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Abstract

Previous research in fair classification mostly focuses on a single decision model. In
reality, there usually exist multiple decision models within a system and all of which
may contain a certain amount of discrimination. Such realistic scenarios introduce
new challenges to fair classification: since discrimination may be transmitted
from upstream models to downstream models, building decision models separately
without taking upstream models into consideration cannot guarantee to achieve
fairness. In this paper, we propose an approach that learns multiple classifiers and
achieves fairness for all of them simultaneously, by treating each decision model
as a soft intervention and inferring the post-intervention distributions to formulate
the loss function as well as the fairness constraints. We adopt surrogate functions
to smooth the loss function and constraints, and theoretically show that the excess
risk of the proposed loss function can be bounded in a form that is the same as
that for traditional surrogated loss functions. Experiments using both synthetic and
real-world datasets show the effectiveness of our approach.

1 Introduction

How to ensure fairness in algorithmic decision making models is an important task in machine
learning [12, 15]. Over the past years, many researchers have been devoted to the design of fair
classification algorithms with respect to a pre-defined protected attribute, such as race or sex, and a
decision task/model, such as hiring [1, 11,24]. In particular, one line of the work is to incorporate
fairness constraints into classic learning algorithms to build fair classifiers from potentially biased
data [4, 13,29, 31-33]. Most of previous research generally focuses on a single decision model.
However, in reality there usually exist multiple decision models within a system and all of which
may contain a certain amount of discrimination, either introduced by themselves or transmitted from
upstream models. As a motivating example, consider two decision tasks Y7, Y5 where Y is used by
the city government to allocate policing resources to different locations and Y5 is used by a local
bank to make personal loan decisions. Due to historically segregated housing, neighborhood racial
composition differs based on geographic locations, and there can exist direct racial discrimination in
Y7 as well. Thus, certain locations will be allocated more police resources than others, resulting in
larger numbers of criminal arrest records. As a result, when the criminal arrest record is used in Y5,
certain racial group will receive unfair disadvantage in getting loans.

Ideally we would like to build fair models for all decision making tasks. However, if decision
models influence one another, it is not a straightforward problem even if we know how to build a fair
model for each task. This is because the data distribution can change as a consequence of deploying
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new models. If we build the model for each task independently using static training datasets, the
learning process of each model is based on the fixed distribution given in the training data. However,
deploying new fair models would change the distributions of attribute variables that are affected by
their decisions as well as the discrimination that is passing down. As a result, the subsequent models
built on the original distribution may not perform well in terms of both accuracy and fairness. On
the other hand, if we build fair models one by one following a temporal sequential order, each time
deploying a model and collecting the output data before building the next one, then the time needed
for building all models may not be acceptable for some applications.

In this paper, we propose an approach that learns multiple fair classifiers simultaneously and only re-

quires a static training dataset. The core idea is to leverage Pearl’s structural causal model (SCM) [23],
treat each decision model as a soft intervention and infer the post-intervention distributions to
formulate the loss function as well as the fairness constraints. The SCM is widely adopted in fair
classification research for defining fairness as the causal effect of the protected attribute on the
decision [17,21, 28, 30,34-36]. Causal inference in the SCM is often facilitated with the “(hard)
intervention” that forces some variable X to take certain constant x, denoted by do(X = z) [23].
“Soft intervention” [6, 16], also known as the “conditional action” [23], extends the hard intervention
such that variable X is forced to take a specified functional relationship ¢(z) in responding to
some set Z of other variables, denoted by do(X = g¢(z)). In our approach, the deploying of new
decision models is considered as to perform soft interventions on the decisions, whose influence
can be inferred as the post-intervention distributions. By quantifying fairness as causal effects of
the protected attribute on all decisions, under the hard intervention on the protected attribute and
soft interventions on decisions, we formulate fair classification for multiple decisions as a single
constrained optimization problem.

