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Abstract

This paper investigates the convergence of learning dynamics in Stackelberg
games on continuous action spaces, a class of games distinguished by the hierar-
chical order of play between agents. We establish connections between the Nash
and Stackelberg equilibrium concepts and characterize conditions under which at-
tracting critical points of simultaneous gradient descent are Stackelberg equilibria
in zero-sum games. Moreover, we show that the only stable critical points of the
Stackelberg gradient dynamics are Stackelberg equilibria in zero-sum games. Us-
ing this insight, we develop two-timescale learning dynamics for which each sta-
ble critical point is guaranteed to be a Stackelberg equilibrium in zero-sum games
and the dynamics converge to the set of stable attractors in general-sum games.

1 Introduction

In a Stackelberg game, there is a leader and a follower that interact in a hierarchical structure. The
sequential order of play is such that the leader is endowed with the power to select an action using
the knowledge that the follower will then play a best-response. We formulate and study a novel
set of gradient-based learning rules in continuous, general-sum Stackelberg games. The dynamics
analyzed in this work reflect the underlying game structure and characterize the expected outcomes
of hierarchical games. The study of learning dynamics and equilibria in Stackelberg games we
provide has implications for both multi-agent learning and adversarial learning applications.

We define and analyze the differential Stackelberg equilibrium solution concept, which is a local
notion of the Stackelberg equilibrium. An analogous local minimax equilibrium concept was devel-
oped concurrently with this work, but strictly for zero-sum games [6]. Importantly, the equilibrium
notion we present generalizes the local minimax equilibrium concept to general-sum games. The
solution concept we study is a natural extension of the differential Nash equilibrium concept [10],
which is a local notion of the Nash equilibrium in continuous games. The insights we present in this
paper on the equilibria landscape of continuous games come as a direct consequence of focusing our
attention on the Stackelberg equilibrium concept instead of the Nash equilibrium concept.

Contributions. We establish a number of connections between Nash and Stackelberg equilibria
and characterize the conditions under which attracting critical points of simultaneous gradient de-
scent are Stackelberg equilibria in zero-sum games. To summarize, we show stable differential
Nash equilibria are differential Stackelberg equilibria in zero-sum games. Concurrently, Jin et al.
[6] showed local Nash equilibria are local minimax equilibria. We also reveal that there exist non-
Nash attractors of simultaneous gradient descent that are Stackelberg equilibria. Moreover, we give
necessary and sufficient conditions under which the simultaneous gradient play dynamics can avoid
Nash equilibria and converge to Stackelberg equilibria in zero-sum games. To demonstrate the rele-
vancy to deep learning applications, we specialize the conditions to GANs satisfying the realizable
assumption [8], which presumes the generator is able to create the underlying data distribution.
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Finally, we analyze the convergence behavior of gradient-based learning rules reflecting the under-
lying Stackelberg game structure. We show that the only stable critical points of the Stackelberg gra-
dient dynamics are Stackelberg equilibria in zero-sum games. This is in contrast to the simultaneous
gradient play dynamics, which can be attracted to non-Nash critical points in zero-sum games. We
consider the follower to employ a gradient-play update rule and propose a two-timescale algorithm
to learn Stackelberg equilibria. We show asymptotic convergence of the dynamics to Stackelberg
equilibria in zero-sum games given an initialization in the region of attraction of a stable critical
point and to the set of stable attractors in general-sum games.

2 Preliminaries

Consider a game between two agents where one agent is deemed the leader and the other the fol-
lower. The leader has cost f1 : X → R and the follower has cost f2 : X → R, where X = X1×X2

with the action space of the leader being X1 and the action space of the follower being X2. We as-
sume throughout that each fi is sufficiently smooth, meaning fi ∈ Cq(X,R) for some q ≥ 2 and
for each agent i ∈ I = {1, 2}. The designation of ‘leader’ and ‘follower’ indicates the order of play
between the two agents, meaning the leader plays first and the follower second. The leader and the
follower need not be cooperative. Such a game is known as a Stackelberg game.

