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The z-pinch is a classical steady state for the MHD model, where a confined plasma fluid
is separated by vacuum, in the presence of a magnetic field which is generated by a pre-
scribed current along the z direction. We develop a variational framework to study its sta-
bility in the absence of viscosity effect, and demonstrate for the first time that such a z-
pinch is always unstable. Moreover, we discover a sufficient condition such that the eigen-
values can be unbounded, which leads to ill-posedness of the linearized MHD system.
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1. Introduction

1.1. Overview

A pinch is a cylindrical device used to contain plasma, which is typically too hot to
be in contact with the device’s walls. Due to this constraint, the plasma must be
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confined to the interior of the pinch with a vacuum region separating the plasma
from the pinch’s outer wall. In this paper, we are concerned with so-called z-pinches,
in which current is flowed along the axis of the pinch (the z direction in cylindrical
coordinates, and hence the name z-pinch), inducing an azimuthal magnetic field;
the resulting Lorentz force acts to confine the plasma in the z-pinch’s center.

The first z-pinch was, remarkably, constructed in the 18th century, but interest
in these devices grew significantly in the middle of the 20th century as physicists
used them in the pursuit of fusion technology. We refer to the exhaustive three-
volume treatise of Cap3–5 and the references therein for a survey of what was
learned in this pursuit. One of the principal lessons was that z-pinches are subject
to powerful instabilities that make long-term plasma confinement problematic. In
spite of this, these devices remain of interest in the physics community due to
their use as components in potential fusion devices and as sources of high energy
X-rays: we refer to the survey12 and the references therein for a discussion of the
contemporary applications of z-pinches.

In order to understand the nature of the z-pinch instability, one must fix a model
of the plasma. One of the simplest and most fundamental choices is to model the
plasma with the inviscid, compressible, magnetohydrodynamic equations






∂tρ+∇ · (ρu) = 0

ρ(∂tu+ (u ·∇)u) +∇p = (∇×B)×B

∂tB −∇× (u ×B) = 0

∇ · B = 0.

(1.1)

Here ρ is the plasma’s density, u is its velocity, p is its pressure, and B is the
magnetic field. Fluid viscosity and resistivity are neglected in the model, which
removes typical dissipation mechanisms. The term (∇ × B) × B in the second
equation, the balance of linear momentum, is the Lorentz force that acts on the
plasma since in the MHD approximation the current is given by J = ∇ × B. To
close the system, we posit a typical polytropic relation between p and ρ: p = Aργ

for A > 0 an entropy constant and γ > 1 the adiabatic exponent.
With the MHD model in hand, we can look for equilibrium configurations.

Suppose that the pinch is comprised of a cylinder of radius rw > 0 (the subscript
w is used because we think of the pinch boundary as a wall), and let us look for a
steady (time independent) solution with u = 0 and with the plasma confined to a
concentric cylinder of radius 0 < r0 < rw. Within the plasma (where 0 ≤ r < r0)
the equilibrium equations reduce to

∇ · B = 0, J = ∇×B, and ∇p = J×B. (1.2)

As we will see later, if we impose cylindrical symmetry and switch to cylindrical
coordinates, then a solution to this system can be found in one of three equivalent
ways: by specifying the pressure p, the current J, or the magnetic field B, and
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then recovering the other two via these equations. Thus, the space of equilibria is
quite large. To enforce the vacuum confinement, we force p(r0) = 0 = ρ(r0). These
equations have to be coupled to magnetic field equations in the region r0 < r < rw
as well as to boundary conditions at the vacuum boundary where r = r0 and at the
boundary of the pinch at r = rw. We postpone a detailed discussion of these until
later as well.

