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Abstract

Contemporary work on learning in continuous

games has commonly overlooked the hierarchi-

cal decision-making structure present in machine

learning problems formulated as games, instead

treating them as simultaneous play games and

adopting the Nash equilibrium solution concept.

We deviate from this paradigm and provide a com-

prehensive study of learning in Stackelberg games.

This work provides insights into the optimization

landscape of zero-sum games by establishing con-

nections between Nash and Stackelberg equilibria

along with the limit points of simultaneous gra-

dient descent. We derive novel gradient-based

learning dynamics emulating the natural structure

of a Stackelberg game using the implicit function

theorem and provide convergence analysis for de-

terministic and stochastic updates for zero-sum

and general-sum games. Notably, in zero-sum

games using deterministic updates, we show the

only critical points the dynamics converge to are

Stackelberg equilibria and provide a local conver-

gence rate. Empirically, our learning dynamics

mitigate rotational behavior and exhibit benefits

for training generative adversarial networks com-

pared to simultaneous gradient descent.

1. Introduction

The emerging coupling between game theory and machine

learning can be credited to the formulation of learning

problems as interactions between competing objectives and

strategic agents. Indeed, generative adversarial networks

(GANs) (Goodfellow et al., 2014), robust supervised learn-

ing (Madry et al., 2018), reinforcement and multi-agent

reinforcement learning (Dai et al., 2018; Zhang et al., 2019),
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and hyperparameter optimization (Maclaurin et al., 2015)

problems can be cast as zero-sum or general-sum continu-

ous action games. To obtain solutions in a tractable manner,

gradient-based algorithms have gained attention.

Given the motivating applications, much of the contem-

porary work on learning in games has focused on zero-

sum games with non-convex, non-concave objective func-

tions and seeking stable critical points or local equilib-

ria. A number of techniques have been proposed includ-

ing optimistic and extra-gradient algorithms (Daskalakis

et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos

et al., 2019), gradient adjustments (Balduzzi et al., 2018;

Mescheder et al., 2017), and opponent modeling meth-

ods (Zhang & Lesser, 2010; Foerster et al., 2018; Letcher

et al., 2019; Schäfer & Anandkumar, 2019). However, only

a select number of algorithms can guarantee convergence

to stable critical points satisfying sufficient conditions for

a local Nash equilibrium (LNE) (Mazumdar et al., 2019;

Adolphs et al., 2019).

The dominant perspective in machine learning applications

of game theory has been focused on simultaneous play.

However, there are many problems exhibiting a hierarchical

order of play, and in a game theoretic context, such problems

are known as Stackelberg games. The Stackelberg equilib-

rium (Von Stackelberg, 2010) solution concept generalizes

the min-max solution to general-sum games. In the simplest

formulation, one player acts as the leader who is endowed

with the power to select an action knowing the other player

(follower) plays a best-response. This viewpoint has long

been researched from a control perspective on games (Basar

& Olsder, 1998) and in the bilevel optimization commu-

nity (Danskin, 1967; 1966; Zaslavski, 2012).

The work from a machine learning perspective on games

with a hierarchical decision-making structure is sparse and

exclusively focuses on zero-sum games. In the most relevant

theoretical work, Jin et al. (2019) show that all stable critical

points of simultaneous gradient descent with a timescale

separation between players approaching infinity satisfy suf-

ficient conditions for a local Stackelberg equilibrium (LSE).

The closest empirical work we are aware of is on unrolled

GANs (Metz et al., 2017), where the leader (generator) opti-

mizes a surrogate cost function that depends on parameters
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of the follower (discriminator) that have been ‘rolled out’

until an approximate local optimum is reached. This behav-

ior intuitively approximates a hierarchical order of play and

consequently the success of the unrolling method as a train-

ing mechanism provides some evidence supporting the LSE

solution concept. In this paper, we provide a step toward

bridging the gap between theory and practice along this

perspective by developing implementable learning dynam-

ics with convergence guarantees to critical points satisfying

sufficient conditions for a LSE.

