving ball.
Given this incomplete ASP, LDIPS will produce a completed executable ASP that preserves the
non-blank portions of the incomplete ASP (Figure 1d).

3.1 A Language for (Incomplete) Action Selection Policies

Figure 2a presents a context-free grammar for the language of ASPs. In this language, a policy (P)
is a sequence of nested conditionals that return the next action (a). Every condition is a predicate
(b) that compares feature expressions (e) to threshold parameters (h). A feature expression can refer
to input variables (x,) and the value of the last action (as). An incomplete ASP may have blank
expressions (?e), predicates (?b), or parameters (?x,). The output of LDIPS is a complete ASP with
all blanks filled in. At various points in LDIPS we will need to evaluate programs in this syntax
with respect to a world state, to accomplish this we employ a function Eval (P, w).

Different problem domains require different sets of primitive actions and operators. Thus for gener-
ality, LDIPS is agnostic to the collection of actions and operators required. Instead, we instantiate
LDIPS for different domains by specifying the collection of actions (a), unary operators (op;), and
binary operators (0p,) that are relevant to ASPs for that domain. For example, Figure 2b shows the
actions and operators of the RoboCup domain.



The specification of every operator includes the types and dimensions of its operands and result. In
§ 3.3, we see how LDIPS uses both types and dimensions to constrain its search space significantly.
LDIPS supports real-valued scalars, vectors, and booleans with specific dimensions. Dimensional
analysis involves tracking base physical quantities as calculations are performed, such that both the
space of legal operations is constrained, and the dimensionality of the result is well-defined. Quan-
tities can only be compared, added, or subtracted when they are commensurable, but they may be
multiplied or divided even when they are incommensurable. We extend the types 7" of our language
with dimensions by defining the dimension u as the vector of dimensional exponents [ny, ng, ng),
corresponding to Length, Time, and Mass. As an example, consider a quantity a:t, if a represents
length in meters, then ¢ = [1,0,0], and if a represents a velocity vector with dimensionality is
Length/Time, then t = Vec([1,—1,0]). Further, we extend the type signature of operations to
include dimensional constraints that refine their domains and describe the resulting dimensions in
terms of the input dimensions. The type signatures of operations, x,, and c are represented in a type
environment Y that maps from expressions to types.

3.2 LDIPS-L1 : Parameter Synthesis

LDIPS-L1 fills in values for blank constant parameters (?z;) L1: {w} x {w} x b— b || UNSAT
in a predicate (b), under the assumption that there are no blank ~ L1(Ep. En, b):

expressions or predicates in b. The input is the predicate, a set ?xp = ParamHoles(b)

of positive examples on which b must produce true (Ep), and a ‘i":?\sz C By . PartialEval(b, w))A
set of negative examples on which b must produce false (Ey,). (Vw € E. . —PartialEval (b, w))
The result of LDIPS-L1 is a new predicate where all blanks in b’ = Solve(e)

the input are replaced with constant values. if (b’ # UNSAT): return b/

else: return UNSAT
LDIPS uses Rosette and the Z3 SMT solver [38, 39] to solve ~ ParamHoles : b — [?z;]
constraints. To do so, we translate the incomplete predicate ~ Fartalfval: bxw = b
and examples into SMT constraints (Figure 3). LDIPS-L1 Figure 3: LDIPS-L1
builds a formula (¢) for every example, which asserts that there exists some value for each blank
parameter (7x),) in the predicate, such that the predicate evaluates to true on a positive example (and
false on a negative example). Moreover, for each blank parameter, we ensure that we chose the same
value across all examples. The algorithm uses two auxiliary functions: 1) ParamHoles returns the
set of blank parameters in the predicate, and 2) PartialEval substitutes input values from the ex-
ample into a predicate and simplifies it as much as possible, using partial evaluation [40]. A solution
to this system of constraints allows us to replace blank parameters with values that are consistent
with all examples. If no solution exists, we return UNSAT (unsatisfiable).

3.3 LDIPS-L2 : Feature Synthesis

LDIPS-L2 consumes a predicate (b) with blank expressions (?e) and blank parameters (?x,) and
produces a completed predicate. (An incomplete predicate may occur in a user-written ASP, or may
be generated by LDIPS-L3 to decide on a specific action transition in the ASP.) To complete the
predicate, LDIPS-L2 also receives sets of positive and negative examples (Ep and E,), on which
the predicate should evaluate to true and false respectively. Since the predicate guards an action
transition, each positive example corresponds to a demonstration where the transition is taken, and
each negative example corresponds to a demonstration where it is not. Finally, LDIPS-L2 receives
a type environment (3) of candidate expressions to plug into blank expressions and a maximum
depth (n). If LDIPS-L2 cannot complete the predicate to satisfy the examples, it returns UNSAT.