With an equilibrium solution in hand, its stability may be investigated via
the method of normal mode analysis: linearize the PDEs around the equilibrium,
assume an exponential time ansatz of the form eµt, and a Fourier mode ansatz
in the z and θ directions (where r, θ, z are standard cylindrical coordinates in the
pinch) of the form ei(mθ+kz). This results in an ODE boundary value problem
in r with the equilibrium functions appearing as coefficients, the frequencies m
and k appearing as parameters, and µ appearing as an eigenvalue. If solutions
can be constructed with µ > 0, then the equilibrium is unstable. In the literature
(Chap. 11.4 in Freidberg’s book,6 Chap. 9 in Goedbloed and Poedts’s book7 and
Chap. V in Schmidt’s book17) one finds formal variational arguments suggesting
the existence of unstable solutions for m ∈ {0, 1}, often with special assumptions
on the equilibrium.

In this paper, we rigorously demonstrate that the equilibria are generically
unconditionally unstable. We prove that the decay rate of the equilibrium pressure
near the vacuum boundary plays a key role in the instability. Indeed, for some decay
rates, µ remains bounded as a function of m and k, while for other rates µ blows
up. In the latter case, we can then deduce not only linear instability but linear ill-
posedness (via the same mechanism that gives ill-posedness of backward heat flow),
which does not seem to have been observed before in the literature. However, as
we prove in our companion paper,1 this ill-posedness can be avoided when viscous
effects are taken into account in the model, though instability persists.

The primary purpose of this paper is to place the variational arguments on a
rigorous foundation for a very general class of equilibria and to employ the direct
method in the calculus of variations to construct unstable solutions for the full range
of frequencies k,m. Because of the vacuum boundary conditions, the Sobolev-like
function spaces used in the direct method have degenerate weights of an unknown
form due to the generality of the equilibrium profile. In turn, this creates a number
of nontrivial difficulties in establishing the tools needed to run the direct method.
Fortunately, we are able to overcome these obstacles and construct solutions vari-
ationally. The variational formulation is essential, as it then allows us to study the
asymptotic behavior of the unstable growth rate µ as a function of the frequencies
m and k.

1.2. Formulation of the problem in Eulerian coordinates

We model the pinch as the cylindrical domain {(x1, x2, z) ∈ R2×2πT |x2
1+x2

2 ≤ r2w}
where 2πT = R/2πZ is the torus of length 2π. Here the periodicity in the z direction
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is not essential in our analysis and 2πT could be replaced with R. We have opted to
introduce the periodicity as this is the usual choice in the physics literature since
it is a simple model of a toroidal z-pinch. For each time t ≥ 0, the z-pinch divides
into two disjoint pieces, Ω(t) = {ρ(t) > 0} and Ωv(t) = {ρ(t) = 0}, with the free
boundary Σt,pv = Ω(t)∩Ωv(t) and the perfectly conducting wall Σw on the outside
rw. We may rewrite the Lorentz force to write the compressible MHD system in
the plasma region as






∂tρ+ (u ·∇)ρ+ ρ∇ · u = 0 in Ω(t),

ρ(∂tu+ (u ·∇)u) +∇
(
p+

1

2
|B|2

)
= (B ·∇)B in Ω(t),

∂tB −∇× (u×B) = 0 in Ω(t),

∇ ·B = 0 in Ω(t),

(1.3)

where the vector-field u = (u1, u2, u3) denotes the Eulerian plasma velocity field, ρ
denotes the density of the fluid, B = (B1, B2, B3) is magnetic field, and p denotes
the pressure function. The above system (1.3) is called the inviscid compressible
MHD equations which describe the motion of a perfectly conducting fluid inter-
acting with a magnetic field. Here, the open, bounded subset Ω(t) ⊂ R3 denotes
the changing volume occupied by the plasma with ρ(t) > 0 in Ω(t). Recall that we
consider the polytropic equation of state p = A ργ , where A is an entropy constant
and γ > 1 is the adiabatic gas exponent.