Contributions. Motivated by the lack of algorithms focus-

ing on games exhibiting an order of play, we provide a study

of learning in Stackelberg games including equilibria char-

acterization, novel learning dynamics and convergence anal-

ysis, and an illustrative empirical study. The primary bene-

fits of this work to the community include an enlightened

perspective on the consideration of equilibrium concepts

reflecting the underlying optimization problems present in

machine learning applications formulated as games and an

algorithm that provably converges to critical points satisfy-

ing sufficient conditions for a LSE in zero-sum games.

We provide a characterization of LSE via sufficient condi-

tions on player objectives and term points satisfying the

conditions differential Stackelberg equilibria (DSE). We

show DSE are generic amongst LSE in zero-sum games.

This means except on a set of measure zero in the class

of zero-sum continuous games, DSE and LSE are equivalent.

While the placement of differential Nash equilibria (DNE)

amongst critical points in continuous games is reasonably

well understood, an equivalent statement cannot be made

regarding DSE. Accordingly, we draw connections between

the solution concepts in the class of zero-sum games. We

show that DNE are DSE, which indicates the solution concept

in hierarchical play games is not as restrictive as the solu-

tion concept in simultaneous play games. Furthermore, we

reveal that there exist stable critical points of simultaneous

gradient descent dynamics that are DSE and not DNE. This

insight gives meaning to a broad class of critical points pre-

viously thought to lack game-theoretic meaning and may

give some explanation for the adequacy of solutions not

satisfying sufficient conditions for LNE in GANs. To charac-

terize this phenomenon, we provide necessary and sufficient

conditions for when such points exist.

We derive novel gradient-based learning dynamics emulat-

ing the natural structure of a Stackelberg game from the

sufficient conditions for a LSE and the implicit function

theorem. The dynamics can be viewed as an analogue to

simultaneous gradient descent incorporating the structure

of hierarchical play games. In stark contrast to the simul-

taneous play counterpart, we show in zero-sum games the

only stable critical points of the dynamics are DSE and such

equilibria must be stable critical points of the dynamics. Us-

ing this fact and saddle avoidance results, we show the only

critical points the discrete time algorithm converges to given

deterministic gradients are DSE and provide a local conver-

gence rate. In general-sum games, we cannot guarantee the

only critical point attractors of the deterministic learning

algorithms are DSE. However, we give a local convergence

rate to critical points which are DSE. For stochastic gradi-

ent updates, we obtain analogous convergence guarantees

asymptotically for each game class.

Empirically, we show that our dynamics result in stable

learning compared to simultaneous gradient dynamics when

training GANs. To gain insights into the placement of DNE

and DSE in the optimization landscape, we analyze the eigen-

values of relevant game objects and observe convergence

to neighborhoods of equilibria. Finally, we show that our

dynamics can scale to computationally intensive problems.

2. Preliminaries

We now formalize the games we study, present equilibrium

concepts accompanied by sufficient condition characteriza-

tions, and formulate Stackelberg learning dynamics.

2.1. Game Formalisms

Consider a non-cooperative game between two agents where

player 1 is deemed the leader and player 2 the follower. The

leader has cost f1 : X → R and the follower has cost

f2 : X → R, where X = X1 ×X2 ∈ R
m with X1 ∈ R

m1

and X2 ∈ R
m2 denoting the action spaces of the leader

and follower, respectively.1 We assume throughout that

each fi is sufficiently smooth: fi ∈ Cq(X,R) for some

q ≥ 2. For zero-sum games, the game is defined by costs

(f1, f2) = (f,−f). In words, we consider the class of two-

player smooth games on continuous, unconstrained actions

spaces. The designation of ‘leader’ and ‘follower’ indicates

the order of play between the agents, meaning the leader

plays first and the follower second.

In a Stackelberg game, the leader and follower aim to solve

the following optimization problems, respectively:

min
x1∈X1

{f1(x1, x2)
∣

∣ x2 ∈ arg min
y∈X2

f2(x1, y)}, (L)

min
x2∈X2

f2(x1, x2). (F)

This contrasts with a simultaneous play game in which

each player i is faced with the optimization problem

minxi∈Xi
fi(xi, x−i). The learning algorithms we formu-

late are such that the agents follow myopic update rules

which take steps in the direction of steepest descent for the

respective optimizations problems.