The LDIPS-L2 algorithm (Figure 4) proceeds in several steps. 1) It enumerates a set of candidate
expressions (F') that do not exceed the maximum depth and are dimension-constrained (line 3). 2) It
fills the blank expressions in the predicate using the candidate expressions computed in the previous
step, which produces a new predicate b’ that only has blank parameters (line 4). 3) It calls LDIPS-
L1 to fill in the blank parameters and returns that result if it succeeds. 4) If LDIPS-L1 produces
UNSAT, then the algorithm returns to Step 2 and tries a new candidate expression.

The algorithm uses the EnumFeatures helper function to enumerate all expressions up to the maxi-
mum depth that are type- and dimension- correct. The only expressions that can appear in predicates
are scalars, thus the initial call to EnumFeatures asks for expressions of type u. (Recursive calls



encounter other types.) EnumFeatures generates expressions by applying all possible operators to
sub-expressions, where each sub-expression is itself produced by a recursive call to EnumFeatures.

The base case for the recursive definition is when n = 0: the result is the empty set of expressions.
Calling EnumFeatures with n = 1 and type 1" produces the subset of input identifiers x, from
the type environment X that have the type 7. Calling EnumFeatures with n > 1 type T" produces
all expressions e, including those that involve operators. For example, if EnumFeatures generates
ejopyes at depth n + 1, it makes recursive calls to generates the expressions e; and e; at depth n.
However, it ensures that the type and dimension of e; and e, are compatible with the binary operator
op,. For example, if the binary operator is +, the sub-expressions must both be scalars or vectors
with the same dimensions. This type and dimension constraint allows us to exclude a large number
of meaningless expressions from the search space. Figure 4 presents a subset of the recursive rules
of expansion for EnumFeatures.

Even with type and dimension constraints, the search space of EnumFeatures can be intractable.
To further reduce the search space, the function uses a variation of signatures equivalence [22], that
we extend to support dimensions. A naive approach to expression enumeration would generate type-
and dimension correct expressions that represent different functions, but produce the same result on
the set of examples. For example, the expressions |z| and x represent different functions with the
same type and dimension. However, if our demonstrations only have positive values for x, there is
no reason to consider both expressions, because they are equivalent given our demonstrations. We
define the signature (s) of an expression as its result on the sequence of demonstrations, and we
prune expressions with duplicate signatures at each recursive call, using the SigFilter function.

EnumFeatures : N X © X T X {w} x e = {(e, s)}
1L2: NXx ¥ x {w} x {w} X b— b || UNSAT EnumFeatures(0, X, T, W,e) = { }
2L2(n, X, Ep, En, b): EnumFeatures(n + 1,3, T, W, ?e) = SigFilter(
3 F = EnumFeatures(n,X,u,Ep UEp, 7e) {EnumFeatures(n, =, T, W,e),Ve : T € B} U
4 for b in FillExpressions(F,b); {EnumPFeatures(n + 1,2, T, W, op, (?e)),Vop, : T’ = T € £})
5 result = L1(Ep, En,b') EnumFeatures(n + 1, %, T, W, c) ={{c,s)
6 if (result # UNSAT): | s=le,...,c],Yw' € W}
7 return result EnumPFeatures(n + 1, %, T, W, z, ) = { (zy, s)
8§ return UNSAT | s =[whay,...,w"z,],Vu' € W}
EnumFeatures(n + 1, 3, T, W, op, (e)) = { (op,(zy), s)
FillExpressions : F x b — {b} | op; : T" - T €X, s=[Eval(op; (e'),w) | weE W],
SigFilter : {(e,s)} — {(e,s)} Ve’ € EnumFeatures(n, =, T', W, ?¢)}

Figure 4: LDIPS-L2

3.4 LDIPS-L3: Predicate Synthesis

Given a set of demonstrations (D), LDIPS-L3 returns a complete ASP that is consistent with D. The
provided type environment ¥ is used to perform dimension-informed enumeration, up to a specified
maximum depth n. The LDIPS-L3 algorithm (Figure 5) proceeds as follows. 1) It separates the
demonstrations into sub-problems consisting of action pairs, with positive and negative examples,
according to the transitions in D. 2) For each subproblem, it generates candidate predicates with
maximum depth n. 3) For each candidate predicate, it invokes LDIPS-L2 with the corresponding
examples and the resulting expression, if one is returned, is used to the guard the transition for that
sub-problem. 4) If all sub-problems are solved, it composes them into an ASP (p).

