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Abstract—With the widespread adoption of disk encryption
technologies, it has become common for adversaries to employ
coercive tactics to force users to surrender encryption keys
and similar credentials. For some users this creates a need
for hidden volumes that provide plausible deniability or the
ability to deny the existence of sensitive information. Plausible
deniability directly impacts groups such as democracy advocates
relaying information in repressive regimes, journalists covering
human rights stories in a war zone, or NGO workers hiding food
shipment schedules from violent militias. All of these users would
benefit from a plausibly deniable data storage system. Previous
deniable storage solutions only offer pieces of an implementable
solution. We introduce Artifice, the first tunable, operationally
secure, self repairing, and fully deniable storage system.

With Artifice, hidden data blocks are split with Shamir Secret
Sharing to produce a set of obfuscated carrier blocks that are
indistinguishable from other pseudo-random blocks on the disk.
The blocks are then stored in unallocated space and possess
a self-repairing capability and rely on combinatorial security.
Unlike preceding systems, Artifice addresses problems regarding
flash storage devices and multiple snapshot attacks through
comparatively simple block allocation schemes and operational
security. To hide the user’s ability to run a deniable system and
prevent information leakage, Artifice stores its driver software
separately from the hidden data.

I. INTRODUCTION

As everyday use of encryption for personal data storage

becomes more common, adversaries are forced to turn to

alternative means to compromise the confidentiality of data.

In some situations, the possession of an encrypted file or

disk can expose a user to coercive cryptanalysis tactics, or

worse [1]. In such situations, such as crossing the border of

a country with a repressive regime, it becomes necessary for

the user to establish plausible deniability – the ability to deny

the existence of sensitive information.

The heightened risk inherent to carrying encrypted infor-

mation pushes individuals to extreme methods of exfiltrating

data from dangerous or restricted environments. For example,

in 2011 a Syrian engineer smuggled a micro SD card hidden

inside of a self-inflicted wound in order to expose information

about atrocities in Hama [2]. It is also increasingly common

for nations and law enforcement to legally obligate disclosure

of encryption keys when requested by authorities [3]. These

alarming trends highlight the need for dependable deniable

storage technologies to better safeguard at-risk individuals.

Since carrying encrypted files or dedicated hardware can

be inherently suspicious, a deniable storage system must

be encapsulated by an open public file system to maintain

plausible deniability. It is highly suspicious if there are visible

drivers or firmware, unconventional partitioning schemes, ex-

cess unusable space in a file system, or unexplained changes

to the disk’s free space. To avoid suspicion, the hidden volume

must operate in such a way that the encapsulating file system

and operating system are entirely unaware of the hidden file

system’s existence, even when faced with a detailed forensic

examination.

Over the course of two decades, a variety of systems have

been designed in an attempt to address this problem. In the

process of navigating the compromises inherent to plausibly

deniable storage, each of these systems has demonstrated

distinctive “tells” that enable an adversary knowledgeable of

their design to quickly discover them. Some systems, such

as StegFS [4], do not disguise data accesses with deniable

operations, enabling an adversary to compare two images of

the disk and find the hidden volume with a multiple snapshot

attack [5]. On-the-fly-encryption systems that include hidden

volumes like TrueCrypt [6] fail to adequately address infor-

mation leakage to a public volume through user programs [7].

While they hide data and disguise accesses to a hidden volume,

oblivious RAM (ORAM) based systems such as HIVE [8]

or Datalair [9] incur significant performance penalties for

both hidden and public volumes – presenting a “fingerprint”

detectable through basic benchmarking techniques. Lastly, no

existing approach successfully addresses deniability for the

existence of the software or driver necessary for accessing a

deniable storage system.

These demonstrated weaknesses require a deniable storage

system to meet a series of requirements: effectively hide

existence of the data, prevent information leakage to the

public elements of a system, protect against overwrite by user

behavior, disguise changes to the physical storage media, and

hide or disguise the means used to access the hidden volume.