1Our results hold more generally for action spaces that are
precompact subsets of the Euclidean space since they are local.
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2.2. Equilibria Concepts and Characterizations

Before formalizing learning rules, let us first discuss the

equilibrium concept studied for simultaneous play games

and contrast it with that which is studied in the hierarchi-

cal play counterpart. The typical equilibrium notion in

continuous games is the pure strategy Nash equilibrium in

simultaneous play games and the Stackelberg equilibrium

in hierarchical play games. Each notion of equilibria can

be characterized as the intersection points of the reaction

curves of the players (Basar & Olsder, 1998). We focus our

attention on local notions of the equilibrium concepts as is

standard in learning in games since the objective functions

we consider need not be convex or concave.

Definition 1 (Local Nash (LNE)). The joint strategy x∗ ∈ X
is a local Nash equilibrium on U1 × U2 ⊂ X1 ×X2 if for

each i ∈ {1, 2}, fi(x
∗) ≤ fi(xi, x

∗
−i), ∀ xi ∈ Ui ⊂ Xi.

Definition 2 (Local Stackelberg (LSE)). Consider Ui ⊂
Xi for each i ∈ {1, 2}. The strategy x∗

1 ∈ U1 is a local

Stackelberg solution for the leader if, ∀x1 ∈ U1,

supx2∈RU2
(x∗

1
) f1(x

∗
1, x2) ≤ supx2∈RU2

(x1) f1(x1, x2),

where RU2
(x1) = {y ∈ U2|f2(x1, y) ≤ f2(x1, x2), ∀x2 ∈

U2}. Moreover, (x∗
1, x

∗
2) for any x∗

2 ∈ RU2
(x∗

1) is a local

Stackelberg equilibrium on U1 × U2.

While characterizing existence of equilibria is outside

the scope of this work, we remark that Nash equilibria

exist for convex costs on compact and convex strategy

spaces and Stackelberg equilibria exist on compact strategy

spaces (Basar & Olsder, 1998, Thm. 4.3, Thm. 4.8, & §4.9).

This means the class of games on which Stackelberg equi-

libria exist is broader than on which Nash equilibria exist.

Existence of local equilibria is guaranteed if the neighbor-

hoods and cost functions restricted to those neighborhoods

satisfy the assumptions of the cited results.

Predicated on existence, equilibria can be characterized in

terms of sufficient conditions on player costs. We denote

Difi as the derivative of fi with respect to xi, Dijfi as the

partial derivative of Difi with respect to xj , and D(·) as the

total derivative.2 The following gives sufficient conditions

for a LNE as given in Definition 1.

Definition 3 (Differential Nash (DNE) Ratliff et al. (2016)).

The joint strategy x∗ ∈ X is a differential Nash equilibrium

if Difi(x
∗) = 0 and D2

i fi(x
∗) > 0 for each i ∈ {1, 2}.

Analogous sufficient conditions can be stated to characterize

a LSE from Definition 2.

Definition 4 (Differential Stackelberg (DSE)). The joint

strategy x∗ = (x∗
1, x

∗
2) ∈ X is a differential Stackelberg

equilibrium if Df1(x
∗) = 0, D2f2(x

∗) = 0, D2f1(x
∗) >

2Example: given f(x, r(x)), Df = D1f +D2fDr.

0, and D2
2f2(x

∗) > 0 where x∗
2 = r(x∗

1) and r(·) implicitly

defined by D2f2(x
∗) = 0.

Game Jacobians play a key role in determining stability of

critical points. Let

ω(x) = (D1f1(x), D2f2(x))

be the vector of individual gradients for the simultaneous

play game and

ωS(x) = (Df1(x), D2f2(x))

as the equivalent for the Stackelberg game. Observe that

Df1 is the total derivative of f1 with respect to x1 given

x2 is implicitly a function of x1, capturing the fact that the

leader operates under the assumption that the follower will

play a (local) best response to x1. We note that the reaction

curve of the follower to x1 may not be unique. However,

under sufficient conditions on a local Stackelberg solution x,

locally D2f2(x) = 0 and det(D2
2f2(x)) 6= 0 so that Df1 is

well defined via the implicit mapping theorem (Lee, 2012).

