= . +

usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Twizzler: a Data-Centric OS for

Non-Volatile Memory

Daniel Bittman and Peter Alvaro, UC Santa Cruz; Pankaj Mehra, IEEE Member;
Darrell D. E. Long, UC Santa Cruz; Ethan L. Miller, UC Santa Cruz / Pure Storage

https://www.usenix.org/conference/atc20/presentation/bittman

This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.
July 15-17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference
is sponsored by USENIX.

+

Twizzler: a Data-Centric OS for Non-Volatile Memory

Peter Alvaro
UC Santa Cruz

Daniel Bittman
UC Santa Cruz

Abstract

Byte-addressable, non-volatile memory (NVM) presents
an opportunity to rethink the entire system stack. We present
Twizzler, an operating system redesign for this near-future.
Twizzler removes the kernel from the I/O path, provides pro-
grams with memory-style access to persistent data using small
(64 bit), object-relative cross-object pointers, and enables sim-
ple and efficient long-term sharing of data both between appli-
cations and between runs of an application. Twizzler provides
a clean-slate programming model for persistent data, realizing
the vision of Unix in a world of persistent RAM.

We show that Twizzler is simpler, more extensible, and more
secure than existing I/O models and implementations by build-
ing software for Twizzler and evaluating it on NVM DIMMs.
Most persistent pointer operations in Twizzler impose less
than 0.5 ns added latency. Twizzler operations are up to 13x
faster than Unix, and SQLite queries are up to 4.2 x faster than
on PMDK. YCSB workloads ran 1.1-2.9x faster on Twizzler
than on native and NVM-optimized SQLite backends.

1 Introduction

Byte-addressable non-volatile memory (NVM) on the mem-
ory bus with DRAM-like latency [23,38] will fundamentally
shift the way that we program computers. The two-tier mem-
ory hierarchy split between high-latency persistent storage and
low latency volatile memory may evolve into a single level of
large, low latency, and directly-addressable persistent memory.
Mere incremental change will leave dramatic improvements in
programmability, performance, and simplicity on the table. It
is essential that operating systems and system software evolve
to make the best use of this new technology.

These opportunities motivate us to revisit how programs
operate on persistent data. The separation of volatile memory
and high-latency persistent storage at the core of OS design
requires the OS to manage ephemeral copies of data and in-
terpose itself on persistence operations, a penalty that will
consume an increasing fraction of time as NVM performance
increases [64]. The direct-access nature of NVM invites the

Pankaj Mehra
IEEE Member

Ethan L. Miller
UC Santa Cruz
Pure Storage

Darrell D. E. Long
UC Santa Cruz

use of load and store instructions to directly access persistent
data, simplifying applications by enabling persistent data ma-
nipulation without the need to transform it between in-memory
and on-storage data formats. Thus, the model that best exploits
the low latency nature of NVM is one in which persistent data
is maintained as in-memory data structures and not serialized
or explicitly loaded or unloaded. To avoid serialization, this
model must support persistent pointers that are valid in any
execution context, not just the one in which they were created.

Trying to mold NVM into existing models will not enable its
fullest potential, just as SSDs did not reach their full potential
until they transcended the disk paradigm. To explore a “clean-
slate” approach, we are building Twizzler, an OS designed to
take full advantage of this new technology by rethinking the
abstractions OSes provide in the context of NVM. Twizzler
divides NVM into objects within a global object space, and
pointers are interpreted in the context of the object in which
they reside. This decouples pointers from the address space of
an individual thread, providing a data-centric programming
model rather than a process-centric one. The result is a vastly
simpler environment in which the OS’s primary function is to
support manipulating, sharing, and protecting persistent data
using few kernel interpositions.

We implemented a simple, standalone kernel that supports
a userspace for NVM-based applications, with compatibil-
ity layers for legacy programs. We wrote a set of libraries
and portability layers that provide a rich environment for ap-
plications to access persistent data that takes into account
both semantics (persistent pointers) and safety (building crash-
consistent data structures). We then performed a case-study
by writing software for Twizzler, taking into account the new
flexibility and power gained by our model and evaluating our
software for complexity and performance. We ported SQLite
to Twizzler, showing how our approach can provide significant
performance gains on existing applications as well.

In a world where in-memory data can last forever, the con-
text required to manipulate that data is best coupled with the
data rather than the process. This key insight manifests itself
in the three primary contributions of this paper:

USENIX Association

2020 USENIX Annual Technical Conference 65

e We discuss (§ 2) our vision for a data-centric OS and
the requirements that it must meet to provide low latency
memory-style access to NVM with efficient data sharing.

* We present Twizzler (§ 3) and describe its mechanisms
to meet those requirements, including decoupling tradi-
tionally linked concerns, reducing kernel involvement in
address space management, and providing a rich model
for constructing in-memory persistent data structures that
can be easily shared between programs and machines.

* We evaluate (§ 4) the ease-of-use, security advantages,
and programmability offered by our environment, for
both new and existing, ported software (SQLite), along
with performance improvements (§ 5) on NVM DIMMs.

2 The Data-Centric OS

Operating systems provide abstractions for data access that
reflect the hardware for which they were designed. Current I[/O
interfaces and abstractions reflect the structure of mutually
exclusive volatile and persistent domains, the hallmarks of
which are heavy kernel involvement for persisting data, a need
for data serialization, and complexity in data sharing requiring
the overhead of pipes or the management cost of shared virtual
memory. However, the introduction of low latency and directly
attached NVM into the memory hierarchy requires that we
rethink key assumptions such as the use of virtual addresses,
the kernel’s involvement in persistent I/O, and the way that
programs operate on and share persistent data [30].

The first key characteristic of NVM is low latency: only
1.5-8x the latency of DRAM in most cases [38], so the cost
of a system call to access NVM dominates the latency of the
access itself. The second key characteristic is that the pro-
cessor can directly access persistent storage using load and
store instructions. Direct, low latency access to NVM means
that explicit serialization is a poor fit—it adds complexity, as
programmers must maintain different data formats and the
transformations between them, and the overhead is intolera-
ble due to NVM’s low latency. Hence, we should design the
semantics of the programming model around in-memory per-
sistent data structures, giving programs direct access to them
without explicit persistence calls or serialization methods.

These characteristics imply two basic requirements for OSes
to most effectively use NVM:

1. Remove the kernel from the persistence path. This
addresses both characteristics. System calls to persist data
are costly; we must provide lightweight, direct, memory-
style access for programs to operate on persistent data.

2. Design for pointers that last forever. Long-lived data
structures can directly reference persistent data, so point-
ers must have the same lifetime as the data they point to.
Virtual memory mappings are, by contrast, ephemeral
and so cannot effectively name persistent data. Persistent
data is, by definition, accessed by multiple actors, both
simultaneously and over time, and thus must be stored in

a form that is conducive to sharing without needing the
ephemeral context associated with a particular actor.
We call an OS that meets both of these requirements data-
centric, as opposed to current OSes, which are process-centric.
Operations on persistent, in-memory data structures are the
primary functions of a data-centric OS, which tries to avoid
interposing on such operations, preferring instead to intervene
only when necessary to ensure properties such as security and
isolation. To meet both of these requirements a data-centric
OS must provide effective abstractions for identifying data
independent of data location, constructing persistent data re-
lationships that do not depend on ephemeral context, and fa-
cilitating sharing and protection of persistent data.

2.1 Existing Interfaces

Current OS techniques do not meet these requirements—file
read and write interfaces, designed for sequential media and
later expanded for block-based media, require significant ker-
nel involvement and serialization, violating both requirements.
While support for these interfaces can be useful for legacy ap-
plications, as we will demonstrate, providing the programmer
with abstractions designed for NVM both reduces complexity
and improves performance.

The mmap call attempts to hide storage behind a memory
interface through hidden data copies. But, with NVM, these
copies are wasteful, and mmap still has significant kernel in-
volvement and the need for explicit msync calls. “Direct Ac-
cess” (DAX) tries to retrofit mmap for NVM by removing the
redundant copy, but this fails to address requirement two! Oper-
ating on persistent data through mmap requires the programmer
to use either fixed virtual addresses, which presents an infea-
sible coordination problem as we scale across machines, or
virtual addresses directly, which are ephemeral and require
the context of the process that created them.

Attempting to shoehorn NVM programming atop POSIX
interfaces (including mmap) results in complexity that arises
from combining multiple partial solutions. Given some feature
desired by an application, the NVM framework can provide an
integrated solution that meshes well with the existing support
for persistent data structure manipulation and access, or it can
fall-back to POSIX resulting in the programmer needing to
understand two different “feature namespaces” and their inter-
actions. An example of this is naming, where a programmer
may need to turn to the filesystem to manage names in a com-
pletely orthogonal way to how the NVM frameworks handles
data references. We will discuss another example, security, in
our case study (§ 4).