Combining multiple decision models together makes the optimization challenging to solve. Similarly
to [29], we adopt surrogate functions to smooth the loss function and constraints. However, the
difference in our problem is that, each decision model is associated with a surrogate function, and the
surrogated protections are used in downstream decision models, resulting non-linear combinations of
multiple surrogate functions. As a result, our loss function is different from traditional surrogated
loss functions whose excess risks have been analyzed and bounded in [2]. To investigate the excess
risk of our loss function, we adopt theoretical tools in [2] and show that nontrivial upper bounds exist
on the excess risk in a form that is the same as that for traditional surrogated loss functions given
in [2], irrespective of the number of decision models involved.

Related work. How to ensure fairness in a compound decision-making process, called pipeline or
multi-stage selection, has received attention in [3,8-10]. Pipelines differ from our multi-decision
setting in that individuals drop out at any stage and classification in subsequent stages depends on the
remaining cohort of individuals. In [27], the authors assume that multiple functions over the same
set of attributes are multiplied to produce an overall score. Other related but different works include
long term fairness (e.g., [20]), which concerns for how decisions affect the long-term well-being
of disadvantaged groups measured in terms of a temporal variable of interest, and fair sequential
learning (e.g., [14]), which sequentially considers each individual and makes decision for them.

Contributions. To the best of our knowledge, this is the first work to study fair multiple decision
making where the feature distribution may change due to the deployment of decision models. Our
approach provides a general way to incorporate fairness constraints into the generic classification
formulation such that we can readily employ off-the-shelf classification models and optimization
algorithms. The causal inference allows us to train all decision models jointly from a single dataset.
Since our approach is based on the SCM, all SCM-based fairness notions, including the total
effect [35], direct and indirect discrimination [21, 35, 36], counterfactual fairness [17,28,34], and PC-
fairness [30], can be naturally applied to our problem formulation. The theoretical results imply that
we don’t need to worry about additional losses caused by multiple surrogate functions. By conducting
experiments on both synthetic and real-world datasets, we show that our approach consistently
outperforms the approach which builds fair classifiers for each decision separately.

2 Preliminaries

We use an upper case letter, e.g., X, to denote a variable, and use a lower case letter, e.g., x, to denote
a value of X. We use bold letters, e.g., X and x, to denote a set of variables and their values.



2.1 Structural Causal Model

A structural causal model (SCM) is formally defined by a triple M = (U, V, F) where U is a set
of exogenous variables, V is a set of endogenous variables, and F is a set of structural equations
mapping V x U — V. Specifically, for each V' € V, there is an equation V' = fy (pay,, uy ) where
pay is a realization of a set of endogenous variables PAy C V\V called the parents of V. If all
exogenous variables in U are assumed to be mutually independent (i.e., no hidden confounder), then
the SCM is called a Markovian model. In this paper, we assume that the SCMs we are dealing with
are Markovian models. The SCM M can be illustrated by a causal graph G = (V, E) where each
node in V represents an endogenous variable and each arc in E, denoted by an arrow — pointing
from one node to another, represents the parental relationship defined in structural equations. Each
node V is associated with a conditional distribution given its parents, i.e., P(v|pay) to reflect the
relationship defined by equation fy .

The hard intervention that forces variable V' to take constant v, denoted by do(V = v) or do(v) for
short, is performed by substituting equation V' = fy(pay,, uy ) with V' = v. The post-intervention
distribution of a variable W other than V" is denoted by P(w|do(v)). The soft intervention extends
the hard intervention such that it forces variable V' to take functional relationship ¢(z) in responding
to some other variables Z, which can be similarly denoted by do(V = g¢(z)). In other words, it
substitutes equation V' = fy (pay,, uy) with a new function V' = g(z). The difference between hard
intervention do(V = v) and soft intervention V' = g(z) is that, after the hard intervention V' becomes
a constant (or be associated with a distribution of P(V = v) = 1), but after the soft intervention
V can be associated with an arbitrary distribution P,(v|z) determined by function g. In particular,
depending on the intervention, function g could receive as inputs the variables Z other than the
original parents pay,, as long as they are not the descendants of V.