The vector field ω(x) forms the basis of the well-studied

simultaneous gradient learning dynamics and the Jacobian

of the dynamics is given by

J(x) =

[

D2
1f1(x) D12f1(x)

D21f2(x) D2
2f2(x)

]

.

Similarly, the vector field ωS(x) serves as the foundation

of the learning dynamics we formulate in Section 2.4 and

analyze throughout. The Jacobian of the Stackelberg vector

field ωS(x) is given by

JS(x) =

[

D1(Df1(x)) D2(Df1(x))
D21f2(x) D2

2f2(x)

]

. (1)

A critical point is called non-degenerate if the determinant of

the vector field Jacobian is non-zero. We denote by C
◦
− and

C
◦
+ the open left and right half complex planes. Moreover, a

critical point x∗ of ẋ = −ω(x) is stable if spec(−J(x∗)) ⊂
C

◦
− or equivalently spec(J(x∗)) ⊂ C

◦
+. Similarly, a critical

point x∗ of ẋ = −ωS(x) is stable if spec(−JS(x
∗)) ⊂ C

◦
−

or equivalently spec(JS(x
∗)) ⊂ C

◦
+.

Noting that the Schur complement of JS(x) with respect to

D2
2f2(x) is identically D2f(x1, r(x1)), we give alternative

but equivalent sufficient conditions as those in Definition 4

in terms of JS(x). Here, S1(·) denotes the Schur comple-

ment of (·) with respect to the bottom block matrix in (·).
The proof of the following result is in Appendix B.

Proposition 1. Consider a game (f1, f2) defined by fi ∈
Cq(X,R), i = 1, 2 with q ≥ 2 and player 1 (without

loss of generality) taken to be the leader. Let x∗ satisfy

D2f2(x
∗) = 0 and D2

2f2(x
∗) > 0. Then Df1(x

∗) = 0
and S1(JS(x

∗)) > 0 if and only if x∗ is a DSE. Moreover,

in zero-sum games, S1(JS(x)) = S1(J(x)).
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2.3. Genericity and Structural Stability

A natural question is how common is it for local equilibria to

satisfy sufficient conditions, meaning in a formal mathemat-

ical sense, what is the gap between necessary and sufficient

conditions in games. Towards addressing this, it has been

shown that DNE are generic amongst LNE and structurally

stable in the classes of zero-sum and general-sum contin-

uous games, respectively (Ratliff et al., 2016; Mazumdar

& Ratliff, 2019). The results say that except on a set of

measure zero in each class of games, DNE = LNE and the

equilibria persist under sufficiently smooth perturbations to

the costs. We give analogous results for DSE in the class

of zero-sum games in this section and provide proofs in

Appendix C. The following result allows us to conclude that

for a generic zero-sum game, DSE = LSE.

Theorem 1. For the class of two-player, zero-sum contin-

uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,

DSE are generic amongst LSE. That is, given a generic

f ∈ Cq(Rm,R), all LSE of the game (f,−f) are DSE.

A critical point x∗ of the vector field ωS(x) is hyperbolic

if there are no eigenvalues of JS(x
∗) with zero real part.

We now show that in generic zero-sum games, LSE are

hyperbolic critical points of the vector field ωS(x), which is

desirable property owing to the convergence implications.

Corollary 1. For the class of two-player, zero-sum continu-

ous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2, LSE

are generically non-degenerate, hyperbolic critical points

of the vector field ωS(x).

As a final result in this section, we show that DSE are struc-

tural stable in the class of zero-sum games. Structurally

stability ensures that differential Stackelberg equilibria are

robust and persist under smooth perturbations.