Additionally, models that layer NVM programming atop
existing interfaces often fail to facilitate effective persistent
data sharing and protection. PMDK, an NVM programming li-
brary, makes design choices that limit scalability, since its data
objects are not self-contained and do not have a large enough
ID space, resulting in the need to coordinate object IDs across

66 2020 USENIX Annual Technical Conference

USENIX Association

machines [10]. For the same reason, although single-address
space OSes [12] somewhat address our first requirement, they
do not consider both requirements at once, nor do they provide
an effective and scalable solution to long-term data references
due to that same coordination complexity [9].

2.2 A Data-Centric Approach

We cannot store virtual addresses in persistent data, so we
need a new way to name a word of persistent memory: a per-
sistent pointer. The persistent pointer encodes a persistent
identification of data (§ 3.3) instead of an ephemeral address,
allowing any thread to access the desired word of memory
regardless of address space. This approach dramatically im-
proves programmability, as programmers need not worry about
the complexity of referring to persistent data with ephemeral
constructs, improving data sharing across programs and runs
of a program. Twizzler still makes use of virtual memory hard-
ware to provide isolation and translation, but persistent data
structures should not be written in terms of virtual addresses.

The Death of the Process. Processes as a first class OS ab-
straction are, like virtual addresses, unnecessary; a traditional
process couples threads of control to a virtual address space,
a security role, and kernel state. However, with the kernel re-
moved from persistent data access, much of that kernel state
(e.g. file descriptors) is unnecessary, leading to a decoupling
of mechanisms: nothing fundamentally connects a virtual ad-
dress space (how threads access data) and a security context
(what data they may access). Instead, a data-centric OS can re-
place the process abstraction with security contexts, allowing
greater flexibility for how security policy is managed.

The process abstraction is just one example. Persistent data
access plays a key role in OS abstraction design, and we need
to avoid complexity arising from combining old and new inter-
faces. Hence, we need to consider the wide-reaching effects of
changing the persistence model on all aspects of the system,
not just I/O interfaces. NVM gives us an opportunity to de-
sign an OS around the requirements of the target programming
model instead of trying to mold support libraries around exist-
ing interfaces. While it is important that we provide support
for legacy applications, it is these applications that should be
relegated to support libraries; new applications built for the
programming model should get first-class OS support.

Targeting these Constraints with Twizzler. The conse-
quences of meeting the requirements of these hardware trends
define a bounded design space for data-centric OSes. We have
chosen a point in that space and built Twizzler, our approach
to providing applications with efficient and effective access to
NVM. In the following section we will discuss how our four
primary abstractions—a low level persistent object model, a
persistent pointer design, an address space mechanism called
views, and a security context mechanism—achieve these goals
of removing the kernel from the persistent data access path.

3 The Design of Twizzler

Twizzler is a stand-alone kernel and userspace runtime that pro-
vides execution support for programs. It provides, as first-class
abstractions, a notion of threads, address spaces, persistent
objects, and security contexts. A program typically executes
as a number of threads in a single address space (providing
backwards compatibility with existing programming models),
into which persistent objects are mapped on-demand. Instead
of providing a process abstraction, Twizzler provides views
(§ 3.2) of the object space, which enable a program to map
objects for access, and security contexts (§ 3.4) which define
a thread’s access rights to objects in the system. Twizzler
provides persistent pointers (§ 3.3) for programs, as well as
primitives to ensure crash-consistency (§ 3.5). The thread
abstraction is similar to modern OSes; the kernel provides
scheduling, synchronization, and management primitives. Fig-
ure | shows an overview of the system organization and how
different parts of the system operate on data objects.

Twizzler’s kernel acts much like an Exokernel [28,41], pro-
viding sufficient services for a userspace library OS, called
libtwz, to provide an execution environment for applications.
The primary job of libtwz is to manage mappings of per-
sistent objects into the address space (§ 3.2) and deal with
persistent pointers (§ 3.3). Twizzler also exposes a standard
library that provides higher level interfaces beyond raw access
to memory. For example, software that better fits message-
passing semantics can use library routines that implement
message-passing atop shared memory. Twizzler’s standard
library provides additional higher level interfaces, including
streams, logging, event notification, and many others. Applica-
tions use these to easily build composable tools and pipelines
for operating on in-memory data structures without the per-
formance loss and complexity of explicit I/O.

We provide POSIX support with twix, a library that emu-
lates Linux syscalls. We modified musl [1], a C library which
all programs link to, replacing invocations of the syscall
instruction with calls into twix, which internally tracks Unix
state like file descriptors. This is handled entirely in userspace;
calls to read and write often reduce to calls to memcpy.

direct access 2pplicatio |
(memory-style) pplication

musl* (libc) !

X Linux syscall

emulation H

data ‘ ;

. H o

object metadata & FOT - view management,

libtwz pointer translation,

management . L

consistency primitives
A userspace

create, delete, etc.
physical mapping

* modified musl to change linux syscalls into function calls
Figure 1: Twizzler system overview. Applications link to musl
(a C library), twix (our Linux syscall emulation library), and
libtwz (our standard library).

POSIX access
(read/write)

y kernelspace

object & thread
management, trusted
computing base

Twizzler kernel

USENIX Association

2020 USENIX Annual Technical Conference 67

3.1 Object Management

Twizzler organizes data into objects, which may be persistent.
Each object is identified by a unique 128 bit object ID (though
larger IDs would be possible). Objects provide contiguous re-
gions of memory that organize semantically related data with
similar lifetime. Applications access objects via mapping ser-
vices (discussed in the next section) by mapping each object
into a contiguous range in the address space, though the ad-
dress space itself may be densely or sparsely mapped. Objects
can be anywhere from 4 KiB (the size of a page) to 1 GiB;
the upper bound on object size is a prototype implementation
choice, and not fundamental to the design.

Twizzler uses objects as the unit of access control, building
off a read/write/execute permissions model which mirrors that
of memory management units in modern processors. This is a
direct consequence of avoiding the kernel for persistent data
access—it can set policy by programming the MMU, but must
leave enforcement up to the hardware which, in-turn, defines
what protections are possible.

An object, from the programmer’s perspective, is flexible in
its contents—for example, it could contain anywhere from a
single B-tree node to the entire B-tree. Often, an object would
contain the entire tree, since the entire tree is typically subject
to the same access semantics by programs, and there are over-
heads associated with objects that can be amortized over larger
spaces. Data and data structures that are too large for one ob-
ject or require different access permissions can span multiple
objects with references between them. We demonstrate the
benefits of this flexibility in Section 4.

The kernel provides services for object management, such
as creating and deleting objects. Objects are created by the
create system call, which returns an object ID. A program
may also optionally provide an existing object ID to the
create call, stating that the new object should be a copy of
the existing one, for which Twizzler uses copy-on-write. The
new ID is a number that is unlikely to collide with existing IDs
in the 128 bit ID space, and can be assigned using a technique
that supports this requirement (random, hashing, efc.). Some
forms of ID assignment support a form of access control: a pro-
gram can only access an object whose ID it knows. Twizzler
provides object naming as well, discussed in Section 3.3.

Objects may be be deleted via the delete system call. Like
Unix’s unlink, objects are reference counted, where a ref-
erence refers to a mapping in an address space. Once the
reference count reaches zero, the object may be deleted.

3.2 Address Space Management

Although virtual addresses are the wrong abstraction to use for
persistent data access, we do leverage virtual address hardware
in modern processors for isolation and protection. Twizzler
provides access to persistent objects by mapping them into the
virtual address space behind-the-scenes (via 1ibtwz). This

generates many mapping operations to access persistent data,
so requiring system calls would be costly. Additionally, our
kernel avoidance necessitates an increased address space man-
agement responsibility for userspace. For example, executable
loading and mapping is handled largely without the kernel.

To support userspace manipulation of address spaces, the
kernel and userspace share an object (called a “view”) that
defines an address space layout. The view is just a normal
object, and so standard access control mechanisms apply to
enforce isolation. When applications map objects into their
address space, they update the view to specify that a particular
object should be addressable at a specific location. The kernel
then reads the object and determines the requested layout of
the virtual address space. The view object is laid out like a
page-table, where each entry in the table corresponds to a
slot in the virtual address space. Each table entry contains
an object ID and read, write, and execute protection bits to
further protect object access (like PROT_* in mmap).

When a page-fault occurs, the fault handler tries to handle
the fault by either doing copy-on-write, checking permissions,
or by trying to map an object into a slot if the view object
requested one. If it cannot handle the fault (due to a protection
error or an empty entry in the view object), it elevates the fault
to userspace where libtwz handles it, possibly by killing
the thread, or possibly by mapping an object if the slot is
“on-demand”. When the kernel maps an object into a slot, it
updates the address space’s page-tables appropriately.

When threads add entries to a view object they need not
inform the kernel—when a fault occurs, the kernel will read
the entry as needed. However, when changing or deleting an
entry, threads must inform the kernel so it can update existing
page table entries. We provide two system calls for views. The
set_view call allows a thread to change to a new view, which
might be used to execute a new program or jump across pro-
grams to, for example, accomplish a protected task. Twizzler’s
access control system prevents this from happening arbitrar-
ily. The second system call is invalidate_view, which lets
a thread inform the kernel of changed or deleted entries.