LDIPS-L3 divides synthesis into sub-problems, using the  L3:Nx D — P || UNSAT
DivideProblem helper function, to address scalability.  L3(n. D):

DivideProblem identifies all unique transitions from a ]?r:bl{e}ms - DivideProblen(D)

starting action (as) to a final action (ay), and pairs of for x € problens:

... . s—f s—f Solution = False
positive and negative examples {(Ep*7/, E,*7)}, that for b CEnumPredicates(n):
demonstrate transitions from a, to a, and transitions from result = L2(n,z.Ep,2.En,b)
as to any other final state respectively. As an example if Qci ezz“ljriu‘ﬂs“):
sketch generated by DivideProblems, consider the partial Solution = True
program shown in Figure le. break

if (Solution):

Given the sketch generated by DivideProblem, LDIPS- return MakeP(problems,Q)

- . 1se: t UNSAT
L3 employs EnumPredicates to enumerate predicate elser return

structure. EnumPredicates fills predicates holes 7b with
predicates b according to the ASP grammar in Figure 2a,
such that all expressions e are left as holes 7e, and all constants h are left as repairable parameter

Figure 5: LDIPS-L3



holes ?z,,. Candidate predicates are enumerated in order of increasing size until the maximum depth
n is reached, or a solution is found. For each candidate predicate b, and corresponding example sets
E; and E,,, the problem reduces to one amenable to LDIPS-L2. If a satisfying solution for all b
is identified by invoking LDIPS-L2, they are composed into the policy p using MakeP, otherwise
UNSAT is returned, indicating that there is no policy consistent with the demonstrations.

4 Evaluation

We now present several experiments that evaluate 1) the performance of ASPs synthesized by
LDIPS, 2) the data-efficiency of LDIPS, compared to training an NN, 3) the generalizability of
synthesized ASPs to novel scenarios and 4) the ability to repair ASPs developed in simulation, and
to transfer them to real robots. Our experiments use three ASPs from two application domains.
1) From robot soccer, the attacker plays the primary offensive role, and use the fraction of scored
goals over attempted goals as its success rate. 2) From robot soccer, the deflector executes one-
touch passes to the attacker, and we use the fraction successful passes over attempted passes as its
success rate. 3) From autonomous driving, the passer maneuvers through slower traffic, and we use
the fraction of completed passes as its success rate. We use reference ASPs to build a dataset of
demonstrations. For robot soccer, we use ASPs that have been successful in RoboCup tournaments.
For autonomous driving, the reference ASP encodes user preferences of desired driving behavior.

4.1 Performance of Synthesized ASPs

We use our demonstrations to 1) train an LSTM that encodes Policy Success Rates (%)
the ASP, and 2) synthesize ASPs using LDIPS-L1, LDIPS- — A“g;k“ De‘;eg“" Pagsf“
L2, and LDIPS-L3. For training and synthesis, the training set 1o 7 = =5
consists of 10, 20, and 20 trajectories for the attacker, deflec- NoDim 78 76 60
tor, and passer. For evaluation, the test sets consists of 12000, L1 75 85 70
4800, and 4960 problems. Figure 6 shows that LDIPS outper- g 23 g? SZ

forms the LSTM in all cases. For comparison, we also ev'alu- Figure 6: Success rates for different
ate the reference ASPs, which can outperform the synthesized ASps on three different behaviors in
ASPs. The best LDIPS ASP for deflector was within 1% of  gimulated trials.

the reference, while the LSTM ASP was 16% worse.

4.2 Effects of Dimensional Analysis

Dimensional analysis enables tractable synthesis of ASPs and improves the performance of the
learned policies. We evaluate the impact of dimensional analysis by synthesizing policies with four
variations of LDIPS-L3, the full algorithm, a variant with only dimension based pruning, with only
signature-based pruning, and with no expression pruning, all with a fixed depth of 3. In Figure 7 we
report the number of expressions enumerated for each variant, for each of our behaviors, as well as
the performance of each of the resulting policies.

o # Enumerated | Success Rate % | FOr all of our behaviors, the number of expres-
olIC; . . . .

ey Atk [ Def TPass [[Atk [Def [Pass | sions enumerated without dimensional analy-
LDIPS-L3 175 | 174 | 345 |[ 87 |81 | 74

Dimension Proming | 69616961230 [ &7 T8 72— S1SOF dimension 1nformed's1gnatur'e pruning in-
Signature Praming | 4971 | 5013 [ 366 || 78 |76 | 60 creases by orders of magnitude. With this many
No Pruning 14184 [14232 [7528 || - | - - possible candidate expressions, synthesis be-
comes intractable, and as such, without prun-
ing, we cannot synthesize a policy to evaluate
at all. Further, the performance of the ASPs synthesized with only signature pruning are consis-
tently worse than LDIPS-L3 and the difference is most stark in the passer ASP, with a performance
difference of 14% between them.