Theorem 2. For the class of two-player, zero-sum contin-

uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,

DSE are structurally stable: given f ∈ Cq(Rm1 ×R
m2 ,R),

ζ ∈ Cq(Rm1×R
m2 ,R), and a DSE (x1, x2) ∈ R

m1×R
m2 ,

there exists neighborhoods U ⊂ R of zero and V ⊂
R

m1 × R
m2 such that ∀ t ∈ U there exists a unique DSE

(x̃1, x̃2) ∈ V for the zero-sum game (f + tζ,−f − tζ).

Before moving on, we remark that important classes of

non-generic games certainly exist. In games where the cost

function of the follower is bilinear, LSE can exist which do

not satisfy the sufficient conditions outlined in Definition 4.

As a simple example, x∗ = (0, 0) is a LSE for the zero-sum

game defined by f(x1, x2) = x1x2 and not a DSE since

D2
2f2(x) = 0 ∀ x ∈ X . Since such games belong to a

degenerate class in the context of the genericity result we

provide, they naturally deserve special attention and algo-

rithmic methods. While we do not focus our attention on

this class of games, we do propose some remedies to allow

Algorithm 1 Deterministic Stackelberg Learning Dynamics

1: Input: x0 ∈ X , learning rates γ2 > γ1 > 0
2: for k = 0, 1, . . . do
3: ωS,1 ← D1f1(xk)−D21f2(xk)

⊤(D2
2f2(xk))

−1D2f1(xk)
4: ωS,2 ← D2f2(xk)
5: x1,k+1 ← x1,k − γ1ωS,1

6: x2,k+1 ← x2,k − γ2ωS,2

7: end for

our proposed learning algorithm to successfully seek out

equilibria in them. In the experiments section, we discuss

a regularized version of our dynamics that injects a small

perturbation to cure degeneracy problems leveraging the

fact that DSE are structurally stable. Further details can be

found in Appendix H.1. Finally, for bimatrix games with

finite actions it is common to reparameterize the problem

using a softmax function to obtain mixed policies on the

simplex (Fudenberg et al., 1998). We explore this viewpoint

in Appendix H.4 on a parameterized bilinear game.

2.4. Stackelberg Learning Dynamics

Recall that ωS(x) = (Df1(x), D2f2(x)) is the vector field

for Stackelberg games and it, along with its Jacobian JS(x),
characterize sufficient conditions for a DSE. Letting ωS,i

be the i–th component of ωS , the leader total derivative is

ωS,1(x) = D1f1(x) − D21f2(x)
⊤(D2

2f2(x))
−1D2f1(x)

where Dr ≡ −(D2
2f2(x))

−1 ◦D21f2 with r defined by the

implicit function theorem (Lee, 2012) in a neighborhood

of a differential Stackelberg, meaning where ωS,2(x) = 0
with det(D2

2f2(x)) 6= 0 (which is also holds generically at

critical points by Lemma C.3). The Stackelberg learning

rule we study for each player in discrete time is given by

xi,k+1 = xi,k − γi,khS,i(xk). (2)

In deterministic learning players have oracle gradient access

so that hS,i(x) = ωS,i(x). We study convergence for deter-

ministic learning in Section 4.1 and Algorithm 1 provides ex-

ample pseudocode. In stochastic learning players have unbi-

ased gradient estimates and hS,i(xk) = ωS,i(xk) + wk+1,i

where {wi,k} is player i’s noise process. We provide con-

vergence analysis for stochastic learning in Section 4.2.

3. Implications for Zero-Sum Settings

Before presenting convergence analysis of the update in

(2), we draw connections between Nash and Stackelberg

equilibria in zero-sum games and discuss the relevance to

applications such as adversarial learning. To do so, we evalu-

ate the limiting behavior of the dynamics from a continuous

time viewpoint since the discrete time system closely ap-

proximates this behavior for suitably selected learning rates.

While we provide the intuition behind the results here, the

formal proofs of the results are in Appendix D.
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which are not DNE are DSE given −D2
2f(x) > 0.

Proposition 4. Consider a zero-sum GAN satisfying the

realizable assumption. Any stable critical point of ẋ =
−ω(x) at which −D2

2f(x) > 0 is a DSE and a stable critical

point of ẋ = −ωS(x).