3.3 Persistent Pointers

Section 2 discussed the needs for references that outlive
ephemeral actors. Twizzler provides cross-object persistent
pointers so that a pointer refers not to a virtual address but to
an offset within an object by encoding an object-id:offset
tuple. This enables a pointer to refer to persistent data, but
it also allows objects to have external pointers that refer to
data in any object in the global object space. We highlight
cross-object pointers’ power and flexibility by demonstrating
their ability to express inter-object relationships in Section 4.

To efficiently encode this tuple, we use indirection through
a per-object foreign object table (FOT), located at a known
offset within each object. The FOT is an array of entries that
each stores an object ID (or a name that resolves into an object

68 2020 USENIX Annual Technical Conference

USENIX Association

Pointer Foreign Object Table
1 Object B
z—J]
3¢ [] T

Figure 2: Pointer translation via the FOT. The pointer and the
FOT are both contained in the same object (not shown).

ID, as we will see below) and flags. A cross-object pointer is
stored as a 64 bit FOT_idx:offset value, where the FOT_idx
is an index into the FOT. This provides us with both large
offsets and large object IDs, since the IDs are not stored within
the pointer itself. If an object wishes to point to data within
itself (an intra-object pointer), it stores 0 in FOT_idx. When
dereferencing, Twizzler uses the FOT_idx part of the pointer
as an index into the FOT, retrieving an object ID. The combi-
nation of a FOT and a cross-object pointer logically forms an
object-id:offset pair, as shown in Figure 2.

Our design (discussed in prior work [9, 10]) differs from
existing frameworks [6, 13, 18, 19,57, 58] because of the indi-
rection. Frameworks like PMDK store entire object IDs within
pointers, increasing pointer size and reducing flexibility by
removing the possibility of late-binding (discussed below).
Additionally, Twizzler extends the namespace of data objects
beyond one machine, as machine-independent data references
are a natural consequence of cross-object pointers. Existing
solutions are limited in this scalability. They either limit the
ID space (necessary for storing IDs in pointers) and thus resort
to complex coordination or serialization when sharing, or they
require additional state (e.g. per-process or per-machine ID
tables) that must be shared along with the data, forcing the
receiving machine to “fix-up” references. Worse still, the fix-
up is application-specific, since the object IDs are within any
pointer, not in a generically known location. Our per-object
FOT results in self-contained objects that are easier to share,
thus interacting better with remote shared memory systems.

Part of our motivation for this FOT indirection was to allow
a large ID space without increasing pointer size. PMDK, by
contrast, increases pointer size to 128 bits for each pointer.
Twizzler has no additional space overhead per-pointer, instead
adding a 32-byte overhead per FOT entry. The number of FOT
entries, however, is typically much smaller than the number
of pointers since pointers to the same external object can all
use the same FOT entry. As we will see in Section 5, this has
a dramatic benefit to performance.

FOT Entries and Late-Binding. The FOT entry’s flags
field has bits for read, write, and execute protections. The
protections are requests; Twizzler implements separate access
control on objects. This allows some pointers to refer to data
with a read-only reference while others can be used for writing,
reducing stray writes (a single ID can repeat in the FOT with
different protections). The FOT entries also enable atomic
updates that apply to all pointers using that FOT entry.
Instead of requiring programmers to refer to objects via
IDs only, we allow names in FOT entries. These entries may

contain a pointer to an in-object string table that contains a
name. Names enable late-binding [19], a vital aspect of sys-
tems, allowing references to objects which change over time,
e.g. shared library versions. Names are passed to a resolving
function (specified in the FOT entry). Allowing a program to
specify how its names are resolved increases the flexibility of
the system beyond supporting Unix paths. Twizzler provides
a default name resolver that uses Unix-like paths.

The implementation of naming is orthogonal to Twizzler’s
design. We allow a range of name resolution methods within
the system stack and allow objects to specify their own name
resolution functions for flexibility. For example, objects could
be organized by both a relational database and a hierarchical
namer similar to conventional file systems. Non-hierarchical
file systems are well studied [3,31,32,54,55], but these systems
do not easily cooperate atop a single data space. Since Twizzler
uses a flat namespace as its “native” object naming scheme, it
enables the required cooperation.

Pointer Translation. Current processors provide only a vir-
tual memory abstraction, so applications must do some extra
work to dereference a pointer, translating a pointer from its
persistent form into a virtual address. This does not affect
the stored pointer, which is still persistent and independent of
any translation or address space. Thus multiple applications,
possibly with different address space layouts, can translate the
same pointer at the same time without coordination.

Pointer translation occurs with the help of two 1ibtwz func-
tions: ptr_lea (load effective address) and ptr_store. When
a program dereferences a pointer, it first calls ptr_lea. The
pointer is resolved into an object-ID and offset pair through
a lookup in the FOT, after which 1libtwz determines if the
referenced object is already mapped (by maintaining per-view
metadata). If not, it picks an empty slot in the view and maps
the object there (a cheap operation that does not invoke the ker-
nel). Once mapped, 1ibtwz combines the object’s temporary
virtual base address with the offset, and returns the new pointer.
The ptr_store function does the opposite of ptr_lea—it
turns a virtual pointer into a persistent one. While these are
done manually in our implementation, we plan to implement
compiler support to emit these calls automatically.

FOT management is handled by 1ibtwz. While a lookup
in the FOT is a simple array-indexing operation, a store may
require adding to the FOT. To avoid duplicate entries, 1ibtwz
walks the FOT looking for a compatible entry. If one is not
found, it atomically reserves a new entry and fills it (flush-
ing cache-lines to persist it) before storing the pointer. The
ptr_store operation is less common than ptr_load, and in
the future we may include additional caching metadata that
would speed-up the FOT walk (such as storing recent IDs).

Translating pointers has a small overhead (§ 5) and the
result can be cached. Twizzler improves performance via a
per-object cache of prior translations. The common case, intra-
object pointers, does not require an external lookup and is
implemented as a simple bitwise-or operation.

USENIX Association

2020 USENIX Annual Technical Conference 69

3.4 Security and Access Control

Twizzler’s focus on memory-based objects requires that we de-
sign the security model around hardware-based enforcement,
where the MMU checks each access. This design is inevitable
in a data-centric OS, since the kernel is not involved in every
memory access. The kernel merely specifies the access rights
when mapping an object and then relies on the hardware to
enforce those rights with a low overhead.

A key design choice we make is late-binding on security.
Applications request access to an object with permissions that
they desire; if they access the object in only allowed ways
(e.g., only reading a read-only object), no fault occurs. This
is because when we map an object (via a view), the kernel is
not immediately involved, and so cannot check access rights
for a particular access at the time the mapping is setup. Per-
forming an access rights check on time of first access does not
make sense either, as it associates a specific access (that might
be allowed) with a permissions error. For example, if a pro-
gram reads object A, and that program is allowed to read A, it
should be allowed to perform the read even if it requested read-
write access to the object. This late-binding enables simpler
programs that need not worry about elevating access rights
through remapping data objects. Programs can make progress
without knowing in advance the permissions of the objects
they might access, thus enabling the reuse of the OS’s access
control mechanism in applications. We will show the flexibil-
ity of this in Section 4, wherein we add access control to a
program by changing only a few lines of code.

Threads run in a security context [8,25,44], which contains
a list of access rights for objects and allows the kernel to de-
termine the access rights of programs. Using these contexts,
Twizzler is able to provide analogues to groups and owners
in Untx while providing more fine-grained access control
if necessary. Unlike past exploration into security contexts,
data-centric OSes offer an advantage in simplicity. A security
context abstraction in a Unix-like OS needs to maintain ac-
cess rights to a set of fundamentally different things (such as
paths, virtual memory locations, and system calls). Instead,
Twizzler’s security contexts specify access rights to an object
via IDs instead of virtual addresses. This also makes security
contexts persistent, allowing us to use them as the primary
way we assign security roles to threads.

Security contexts are implemented via virtualization hard-
ware that maps virtual memory to an intermediate “object
space” which specifies the access rights, which is then mapped
to physical memory [9]. This reduces the number of page-table
structures and mappings, as threads in the same security con-
text can share the same page-tables for each object.

3.5 Crash Consistency

Twizzler provides primitives for building crash-consistent data
structures. At a low level, it provides a mechanism for writing

back cache-lines and appropriate fences. Applications use
these primitives today outside of Twizzler to build up larger,
more complex support for crash-consistent data structures.

Our goal is to provide low level primitives without restrict-
ing programs or prematurely prescribing particular solutions.
There is a wealth of research on crash-consistent data struc-
tures for NVM [15, 16, 24,46,50-53,65], but it is still in flux.
Of course, Twizzler manages system data structures, such as
FOT entries, views, efc., in a crash-consistent manner using
the aforementioned primitives, locking, and fencing.

