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Abstract

We introduce a framework for multi-agent learning in which agents anticipate each
others’ reactions by forming conjectures about their learning processes, and de-
vise learning rules using a variational perspective relative to these conjectures.
The conjecture learning schemes lead to an alternative equilibrium concept, a
differential general conjectural variations equilibrium. When compared to simul-
taneous gradient play, we empirically observe that implicit conjecture learning
leads to a more equitable solution in a zero-sum polynomial game, while gradi-
ent and fast conjecture learning decrease the rotational components of the joint
dynamics. The framework provides techniques for future synthesis of novel het-
erogeneous multi-agent learning rules.

1 Introduction

Learning in games is the study of the learning processes that agents undergo while interacting with
others [8]. Currently lacking in this field are unified methods to synthesize learning rules for hetero-
geneous agents that are cognizant of others’ learning dynamics. In this paper, we incorporate models
of other agents’ learning by adopting a dynamic perspective of decision-making. Agents form con-
jectures about each other’s learning processes, giving rise to a new class of strategic multi-agent
learning schemes. The conjecture framework provides a principled method to perform gradient-
based learning in multiagent settings. Research on conjectural variations from a game-theoretic
perspective has been on-going for decades [3, 5, 7, 10]. Yet, motivated by recent advancements on
improving the convergence properties of large-scale machine learning tasks [1, 6, 9, 16, 11], we seek
a unifying perspective that incorporates strategic information of opponents and speeds up conver-
gence to desired equilibria. We begin by presenting the conjecture framework where the actions of
opponents are a function of one’s own actions. The formulation leads to the solution concept of a
differential general conjectural variations equilibrium. Employing other classes of conjectures will
lead to rich and novel behaviors for non-cooperative agents in continuous games.

2 Multi-agent Learning with Conjectures

Towards introducing the conjectures framework, we define the game-theoretic abstraction which
describes players objectives. A continuous n-player general-sum game is a collection of costs
(f1, . . . , fn) defined on X = X1 × · · · × Xn where fi ∈ Cr(X,R) with r ≥ 2 is player i’s
cost function, Xi = Rdi is their action space, and d =

∑n

i=1 di. Each player i ∈ I = {1, . . . , n}
aims to select an action xi ∈ Xi that minimizes their cost fi(xi, x−i) given the actions of all other
players, namely x−i ∈ X−i. The form of learning rule studied in this paper is given by

xk+1,i = xk,i − γk,igi(xk,i, ξi(xk,i, xk,−i)), i ∈ I

where gi is derived from gradient information of the player’s cost function and ξi is player i’s con-

jecture about the rest of the players given by ξi(xk) = (ξji (xk))j 6=i with ξji (xk) denoting player i’s
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conjecture about player j. In particular, gi ≡ Dxi
fi(·, ξi(·, x−i)) (or gi ≡ D̂xi

fi(·, ξi(·, x−i)) with
E[gi] = Dxi

fi(·, ξi(·, x−i)) in the stochastic case). To provide some intuition, consider simultane-
ous gradient play which is defined by taking ξi(xk) = xk—that is, player i conjectures that players
−i select a static best response policy in the sense that they conjecture opponents will play the same
strategy as in the previous round. More generally, consider a two player game (f1, f2), and for sim-
plicity the deterministic case in which players have oracle access to their updates gi. Then, player
1’s update is xk+1,1 = xk,1 − γk,1(D1f1(xk) +D1ξ1(xk)

⊤D2f1(xk)), and similarly for player 2;
that is, gi is the derivative of player i’s cost, conditioned on the conjecture ξi, with respect to xi.

The equilibrium notion we consider is known as a general conjectural variations equilibrium [5].
Unlike a Nash equilibrium, which is defined with respect to the cost evaluation of each player at a
candidate point, GCVE is defined with respect to first order conditions on the cost function of each
player. Consequently, players may have an incentive to deviate. Towards mitigating such limitations,
we define the notion of a differential GCVE which includes a second order condition so that locally
no player has a direction in which they can adjust their action and benefit.

Definition 1 (General Conjectural Variations Equilibrium (GCVE)). For a game G = (f1, . . . , fn)
with each fi ∈ Cr(X,R) and conjectures ξi : X → X−i, a point x∗ ∈ X constitutes a general

conjectural variations equilibrium if Difi(x
∗)+Diξi(x

∗)⊤D−ifi(x
∗) = 0, i ∈ I. Further, a GCVE

x∗ ∈ X is a differential GCVE if, for each i ∈ I, D2
i fi(xi, ξi(x

∗)) > 0.