4. Convergence Analysis

In this section, we provide convergence guarantees for both

the deterministic and stochastic settings. In the former, play-

ers have oracle access to their gradients at each step while in

the latter, players are assumed to have an unbiased estimator

of the gradient appearing in their update rule. Proofs of the

deterministic results can be found in Appendix F and the

stochastic results in Appendix G.

4.1. Deterministic Setting

Consider the deterministic Stackelberg update

xk+1 = xk − γ2ωSτ
(xk)

where ωSτ
(xk) is the m-dimensional vector with entries

τ−1(D1f1(xk) − D⊤
21f2(xk)(D

2
2f2(xk))

−1D2f1(xk)) ∈
R

m1 and D2f2(xk) ∈ R
m2 , and τ = γ2/γ1 is the

“timescale” separation with γ2 > γ1. We refer to these

dynamics as the τ -Stackelberg update.

To get convergence guarantees, we apply well known results

from discrete time dynamical systems. For a dynamical sys-

tem xk+1 = F (xk), when the spectral radius ρ(DF (x∗))
of the Jacobian at fixed point is less than one, F is a con-

traction at x∗ so that x∗ is locally asymptotically stable

(see Prop. F.1, Appendix F). In particular, ρ(DF (x∗)) ≤
c < 1 implies that ‖DF‖ ≤ c + ε < 1 for ε > 0 on a

neighborhood of x∗ (Ortega & Rheinboldt, 1970, 2.2.8).

Hence, Prop. F.1 implies that if ρ(DF (x∗)) = 1 − α < 1
for some α, then there exists a ball Bp(x

∗) of radius p > 0
such that for any x0 ∈ Bp(x

∗), and some constant K > 0,

‖xk − x∗‖2 ≤ K(1− α/2)k‖x0 − x∗‖2 using ε = α/4.

For a zero-sum setting defined by cost function f ∈
Cq(X,R) with q ≥ 2, recall that S1(J(x)) = D2

1f(x) −
D21f(x)

⊤(D2
2f(x))

−1D21f(x) is the first Schur comple-

ment of the Jacobian J(x). Let H(x) be the Hessian of the

function f : X → R.

Theorem 3 (Zero-Sum Rate of Convergence.). Con-

sider a zero-sum game defined by f ∈ Cq(X,R)
with q ≥ 2. For a DSE x∗ with α =
min{λmin(−D2

2f(x
∗)), λmin(

1
τ S1(J(x

∗)))} and β =
ρ(H(x∗)), the τ–Stackelberg update converges locally with

a rate of O((1− α2/(2β2))k).

Corollary 2 (Zero-Sum Finite Time Guarantee). Given

ε > 0, under the assumptions of Theorem 3, τ -Stackelberg

learning obtains an ε-DSE in ⌈ 2β2

α2 log(‖x0 − x∗‖2/ε)⌉ iter-

ations for any x0 ∈ Bδ(x
∗) with δ =

√

α2/(2Lβ2) where

L is the local Lipschitz constant of I − γ2JSτ
(x∗).

The proofs leverage the structure of the Jacobian JSτ
, which

is lower block diagonal, along with the above noted result

from dynamical systems theory. The key insight is that at a

given x, the spectrum of JSτ
(x) is the union of the spectrum

of τ−1S1(J(x)) and −D2
2f(x) for zero-sum settings.

We now show a discrete-time analogue to Proposition 2.

Proposition 5. Consider a zero-sum game defined by

f ∈ Cq(X,R), q ≥ 2. Suppose that γ2 < 1/L where

max{spec( 1τ S1(J(x))) ∪ spec(−D2
2f(x))} ≤ L. Then, x

is a stable critical point of τ–Stackelberg update if and only

if x is a DSE.

The next result shows that τ -Stackelberg avoids saddle

points almost surely in general-sum games. We remark

that DSE are never saddle points in zero-sum games.

Theorem 4 (Almost Sure Avoidance of Saddles). Consider

a general sum game defined by fi ∈ Cq(X,R), q ≥ 2 for

i = 1, 2 and where, without loss of generality, player 1 is the

leader. Suppose that ωSτ
is L-Lipschitz with τ > 1 and that

γ2 < 1/L. The τ–Stackelberg learning dynamics converge

to saddle points of ẋ = −ωSτ
(x) on a set of measure zero.