Twizzler also provides a transactional-persistent logging
mechanism. Programmers can write TXSTART-TXEND blocks
to denote transactions and TXRECORD statements to record pre-
changed values. This is similar to the mechanism provided by
PMDK [58]. If applications need more complex transactions
using different logging mechanisms, they can use libraries.

Twizzler provides a mechanism for restarting threads when
power is restored following a crash. Since views are persistent
objects, all mapped objects during a thread’s execution are
known across power cycles, and are mapped back in. The
thread is then started at a special _resume entry point, allowing
the program to handle the power failure in an application-
specific manner with access to the state of the program (data
segment, heap, etc.) as it was when power was cut.

3.6 Implementation

Twizzler’s kernel is similar to many microkernels, providing
a small set of key primitives. It is 5,500 lines of architecture-
independent code and 5,700 lines of architecture-dependent
CPU driver code. The primary complexity in the system is
implemented in userspace, as the design of the programming
model greatly simplifies the kernel. Twizzler is open-source;
more information can be found at https://twizzler.io.
We also built a prototype of Twizzler by modifying the
FreeBSD 11.0 kernel before implementing our standalone ker-
nel. This was done both to more rapidly verify our design and
to provide a prototyping environment for developers to write
code for Twizzler in a familiar environment. We added Twiz-
zler services to FreeBSD by adding system calls, modifying
the fault-handling logic, and distinguishing Twizzler threads
from FreeBSD threads. This is also a testament to the simplic-
ity of the kernel in our model, since FreeBSD was relatively
easy to modify to support the Twizzler userspace. However,
the FreeBSD prototype is limited by its need to coordinate
with FreeBSD’s Unix services, thus the standalone kernel is
more efficient and simpler, and provides a better environment
for researching kernel design changes in the face of NVM.

4 Evaluation

Our primary goals for evaluating Twizzler were:
1. Show that Twizzler meets the needs of a data-centric OS
in enabling programs to directly access persistent data.

70 2020 USENIX Annual Technical Conference

USENIX Association

https://twizzler.io

2. Demonstrate that the programming model we defined
provides sufficient power to easily and effectively build
real applications with NVM in mind.

3. Measure the performance of our system to understand
where we gain and lose performance.

We approached these goals two ways: porting existing soft-
ware (SQLite) and writing new software for Twizzler. The first
demonstrates both the generality of the programming environ-
ment (legacy software can be easily ported) and the potential
performance gains to be had even for legacy software. The sec-
ond demonstrates the true power of Twizzler’s programming
model and allows us to explore the consequences of our design
choices fully without being constrained by legacy designs.

We built three pieces of new software: a hash-table based
key-value store (KVS), a red-black tree data structure, and a
logging daemon. Each had different characteristics and goals,
and together they demonstrate the flexibility that Twizzler of-
fers in allowing simple implementation, nearly-free access
control, and the ability to directly express complex relation-
ships between objects. Using our KVS and red-black tree code,
we ported SQLite (a widely used SQL implementation) to
Twizzler along with a YCSB [17,29] driver (a common bench-
mark), allowing us to explore Twizzler’s model in a larger,
existing program that would let us study the performance of
Twizzler in a complex system that stores and processes data.
We present the performance of SQLite and our new software,
along with microbenchmarks, in Section 5.

4.1 Case Study: Key-Value Store

We implemented a multi-threaded hash-table based key-value
store (KVS), called twzkv, to study cross-object pointers and
our late-binding of access control. Our KVS supports insert,
lookup, and delete of values by key (both of arbitrary size),
and hands out direct pointers to persistent data during lookup.
During insert, it copies data into a data region before indexing
the inserted key and value. We built twzkv in multiple phases
to study how our system handles changing requirements.

We built twzkv in roughly 250 lines of C. Handing out
direct pointers into data was trivial to implement with cross-
object pointers, requiring only a call to ptr_lea during lookup.
The initial implementation maintains two objects, one for data
and one for the index. The complexity typically involved when
storing both index and data in a single, flat file is not justified
in a programming model where we can express inter-object
relationships directly at near-zero cost in complexity or perfor-
mance. In our case, a pointer from the index object to the data
object (such as an entry in the hash table) can be written with
a single call to ptr_store. This, combined with the simple
requirements for an in-memory NVM KVS, resulted in a small
implementation that was nonetheless a usable KVS.

Extending Requirements. Next, we added functionality to
protect values with access control. We wanted to keep handing
out direct pointers to data during lookup and to keep twzkv a

00 |
24 |5 o

Index (Io) Data (Do) Data (Dz) Index (Il)
Figure 3: Cross-object pointers in twzkv.

library (as opposed to a service). Meeting these goals on an
existing system would be difficult without adding significant
complexity, such as reimplementing a lot of Twizzler’s pointer
framework or implementing manual, redundant access control.

In Twizzler, implementing access control in twzkv involved
having the index refer to data in multiple data objects, assign-
ing those objects different access rights, and allocating from
those objects depending on desired access rights. We were
able to implement this while preserving the original code due
to the transparent nature of Twizzler’s cross-object pointers.
Now, when inserting, the application indicates the data object
into which to copy the data, as shown in Figure 3.

By supporting multiple data objects, twzkv can leverage
the OS’s access control, sidestepping complexity. Unrestricted
data can go in Dy (Figure 3), whereas restricted data can go in
D,. Since each object has distinct access control, a user can
set the objects’ access rights, then decide where to insert data
according to policy. The indexes point to the correct locations
regardless of the access restrictions of the data objects, and
twzkv still hands out direct pointers, but a user that is restricted
from accessing data in D will not be able to dereference the
pointer. A further extension is to support secondary indices,
as shown in Figure 3, enabling alternative lookup methods
and limiting data discovery with index object access control.
This extension is easy to implement on Twizzler.

Comparison to Unix Implementation. To compare with
existing techniques, we built a similar KVS using only Unix
features (called unixkv). It also separates index and data, but
it must manually compute and construct pointers. Supporting
multiple data objects was complex in unixkv, because we had
to store and process file paths in the index and store references
to paths for pointers, increasing overhead and code complex-
ity by 36%—a lot for an implementation with relatively few
pointers—ijust to reimplement Twizzler’s support. The extra
complexity also included code to manually open, map, and
grow files, much of which Twizzler handles internally. De-
velopment time was extended by bugs that were not present
when developing twzkv, due to the manual pointer process-
ing. While twzkv gains transparent access control, unixkv
does not due to the lack of on-demand object mapping and
late-binding of security. Instead, unixkv needs to know object
permissions before mapping, a restriction that limits the ability
to reuse OS access control, something that twzkv could lever-
age through late-binding on security (§ 3.4)'. Other frame-
works like PMDK that do not integrate access control and
late-binding into their models have similar limitations.

Tunixkv could trap segmentation faults to do this, but that would be
application-specific, difficult, and would reimplement Twizzler functionality.

USENIX Association

2020 USENIX Annual Technical Conference 71

4.2 Case Study: Red-Black Tree

)

To evaluate the process of writing persistent, “pointer-heavy’
data structures, we implemented a red-black tree in C using nor-
mal pointers (ramrbt) in 100 lines of code, and evolved it for
persistent memory in two ways: manually writing base+offset
style pointers, as current systems require (unixrbt), and us-
ing Twizzler (twzrbt). Porting existing data structure code
to persistent memory will be common during the adoption
of NVM, and much of the complexity therein comes from
dealing with persisting virtual addresses [47].

In developing unixrbt, we found 83 locations where we
had to perform pointer arithmetic for converting between per-
sistent and virtual addresses. Consider an expression such as
root->left->right = foo. Inserting calls to translate this
directly results in L(L(root)->left)->right = C(£foo),
where L converts to a virtual address and C converts back,
which is heavily obfuscated and took more development time
than writing ramrbt in the first place due to debugging.

We built twzrbt like unixrbt, annotating pointer stores
and dereferences. However, unixrbt used an application-
specific solution for pointer management; if other applications
wanted to use the data structures created by unixrbt, they
would have to know the implementation details of the pointer
system (or share the implementation, thus reimplementing
much of Twizzler’s library). Additionally, due to Twizzler en-
abling improved system-wide support for cross-object pointers,
these transformations can be made automatic.

Unlike twzrbt, unixrbt’s tree is limited to a single persis-
tent object; a limitation that prevents the tree from growing
arbitrarily, does not allow it to directly encode references to
data outside the tree object, and does not gain it the bene-
fits of cross-object data references that were discussed above
for twzkv. Adding support for this to unixrbt would require
modifying the core data structures to include paths and sig-
nificantly altering the code, increasing its length by at least a
factor of 2, whereas twzrbt gets this functionality for free.

Another advantage of twzrbt is reduced support code com-
pared to unixrbt; unixrbt needed code to manage and grow
files and mappings, while we implemented twzrbt as simple
data structure code with Twizzler managing that complexity.
The additional error handling code and pointer validity checks
in unixrbt (handled automatically in Twizzler) increased de-
velopment time and implementation complexity.