From the mass conservation equation in (1.3) and pressure satisfying γ law, one
can get that

∂tp+ u ·∇p+ γp∇ · u = 0. (1.4)

In the vacuum domain Ωv(t), we have the div-curl system





∇ · B̂ = 0 in Ωv(t),

∇× B̂ = 0 in Ωv(t)
(1.5)

which describes the vacuum magnetic field B̂. Here, we consider so-called pre-
Maxwell dynamics. That is, as usual in nonrelativistic MHD, we neglect the dis-
placement current 1

c2 ∂tÊ, where c is the speed of the light and Ê is the electric
field. In general, quantities with a hat ·̂ denote vacuum variables.

We assume that the plasma region Ω(t) with the fluid density ρ(t) > 0 is isolated
from the fixed perfectly conducting wall Σw by a vacuum region Ωv(t), which makes
the plasma surface free to move. Hence, this model is a free boundary problem of
the combined plasma–vacuum system. To solve this system, we need to prescribe
appropriate boundary conditions. On the perfectly conducting wall Σw, the normal
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component of the magnetic field must vanish

n · B̂|Σw = 0, (1.6)

where n is the outer unit normal to the boundary of Σw.
We prescribe the following jump conditions on the free boundary to connect the

magnetic fields across the surface. These arise from the Maxwell’s equations and
the continuum mechanics






n · B = n · B̂ on Σt,pv,[[
p+

1

2
|B|2

]]
= 0 on Σt,pv,

(1.7)

where for any quantity q, [[q]]Σt,pv denotes q̂− q on the free boundary Σt,pv, and n
is the outer normal to the free boundary of Ω(t).

In conclusion, denote V(Σt,pv) as the normal velocity of the free surface Σt,pv,
then the plasma-vacuum compressible MHD system can be written in Eulerian
coordinates as





∂tρ+∇ · (ρu) = 0 in Ω(t),

ρ(∂tu+ (u ·∇)u) +∇
(
p+

1

2
|B|2

)
= (B ·∇)B in Ω(t),

∂tB −∇× (u ×B) = 0, ∇ ·B = 0 in Ω(t),

∇ · B = 0 in Ω(t),

∇ · B̂ = 0, ∇× B̂ = 0 in Ωv(t),

V(Σt,pv) = u · n on Σt,pv,

n · B = n · B̂ on Σt,pv,

p+
1

2
|B|2 − 1

2
|B̂|2 = 0 on Σt,pv,

n · B̂|Σw = 0, ρ|t=0 = ρ0, u|t=0 = u0, B|t=0 = B0.

(1.8)

1.3. Some previous work

The z-pinch instability in plasma for the compressible MHD system (1.8) with vac-
uum and free boundary is an interesting and long-time open problem since the pinch
experiments of the 1960s and 1970s, see Refs. 16 and 17 and the references therein.
There are many numerical simulations.6,7 Recently, Guo–Tice10,11 proved the linear
Rayleigh–Taylor instability for inviscid and viscous compressible fluids by intro-
ducing a new variational method. Later on, using the variational framework, many
authors considered the effects of magnetic field in the fluid equations. Jiang–Jiang13

considered the magnetic inhibition theory in non-resistive incompressible MHD flu-
ids. Jiang–Jiang14 considered the nonlinear stability and instability in the Rayleigh–
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Taylor problem of compressible MHD equations without vacuum and established
the stability/instability criteria for the stratified compressible magnetic Rayleigh–
Taylor problem in Lagrangian coordinates. Jiang–Jiang15 investigated the stability
and instability of the Parker problem for the three-dimensional compressible isen-
tropic viscous magnetohydrodynamic system with zero resistivity in the presence
of a modified gravitational force in a vertical strip domain in which the velocity of
the fluid is non-slip on the boundary. Wang–Xin19 proved the global well-posedness
of the inviscid and resistive problem with surface tension around a non-horizontal
uniform magnetic field for the incompressible MHD equations. Wang18 got sharp
nonlinear stability criterion of viscous incompressible non-resistive MHD internal
waves in 3D. Gui9 considered the Cauchy problem of the two-dimensional incom-
pressible magnetohydrodynamics system with inhomogeneous density and electrical
conductivity and has showed the global well-posedness for a generic family of the
variations of the initial data and an inhomogeneous electrical conductivity. All
these results do not contain vacuum. For presenting vacuum, under the Taylor sign
condition of the total pressure on the free surface, Gu–Wang8 proved the local well-
posedness of the ideal incompressible MHD equations in Sobolev spaces. In this
paper, we will rigorously prove the linear z-pinch instability for ideal compressible
MHD system (1.8).