The leader aims to solve the optimization problem given by

minx1∈X1
{f1(x1, x2)| x2 ∈ argminy∈X2

f2(x1, y)}

and the follower aims to solve the optimization problem minx2∈X2
f2(x1, x2). The learning algo-

rithms we study are such that the agents follow myopic update rules which take steps in the direction
of steepest descent with respect to these optimization problems.

Before formalizing the learning rules, we discuss the equilibrium concept studied for simultaneous
and hierarchical play games. The typical equilibrium notion in continuous games is the pure strategy
Nash equilibrium in simultaneous play games and the Stackelberg equilibrium in hierarchical play
games. Each notion of equilibria can be defined as the intersection points of the reaction curves of
the players [1]. We characterize local Nash and Stackelberg equilibrium using sufficient conditions.

To define the equilibrium concepts, we need some notation. We denote Difi as the derivative of
fi with respect to xi, Dijfi as the partial derivative of Difi with respect to xj , and D(·) as the

total derivative1. Denote by ω(x) = (D1f1(x), D2f2(x)) the vector of individual gradients for
simultaneous play and ωS(x) = (Df1(x), D2f2(x)) as the equivalent for hierarchical play where
x2 is implicitly a function of x1, which captures the fact that the leader operates under the assumption
that the follower will play a best response to its choice of x1

2. The following are local equilibrium
concepts defined using sufficient conditions.

Definition 1 (Differential Nash Equilibrium [10]). The joint strategy x∗ ∈ X is a differential Nash
equilibrium if ω(x∗) = 0 and D2

i fi(x
∗) > 0 for each i ∈ I.

Definition 2 (Differential Stackelberg Equilibrium). The pair (x∗
1, x

∗
2) ∈ X with x∗

2 = r(x∗
1), where

r is implicitly defined by D2f2(x
∗
1, x

∗
2) = 0, is a differential Stackelberg equilibrium for the game

(f1, f2) with player 1 as the leader if Df1(x
∗
1, r(x

∗
1)) = 0 and D2f1(x

∗
1, r(x

∗
1)) is positive definite.

Remark 1. In zero-sum games, the differential Stackelberg equilibrium notion is equivalent to a
local minimax equilibrium. This is a known concept in optimization (see, e.g., [1, 4, 3]), and it
has recently been presented in the learning literature (see, e.g., [6]). For general-sum games, such a
characterization derives from sufficient conditions for local optimality respecting the game structure.

We utilize Definition 2 to formulate the Stackelberg gradient dynamics we study; indeed, the com-
bined learning dynamics given an appropriate learning rate γ > 0 are defined by

xk+1 = xk − γωS(xk). (1)

The learning dynamics approximate the continuous time dynamical system ẋ = −ωS(x) as the
learning rate γ → 0. We study the limit points of this system to gain novel insights into the equilib-
rium landscape of continuous games.

1For example, given a function f(x, r(x)), Df = D1f +D2f∂r/∂x.
2Under sufficient regularity assumptions, the total derivative for the hierarchical gradient dynamics can be

computed using the implicit function theorem to be Df1 = D1f1 −D2f1(D
2

2f2)
−1D21f2.
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3 Linking Nash and Stackelberg Equilibria in Zero-Sum Games

In this section we show the distinct connections between the limit points of simultaneous gradi-
ent descent and the Stackelberg gradient dynamics in zero-sum games, which demonstrate Nash
equilibria and Stackelberg equilibria are closely intertwined in this class of games.

Proposition 1. For any continuous zero-sum game (f,−f), stable critical points of ẋ = −ωS(x)
are differential Stackelberg equilibria.

The result follows from examination of the structure of the Jacobian of ωS , which is block lower
triangular with player 1 and 2 as the leader and follower, respectively. The preceding result implies
the only stable critical points of the dynamics in (1) are Stackelberg equilibria and thus, unlike
simultaneous gradient descent, will not converge to spurious stable critical points of the dynamics.

Proposition 2. For any continuous zero-sum game (f,−f), stable differential Nash equilibria are
differential Stackelberg equilibria.