4.3 Porting SQLite

We ported SQLite to Twizzler to demonstrate our support
for existing software and to evaluate the performance of a
SQLite backend designed for Twizzler. We used our POSIX
support framework, a combination of musl and our library
twix, to support much of SQLite’s POSIX use. We took a
modified version of SQLite called SQLightning that replaced
SQLite’s storage backend with a memory-mapped KVS called

LMDB [14]. We chose this port because LMDB is imple-
mented with mmap’d files as the primary access method and
hands out direct pointers to data as one would expect from an
effectively designed NVM KVS”. Since LMDB’s SQLight-
ning port already replaces the storage backend with calls to
LMDB, we ported SQLite to Twizzler by taking our KVS and
red-black tree code and implementing enough of the LMDB in-
terface for SQLite to run using Twizzler as a backend. Outside
of the B-tree source file few changes were needed for SQLite
to run on Twizzler. We further ported our modified SQLite
backend to PMDK to compare directly with a commonly used
NVM programming library that supports persistent pointers.

We also ported a C++ YCSB driver [29], which required
porting the C++ standard template library (STL). Since we had
already ported a standard C library, the C++ STL was easily
ported, demonstrating the ease of porting software to Twizzler.
We have also ported some existing Untx utilities (such as bash
and busybox), which largely require only recompiling to run
on Twizzler. Of course, to gain all of the benefits of Twizzler,
programs will be need to be written with NVM in mind (but
this is true regardless of the target OS).

Our implementation of the LMDB interface corroborated
our experience from the KVS case study: much of the com-
plexity in storage interfaces and implementations comes from
the separation between storage and memory. This has been
studied before (as we will elucidate in Section 6), but the
advent of NVM changes the game significantly by allowing
programmers to think directly via in-memory data structures.
The result is that interfaces like cursors in a KVS become
redundant. We implemented to this interface for LMDB, but
the functions were largely wrappers around storing a pointer
to a B-tree node and traversing the tree directly without sep-
arate loads and copies. The result was an extremely simple
implementation (500 LoC) that still met the required interface.
Future software for NVM can use Twizzler’s programming
model to more effectively write software that eschews the need
for complexity forced by the two-tier storage hierarchy.

4.4 Discussion

Although these implementations were simple, they represent
the applications and data structures we expect in a data-centric
system. Pointers we can directly use in our programming lan-
guages make computing over persistent data almost transpar-
ent, allowing simple implementations that are nevertheless
easy to evolve as requirements change.

Not only does twzkv have access control, but it enables con-
current access via cross-object pointers. Applications can load
indexes for multiple databases without needing to worry about
address space layout and without writing complex pointer
management code that would be required by an implemen-
tation using mmap. We were able to provide access control
without a single line of code in twzkv dedicated to checking

2These are not persistent pointers, however, unlike Twizzler’s.

72 2020 USENIX Annual Technical Conference

USENIX Association

or enforcing access rights. Instead, we relied on the system’s
access control, something not possible with other frameworks
that do not support late-binding of access rights and do not
consider security as part of their programming model. Twiz-
zler thus removes the need for applications to manage their
own access control, which increases the security of the system
by divesting programmers from the responsibility of getting
it right. Similar functionality for current systems would tradi-
tionally require separation of the library and application into a
client-server model, but that additional overhead is unneeded
here and inappropriate on a persistent memory system.
Although twzrbt and twzkv had different densities of
pointer operations, twzrbt being “pointer-heavy” and twzkv
being “pointer-light”, Twizzler improved the complexity of
both over manual implementation and improved flexibility
over existing persistent pointer methods. Using a system-wide
standardized approach to pointer translations not only enables
better compiler and hardware support, but it also improves
interoperability; because they share a common framework,
twzkv could use the red-black tree code and data with ease,
and even interact with the SQLite database even though they
were written separately without that goal in mind. The position-
independence afforded by this model enables both compos-
ability and concurrency, while also simplifying programming
on persistent data to a natural expression of data structures.

Non-Shared-Memory Programs. To push the limits of our
model and show that Twizzler does not constrain program-
mers into a shared-memory model, we implemented a log-
ging framework (similar to syslogd). The logging daemon,
logboi, can receive log messages either synchronously or
asynchronously. In both cases, the interface is the same, but
synchronous logging uses shared-memory abstractions while
asynchronous logging relies on message-passing semantics.
For synchronous logging the thread switches security con-
texts, which is made possible by decoupling address spaces
and security. The call to the logging framework then updates
the log and returns. An asynchronous logging event sends
data to the logging thread via a stream object (a standard API
provided by Twizzler) that logboi and the application share.
The choice of asynchronous or synchronous is left to the pro-
grammer; synchronous can have lower latency and predictable
behavior while asynchronous offloads processing to logboi.

5 Performance

Our evaluation’s primary focus is on the benefits of the pro-
gramming model, showing new functionality with reduced
complexity at an acceptable overhead. Nevertheless, there are
many cases where we see significant improvement (such as
SQLite) because the programming model has less overhead,
and our pointer design is space efficient and fast to translate.

We measured the performance of our KVS and red-black
tree, performed microbenchmarks, and evaluated the Twizzler

Table 1: Latency of common Twizzler operations.
Pointer Resolution Action | Average Latency (ns)

Uncached FOT translation 279 £ 0.1
Cached FOT translation 32+ 0.1
Intra-object translation 0.4 + 0.1

Mapping object overhead 494 + 0.2

port of SQLite against Linux (Ubuntu 19.10) instances of
SQLite, SQLightning, and our port of SQLite to PMDK. Tests
ran on an Intel Xeon Gold 5218 CPU running at 2.30 GHz
with 192 GB of DRAM and 128 GB of Intel Persistent DIMMs.
We compiled all tests against the musl C library instead of
glibc because Twizzler uses musl to support UNIX programs.

All Linux tests used the NOVA filesystem [69] (a filesystem
optimized for NVM) on the NVDIMMs, mounted in DAX
mode. This enabled direct access to the persistent memory
without a page-cache interposing on accesses.

5.1 Microbenchmarks

Table 1 shows common Twizzler functions’ latencies, includ-
ing pointer translation. The overhead shown for resolving
pointers does not include dereferencing the final result, since
that is required regardless of how a pointer is resolved. The
first row shows the latency for resolving pointers to objects the
first time. Twizzler makes a further optimization by caching
the results of translations for a given FOT entry. Each succes-
sive time that FOT entry is used to resolve a pointer, the result
of the original translation is returned immediately, improving
the latency as shown on the “cached” row of Table 1. Note that
the low latency of these results is expected; the performance
critical case of these functions’ use is repeated calls, and since
these operations are simple, they fit within the processor cache.
Twizzler translates intra-object pointers by first checking
if the pointer is internal and, if so, adding the object’s base
address to it—the same operation required for application-
specific persistent pointers. The expanded programming
model offered by Twizzler makes this overhead minor rel-
ative to the high costs for persistent data access on current
systems, which have high-latency for equivalent operations.
We compared our pointer translation to Unix functions. Re-
solving an external pointer with an ID corresponds roughly
to a call to open("id"), which has a latency of 1036 & 15 ns.
The comparison is not exact, of course; the pointer resolution
also maps objects, and the call to open must handle file system
semantics. However, the direct-access nature of NVM results
in pointer translation achieving the same goal as opening a
file does today. The pointer operations in Twizzler accom-
plish much of the same functionality as the heavier-weight
I/O system calls on Untx with more utility and less overhead.
A more direct comparison is object mapping, which has
low latency compared to mmap (658.7 £ 12.7 ns—a 13.3x
speedup) though the two have similar functionality. Since map-

USENIX Association

2020 USENIX Annual Technical Conference 73

2.0 1 ESQL-Native ~ HSQL-PMDK
2 _ SQL-LMDB BSQL-Twizzler
xg 1.5
C N
o=
= ©
8 £ 1.0 1

o
&<
= 054

0.0 -

A B C D E F
YCSB Workload Specification

Figure 4: YCSB throughput, normalized (higher is better).

ping occurs entirely in userspace, cache pollution is reduced.
While both mmap and Twizzler’s mapping require page-faults
to occur before the data is actually mapped, this overhead is
similar in Twizzler and Unix, and so is not shown.

52 SQLite

‘We ran four variants of SQLite, three on Linux and one on
Twizzler, and compared their performance: “SQL-Native” (un-
modified SQLite), “SQL-LMDB” (SQLite using LMDB as
the storage backend), “SQL-PMDK” (SQLite using our red-
black tree on PMDK), and “SQL-Twizzler” (our port of SQLite
running on Twizzler). SQL-Native was run in mmap mode so
that both it and SQL-LMDB used mmap to access data. We
ran each on the same hardware and normalized the results.

Figure 4 shows the three variants’ throughput under stan-
dard YCSB workloads. The performance improvement of the
LMDB and Twizzler variants over SQL-Native is likely due
to handing SQLite direct pointers to data. However, in the
Twizzler case we get an additional benefit of operating on data
structures directly while LMDB has an abstraction cost.