In this paper, we take a step toward the goal of applying

deniable storage systems to safeguard users by addressing

the above requirements with Artifice, a block device that

provides functional plausible deniablility for both hidden data

and the Artifice driver itself. To access a hidden volume, the

user boots into a separate, Artifice-aware operating system

through a Linux live USB drive which provides effective

isolation from the host OS. Unlike earlier systems, this does

not leave behind suspicious drivers on the user’s machine and

mitigates the impact of malware and information leakage to

the public volume. A user’s writes to the Artifice volume are

split through an information dispersal algorithm (IDA) such as

Shamir Secret Sharing [10] to generate pseudo-random carrier

blocks. The carrier blocks are then stored in the unallocated

1



space of the public file system, which is also assumed to be

full of pseudo-random blocks due to whole drive encryption,

a secure deletion utility, or similar means.

As the public file system cannot be aware of Artifice’s

existence, Artifice must protect itself from damage due to over-

writes by public operations. IDAs provide Artifice overwrite

tolerance through the inclusion of redundant carrier blocks

and enable a self-repair process whenever the user boots the

Artifice-aware OS. The overwrites still occur, but don’t cause

irreparable harm.

Artifice’s metadata locations are algorithmically generated

from a passphrase that must be supplied to find and use the

hidden volume. Without the correct passphrase, an Artifice

instance is indistinguishable from the rest of the free space

on a disk. Unlike previous approaches, Artifice addresses the

unique challenges posed by modern flash devices through

the careful management of TRIM operations. Many systems

aim to address the problem of multiple snapshot attacks in

which an adversary deduces the existence of a hidden volume

through comparison of multiple images of the disk taken

at different times. Artifice tackles this issue through writing

hidden blocks under the guise of a suitable deniable operation,

such as defragmentation and routine file deletion, or through

operational security measures.

In summary, Artifice provides a plausibly deniable storage

system that effectively hides data in the free space of an

existing file system while ensuring the integrity of the hidden

data, defends against information leakage and malware, and

hides the user’s ability to run a deniable storage system.

All while performing well enough for everyday tasks without

affecting the behavior of the public system.

II. THE PROBLEM OF PLAUSIBLY DENIABLE STORAGE

The most likely scenario for the use of a deniable storage

system entails the adversary gaining unfettered access to a

device for a short period of time. An example of which would

be inspection of a device at a border crossing. Unlike previous

work, we assume the existence of a significantly stronger

adversary, more in line with the capabilities of a intelligence

or law enforcement agency, that would likely be encountered

by users of a plausibly deniable system.

A. Adversary Model

We assume the adversary can confiscate the user’s device

and perform any static forensic analysis that they deem

warranted. This adversary is capable of taking multiple static

snapshots of the device at different points in time and com-

paring those snapshots in an attempt to discover the existence

of hidden data. The adversary can also install malware on the

user’s operating system, so long is it is not firmware based

like a bootkit. Similarly the adversary can monitor the user’s

interactions with external network infrastructure for suspicious

behavior. That said, they cannot continuously monitor the

user’s actions at all times. Should the adversary discover a

suspect aspect of the user’s device such as an undisclosed

partition, hidden information, or suspicious software, they

may force the user to reveal a password, encryption key, or

other sensitive information possibly through the threat of legal

penalties [3] or the use of a rubber-hose attack [1]. Lastly we

must assume that the adversary has knowledge of deniable

storage systems and their capabilities. As such, the security

of a system should not rely on the secrecy of its design or

“security through obscurity” [11].

While we assume that our adversary is relatively powerful

we must also keep in mind that even a sophisticated intelli-

gence agency will possess considerable but ultimately finite

resources to carry out an attack. As a result, they will not

escalate to more involved methods, such as forensic analysis,

snapshot attacks, or coercive tactics, unless they believe it is

probable that a user is running a deniable system.

Several of the previous deniable storage systems support the

feature of multiple levels that correspond with the sensitivity of

the data [4], [12], [13]. The intention being that under coercion

the user could reveal one, less sensitive, level of the system

while keeping others secret. We assume this stratagem does

not hold if the adversary has knowledge of a deniable storage

system’s capabilities as the presence of one level will raise

suspicion about the presence of additional levels.