2.2 Fair Classification

Following the notations used in [29], the problem of fair classification is to learn a mapping f : X —
Y parameterized with 6, where X is a set of input attributes and Y = {0, 1} is the class label. The
learning algorithm aims to minimize the classification error Ex y- []lf(x) ¢y], where 1 4 is the indicator
function, i.e., 14 = 1if Ais true and 14 = 0 if A is false. Usually, f is defined based on another
function  that is performed in the real number domain, i.e.,  : X = R and f(x) = 1(x)>0. Thus,
the classification error can be reformulated as

R(h) =Ex [P(Y = 1[x)Lx)<0 + P(Y = 0x)11(x)>0] - (1)

By using surrogate functions ¢(-) to smooth and bound the indicator function (i.e., the 0-1 loss), we
obtain the ¢-loss as:

Ry(h) = Ex [P(Y = 1[x)d(h(x)) + (1 = P(Y = 1]x))$(=h(x))],

and the optimization problem as minyey Ry (h). Similarly fair classification can be formulated as a
constrained optimization problem
in  Rg(h 2. =7 <Ty(h) < 2
min  Ry(h) s T <Ty(h) <, )
where T}, (h) is a measure of ¢-unfairness depending on the particular fairness notion used which is

also smoothed by using surrogate functions. Widely used surrogate functions include the hinges loss,
square loss, logistic loss, exponential loss, etc.

3 Formulating Fair Classification for Making Multiple Decisions

In this section, we formally formulate the fair classification problem for making multiple decisions.
Consider a protected attribute .S, a set of non-protected attributes X = {X1,--- , X,,,} and a set of
decisions Y = {Y1,--- ,Y;}. For ease of representation, we assume that the protected attribute and
all decisions are binary, i.e., S = {s~, s} with s~ denoting the protected group and s* denoting the
non-protected group, and Yy, = {y~,y ™} for each Y}, € Y with y~ denoting the negative decision
(i.e., Y = 0) and y* denoting the positive decision (i.e., Y, = 1). Often we abbreviate expressions
Y =y ,y" asy,, y,j Note that decisions can be interdependent such that later decisions may
depend on the consequences of earlier decisions either directly and/or indirectly through the change



of some features that is mediated between the two decisions. In real situations, such indirect influence
may need time to take effect and cannot be observed within a short period of time. Therefore, we
only assume that a historical dataset D = {(s(9),x(®) y()}N  that reflects the original decision
making mechanisms is observed.

Our task is to build a classifier hy, for each decision Y}, from training data D. Classifier hy, takes some
profile attributes Z;, C {S} U X as the input to make the prediction as 1y, (5,)>0. We would like to
ensure that any classifier is fair if all classifiers are deployed, with the fairness of all classifiers being
measured using the same fairness notion. In this paper, for simplicity we consider total effect [35]
as the fairness notion which is defined based on the total causal effect as follows. Nevertheless, our
formulation can be easily extended to other causal-based fairness notions as long as they can be
identified and computed with expressions of observational distributions.

Definition 1. For the classifier built for each decision Yy, it is considered to be fair if
—7 < Py |do(s™)) — P*(y;f|do(s7)) <
where T is a user-defined threshold and P* is the distribution after all classifiers are deployed.

As shown in [29], the formulation of fair classification consists of a loss function for quantifying
the classification error and a number of constraints for enforcing fairness. For the case of a single
decision model, the loss function can be directly computed from D, and fairness constraints can be
computed from D as well after performing hard intervention do(s). However, for the case of multiple
decision models, due to the change in the data distribution made by model deployment, the loss
function and fairness constraints should not be computed from D but P* which may be different
from the distribution followed by D. Therefore, we propose to adopt the soft intervention to model
all model deployments and infer post-intervention distributions.

To this end, we build a causal graph G to represent the causal structure of the underlying data
generation mechanism from dataset D. The research of causal structure discovery is quite active
in recent years and many algorithms have been proposed [26]. Given the causal graph, we capture
the deployment of classifier hy(zy) as a soft intervention that forces the prediction of decision Y
to take functional relationship hy(zy), denoted as do(hy). Consequently, distribution P* after the
deployment of all classifiers can be captured by the post-intervention distribution after performing

soft interventions do(hq, - - - , h;). Then, the classification error of hy(zy) after the deployment of
classifiers could be measured similarly to Eq. (1) as given by
R(hy) = E [P(y3f 128) L (miy<0 + Py [21) Lny (z)>0] - 3)

Zy|do(h1, - hi)
where the expectation is computed on the post-intervention distribution of Zj. Similarly, the fairness
constraints of hy(zy) is given by the total effect

T(hk) = P(y]_:|d0(s+7 h’la e 7hl)) - P(yl—:|d0(577 h17 e ahl))7 (4)
which is based on the post-intervention distributions of Y}, after performing both hard intervention
do(s) and soft interventions do(hy, - - - , hy). !