Figure 5 shows the latency of queries on a one million row
table. This is common data processing—loading and then
examining data in a variety of ways. We measured the per-
formance of calculating the mean and median, sorting rows,
finding a specific row, building an index, and probing the index.
SQL-Twizzler had similar performance to SQL-LMDB and
SQL-Native despite comparing its extremely simple storage
backend to optimized B-tree backends (that benefit from scan
operations). As a more direct comparison, SQL-Twizzler sig-
nificantly out-performed SQL-PMDK in most tests. PMDK’s
pointer operations are more expensive than Twizzler’s, requir-
ing up to two hash table lookups per translation [5]. Addition-
ally, PMDK’s pointers are 128 bits, while Twizzler does not
increase pointer size. Increased pointer size results in signifi-
cantly worse cache performance, especially in a pointer-heavy
data structure like a persistent red-black tree.

5.3 Key Value Store

We compared twzkv to unixkv by inserting one million dis-
tinct key-value pairs, followed by looking up each in-order.

BSQL-Native
4 SQL-LMDB

ESQL-PMDK
BSQL-Twizzler

w
1

N
1

Query Latency
(normalized)

Sort Mean Median Index Find Probe
Query Operation

Figure 5: Query latency, normalized (lower is better).

Nanoseconds

750 Bunixkv twzkv

500

1 |
0

Insert Lookup Insert (m) Lookup (m
Figure 6: Latency of insert and lookup in twzkv and unlxkv.
An “(m)” indicates support for multiple data objects.

The inserted items were 32-bit keys and 32-bit values, chosen
to reduce the overhead of data copying since we were focusing
on pointer translation overhead. Both were compared under
two modes, single-data-object and multiple-data-objects. Both
KVSes translated between virtual and persistent addresses
when storing and retrieving data, but for multiple-data-objects,
we allow for storing the data in an arbitrary object.

Figure 6 shows the latency of lookup and insert, demonstrat-
ing that not only is the memory-based index and data object
structure that can hand out direct data pointers sufficiently low
latency to take advantage of NVM, but the additional over-
head of cross-object pointers is minimal. Compared to unixkv,
twzkv has minimal overhead in the single-object case, and
improves lookup performance in the multiple-object case. The
minor overhead in other cases comes with improved flexibility,
simplicity, and access control support (unixkv does not sup-
port access control). Finally, multithreaded access on twzkv
and unixkv did not improve performance; despite the pointer
translations, they ran at memory bandwidth (for NVM).

5.4 Red-Black Tree

We measured the latency of insert and lookup of 1 million
32-bit integers on both unixrbt and twzrbt. The insert and
lookup latency of twzrbt was 528 43 ns and 251.8 0.5 ns,
while insert and lookup latency of unixrbt was 515 +2 ns
and 213 &1 ns. The modest overhead comes with significantly
improved flexibility, as unixrbt does not support cross-object
trees, and less support code (unixrbt manually implements
mapping and pointer translations). Note that even though there
is lookup overhead in twzrbt, this overhead did not predict the
results of a larger program—the SQL-Twizzler port used this
red-black tree, and saw performance benefits over block-based
implementations.

74 2020 USENIX Annual Technical Conference

USENIX Association

6 Related Work

Twizzler’s design is shaped by fundamental OS research [12,
18,26-28,41,42], which, while approaching similar topics
described in Section 2, often did not consider both design
requirements simultaneously, resulting in an incomplete pic-
ture for NVM. Recent research on building NVM data struc-
tures [15, 16,22,37,45, 65], often focuses on building data
structures that provide failure atomicity and consistency. In
contrast, we explore how NVM affects programming models.
We draw from recent work on providing OS support for NVM
systems [11] and work providing recommendations for NVM
systems [48], integrating object-oriented techniques and sim-
plified kernel design to provide high-performance OS support
for applications running on a single-level store [4,61].

Multics was one of the first systems to use segments to par-
tition memory and support relocation [6, 19]. It used segments
to support location independence, but still stored them in a file
system, requiring manual linkage rather than the automated
linkage in Twizzler. Nonetheless, Multics demonstrated that
the use of segmenting for memory management can be a viable
approach, though its symbolic addresses were slow.

The core of Twizzler’s object space design uses concepts
from Opal [12], which used a single virtual address space
for all processes on a system, making it easier to share data
between programs. However, Opal was a single-address space
OS, which is insufficient for NVM [9,10], and it did not address
issues of file storage and name resolution. It also required a
file system, since there was no way to have a pointer refer to an
object with changing identity, whereas our approach removes
the need for an explicit file system. Other single-address space
OSes, such as Mungi [34], Nemesis [56], and Sombrero [63],
show that single address spaces have merit, but, like Opal,
did not consider how the use of NVM would alter their de-
sign choices; in particular, how the use of fixed addresses
results in a great deal of coordination that is unnecessary in
our approach. OSes such as HYDRA [68] provide functional-
ity similar to cross-object pointers; however, in Twizzler, we
extend their use from procedures-referencing-data to a more
general approach. Furthermore, they required heavy kernel
involvement, an approach incompatible with our design goals.

Single-level stores [21, 60, 62] remove the memory versus
persistent storage distinction, using a single model for data at
all levels. While well-known, “little has appeared about them
in the public literature” [60], even since the EROS paper. Our
work is partially inspired by Grasshopper [21], AS/400, and or-
thogonal persistence systems, but while these are designed to
provide an illusion of persistent memory, Twizzler is built for
real NVM and focuses on providing a truly global object space
with global references without cross-machine coordination.
Clouds [20] implemented a distributed object store in which
objects contained code, persistent data, and both volatile and
persistent heaps. Our approach uses lighter-weight objects,
allowing direct access to objects from outside, unlike Clouds.

Software persistent memory [33], designed to operate within
the constraints of existing systems, built a persistent pointer
system using explicit serialization without cross-object refer-
ences, in contrast to Twizzler. Meza [49] suggested hardware
manage a hybrid persistent-volatile store with fine-grained
movement to and from persistent storage. Since persistence in
Twizzler is to NVM, we need not interpose on movement be-
tween storage and memory, instead simply managing memory
mappings of persistent objects, reducing OS overhead.
Recently, several projects have considered the impact of
non-volatile memories on OS structure. Bailey, et al. [4] sug-
gest a single-level store design. Faraboschi, et al. [30] discuss
challenges and inevitable system organization arising from
large NVM, and we follow many of their recommendations.
The Moneta project [11] noted that removing the heavyweight
OS stack dramatically improved performance. While Moneta
focused on I/O performance, not on rethinking the system
stack, we leverage their approach to reduce OS overhead as
much as possible, even when the OS must intervene. Lee and
Won [43] considered the impact of NVM on system initializa-
tion by addressing the issue of system boot as a way to restore
the system to a known state; we may need to include similar
techniques to address the problem of system corruption.
IBM’s K42 [42] inspired the high level design of Twiz-
zler. The object-oriented approach to designing a micro or
exokernel used in K42 is an efficient design for implementing
modular OS components. Like K42, Twizzler lazily maps in
only the resources that an application needs to execute. Sim-
ilar techniques for faulting-in objects at run-time have been
studied [36]. Communication between objects in Twizzler is,
in part, implemented as protected calls, similar to K42.
Emerald [39,40] and Mesos [35] implemented networked
object mobility, which we can also support. Emerald imple-
mented a kernel, language, and compiler to allow objects mo-
bility using wrapper data structures to track metadata and
presenting objects in an object-oriented language, impacting
performance via added indirection for even simple operations.
The Twizzler object model was shaped by NV-heaps [15],
which provides memory-safe persistent objects suitable for
NVM and describes safety pitfalls in providing direct access
to NVM. While they have language primitives to enable per-
sistent structures, Twizzler provides a lower-level and unin-
hibited view of objects like Mnemosyne [65], allowing more
powerful programs to be built. Languages and libraries may
impose further restrictions on NVM use, but Twizzler itself
does not. Furthermore, Twizzler’s cross-object pointers al-
low external data references by code, whereas NV-heap’s and
DSPM’s [59] pointers are only internal. Existing work beyond
Multics on external references shows and recommends hard-
ware support [58,66], but provides a static or per-process view
of objects, unlike Twizzler, limiting scalability and flexibility.
Projects such as PMFS [24] and NOVA [69] provide a file
system for NVM. Twizzler, in contrast, provides direct NVM
access atop of a key-value interface of objects. Although Twiz-

USENIX Association

2020 USENIX Annual Technical Conference 75

zler does not supply a file system, one can be built atop it.
While NOVA and PMFS provide direct access to NVM, NOVA
adds indirection with copies. Both use mmap (which falls short
as discussed above) and, unlike Twizzler, require significant
kernel interaction when using persistent memory.

Our kernel that “gets out of the way” is influenced by sys-
tems such as Exokernel [28] and SPIN [7], both of which drew
on Mach [2]. In Exokernel, much of the OS is implemented in
userspace, with the kernel providing only resource protection.
Our approach is similar in some respects, but goes further in
providing a single unified namespace for all objects, making it
simpler to develop programs that can leverage NVM to make
their state persistent. In contrast, SPIN used type-safe lan-
guages to provide protection and extensibility; our approach
cannot rely upon language-provided type safety since we want
to provide a general purpose platform.