B. Design Requirements

Considering this adversary, we can derive the following

series of design requirements for a deniable storage system.

1) Render hidden information indistinguishable from

free space: As most deniable storage devices rely on

hiding information within the free space of some other

volume, it is essential to make such information indis-

tinguishable from the rest of the free space.

2) Prevent information leakage: Since deniable storage

systems coexist with the public operating system, chal-

lenges arise concerning information leakage through

programs that access the hidden volume. In the case of

TrueCrypt, Czeskis et al. demonstrated that the system

was plagued by information leakage through both the

features of the Windows operating system and applica-

tions such as Microsoft Word [7]. It has also been made

apparent by Troncoso et al. that should an adversary

install malware on a device to continuously leak disk

traffic information, then it is possible to reveal the

existence and location of hidden files [5].

3) Mitigate the effects of overwrites by the public file

system: In normal operations the user will be primarily

interacting with the public volume. When accessing the

public system there should be (i) no trace of the hidden

volume’s existence, such as metadata structures or ac-

cess credentials, visible to an observer and (ii) normal

write behavior. This requirement, intended to prevent

information leakage to an adversary also prevents the

public system from knowing where the hidden data is

stored and therefore avoid accidentally overwriting it. A

deniable storage system hiding within unallocated space

must therefore provide some reasonable protection from

overwrite.
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TABLE I
PLAUSIBLY DENIABLE SYSTEMS

System Overwrite Protection Indistinguishability Information Leakage Resistance Deniable Changes Deniable Software

Veracrypt [14] X X - - -

StegFS (McDonald) [4] Probabilistic X - - -

StegFS (Pang) [12] X - - - -

Hive [8] X X - ORAM -

Datalair [9] X X - ORAM -

DEFY [13] X X - - -

Mobiflage [15] X X - - -

Mobipluto [16] X X - - -

Ever Changing Disk [17] Probabilistic X - User behavior -

PD-DM [18] X X - ORAM -

Artifice Probabilistic X X User Behavior X

4) Disguise changes to the free space of the file sys-

tem: Foremost among the concerns for deniable storage

systems is the multiple snapshot attack in which the

adversary is able to capture images of the disk and infer

the existence of a hidden volume through analysis of the

changes. Most approaches attempt to disguise accesses

to the hidden volume with either many random accesses

to the disk [8], [9], [12], [18] or with hiding hidden data

accesses within other random information [17].

5) Hide the user’s ability to run a deniable storage sys-

tem: Since deniable storage systems inherently possess

significant drawbacks it is unlikely for the average user

to keep a copy on their devices and thus possession

of such software would be considered suspicious. The

presence of a driver implies that the user’s device

contains a hidden volume. Detecting the driver software

is perhaps the least computationally intensive manner for

the detection of a deniable system as it only involves in-

spection of the storage software stack, device firmware,

behavioral characteristics or partitioning scheme. In the

case of some systems there is a significant performance

impact for both the hidden and public volumes such that

it would be simple to infer the existence of a deniable

system [8], [9], [18]. While it is possible to hide such

software through the use of a rootkit or other malware,

we cannot rely on this technique as it is “security

through obscurity.”

There is no previous system that satisfies all of these

requirements. In particular, none hide a user’s capability of

running a plausibly deniable system or address malicious

software installed by an adversary.

Efforts to satisfying these requirements inevitably result

in multiple design compromises. For instance, to protect

against hidden data overwrite or to disguise access patterns,

performance is inevitably affected by IO amplification from

reading, writing, or analyzing more blocks per operation.

III. DESIGN

To address the previously discussed design requirements we

designed Artifice, a plausibly deniable virtual block device

built on the Linux device mapper kernel interface. Artifice

obfuscates data and provides protection from accidental over-

write using an IDA such as Shamir Secret Sharing [10] to

generate a set of pseudo-random shares or carrier blocks from

a user’s data blocks. These carrier blocks provide combinato-

rial security where an adversary must select the correct blocks

out of the free space to reconstruct a data block. Adding

redundant carrier blocks enables Artifice to repair itself when

it is inevitably damaged by the public file system. This IDA

based approach and flexible block allocation allows the user to

configure Artifice for use with a variety of public file systems

and mitigate the effectiveness of a multiple snapshot attack.