Take the toy model given in the introduction as an exam-

ple, where there are two decisions Y7 and Y5 representing S Y1 Y>
the policing resource allocation and bank loan decision re- l / l /'
spectively. We treat race as the protected attribute, denoted x X

1 2

by S. We denote the location of the residential area as X,
and denote the number of criminal arrest records in each
area as X5. The causal graph of this toy model is shown
in Figure 1. We would like to build two fair classifiers
hi(z1) and ho(z2) for predicting Y7 and Y3. Note that the inputs of classifiers could be different
from the original parents of Y7 and Y3, which are {5, X} and X, respectively. Their loss functions
are given by R(h1), R(hz), and fair constraints are given by T'(hy), T'(hg).

Figure 1: Causal graph of toy model.

Next, we need to derive R(hy) and T'(hy), which are given on the post-intervention distribution,
as smooth expressions on D, which is the observational data. By using surrogate functions ¢(-) to
smooth and bound the indicator function, we finally derive the formulas of R (hy) and Ty (hy) that
will be used in our formulation of fair multi-decision learning.

"We use Y}, to denote both decision label and predicted decision, and use soft intervention to distinguish
between them: if the distribution is pre-interventional such as P(y,ir Zi), Y} is the label; if the distribution is

post-interventional such as P(y;"|do(s™, h1,- -+, ht)), Yy is the prediction.




3.1 Deriving Loss Function and Fair Constraints

In the above example, the learning of classifier h; could be done by solving an ordinary fair
classification problem. However, when learning classifier ho, both its loss and fairness are affected
by classifier hy, and in this case the effect is transmitted indirectly through X,. To accurately
measure the loss and fairness of ho, we need to mathematically express the effect of h; as post-
intervention distributions. Thus, we apply following three properties of the (soft) intervention to
compute post-intervention distributions from observational data.

(1) An intervention on a variable V' would not change the distribution of V’s non-descendant.

(2) Anintervention on V' would not change the generation mechanism of another variable W,
i.e., distribution P(w|pay; ) would not be changed.

(3) A soft intervention on V' would change its conditional distribution P(v|pay,) according to
the defined functional relationship.

Next we show how the properties work in the toy example. Note that R(hs) is
given by Ex,|do(h, hs) [P(y;'|:1:2)11h2(w2)<0 + Py, ‘Ig)]lhz(wz)zo] , which by definition is
equal to Yy P(xa|do(hy, hs)) [P(y3 |22) Ly ey)<o + P(y3 [22)Lny(ay)>0]-  Due to Prop-
erty (1), P(zg|do(h1,h2)) = P(as|do(hy)), which can be broken down by conditioning
on X1,Y1 as )y, y, P(x2|do(h1),z1,y1)P(21,y1|do(h1)). Due to Property (2), we have
that P(xsldo(h1),z1,y1) = P(x2]x1,y1). Meanwhile, we rewrite P(x1,y1|do(h1)) as
P(z1|do(h1))P(y1|do(hi1),x1) which is equal to P(x1)P(y1|do(h1),z1). Then, we further break
down P(yi|do(hi),x1) as Y g P(yi|do(h1), s, x1)P(s|do(hy),z1). Due to Property (1), we have
P(s|do(h1),21) = P(s|z1). Due to Property (3), we have P(y1|do(h1), s, x1) be equal to a new dis-
tribution Py, (y1|71) defined by function hy, which is given by 1, (z,)>0 if y1 = y; and Lh, (21)<0
if 41 = y; 1in our case. Finally, combining every components above together and using a surrogate
function ¢ to replace each indicator, we obtain that R (ha) =