7 Future Work

Compiler and Hardware Support. Clean-slate NVM ab-
straction reopens the possibility of coevolving OSes, compil-
ers and languages, and hardware. Standardized OS support
for cross-object pointers enables compiler support more ef-
fectively than application-specific solutions [47] or simple
libraries [58]. Twizzler’s pointer translation functions are sim-
ple enough to be automatically emitted by a compiler. Simi-
larly, designing an OS for cross-object pointers allows us to
better state our needs to hardware, which can alleviate perfor-
mance overheads for pointer translation [66, 67].

Security. Although we discussed the Twizzler security
model briefly, there is still much to do. The current model
provides access control, a basic ability to define and assign
roles based on security contexts, and simple sub-process fault
isolation through the ability to switch security contexts. We
are exploring a flexible security model that allows program-
mers to easily trade-off between security, transparency, and
performance using capability-based verification. For example,
we are implementing a call-gating mechanism that will allow
us to restrict control-flow transfers between application com-
ponents, improving the security against malicious components
and reducing the possibility of memory-corrupting bugs.

Networking and Distributed Twizzler. One of the key
principles of Twizzler is to focus the programming model
on data and away from ephemeral actors such as processes
and nodes. This is enabled by our identity-based references
that decouple location from references, and by ensuring all the
context necessary to understand these relationships is stored
with the data. Because our data relationships are independent
of the context of a particular machine, applications can more
easily share data. This easy sharing, combined with a large
ID address space, motivates a truly global object ID space.
We are building a networking stack and support for a dis-
tributed object space into Twizzler. Our networking stack is

based around extensive use of hardware virtualization in mod-
ern NICs. This design, which is in use in existing kernel-
bypass strategies, will mesh well with our core OS design of
reducing kernel interposition. At a higher level, we are con-
sidering how distributed applications change in our model.
For example, an increase in data mobility facilitated by our
location-independent data references and identities means that
we can manifest both data and code where they are needed
without complex marshalling, turning distributed computa-
tion into a rendezvous problem. We plan to build distributed
applications atop Twizzler to demonstrate this approach.

Of course, for compatibility we will provide a traditional
sockets-based networking stack. However, we can use existing
userspace libraries that, e.g., implement TCP in userspace.
Because we implemented our POSIX compatibility library
in userspace, applications can gain many benefits afforded
by kernel-bypass networking frameworks while still using
traditional socket interfaces.

8 Conclusion

Operating systems must evolve to support future trends in
memory hierarchy organization. Failing to evolve will rele-
gate new technology to outdated access models, preventing it
from reaching full potential, and making it difficult for OSes
to evolve in the future. Twizzler shows a way forward: an OS
designed around NVM that provides new, efficient, and easy to
use semantics for direct access to memory. Cross-object point-
ers in Twizzler allow programmers to easily build composable
and extensible applications with low overhead by removing the
kernel from persistent data access paths, thereby improving the
flexibility and performance. Our simpler programming model
improved performance despite the (small) pointer translation
overhead. Even a memory hierarchy with large RAM but with-
out persistent memory benefits from our design by enabling
programs to operate on large, shared, in-memory data with
ease. Our programming model is easy to work with compared
to existing systems, and we were able to both quickly proto-
type real applications with advanced access control features
and port existing software (SQLite). Twizzler will give us a
system from which we can build a full NVM-based OS around
a data-centric design and explore the future of applications,
OSes, and processor design on a new memory hierarchy.

Availability Twizzler is available at twizzler.io.

Acknowledgements

This work was supported in part by the National Science Foun-
dation (grants 1IP-1266400, IIP-1841545), a grant from Intel
Corporation, and the industrial members of the UCSC Center
for Research in Storage Systems. We thank our shepherd, Yu
Hua, the anonymous reviewers, and the members of the Stor-
age Systems Research Center for their support and feedback.

76 2020 USENIX Annual Technical Conference

USENIX Association

twizzler.io

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

The musl C library. https://musl.libc.org/.

Mike Accetta, Robert Baron, William Bolosky, David
Golub, Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A new kernel foundation for UNIX devel-
opment. In Proceedings of the Summer 1986 USENIX
Technical Conference, pages 93—112, Atlanta, GA, 1986.
USENIX.

Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S.
Hofmann, Mark W. Storer, Carlos Maltzahn, Ethan L.
Miller, and Scott A. Brandt. LiFS: An attribute-rich file
system for storage class memories. In Proceedings of the
23rd IEEE / 14th NASA Goddard Conference on Mass
Storage Systems and Technologies, College Park, MD,
May 2006. IEEE.

Katelin Bailey, Luis Ceze, Steven D. Gribble, and
Henry M. Levy. Operating system implications of fast,
cheap, non-volatile memory. In Proceedings of the 13th
Workshop on Hot Topics in Operating Systems (HotOS
’11), May 2011.

Piotr Balcer. An introduction to pmemobj (part 1) -
accessing the persistent memory. https://pmem.io/
2015/06/13/accessing-pmem.html, 2015.

A. Bensoussan, C. T. Clingen, and R. C. Daley. The Mul-
tics virtual memory: Concepts and design. In Proceed-
ings of the 2nd ACM Symposium on Operating Systems
Principles (SOSP ’69), 1969.

Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Giin Sirer, Marc E. Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility, safety,
and performance in the SPIN operating system. In Pro-
ceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP ’95), December 1995.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting applications into reduced-
privilege compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI "08), pages 309-322, Berkeley,
CA, USA, 2008. USENIX Association.

Daniel Bittman, Peter Alvaro, Darrell D. E. Long, and
Ethan L. Miller. A tale of two abstractions: The case
for object space. In Proceedings of HotStorage '19, July
2019.

Daniel Bittman, Peter Alvaro, and Ethan L. Miller. A
persistent problem: Managing pointers in NVM. In Pro-
ceedings of the 10th Workshop on Programming Lan-
guages and Operating Systems (PLOS ’19), pages 30-37,
October 2019.

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

Adrian M. Caulfield, Arup De, Joel Coburn, Todor
Mollov, Rajesh Gupta, and Steven Swanson. Moneta:
A high-performance storage array architecture for next-
generation, non-volatile memories. In Proceedings of
The 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’10), pages 385-395,
2010.

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-space operating system. ACM Transactions on
Computer Systems, 12(4):271-307, November 1994.

Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng
Shen, and Youfeng Wu. Efficient support of position
independence on non-volatile memory. In Proceedings
of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’17),pages 191-203, New
York, NY, USA, 2017. ACM.

Howard Chu and Symas. Lightning memory-mapped
database (part of the OpenLDAP project). https://
symas.com/1lmdb/.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swan-
son. N'V-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Pro-
ceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’11), pages 105-118, March
2011.

Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (SOSP ’09),
pages 133-146, Big Sky, MT, October 2009.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC ’10),
pages 143—-154, New York, NY, USA, 2010. ACM.

Fernando J. Corbaté and Victor A. Vyssotsky. Introduc-
tion and overview of the Multics system. In Proceedings
of the November 30 — December 1, 1965, fall joint com-
puter conference, part I, pages 185-196. ACM, 1965.

Robert C. Daley and Jack B. Dennis. Virtual memory,
processes, and sharing in MULTICS. Communications
of the ACM, 11(5):306-312, May 1968.

Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque
Ahamad, and Umakishore Ramachandran. The Clouds

USENIX Association

2020 USENIX Annual Technical Conference 77

https://musl.libc.org/
https://pmem.io/2015/06/13/accessing-pmem.html
https://pmem.io/2015/06/13/accessing-pmem.html
https://symas.com/lmdb/
https://symas.com/lmdb/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

distributed operating system. IEEE Computer, Novem-
ber 1991.

Alan Dearle, Rex di Bona, James Farrow, Frans
Henskens, Anders Lindstrém, John Rosenberg, and Fran-
cis Vaughan. Grasshopper: An orthogonally persistent
operating system. Computer Systems, 7(3):289-312,
June 1994.

Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High throughput persistent key-value store. In
Proceedings of the 36th Conference on Very Large
Databases (VLDB ’10), September 2010.

Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie.
Emerging Memory Technologies: Design, Architecture,
and Applications, chapter 2, pages 15-50. Springer,
2014.

Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys ’14), April 2014.

Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. SpaceJMP:
Programming with multiple virtual address spaces. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’16), pages
353-368, New York, NY, USA, 2016. ACM.

Dawson R Engler, Sandeep K Gupta, and M Frans
Kaashoek. AVM: Application-level virtual memory.
In Fifth Workshop on Hot Topics in Operating Systems
(HotOS °95), pages 72-77. IEEE, 1995.

Dawson R Engler and M Frans Kaashoek. Exterminate
all operating system abstractions. In Fifth Workshop
on Hot Topics in Operating Systems (HotOS °95), pages
78-83. IEEE, 1995.