In the zero-sum setting, ωSτ
being Lipschitz is equivalent

to max{spec( 1τ S1(J(x))) ∪ spec(−D2
2f(x))} ≤ L. In

this case, using the structure of the Jacobian JSτ
, we know

that the eigenvalues are real, and hence the only admissible

types of critical points are stable, unstable, or saddle points.

Consequently, the previous pair of results imply that the

only critical points τ -Stackelberg learning converges to in

zero-sum games are DSE almost surely.

We now provide a convergence guarantee for deterministic

general-sum games. However, the convergence guarantee is

no longer a global guarantee to the set of attractors of which

critical points are DSE since there is potentially stable critical

points which are not DSE. This can be seen by examining

the Jacobian which is no longer lower block triangular.

Given a critical point x∗, let α = λ2
min(

1
2 (J

⊤
Sτ
(x∗) +

JSτ
(x∗))) and β = λmax(JSτ

(x∗)⊤JSτ
(x∗)).

Theorem 5 (General Sum Rate of Convergence). Consider

a general sum game (f1, f2) with fi ∈ Cq(X,R), q ≥ 2 for

i = 1, 2 and where, without loss of generality, player 1 is

the leader. For a DSE x∗ such that J⊤
Sτ
(x∗) + JSτ

(x∗) > 0,

the τ–Stackelberg update converges locally with a rate of

O((1− α
2β )

k/2).

Corollary 3 (General Sum Finite Time Guarantee). Given

ε > 0, under the assumptions of Theorem 5, τ–Stackelberg

learning obtains an ε–DSE in ⌈ 2β
α log (‖x0 − x∗‖/ε)⌉ iter-

ations for any x0 ∈ Bδ(x
∗) with δ = α/(2Lβ) where L is

the local Lipschitz constant of I − γ2JSτ
(x).
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4.2. Stochastic Setting

In the stochastic setting, players use updates of the form

xi,k+1 = xi,k − γi,k(ωS,i(xk) + wi,k+1) (4)

where γ1,k = o(γ2,k) and {wi,k+1} is a stochastic pro-

cess for each i = 1, 2. The results in this section as-

sume the following. The maps Df1 : R
m → R

m1 ,

D2f2 : Rm → R
m2 are Lipschitz, and ‖Df1‖ < ∞. For

each i ∈ {1, 2}, the learning rates satisfy
∑

k γi,k = ∞,
∑

k γ
2
i,k < ∞. The noise processes {wi,k} are zero mean,

martingale difference sequences. That is, given the fil-

tration Fk = σ(xs, w1,s, w2,s, s ≤ k), {wi,k}i∈I are

conditionally independent, E[wi,k+1| Fk] = 0 a.s., and

E[‖wi,k+1‖| Fk] ≤ ci(1 + ‖xk‖) a.s. for some constants

ci ≥ 0, i ∈ I.

The primary technical machinery we use in this section is

stochastic approximation theory (Borkar, 2008) and tools

from dynamical systems. The convergence guarantees in

this section are analogous to that for deterministic learn-

ing but asymptotic in nature. We first provide a non-

convergence guarantee: the dynamics avoid saddle points in

the stochastic learning regime.

Theorem 6 (Almost Sure Avoidance of Saddles.). Consider

a game (f1, f2) with fi ∈ Cq(Rm1 × R
m2 ,R), q ≥ 2 for

i = 1, 2 and where without loss of generality, player 1 is

the leader. Suppose that for each i = 1, 2, there exists a

constant bi > 0 such that E[(wi,t · v)
+|Fi,t] ≥ bi for every

unit vector v ∈ R
mi . Then, Stackelberg learning converges

to strict saddle points of the game on a set of measure zero.