Unlike previous approaches that require driver software to

be installed on the user’s device, a user accesses Artifice by

booting a separate live Linux installation on a USB drive

containing the Artifice driver. Isolating the driver from the

public operating system prevents information leakage and

protects the Artifice volume from most malware. Separating

the hidden data from the driver software prevents the adversary

from implying the existence of the data from the existence of

the Artifice software. It is also important to note that the user

does not need to possess a copy of the bootable USB drive

at all times and it would be advantageous for them to not

be carrying it on their person when under the scrutiny of an

adversary.

A. Obfuscation and Redundancy

Artifice addresses the problems of obfuscation and hidden

data overwrite with a single step through the use of an IDA.

Artifice is designed to utilize either Shamir Secret Sharing [10]

or non-systematic Reed-Solomon erasure codes [19] to gen-

erate carrier blocks. Both of which provide an (n, k) scheme

where at least k carrier blocks out of a set of n are needed to

reconstruct the original data.

Carrier block overwrite will occur through operations per-

formed by the public system. Artifice treats overwrites by the
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can simply discard the passphrase. Without the passphrase

information retrieval is combinatorically infeasible and normal

public operations will overwrite the hidden data over time.

For additional security Artifice can also delete the superblock

replicas to erase any chance of finding the hidden volume.

D. Public File System Considerations

In order to effectively combat hidden data overwrite and

the multiple snapshot attack, Artifice must be able to tailor its

behavior to the file system that it is hiding in. In the case of

data overwrite Artifice should react to the block allocation and

write behaviors of the public file system. This takes the form

of identifying “busy” locations in the public file system, such

as journaling regions, and avoiding them, allowing Artifice

to place data in free blocks that are the least likely to be

overwritten in the near future. In the case of log structured

file systems [21], it is best to place only one carrier block

of out a set in each segment. So that the impact of garbage

collecting any individual segment is minimized. Lastly, a user

must avoid activities such as large data writes and SSD TRIM

operations. These pose a significant risk to the carrier blocks

regardless of efforts to protect them as both can overwrite or

remap a large number of blocks.

Additionally there is the problem of a deniable reason for

large amounts of pseudo-random information in the free space

of a file system. The naive method is to fill the free space of

a disk with pseudo-random bits prior to initializing a hidden

volume [6]. The drawback of this approach is that filling the

unallocated portions of the disk with unexplained pseudo-

random information could be considered suspicious. Therefore

it would be advisable for a user to run the public system with a

secure deletion utility or a similar producer of pseudo-random

information to provide a deniable reason for pseudo-random

free space.

Should Artifice be used alongside an encrypted file system

it must also be able to understand the algorithms used and the

key. Similarly, to enable nested Artifice volumes we must be

able to treat Artifice itself in the same manner as a public file

system. To access a given Artifice instance we must have the

passphrase(s) for all levels above it.

E. Operational Security of the Artifice Driver

Even though Artifice provides deniability for the its driver

by storing it on a seperate device, there are security concerns

that arise. In an ideal scenario the user would ensure that

they do not possess a copy of Artifice on a live disk when

the adversary is most likely to inspect their device. This

assumes the user has discarded their original live disk and

made arrangments to obtain a copy once the present danger

has passed to access or repair the volume. To carry out

this more secure procedure the user in possession of the

hidden volume may need to coordinate with multiple other

individuals. When this is not practical the user could fall back

on classic steganographic techniques such as hiding data in

the lower order bits of images to hide the software on the live

disk. This approach would require less overhead as the driver

is significantly smaller than the hidden volume. Additional

options to avoid exposing the driver include downloading it

through secure means like TOR [22] or an HTTPS secured

website and carrying it on an easily concealed MicroSD

memory card. Should the user carry the live disk on their

person without additional measures to hide the software and

it falls into the hands of the adversary we must be concerned

about the adversary escalating efforts to monitor the user’s

actions and we must assume the adversary knows that the

user is possibly in possession of a hidden volume.