> P(s,21) (¢(ha(22))(—ha(21)) P(y5 [22) P(azler, yi ) + d(ha(22))@(ha (21)) Py |22) P(w2|z1,y7)
S,X1,X9
+¢(—ha(22))d(—h1(z1))P(ys |x2) P(w2]a1, y ) + ¢(—ha(x2))p(ha (1)) P(ys |w2) Plaz|z, y1)) -

For T'(hs), it is given by P(y;j |do(s*, h1,h2)) — P(yi |do(s™, hi,h2)), which can be directly
rewritten as P(y,"|do(s*, h1)) + P(y; |do(s~, h1)) — 1. By similarly applying the three properties,
we could obtain that Tp (ho) =

Z (¢(—=ha(22))p(—h1(21))P(z1]st) Pzl yi ) + ¢(—ha(w2))(ha (1)) Pl |sT) Pza|e, y7)
X1,X2

+¢(ha(22))(—h1 (1)) P(x1|s ™) P(x2]zr, y ) + ¢(ha(22))d(ha (21)) Px1|s™ ) Plaa|zr, 7)) — 1.

More generally, when there are [ classifiers, we could derive Ry(hy) and T, (hy) by using the
factorization formula proposed in [16] which implicitly encode all three properties. For Ry (hy),

according to the factorization formula, post-intervention P(zy|do(h1),--- ,do(h;)) is given by?
l m
P(zgldo(hy, -+ b)) = > [P wilzs) [] Pailpax,), (5)
X\Zy,Y i=1 i=1

where Py, (]2;) is the distribution of Y; defined by classifier h;(z;), i.e., 15, ()0 if y; = y* and
14, (2:)<0 if y; = y~. Note that all terms in Eq. (5) can be computed from data. Then, we can derive
the formula for computing Ry (hy).

However, it may not be ideal to directly apply Eq. (5) to our problem formulation. First, some
computations in Eq. (5) are not necessary since Zj, should not be affected by interventions on the non-
ancestors of Y. More importantly, if any X; is a continuous variable, its corresponding summation in
Eq. (5) would become an integral, making the gradient difficult to compute. Thus, to further simplify
Eq. (5), we index all attributes in X and Y according to the topological ordering, and denote the

2For the sake of simple representation, we assume that .S has no parent in the causal graph.



subsets of X and Y that are prior to Y; (or X;) in the topological order as Xy, and Y3, (X, and
lei)- Then, by canceling out all terms that are after Y}, in the order, it follows that

P(zg|do(h, -, l)) = > P(s) [[ Puluilzi) ] Plailpay,)

X N2V, Ve, Xiexy, ©6)
— Z P(S) H ]lhi(Zi)Z() H ]lhi(zi)<() H P(];i‘paxi)_
{S,X/Y,c }\Zk,Ygfk Ying/k 7yi+ Ying,k Wy XiGXg,k
We can rewrite P(s) HXieX’Y P(z;|pay,) as
k
S, T;, X P(v' s, z; %< .
HP Z’Z|S XX ayX HP $1|S (yX | v X) — P(SﬂxlX,) H (yX;| ) 17/ X,L)'
T XX POl ) L P T
b " : k

Thus, we can rewrite Eq. (6) as an expectation over S, Xg/k. With the surrogate function we obtain

Rom) =, B | Plullmotin@) 3 ] otnie) T ot Pl oo, X

s, Py’ |s,%x,)
kaEYY ,1/ yieyg/k?yi— X-;EXC),k X; 192X,

+ P(y; |ze)d(—hi (zr) Z I ¢(-hiz) [ oriz)) ] P(YXi|5,l’ileXi)

P(yl,ls,Xx,)
- ex x; 15 Xx;
Yy, YieY) .yt V€YY, Ly, Xi€XY,

(7

We can see that, in Eq. (7), only probabilities of categorical decisions are involved, and the expectation
can be estimated as an empirical risk.