Dawson R. Engler, M. Frans Kaashoek, and James
O’Toole, Jr. Exokernel: An operating system architecture
for application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Systems
Principles (SOSP °95), pages 251-266, December 1995.
Hewlett Packard Enterprise. YCSB-C.
https://github.com/HewlettPackard/
meadowlark/tree/master/extra/YCSB-C
https://github.com/basicthinker/YCSB-C,

2018.

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS ’15), Kartause Ittingen, Switzerland,
May 2015. USENIX Association.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,
and James W. O’Toole, Jr. Semantic file systems. In
Proceedings of the 13th ACM Symposium on Operat-
ing Systems Principles (SOSP "91), pages 16-25. ACM,
October 1991.

Burra Gopal and Udi Manber. Integrating content-based
access mechanisms with hierarchical file systems. In
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI °99), pages 265-278,
February 1999.

Jorge Guerra, Leonardo Marmol, Daniel Campello, Car-
los Crespo, Raju Rangaswami, and Jinpeng Wei. Soft-
ware persistent memory. In Proceedings of the 2012
USENIX Annual Technical Conference, 2012.

Gernot Heiser, Kevin Elphinstone, Stephen Russell, and
Jerry Vochteloo. Mungi: a distributed single address-
space operating system. Technical Report 9314, School
of Computer Science and Engineering, University of
New South Wales, November 1993.

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI ’11), pages
295-308, Berkeley, CA, USA, 2011. USENIX.

Antony L. Hosking and J. Eliot B. Moss. Object fault
handling for persistent programming languages: A per-
formance evaluation. In Proceedings of the Eighth An-
nual Conference on Object-oriented Programming Sys-
tems, Languages, and Applications (OOPSLA "93), pages
288-303, New York, NY, USA, 1993. ACM.

Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas
Moscibrod. Log-structured non-volatile main memory.
In Proceedings of the 2017 USENIX Annual Technical
Conference, pages 703717, Santa Clara, CA, June 2017.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the Intel Optane DC persistent memory module. arXiv,
abs/1903.05714, 2019.

78

2020 USENIX Annual Technical Conference

USENIX Association

https://github.com/HewlettPackard/meadowlark/tree/master/extra/YCSB-C
https://github.com/HewlettPackard/meadowlark/tree/master/extra/YCSB-C
https://github.com/basicthinker/YCSB-C

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black. Fine-grained mobility in the Emerald system.
ACM Transactions on Computer Systems, 6(1):109-133,
February 1988.

Eric Jul and Bjarne Steensgaard. Implementation of
distributed objects in Emerald. In Proceedings of Inter-
national Workshop on Object Orientation in Operating
Systems, pages 130-132. IEEE, 1991.

M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hector M. Bricefio, Russell Hunt, David Maz-
ieres, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application performance and
flexibility on exokernel systems. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Prin-
ciples (SOSP ’97), pages 52—-65, New York, NY, USA,
1997. ACM.

Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig.
K42: Building a complete operating system. In Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (EuroSys ’06),
pages 133-145, New York, NY, USA, 2006. ACM.

Dokeun Lee and Youjip Won. Bootless boot: Reducing
device boot latency with byte addressable NVRAM. In
2013 International Conference on High Performance
Computing, November 2013.

James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An OS abstraction
for safety and performance. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pages 49-64, GA, 2016.
USENIX Association.

Youyou Lu, Jiwu Shu, and Long Sun. Blurred persis-
tence: Efficient transactions in persistent memory. ACM
Transactions on Storage, 12(1), January 2016.

Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. Loose-
ordering consistency for persistent memory. In Pro-
ceedings of the 32nd IEEE International Conference on
Computer Design (ICCD ’14), pages 216-223. IEEE,
2014.

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim
Harris. Persistent memcached: Bringing legacy code to
byte-addressable persistent memory. In Proceedings of
the 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage ’17), Santa Clara, CA, 2017.
USENIX Association.

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Pankaj Mehra and Samuel Fineberg. Fast and flexible
persistence: The magic potion for fault-tolerance, scala-
bility and performance in online data stores. In Proceed-
ings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS ’04), January 2004.

Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao,
Yuan Xie, and Onur Mutlu. A case for efficient hard-
ware/software cooperative management of storage and
memory. In 5th Workshop on Energy-Efficient Design
(WEED ’13), June 2013.

Dushyanth Narayanan and Orion Hodson. Whole-system
persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’12), pages
401-500, March 2012.

Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan
Miller. Reducing NVM writes with optimized shadow
paging. In Proceedings of the 10th Workshop on Hot
Topics in Storage and File Systems (HotStorage ’18), July
2018.

Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman,
and Ethan L. Miller. SSP: Eliminating redundant writes
in failure-atomic NVRAMs via shadow sub-paging. In
Proceedings of the 52nd IEEE/ACM International Sym-
posium on Microarchitecture, October 2019.

Matheus Ogleari, Ethan L. Miller, and Jishen Zhao. Steal
but no force: Efficient hardware-driven undo+redo log-
ging for persistent memory systems. In Proceedings of
the 24th International Symposium on High-Performance
Computer Architecture (HPCA 2018), February 2018.

Yoann Padioleau and Olivier Ridoux. A logic file system.
In Proceedings of the 2003 USENIX Annual Technical
Conference, pages 99—112, San Antonio, TX, June 2003.

Aleatha Parker-Wood, Darrell D. E. Long, Ethan L.
Miller, Philippe Rigaux, and Andy Isaacson. A file by
any other name: Managing file names with metadata. In
Proceedings of the 7th Annual International Systems and
Storage Conference (SYSTOR ’14), June 2014.

Timothy Roscoe. Linkage in the Nemesis single ad-
dress space operating system. ACM SIGOPS Operating
Systems Review, 28(4):48-55, October 1994.

Andy Rudoff. Persistent memory programming. In
;Login: The Usenix Magazine, volume 42, pages 34-40.
USENIX Association, 2015.

Andy Rudoff et al. Persistent memory programming
library. http://pmem.io/nvml/, 2017.

USENIX Association

2020 USENIX Annual Technical Conference 79

http://pmem.io/nvml/

[59]

[60]

[61]

[62]

[63]

[64]

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 2017 Symposium on Cloud Computing (SoCC ’17),
page 323-337, New York, NY, USA, 2017. Association
for Computing Machinery.

Jonathan S. Shapiro and Jonathan Adams. Design evo-
lution of the EROS single-level store. In Proceedings of
the 2002 USENIX Annual Technical Conference, pages
59-72, Monterey, CA, June 2002. USENIX.

Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: A fast capability system. In Proceedings
of the Seventeenth ACM Symposium on Operating Sys-
tems Principles (SOSP "99), pages 170-185, New York,
NY, USA, 1999. ACM.

Eugene Shekita and Michael Zwilling. Cricket: A
mapped, persistent object store. Technical Report 956,
University of Wisconsin, August 1990.

Alan Skousen and Donald Miller. Using a single ad-
dress space operating system for distributed computing
and high performance. In Proceedings of the 18th IEEE
International Performance, Computing and Communi-
cations Conference (IPCCC ’99), pages 8—14, February
1999.

Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating ap-
plication objects efficiently for heterogenous computing.
In 2016 ACM/IEEE 43rd Annual Intenational Sympo-
sium on Computer Architecture, 2016.

[65]

[66]

[67]

[68]

[69]

Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), March 2011.

Tiancong Wang, Sakthikumaran Sambasivam, Yan Soli-
hin, and James Tuck. Hardware supported persistent
object address translation. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’17), pages 800-812, New York, NY,
USA, 2017. ACM.

Robert NM Watson, Jonathan Woodruff, Peter G Neu-
mann, Simon W Moore, Jonathan Anderson, David Chis-
nall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Lau-
rie, et al. Cheri: A hybrid capability-system architecture
for scalable software compartmentalization. In 2015
IEEE Symposium on Security and Privacy, pages 20-37.
IEEE, 2015.

William Wulf, Ellis Cohen, William Corwin, Anita
Jones, Roy Levin, C. Pierson, and Fred Pollack. HY-
DRA: The kernel of a multiprocessor operating system.
Communications of the ACM, 17(6):337-345, June 1974.

Jian Xu and Steven Swanson. Nova: A log-structured file
system for hybrid volatile/non-volatile main memories.
In Proceedings of the 14th Usenix Conference on File
and Storage Technologies (FAST ’16), pages 323-338,
Berkeley, CA, USA, 2016. USENIX Association.

80

2020 USENIX Annual Technical Conference

USENIX Association

	Introduction
	The Data-Centric OS
	Existing Interfaces
	A Data-Centric Approach

	The Design of Twizzler
	Object Management
	Address Space Management
	Persistent Pointers
	Security and Access Control
	Crash Consistency
	Implementation

	Evaluation
	Case Study: Key-Value Store
	Case Study: Red-Black Tree
	Porting SQLite
	Discussion

	Performance
	Microbenchmarks
	SQLite
	Key Value Store
	Red-Black Tree

	Related Work
	Future Work
	Conclusion