IV. DESIGN ISSUES FOR SOLID STATE DRIVES

Solid State Drives (SSD) create a set of different issues

for Artifice versus traditional hard drives. The logical block

store that the Flash Translation Layer (FTL) presents to the

operating system allows the SSD to relocate physical pages

so that garbage collection can reclaim pages invalidated by

more recent writes independently of the operating system.

It is necessary for the SSD to create free flash blocks (en-

compassing a moderate, but fixed number of pages) that can

be erased and made available to future writes. Erased blocks

are usually not available via the logical interface as they are

not mapped into the logical address space. The FTL may

mark Artifice blocks as written which creates an opening for

detecting Artifice through forensic analysis. Alternatively, the

FTL may unknowingly erase hidden data as part of opaque and

non-standardized garbage collection operations if it is unaware

of Artifice’s presence.

This layer of abstraction presents a hurdle for deniable

storage systems. Most that seek to address these challenges

either work on raw flash devices [13], or are intended to op-

erate as drive firmware [17]. Since custom firmware would be

suspicious and raw flash devices are still relatively uncommon,

Artifice must attempt to address these challenges through other

means.

A. TRIM

Most modern file systems support the TRIM function, which

notifies an SSD which blocks are no longer in use by the host,

and thus need not be copied to new locations during garbage

collection. Ideally for the public file system, the hidden data

would be TRIMmed, therefore marked as unallocated by the

SSD, and would treat garbage collection operations as another

form of accidental overwrite. However only one kind of TRIM

(Non-deterministic TRIM) allows a possibility of accesses to

the original data after a block has been subject to TRIM. When

reading from TRIMmed blocks the SSD could either return the

original data or some other information if the block has been

subjected to garbage collection.

The other two types of TRIM are far more damaging for

a deniable storage system, Deterministic Read After TRIM

(DRAT) and Deterministic Read Zero after TRIM (RZAT).

Both will return some consistent pre-defined value for any

logical block address that has been TRIMmed. In this case

it would be necessary for a deniable storage system to leave

all of its blocks listed as allocated on the SSD and therefore
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vulnerable to forensic analysis. Additionally deterministic trim

will cause most, if not all, free space on the device to appear

uniform. Eliminating the ability for a deniable storage system

to hide within pseudo-random free space.

The challenge posed by TRIM is somewhat mitigated by the

fact that most operating systems utilize periodic TRIM, where

the operating system will periodically send a TRIM command

for all blocks deleted after the previous TRIM operation [23],

[24]. This is viewed as preferable to continuous TRIM where a

TRIM command is sent to the disk each time a file is deleted.

The common use of periodic TRIM allows for a small region

of accessible untrimmed free space to exist on an SSD between

TRIM invocations. The size and lifespan of this region is not

sufficient to fully solve the problem that TRIM presents.

Fortunately, it is common to disable the TRIM command if

using a drive encryption system as it could leak the locations

of the unallocated blocks and reveal the possible size of stored

data [6], [15], [25]. In the case of a deniable storage system

disabling TRIM is an ideal choice as we need not worry

about hiding data in blocks that would be altered by TRIM.

Effectively causing the SSD to behave like a mechanical disk

from the perspective of Artifice and the public file system.

B. Host Controlled SSDs and Zoned Namespaces

Parallel to the development of FTL based SSDs, there has

been work on FTL-less flash devices such as open channel

SSDs. A related recent development has been the move

towards the adoption of Zoned Namespaces [26]. This new

approach breaks an SSD up into a series of sequentially written

and host controlled “zones” that are written sequentially simi-

lar to a log structured file system. Zoned block device support

is already included in the Linux kernel through software such

as dm-zoned and F2FS [27], [28]. Zones behave similarly

to segments in a log structured file system or erase blocks

on a flash device. Artifice could extend its block allocation

functionality to support hiding data in deleted blocks of zones

that have not yet been garbage collected by the file system or

dm-zoned if those zones already contained pseudo-random or

encrypted information. As virtual block device in Linux can

layer atop one another it is also possible to tune Artifice to

leverage specific behaviors of dm-zoned to more effectively

hide information in a zoned storage device.