To reduce notational overhead, in the remainder we consider two-player deterministic settings with
constant learning rates; the extension to n–player games is largely straightforward.

Implicit Conjectures. While there are also numerous classes of conjectures ξi, a natural conjecture
is that an opponent is playing a best response at each iteration; that is, player 1 assumes that xk,2

satisfies the sufficient condition that D2f2(xk,1, xk,2) = 0. Under sufficient regularity conditions on

cost functions, the implicit function theorem gives rise to D1ξ1(xk) = −(D2
2f2(xk))

−1D21f2(xk),
and similarly for player 2. Together, this leads to the so-called implicit conjectures update which

can be written in vector form as xk+1 = xk − Γ(g(xk) − diag(J⊤
o (xk)J

−1
d (xk)∇f(xk))) where

Jd(x) is the block diagonal matrix J(x)− Jo(x).

Gradient Conjectures. Motivated by applications in machine learning, we can approximate

these dynamics by replacing J−1
d with a conjectured learning rate matrix Γ̃, thereby leading to

gradient-based conjectures, where player i assumes their opponent player j is simply playing si-
multaneous gradient play with response map xk+1,j = xk,j − γ̃iDjfj(xk) where γ̃i is player
i’s conjectured learning rate for player j. In a two-player game with constant conjectured learn-
ing rates γ̃1 and γ̃2, the conjectures are defined as ξ1(x1, x2) = x2 − γ̃1D2f2(x1, x2) and
ξ2(x1, x2) = x1 − γ̃2D1f1(x1, x2). Since Dξi(x) = −γ̃iDjifj(x), the update rules are given

by xk+1 = xk − Γg(x) − diag(Γ̃J⊤
o (x)∇f(x)) with g(x) = (D1f1(x), D2f2(x)), Γ̃ a diagonal

matrix of the conjectured learning rates, and Jo(x) defined to be the block off-diagonal components

of J(x), the Jacobian of g(x). For zero-sum games, the update reduces to (I + Γ̃J⊤
o )g(x), since the

vector (D1f2(x), D2f1(x)) = −g(x). The inclusion of the term Djfi where i 6= j in the learning
rule is the key insight of the gradient-based conjecture update. It allows agent i to anticipate how the
other agent j’s actions affect their own cost. The map Dijfj transforms this strategic information
into the agents’ own coordinates.

Fast Conjectures. Several existing multi-agent learning algorithms can be derived from the conjec-
tures framework. Towards this end, we consider Taylor expansions of a cost function for a player
in order to explain how players envision the reactions of opponents impacts their own objectives.
In a two-player game (f1, f2) with conjectures (ξ1, ξ2) of the form ξi(xi, xj) = xj + v for some
vector v and each player i = 1, 2 such that i 6= j. Suppose that at iteration k, player 1 wants
to compute a best response by selecting a minimizer in the set argminx1

f1(x1, x2 + vk), given
that player 1 conjectures that player 2 is using the simple update rule x2 + vk and an oracle pro-
vides the update direction vk. Given xk,2, the cost function f1 can be approximated locally by its

Taylor expansion f1(x1, xk,2 + vk) = f1(x1, xk,2) +D2f1(x1, xk,2)vk +O(v2k). Dropping higher
order terms, we define the left-hand side as f ′

k,1(x1). Now, player 1 faces the optimization prob-

lem argminx1
f ′
k,1(x1) = argminx1

{f1(x1, xk,2) + D2f1(x1, xk,2)vk}. Suppose that player 1

optimizes the Taylor expansion of f ′
k,1(x1), f

′
k,1(x1 + wk) ≃ f1(x1, xk,2) + D2f1(x1, xk,2)vk +

(D1f1(x1, x2,k) +D12f1(x1, x2,k)vk)wk + O(w2
k), again after dropping higher order terms. Per-

forming a similar analysis for player 2, this leads to the gradient-based learning rule is of the form
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Simultaneous gradient descent xk+1 = xk − Γkg(xk)

Conjecture learning xk+1,i = xk,i − γk,i(Difi(xk) +Diξ
⊤

i (xk)Djfi(xk)) ∀i

Implicit conjectures xk+1 = xk − Γk(g(xk)− diag(J⊤

o (xk)J
−1

d (xk)∇f(xk)))

Gradient conjectures xk+1 = xk − Γk(g(xk)− diag(Γ̃kJ
⊤

o (xk)∇f(xk)))
Fast conjectures xk+1 = xk − Γkg(xk)− ΓkJo(xk)vk, vk is oracle direction

Lookahead [16] xk+1 = xk − γ(I − αJo(xk))g(xk)