Similarly, for T'(hy), Eq. (4) can be directly rewritten as T'(hy) = P(y;} |do(s*, h1, -+, b)) +
P(y; |do(s™,h1,-++ ,h)) — 1, and P(y; |do(s, hy,- - , h;)) can be given by

P(y's,|s,xi, Xx,
, E ]]'hk(zk >0 Z H ]lh7,(z,3)>0 H :ﬂ-hi(z,;)<0 H (ij‘S - /XX?I)

X}, [S=s P(y's |8, %))
Yy, ‘ Yk Y; GYYk ’yl YieYi/k u X; EX’Yk X X

By applying surrogate function ¢, we obtain that

st as, X
(hk) E —hi(zk) Z H d(—hi(zi)) H ¢ (hi(z;)) P(YX;| : /X'L)

+
Y, |5= s+ _ _ P(yxi|5 7XX¢)
v, YieYy, .y YieYy, .y XieX

+ B (oh(z) Y [ e(-hi(z)) ] ¢(hi(z:) PO moxi) | )

X/, [S=s— N P(y',|s7,x%.)
Yy, Y;,k YiEYQ/k yj Y'iEYQ/kvyi X;eX i i

®)

3.2 Problem Formulation

Now we are ready to formulate the classification problem. For each classifier hy(zy), we derive
its ¢-loss Ry (hy) and ¢-unfairness Ty (hy). Then, we minimize the summation of the ¢-loss over
all classifiers. Meanwhile, given a fairness threshold 75, we want the ¢-unfairness to be bounded
within the range [—7y, 7%], so we require that —7, < T} (hy) < 74. Generally, large thresholds
indicate loose fairness requirements and small ones indicate strict fairness requirements. However,
due to the application of surrogate functions, 7, may not be equal to threshold 7 that is placed on the
original fairness metric (e.g., 0.05 on the total effect used in the literature). In practice, we need to
test different values of 7 in order to find a good balance between fairness and accuracy.



Problem Formulation 1. The problem of fair multiple decision making for Y = {Yy,--- Y} is
formulated as the following constrained optimization problem:
l
i Ry(h t. Yk, —7 < Tyu(hy) < 7.
Py o) ot ST <
where the formulas of Ry(hy) and Ty (hy) are shown in Egs. (7) and (8), respectively.

From Section 3.1 we see that both the loss function and constraints in this formulation involve
non-linear combinations of surrogate functions. Specifically, for each Y}, surrogate functions of Y;
that are ancestors of Y}, are involved as multiplications. In essence, this is because the surrogated
predictions of one classifier are used in computing the loss of downstream classifiers. As each
surrogate function is involved as a single term in the multiplication in Eqs. (7) and (8), the gradients
of Ry(hy) and Ty(hy) can be easily computed. However, it is important to know whether such
“passing down” process would accumulate surrogate errors and affect the accuracy of classification.
We analyze the risk bound of the optimization in the next subsection.

3.3 Excess Risk Bound

Our main result of the excess risk bound is on the unconstrained optimization of the loss function. We
show that for each classifier hy, ¢-loss Ry (hs) approaching its unconstrained optimum R, indicates
that classification error R(hy,) also approaching its unconstrained optimum R*, no matter how many
classifiers are involved in the formulation. Although this result does not directly give the risk bound
to our constrained optimization problem, it can be easily extended to the constrained situation if we
treat the constraints as penalty terms that are to be added to the loss function.

We first formally define R* and R}, which are optimums of R(hy) and Ry (hy) over all possible
classifiers. By replacing each h;(z;) in R(hy) and Ry (hy) with a real-valued variable «;, we
define that R* = infy; o,cr R(hy) and Ry = infvia;er Ry (hi). Then, we define the generic
¢-conditional risk C;’(a), optimal ¢-conditional risk H (), constrained optimal ¢-conditional risk
H;(n), and t-transform. All these definitions are consistent to those in [2]. Let n be a value
in [0,1], 7 = 1 — n, « be an arbitrary real value, and ¢ be a surrogate function, we define that
Ci(a) = nd(a) + no(—a), Hy(n) = infaer C(a), Hy (1) = infa.q2n-1)<0 Cf(a). Asin [2],
we require ¢ to be classification-calibrated, i.e., for any n # 1/2, H, (n) > Hy(n). We then define
¥ by 1 = ** where ih(v) = Hy (H%) — H¢(1+TV) and g** is the Fenchel-Legendre biconjugate
of g. We show that, by without loss of generality assuming that ¢(0) = 1 and inf,er ¢(a) = 0, we
can obtain a risk bound for Ay, that is the same as that for the single decision model optimization [2],
as given in the following theorem.