We also give asymptotic convergence results. These re-

sults, combined with the non-convergence guarantee in The-

orem 6, provide a broad convergence analysis for this class

of learning dynamics. Theorem G.3 in Appendix G.3 pro-

vides a global convergence guarantee in general-sum games

to the stable critical point, which may or may not be a

DSE, under assumptions on the global asymptotic stability

of critical points of the continuous time limiting singularly

perturbed dynamical system. In zero-sum games, we know

that the only critical points of the continuous time limiting

system are DSE. Hence, Corollary G.2 in Appendix G.3

gives a global convergence guarantee in zero-sum games to

the DSE under identical assumptions.

Relaxing these assumptions, the following proposition pro-

vides a local convergence result which ensures that sample

points asymptotically converge to locally asymptotic trajec-

tories of the continuous time limiting singularly perturbed

system, and thus to stable DSE.

Theorem 7. Consider a general sum game (f1, f2) with

fi ∈ Cq(X,R), q ≥ 2 for i = 1, 2 and where, without

loss of generality, player 1 is the leader and γ1,k = o(γ2,k).
Given a DSE x∗, let Bp(x

∗) = Bp1
(x∗

1) × Bp2
(x∗

2) with

p1, p2 > 0 on which det(D2
2f2(x)) 6= 0. Suppose x0 ∈

Bp(x
∗). If r(x1) ∈ Bp2

(x∗
2) is a locally asymptotically

stable critical point of ẋ2 = −D2f2(x) uniformly in x1

and the dynamics ẋ1 = −Df1(x1, r(x1)) have a locally

asymptotically stable critical point in Bp1
(x∗

1), then xk →
x∗ almost surely.

5. Experiments

We now present experiments showing the role of DSE in the

optimization landscape of GANs and the empirical bene-

fits of training GANs with Stackelberg learning compared

to simultaneous gradient descent (simgrad). All detailed

experiment information is given in Appendix H.

Example 1: Learning a Covariance Matrix. We consider

a data generating process of x ∼ N (0,Σ), where the co-

variance Σ is unknown and the objective is to learn it using

a Wasserstein GAN. The discriminator is configured to be

the set of quadratic functions defined as DW (x) = x⊤Wx
and the generator is a linear function of random input noise

z ∼ N (0, I) defined by GV (z) = V z. The matrices W ∈
R

m×m and V ∈ R
m×m are the parameters of the discrimi-

nator and the generator, respectively. The Wasserstein GAN

cost for the problem f(V,W ) =
∑m

i=1

∑m
j=1 Wij(Σij −

∑m
k=1 VikVjk). We consider the generator to be the leader

minimizing f(V,W ). The discriminator is the follower

and it minimizes a regularized cost function defined by

−f(V,W ) + η
2 Tr(W

⊤W ), where η ≥ 0 is a tunable regu-

larization parameter. The game is formally defined by the

costs (f1, f2) = (f(V,W ),−f(V,W ) + η
2 Tr(W

⊤W )),
where player 1 is the leader and player 2 is the follower. In

equilibrium, the generator picks V ∗ such that V ∗(V ∗)⊤ =
Σ and the discriminator selects W ∗ = 0. Further details are

given in Appendix C from Daskalakis et al. (2018).

We compare the deterministic gradient update for Stack-

elberg learning with simultaneous learning, and analyze

the distance from equilibrium as a function of time. We

plot ‖Σ − V V ⊤‖2 for the generator’s performance and

‖ 1
2 (W + W⊤)‖2 for the discriminator’s performance in

Fig. 2 for varying dimensions m with learning rates γ1 =
γ2/2 = 0.015 and fixed regularization terms η = m/5. We

observe that Stackelberg learning converges to an equilib-

rium in fewer iterations. For zero-sum games, our theory

provides reasoning for this behavior since at any critical

point the eigenvalues of the game Jacobian are purely real.

This is in contrast to simultaneous gradient descent, whose

Jacobian can admit complex eigenvalues, known to cause

rotational forces in the dynamics. While there may be imagi-

nary eigenvalues in the Jacobian of Stackelberg dynamics in

general-sum games, this example demonstrates empirically

that the Stackelberg dynamics mitigate rotations.

GAN training details. We now train GANs in which each
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Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-

ment learning: A selective overview of theories and algo-

rithms. arXiv preprint arXiv:1911.10635, 2019.