This result is obtained by examining the first Schur complement of the Jacobian of the simultane-
ously play dynamics, and noting that it is exactly the second order sufficient conditions for the leader
in the Stackelberg game. In zero-sum games, the fact that Nash equilibria are a subset of Stackel-
berg equilibria (or minimax equilibria) for finite games is well-known [1]. We show the result for
the differential Stackelberg equilibria in continuous games. Concurrently, Jin et al. [6] showed local
Nash equilibria are local minimax solutions in continuous zero-sum games. The result indicates
algorithms seeking Nash are seeking Stackelberg simultaneously in zero-sum games.

The simultaneous gradient play dynamics can avoid Nash equilibria and converge to locally asymp-
totically stable critical points of the dynamics. Previously, such points have been viewed as lacking
game-theoretic significance. However, the following results give conditions under which a non-
Nash stable critical point of the dynamics ẋ = −ω(x) is an attractor of the Stackelberg dynamics
ẋ = −ωS(x). From Proposition 1, it follows that such attractors are Stackelberg equilibria.

For a non-Nash attractor x∗ = (x1, x2) ∈ R
m+n of a zero-sum game (f,−f), let spec(D2

1f(x
∗)) =

{µj , j ∈ {1, . . . ,m}} where µ1 ≤ · · · ≤ µr < 0 ≤ µr+1 ≤ · · · ≤ µm, and let spec(−D2
2f(x

∗)) =
{λi, i ∈ {1, . . . , n}} where λ1 ≥ · · · ≥ λn > 0, and define p = dim(ker(D2

1f(x
∗))).

Proposition 3 (Necessary conditions). Consider a non-Nash attractor x∗ of the individual gradient
dynamics ẋ = −ω(x) such that −D2

2f(x
∗) > 0. Given κ > 0 such that ‖D21f(x

∗)‖ ≤ κ, if x∗ is
an attractor of ẋ = −ωS(x), then r ≤ n and κ2λi + µi > 0 for all i ∈ {1, . . . , r − p}.

Proposition 4 (Sufficient conditions). Let x∗ be a non-Nash attractor of the individual gradient
dynamics ẋ = −ω(x) such that D2

1f(x
∗) and −D2

2f(x
∗) are Hermitian, and −D2

2f(x
∗) > 0.

Suppose that there exists a diagonal matrix (not necessarily positive) Σ ∈ C
m×n with non-zero

entries such that D12f(x
∗) = W1ΣW

∗
2 where W1 are the orthonormal eigenvectors of D2

1f(x
∗)

and W2 are orthonormal eigenvectors of −D2
2f(x

∗). Given κ > 0 such that ‖D21f(x
∗)‖ ≤ κ, if

r ≤ n and κ2λi + µi > 0 for each i ∈ {1, . . . , r − p}, then x∗ is an attractor of ẋ = −ωS(x).

The previous results follow from examining the unique structure of the Jacobian of the simultaneous
play dynamics, which resembles a J-frame on Krein spaces; with respect to the Krein space [11], the
Jacobian is a self-adjoint operator which is afforded similar eigenstructure properties as self-adjoint
operators on Hilbert spaces. The conditions imply some of the non-Nash attracting critical points
of ẋ = −ω(x) are in fact Stackelberg equilibria. Some recent results show that several approaches
to training GANs are not converging to stable Nash equilibria, but rather to stable non-Nash critical
points of the dynamics [2]. In future work, we plan to explore whether or not such attractors satisfy
the conditions we propose.

A common assumption in some of the GAN literature is that the discriminator network is zero in a
neighborhood of an equilibrium configuration (see, e.g., [8, 9, 7]). This assumption limits the theory
to the ‘realizable’ case, where the generator is capable of creating the underlying distribution. The
work by [8] provides relaxed assumptions for the non-realizable case. In both cases, the Jacobian for
the dynamics ẋ = −ω(x) is such that D2

1f(x
∗) = 0. The following results specialize the conditions

from Propositions 3 and 4 to zero-sum games satisfying the realizable assumption.

Proposition 5. Consider a GAN satisfying the realizable assumption. Then, an attracting critical
point x∗ for the simultaneous gradient dynamics ẋ = −ω(x) at which −D2

2f is positive semi-
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definite satisfies necessary conditions for a local Stackelberg equilibrium, and it will be a marginally
stable point of the Stackelberg dynamics ẋ = −ωS(x).