Theorem 1. For any classification-calibrated surrogate function ¢ satisfying $(0) = 1 and
infaer @(a) = 0, any measurable function hy, for predicting Yy, we have

Y(R(h) — R) < Ry(hx) — Rg,
where 1(0) is a non-decreasing function mapping from [0, 1] to [0, 00).
Proof Sketch. The general idea is to factorize R(hy) and Ry (hy) into multiplications of C}(h;(z;))

and C{/(hi(z;)) respectively, construct a lower bound of Ry (hy;) as multiplications of H (1)), express

R* and R} as multiplications of H (1) and Hy(n) respectively, and adopt properties of Hy, H ',
to derive the above inequality. For detailed proof, please refer to the supplementary file. O

The meaning of Theorem 1 clearly gives the following corollary.
Corollary 1. Ry(hy) — R} indicates R(hy) — R*.

4 Experiments

Experiment Setup. We evaluate our method using both synthetic and real-world data. Table 1
provides a summary of two datasets’ statistics. For the synthetic data, we manually define a causal



Figure 2: The causal graph for the Figure 3: The causal graph for the Adult dataset.
synthetic dataset.
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graph with five variables S, X1, X5, Y7, Y5 shown in Fig. 2. Then, a conditional probability table is
defined for each attribute over its parents, and the data is generated by sampling each attribute in
topological order according to the conditional probability. For the real-world data, we use the Adult
dataset [19] and build the causal graph by using the PC algorithm implemented in the Tetrad [25].
We follow the settings in [28] to select 7 out of 11 attributes and binarize their domain values. The
significant threshold for conditional independence testing is set as 0.01, and three tiers in the partial
order are used. We handle this imbalanced data using the over-sampling technique [18]. The resultant
dataset consists of 10,1472 records. The causal graph is shown in Fig. 3. We treat Age as the protected
attribute S, and Workclass and Income as two decisions Y7, Ys. By default, we use 0.05 as the
threshold for judging fairness.

Table 1: Dataset statistics

Dataset  #Instances #Attributes Sensitive Variable  Decision Variable

Sythetic 10,000 5 S Y1, Y5
Adult 101,472 7 age workclass, income

We design an evaluation process which simulates the real model deployment procedure. The dataset
is randomly split to training and testing datasets. We deploy and evaluate the learned classifiers
sequentially according to their topological order. The first classifier h; is deployed first, and evaluated
on the original testing dataset. After that, it produces predicted decisions for Y7, which are then used
to re-generate the values of the subsequent variables in the order, as well as the true values of the next
classifier o, by using the causal graph. In the end, we evaluate o based on the re-generated data.

For training, our method (referred to as the joint method) formulates the optimization problem on
the training data to learn all classifiers simultaneously. We also consider a simplified version of our
method (referred to as the serial method) that learns classifiers sequentially following the topological
order similarly to the deployment procedure. Each classifier only uses the direct parents of the label.
After each classifier is learned, it is treated as a soft intervention such that the post-intervention
distribution is inferred and used to train subsequent classifiers. We compare our methods with a
baseline method (referred to the separate method) where each classifier is learned using the direct
parents separately on the training data.

Implementation. All classifiers are implemented as empirical risk minimization classifiers where
the logistic surrogate function is used. For unconstrained, separate, and serial methods, each classifier
is learned individually as a convex optimization problem. Thus, we use the CVXPY package [7]
to directly solve the unconstrained/constrained convex optimization problem. For the joint method,
since the objective function and constraints are non-convex, we add constraints as penalty terms to the
objective function and adopt PyTorch [22] to optimize it using the Adam optimizer. The convergence
of Adam algorithms for non-convex optimization has been studied, e.g., in [5]. All experiments are
conducted in a PC with 8GB RAM and Intel Core i5-1035G1 CPU.