Symplectic gradient xk+1 = xk − γ(I − η(xk)A
⊤(xk))g(xk),

adjustment [1] where ≡ 1

2
(J − J⊤) and η(xk) ∈ {−1, 1}

Learning w/ opponent xk+1,1 = xk,1 − η(D1f1(xk)− δ(D21f2(xk))
⊤D2f1(xk))

learning awareness [6] xk+1,2 = xk,2 − ηD2f2(xk)

Stable opponent xk+1 = xk − γ(I − αJo(xk))g(xk)− p(xk)αdiag(J
⊤

o (xk)∇f(xk)),
shaping [9] where 0 < p(x) < 1 and p(x) → 0 as ‖g(x)‖ → 0

Consensus optimization [12] xk+1 = xk − γ(I − αJ⊤(xk))g(xk)
Competitive gradient xk+1 = xk − Γ(xk)(I − αJo(xk))g(xk)

descent [14] where Γ(xk) = (I − α2Jo(xk)Jo(xk))
−1

Table 1: The core of several existing update rules can be derived from the conjecture learning framework
by choosing vk,i or γ̃k,i either in a principled or heuristic manner; e.g., Lookahead is fast conjecture learning
with vk,i = γ̃k,igi(xk) ≡ αgi(xk), learning with opponent-learning awareness is such that one player has
a gradient based conjecture and the other a static best response conjecture, and stable opponent shaping is a
combination of gradient and fast conjecture with heuristics for improving convergence properties.

xk+1 = xk−Γ(g(xk)+Jo(xk)vk), where vk = (vk,i)i with vk,i player i’s conjectured direction for
player j, provided by an oracle. We refer to these dynamics as fast conjecture learning. The update
form gives rise to a vast number of learning schemes depending on how vk,i and γi are defined.
Essentially, the update rules above give players the ability to adjust for the effect an opponent has on
their descent direction. Correcting for such impacts can lead to much faster convergence; however,
the set of attractors is not equivalent to the set of simultaneous gradient descent attractors.

Outside the scope of this short abstract, it is possible to provide convergence guarantees as a func-
tion of the learning rate matrices (diag((γk,i)i), diag((γ̃k,i)i) in both the deterministic and stochas-
tic settings. Further, we analyze the spectral properties of these learning updates by analyzing the
Jacobian of the continuous-time limiting dynamics ẋ = −g(·)(x) where (·) is a place holder for
the type of conjecture based dynamics being analyzed. Essentially, the structure of the Jacobian at
critical points of g(x) = (D1f1(x), D2f2(x)) in some classes of games—e.g., zero-sum or potential
games—enables us to employ spectral operator theory [15] to bound the real and imaginary com-
ponents of the spectrum, leading to insights into how the rotational and potential components of the
vector field change near critical points.

3 Numerical Examples

We present several examples that illustrate how different conjecture-based updates affect the vector
field near equilibria relative to simultaneous gradient play.

Example Class 1. Path-angle near critical points. In the following examples, we show the effects
of different conjectures on the vector field near differential Nash equilibria. Warping of the vec-
tor field can be beneficial to individual players—by, e.g., reducing the accumulated cost along the
learning path—or to all players—by, e.g., speeding up convergence. We consider two examples: 1)
a non-zerosum quadratic game (f1, f2) defined by costs f1(x1, x2) = 0.5x2

1 − 5.1x1x2 − 0.5x2
2

and f2(x1, x2) = −5x2
1 + 2x1x2 + 2x2

2; 2) a zerosum polynomial game (f,−f) defined by

f(x1, x2) = (−(x1 + ax2
2)

2 − (bx2
1 + cx2)

2)e−0.01(x2

1
+x2

2
) for (a, b, c) = (0.5, 0.3, 0).

There are several metrics used in machine learning to assess convergence of learning algorithms to
game theoretic equilibria including the path-norm (i.e., the norm of the vector field in the neigh-
borhood of a critical point), the eigenvalues of the Jacobian, and the path-angle which is defined by
c(α) = 〈x′ − x, gα〉/(‖x

′ − x‖‖gα‖) for a point x′ near a critical point and along the learning path,
another point x in a neighborhood, and gα = g(αx′ − (1−α)x), α ∈ [a, b] for some 0 < a < b [2].
In Fig. 1, we show visualizations of the path-angle and vector field for different updates, where the
former metrizes the effect of the update on the latter. In both cases, the vector field near the differen-
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[14] Florian Schäfer and Anima Anandkumar. Competitive gradient descent. arXiv preprint
arXiv:1905.12103, 2019.

[15] C. Tretter. Spectral Theory of Block Operator Matrices and Applications. World Scientific,
2008.

[16] Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

5