This result follows from examining the Schur complement of the Jacobian of the simultaneous play
dynamics under the realizable assumption, which guarantees the upper block component is zero.

Proposition 6. Consider a GAN satisfying the realizable assumption and an attracting critical point
x∗ for the simultaneous gradient dynamics ẋ = −ω(x) at which −D2

2f is positive definite. Suppose
there exists a diagonal matrix Σ with non-zero entries such that D12f(x

∗) = ΣW where W are the
orthonormal eigenvectors of −D2

2f(x
∗). Then, x∗ is an attractor of ẋ = −ωS(x).

This result follows from the general sufficient conditions in Proposition 4.

4 Two-Timescale Learning Dynamics

Motivated by practical learning applications we focus on developing gradient-based algorithms with
convergence guarantees under stochastic updates. To do so, we focus on the situation where the
leader operates under the assumption that the follower is playing (locally) optimally at each round so
that the belief is D2f2(x1,k, x2,k) = 0, but the follower is actually performing the update x2,k+1 =
x2,k + g2(x1,k, x2,k) where g2 ≡ −γ2,kE[D2f2]. The dynamics in this formulation are given by

x1,k+1 = x1,k − γ1,k(Df1(xk) + w1,k+1)

x2,k+1 = x2,k − γ2,k(D2f2(xk) + w2,k+1),
(2)

where Df1(x) = D1f1(x) +D2f1(x)(D
2
2f2)

−1(x)D21f2(x). Now, suppose that γ1,k → 0 faster
than γ2,k so that in the limit as τ → 0, the dynamics in (2) approximates the singularly perturbed
system defined by

ẋ1(t) = −Df1(x1(t), x2(t))
ẋ2(t) = −τ−1D2f2(x1(t), x2(t)).

(3)

The learning rates can be seen as stepsizes in a discretization scheme for solving the dynamics.
The condition that γ1,k = o(γ2,k) induces a timescale separation in which x2 evolves on a faster
timescale than x1. That is, the fast transient player is the follower and the slow component is
the leader since limk→∞ γ1,k/γ2,k = 0 implies that from the perspective of the follower, x1 ap-
pears quasi-static and from the perspective of the leader, x2 appears to have equilibriated, meaning
D2f2(x1, x2) = 0 given x1. From this point of view, the learning dynamics in (2) approximate the
follower playing an exact best response. Moreover, attracting critical points of the dynamics are such
that the leader is at a local optima for f1, not just along its coordinate axis but in both coordinates
(x1, x2) constrained to the manifold r(x1); this is to make a distinction between differential Nash
equilibria in that players are at local optima aligned with their individual coordinate axes. While
the convergence analysis is outside the scope of this paper, we can show that the dynamics in (2)
reach Stackelberg equilibria in zero-sum games if initialized in the region of attraction of a critical
point and the set of stable attractors in general-sum games. Formal theoretical results and proofs
for both asymptotic and finite time convergence are given in [5]. The analysis combines techniques
from dynamical systems theory with the theory of stochastic approximation. We leverage the lim-
iting continuous time dynamical system in (3) to characterize concentration bounds for iterates or
samples generated by (2) along with results in Section 3 to obtain guarantees.

5 Conclusion

In this paper, we present a number of connections between the Nash and Stackelberg equilibrium
concepts in continuous games. As a consequence of focusing on the Stackelberg equilibrium con-
cept, we obtain conditions characterizing when non-Nash attracting critical points of simultaneous
gradient descent are Stackelberg equilibria in zero-sum games. This result is of significant practical
interest since previously such spurious stable points were not thought to be game-theoretically mean-
ingful. Moreover, we show that the only stable critical points of the Stackelberg gradient dynamics
are Stackelberg equilibria in zero-sum games. The result shows the highly desirable characteris-
tics of attracting critical points in hierarchical play games in contrast to simultaneous play games.
Finally, we develop learning dynamics that converge to Stackelberg equilibria if initialized in the re-
gion of attraction of a critical point in zero-sum games and the set of stable attractors in general-sum
games. A longer version of this paper including numerical results is presented in [5].
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