Table 2: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods on synthetic
and Adult data (bold values indicate violation of fairness).

Synthetic Adult

Phase Uncons. | Separate | Serial | Joint | Uncons. | Separate | Serial | Joint
hy Acc. (%) 80.32 75.35 7535 | 75.35 55.71 55.64 55.63 | 55.63

Train Unfairness 0.15 0.01 0.01 0.01 0.15 0.05 0.05 0.05
ho Acc. (%) 90.13 75.79 84.02 | 82.77 76.75 71.17 68.90 | 69.31
Unfairness 0.23 0.04 0.03 0.04 0.24 0.10 0.10 0.10

hy Acc.. (%) 80.70 75.54 75.54 | 75.54 55.63 55.56 55.57 | 55.57

Test Unfairness 0.15 0.01 0.01 0.01 0.15 0.05 0.05 0.05
ho Acc: (%) 89.95 77.06 84.16 | 82.09 77.07 73.33 68.91 | 69.40
Unfairness 0.13 0.09 0.03 0.03 0.23 0.17 0.10 0.10

Results. As discussed, since separate training does not consider the change in the data distribution
caused by the deployment of new classifiers, it fails to achieve fairness in testing even if the classifier
is fair in training. To demonstrate this, Table 2 shows the results of one typical setting for each
method on both synthetic and Adult datasets, obtained from 5-fold cross-validation. For all methods,
we manage to build classifiers that are fair in training®. We can see that, in testing, the serial and
joint methods achieve consistent performance, but the separate method cannot guarantee to achieve
fairness for ho. We also did a grid search on thresholds 71, 75 on the synthetic data to find classifier
pairs hq, ho whose fairness is between -0.05 and 0.05 in training. Then, we evaluated these classifiers
in testing. We observe that, even if we use the training data for testing to avoid any generalization
error, in 71.43% of these pairs produced by the separate method, hs exceeded the interval [-0.05,
0.05] and hence violated the fairness criterion. On the contrary, all classifiers produced by the serial
and joint methods are fair in testing.

Comparing the serial and joint methods, they obtain similar results. This is expected since both of
them apply the soft intervention to capture the model deployment. The advantage of the joint method
is that it can adjust all classifiers simultaneously to obtain a better overall performance. This is not
shown in current experiments probably due to the small scale of the problem. We will study whether
the joint method would outperform the serial method in larger problems in our future work.

5 Conclusions and Future Work

In this paper, we proposed an approach that learns multiple fair classifiers from a static training dataset.
We treated the deployment of each classifier as a soft intervention and inferred the distributions
after the deployment as post-intervention distributions. We adopted surrogate functions to smooth
the loss function and fair constraints to formulate the fair classification problem as a constrained
optimization problem. In addition, we theoretically showed that combining multiple decision models
in the optimization would not introduce additional surrogate errors. Experiments using both synthetic
and real-world datasets show the advantage of our approach over the separate training method.

In our paper we assume the Markovian model. When the Markovian assumption is not satisfied, the
causal model is called the semi-Markovian model, which faces the identifiability issue, i.e., causal
effects may not be uniquely identified from the observational data. Most recently, the authors in [6]
introduced o-calculus to identify causal effects of soft interventions systematically. Extending our
approach to identifiable situations in semi-Markovian models will be our further work.

Reproducibility. The source code and datasets are available at https://github.com/yaoweihu/
Fair-Multiple-Decision-Making.

3For the Adult dataset, we use 0.1 as the fairness threshold for hs.


https://github.com/yaoweihu/Fair-Multiple-Decision-Making
https://github.com/yaoweihu/Fair-Multiple-Decision-Making

Broader Impact

Our research could benefit any organization or system that uses computer algorithms to make
important decisions, especially for large systems that consist of multiple decision tasks. By adopting
our method, decision makers can build multiple decision models simultaneously just from one
historical dataset and ensure that all decision models will be fair after the deployment. Our research
could also benefit users who get involved in the system, in particular the users from disadvantage
groups, by preventing them from receiving biased decisions.
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