While zoned namespaces and other host controlled flash

devices present ideal options for bypassing the challenges

posed by FTL controlled disks, they have not yet achieved

wide adoption and some standards like Zone Namespaces have

not yet been integrated into commonly available hardware.

V. MULTIPLE SNAPSHOT AND DISGUISING ACCESSES

A multiple snapshot attack is a significant problem that

most recent deniable storage systems attempt to defend against

[8], [9], [13], [17], [18]. Efforts to provide a provable guar-

antee against a multiple snapshot attack inevitably weaken

the system against other far simpler attacks as they require

constantly running software to disguise accesses. These ap-

proaches primarily compromise disguising the user’s ability

to run a deniable storage system, which we assume is less re-

source intensive for an adversary to determine. Most previous

multiple snapshot resistant systems rely on making accesses to

public and hidden volumes indistinguishable from one another

through a number of random decoy accesses. If this approach

is taken in with Artifice, the adversary would be able to see

write patterns that may be abnormal for a given public file

system and therefore hard to plausibly deny. Artifice instead

prioritizes hiding the user’s capability of running a deniable

system while still providing some methods for defending

against a multiple snapshot attack which rely on providing

deniable reasons for the changes in a disk’s free space.

The first solution is proper operational security. Avoiding

the scenario of a multiple snapshot attack is the most foolproof

way to defeat it. When an adversary gains access to the device,

without the user supervising, the user must assume that either

a snapshot has been taken or malware installed. The easiest

and most reliable response is to replace either the whole device

or the disk, or to deniably scramble the contents of the disk

rendering the previous snapshot meaningless. With any data

already contained in the public and hidden volumes copied

to the new device, there is then nothing for the adversary

to meaningfully compare to the initial snapshot. In the case

of a mechanical disk a defragmentation operation between

two snapshots would render the first meaningless and provide

a deniable reason for the changes. Only then would hidden

data be written to the hidden volume. Although relying on

operational security is ideal, it will not always be practical for

a user to take such relatively drastic measures.

Another approach is to write data to a portion of the

disk where the contents change frequently. This reduces the

problem to selecting suitable blocks for storing hidden data at

the cost of incurring more overwrites. Artifice will be limited

to writing new data only to blocks that have been freed by

the public file system after the most recent opportunity for

the adversary to take a snapshot. To accomplish this Artifice

stores in its metadata an allocation bit vector describing which

blocks are in use. When Artifice is next initialized the current

state of the disk would be compared to the previous state.

Since these “hot” regions on the disk change frequently there

would be a deniable reason for changes in the free space. There

are some limitations to this approach. First is that using a

secure delete program or key revocation technique is essential.

Otherwise pseudo-random blocks that cannot be decrypted by

a user’s key would be inherently suspicious. Second is that

hiding data in frequently changed sections of the disk increases

the probability of overwrite. Artifice would then need to store

larger sets of carrier blocks to provide a reasonable probability

of survival. Lastly for this approach to be feasible the user

must be sure to delete a sufficient amount of data prior to

provide free blocks prior to writing to an Artifice volume.

Due to the stricter requirements placed on the user’s behavior,

such measures should not be carried out unless there is a high

possibility of an adversary carrying out a multiple snapshot

attack.
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VI. SURVIVABILITY

Conventional systems are predominantly designed for use

with highly reliable devices. Traditional magnetic drives have

an uncorrectable error rate on the order of 10−13 to 10−15

[29]. If a block can be read at all it is extremely unlikely to

be incorrect. Blocks that are marginal can be remapped by

the drive, or by the file system. Failed blocks are typically

protected through error correcting codes or replication.

In contrast, a deniable storage system would have constant

destruction of data blocks as a normal behavior. Normal public

system operations will overwrite some Artifice carrier blocks.