Figure 7: Features enumerated at depth 3.

4.3 Data Efficiency

LDIPS can synthesize ASPs with far fewer demonstrations than the LSTM. To illustrate
this phenomenon, we train the LSTM with 1) the full LSTM training demonstrations(LSTM-
Full, 2) half of the training demonstrations (LSTM-Full), and 3) the demonstrations that
LDIPS wuses (LSTM-Synth), which is a tiny fraction of the previous two training sets.



Figure 8 shows how the performance of the LSTM de- Policy Attacker | Deflector
grades as we cut the size of the training demonstrations. S (;/;) 773:108 (;78) 44;85
In particular, when the LSTM and LDIPS use the same STV 133 1389204 161 1230192
training demonstrations, the LSTM fares significantly LSTM-Synth | 25 | 750 |38 | 750
worse (57%, 47% inferior performance). LDIPS 87 | 750 |81 | 750

Figure 8: Performance vs. # of examples (V).

4.4 Ability to Generalize From Demonstrations

A key requirement for an LfD algorithm is its ability to
generalize to novel problems. This experiment shows
that an attacker ASP, synthesized using LDIPS-L3
and only ten demonstrations, can score a goal when .
a moving ball is placed at almost any reasonable po-
sition on the field. On each run, the attacker starts at
the origin (Figure 9). We discretize the soccer field,
place the ball at a discrete point, and set the ball in
motion in 10 possible directions (12,000 total runs). (a) Reference ASP (b) LDIPS-L3 ASP
Thus, each point of the heatmap shows the attacker’s
success rate on all runs that start at that point. The fig-
ure shows the performance of the LDIPS-L3 synthe-
sized ASP on ten demonstration runs that start from
the eight marked positions. The synthesized ASP generalizes to problems that are significantly dif-
ferent from the training examples. Moreover, its performance degrades on exactly the same region
of the field as the reference ASP (i.e., when the ball is too far away for the attacker to intercept).

Success Rate

&, B =]
1000 2000 3000 1000 2000 3000
X X

Figure 9: Attacker success rate with varying
ball positions. Training locations are marked
with an X.

4.5 Transfer From Sim To Real

ASPs designed and tested in simulation frequently suffer Seenario Aftacker | Deflector

from degraded performance when run on real robots. If i Ref |LSTM [L3 |Ref | LSTM [L3
the ASP is hand-written and includes parameters it may ;1;21 4813 Zg ;3(7) gg Zg 2
be repaired by parameter optimization, but NN ASPs are Repaired [ 70 | - |64 |78 | - |72

much harder to repair without significant additional data
collection and retraining. However, LDIPS can make the
sim-to-real transfer process significantly easier. For this
experiment, using the attacker and deflector, we 1) synthesize ASPs in a simulator, and 2) deploy
them on a real robot. Predictably, the real robot sees significantly degraded performance on the
reference ASP, the learned LSTM ASP, and the LDIPS-synthesized ASP. We use a small variant
of LDIPS-L1 (inspired by SRTR [32]) on the reference and LDIPS ASPs: to every parameter ()
we add a blank adjustment (z+7z), and synthesize a minimal value for each blank, using ten real-
world demonstration runs. The resulting ASPs perform significantly better, and are much closer to
their performance in the simulator (Figure 10). This procedure is ineffective on the LSTM: merely
ten demonstration runs have minimal effect on the LSTMs parameters. Morever, gathering a large
volume of real-world demonstrations is often impractical.

Figure 10: Sim-to-real performance, and
ASP repair.

5 Conclusion

In this work, we presented an approach for learning action selection policies for robot behav-
iors utilizing layered dimension informed program synthesis (LDIPS). This work composes skills
into high-level behaviors using a small number of demonstrations as human-readable programs.
We demonstrated that our technique generates high-performing policies with respect to human-
engineered and learned policies in two different domains. Further, we showed that these policies
could be transferred from simulation to real robots by utilizing parameter repair.
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