Without a constantly running mechanism to prevent the public

file system from overwriting carrier blocks, the survival of the

hidden information is probabilistic. Although this may appear

as a problematic situation, it is relatively simple to reliably

ensure the survival of a small hidden volume hiding in a large

area of unallocated space.

Recall from Section 3 that we require k carrier blocks out of

a set of n to reconstruct our original data when using secret

sharing. By calculating the probability that we will lose no

more than n− k blocks, we can determine the probability of

survival for an Artifice volume. We assume n−k is the number

of redundant shares, s is the logical size of the Artifice volume,

SizeShamir(s, n, k) is the number of blocks at risk of being

overwritten, p is the probability that a given carrier block is

overwritten, and t is the is time in days. We can perform a

similar calculation to determine the survival probability for the

entirety of an Artifice instance where SizeShamir() is instead

the effective size of the entire instance when accounting for

write amplification.

Pr
Surv.

(k, n) = (

n−k
∑

i=0

pi
(

n

i

)

(1− p)n−i)SizeShamir(s,n,k)·t

In the case of our Reed-Solomon scheme we must also

account for the entropy blocks, e, and the possibility of

multiple data blocks, d, mapping to a single set of carrier

blocks m. In this case we can lose up to m − d blocks out

of e+m stored. It is important to note that unlike the secret

sharing approach, the reconstruction threshold is dependent on

the number of carrier blocks. The number of vulnerable blocks

is given as SizeRS(s,m, e, d).

Pr
Surv.

(e, d,m) = (

m−d
∑

i=0

pi
(

e+m

i

)

(1−p)e+m−i)SizeRS(s,m,e,d)·t

With these two functions we can evaluate the probability

of survival for a given number of carrier blocks. We assume

that the drive in use has 512 GB of unallocated space and an

Artifice instance of 5 GB. In the case of our Reed-Solomon

scheme we assume that our code word contains one entropy

block and either one or two data blocks. It is assumed that

the user writes 5 GB of data between each time Artifice is

initialized to start a repair cycle that rebuilds any overwritten

blocks.

Fig. 4 shows the survival probability of our example in-

stance over the course of 365 repair cycles for both the

metadata and the entire Artifice instance with a variety of

different encoding techniques and numbers of carrier blocks.

From these calculations we can see that there is a number

of carrier blocks for each configuration where the probability

of survival asymptotically approaches one which depends on

the reconstruction threshold k. We can also observe that using

a Reed-Solomon erasure code can provide better reliability

due to improved error correction capabilities and a smaller

footprint on the disk at the cost of additional operational

overhead due to the required entropy blocks. On the other hand

Shamir Secret Sharing would usually requires one additional

carrier block to provide a similar level of reliability.

We can also model survivability with respect to the size

of the Artifice volume, the size of the unallocated space, and

the amount written to the public file system between repair

operations. For these figures we assume that each data block

corresponds to a set of eight carrier blocks. As shown in Fig. 5,

the smaller the Artifice volume the higher the probability of

survival with overall marginal decreases in reliability even in

the case of Shamir Secret Sharing with a threshold of three

blocks which lags behind the other configurations. Overall

we can observe a linear relationship between the size of the

Artifice volume and reliability. In the case of the amount

written to the public volume between repair operations (Fig. 6)

we can observe an exponential decrease in reliability after

approximately 4 GB. Finally, when regarding the amount of

free space available to Artifice (Fig. 7) we can see that

256 GB of unallocated space provides a promising probability

of survival for our Artifice instance.

The last metric we must consider when evaluating the

survivability of an Artifice instance is the write amplification

and metadata overhead of our information dispersal scheme.

In the case of Shamir Secret Sharing the metadata overhead

is minimal as we must only track the offset of each block and

checksums to detect whether a block has been overwritten.

Although we see significant write amplification as the size

of our plaintext data is multiplied by the number of shares.

In our Reed-Solomon scheme the write amplification is im-

proved such that the size is only amplified by a factor of
# of carrier blocks
# of data blocks

.

Additional gains to survivability could be obtained through

Artifice identifying frequently overwritten sections of the disk

over multiple sessions. These regions can then be avoided by

Artifice’s block allocation function. Although there is a trade

off with our defense against multiple snapshot attacks as a

deniable reason for changes to an infrequently used portion of

the disk may be difficult to provide.

This shows that Artifice can sustain severe damage, as

long as the user i) maintains a certain percentage of the

encapsulating file system free for Artifice to occupy, and ii)

regularly mounts Artifice to carry out self-repair. It should be

noted that these figures do not specifically take into account

the probability of overwrite from additional sources such

as garbage collection on an SSD utilizing non-deterministic
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TABLE II
ARTIFICE PERFORMANCE

Public Volume Artifice

Throughput CPU Throughput CPU

Read 299.285 MB/s±5.527 21.700%± 0.655 51.876 MB/s ±1.232 9.800%± 0.362

Write 307.458 MB/s±46.682 22.667%± 2.930 34.476 MB/s ±2.291 1.700%± 0.399

to-peer system, however, it does not hold up to our assumed

adversary.

The on-the-fly-encryption (OTFE) system TrueCrypt [6]

also provides the capability of running a hidden file system

within the free space of an ordinary encrypted volume. Its

approach is similar to StegFS in that each nested file system

has a single key, which grants access to the hidden data.

Since such approaches coexist with the public operating sys-

tem, challenges arise concerning information leakage through

programs that access the hidden volume [7]. Additionally they

do not defend against multiple snapshot attacks.

Datalair [9] and HIVE [8] combine a hidden volume with

ORAM [39], [40] techniques to obscure the volume’s exis-

tence and disguise access patterns. Accesses to hidden data

are disguised among random accesses to a public volume.

Theoretically, this prevents an adversary from successfully

carrying out a multiple snapshot attack. In practice, ORAM

and similar techniques incur significant performance penalties

that severely impact the usability of the hidden and public

volumes. In the case of HIVE, throughput for both public

and hidden sequential operations is slowed to approximately

1 MB/s [9]. Random disk write patterns and unexplained slow

performance compared to the raw disk can possibly be viewed

as suspicious.

Recently Chen et al. published PD-DM [18], a device map-

per based approach aimed at addressing the poor performance

of ORAM dependent systems [8], [9]. Although it significantly

improves read performance, write performance still suffers and

it presents the same distinctive performance characteristics that

would betray the existence of a hidden volume.

Mobiflage [15], a deniable storage system for mobile de-

vices, maintains a partition of the disk containing random

data within which hidden data can possibly be stored. It relies

on the ambiguity of whether or not hidden data is present

to provide deniability while ignoring that the presence of a

disk partition containing unexplained random information is

suspicious.

DEFY [13] is a log structured deniable file system designed

for host controlled flash devices and is based on Whis-

perYAFFS [41]. DEFY does not adequately protect against

hidden data overwrite unless hidden volumes are constantly

mounted and is limited to use on a type of raw flash device

called Memory Technology Devices (MTDs).

Zuck et al. proposed the Ever-Changing Disk (ECD) [17], a

firmware design that splits a device into hidden and public vol-

umes where hidden data is written alongside pseudo-random

data in a log structured manner. Although the design makes

significant progress towards solving the problem of hidden

data overwrite and mitigating multiple snapshot attacks, the

lack of deniability for the exposed partitioning scheme and

proposed custom firmware are a vulnerability.

None of the previously described systems hide a user’s

capability of running a plausibly deniable system, prevent

information leakage, or address malicious software installed

by an adversary.

IX. CONCLUSION

Artifice is an operationally secure deniable block device that

addresses the problem of hiding a user’s capability of running

a deniable storage system. The use of combinatorial security,

self-repair functionality, and comparatively simple solutions

to the challenges posed by multiple snapshot attacks and flash

devices results in a system that addresses the challenges posed

by a more realistic and knowledgeable adversary. We have

demonstrated that this system can easily be tuned to survive

hidden data overwrite from public file system operations,

while also resulting in significantly improved performance

and usability when compared to previous designs. A deniable

storage system such as Artifice provides a much needed tool

to ensure the continued free flow of information in suppressed

or surveilled environments.
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