2. Steady State and Main Results

2.1. Derivation of the MHD system in Lagrangian coordinates

In this section, we mainly introduce the Lagrangian coordinates in which the free
boundary becomes fixed.

First, we assume the equilibrium domains are given by

Ω = {(r, θ, z)|r < r0, θ ∈ [0, 2π], z ∈ 2πT},

Ω
v
= {(r, θ, z)|r0 < r < rw, θ ∈ [0, 2π], z ∈ 2πT}.

Here, the constant r0 is the interface boundary and the constant rw is the perfectly
conducting wall position. This is meant to be a simplified model of the toroidal
geometry employed in tokamaks.

Now we introduce the Lagrangian coordinates.

1. The flow map
Let h(t,X ) be a position of the gas particle X in the equilibrium domain Ω at

time t so that






d

dt
h(t,X ) = u(t, h(t,X )), t > 0,X ∈ Ω,

h|t=0 = X + g0(X ), X ∈ Ω.

(2.1)
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Then the displacement g(t,X ) = h(t,X )− X satisfies





d

dt
g(t,X ) = u(t,X + g(t,X )),

g|t=0 = g0.

(2.2)

We define the Lagrangian quantities in the plasma as follows (where X = (x, y,
z) ∈ Ω):

f(t,X ) = ρ(t, h(t,X )), v(t,X ) = u(t, h(t,X )), q(t,X ) = p(t, h(t,X )),

b(t,X ) = B(t, h(t,X )), A = (Dh)−1, J = det(Dh).

According to definitions of the flow map h and the displacement g, for (i, j, k) ∈
{1, 2, 3} one can get the following identities:

Ak
i ∂kh

j = Aj
k∂ih

k = δji , ∂k(JAk
i ) = 0, ∂ih

j = δji + ∂ig
j , Aj

i = δji −Ak
i ∂kg

j ,

(2.3)

where the Einstein notation is used and will be used in the whole paper. If the
displacement g is sufficiently small in an appropriate Sobolev space, then the flow
mapping h is a diffeomorphism from Ω0 to Ω(t), which allows us to switch back
and forth from Lagrangian to Eulerian coordinates.

2. Derivatives of J and A in Lagrangian coordinates
We write the derivatives of J and A in Lagrangian coordinates as follows:

∂tJ = JAj
i∂jv

i, ∂#J = JAj
i∂j∂#g

i, ∂tAj
i = −Aj

kA
#
i∂#v

k,

∂#Aj
i = −Aj

kA
n
i ∂n∂#g

k, ∂iv
j = ∂ih

kA#
k∂#v

j = A#
i∂#v

j + ∂ig
kA#

k∂#v
j .

(2.4)

3. Plasma equations in Lagrangian coordinates
Denote (∇A)i = Aj

i∂j . Then we can write the plasma equations in Lagrangian
coordinates as follows:





∂tg = v in Ω,

f∂tv +∇A

(
q +

1

2
|b|2
)

= (b ·∇A)b in Ω,

∂tf + f∇A · v = 0 in Ω,

∂tb+ b∇A · v = (b ·∇A)v in Ω,

∇A · b = 0 in Ω,

n · b = n · b̂ on Σ0,pv,

q +
1

2
|b|2 − 1

2
|̂b|2 = 0 on Σ0,pv,

(2.5)

where the exterior magnetic field b̂ satisfies the vacuum equations (A.5) in
Lagrangian coordinates which can be recalled from Appendix A.
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Since ∂tJ = JAj
i∂jv

i = J ∇A · v and J(0) = det(Dh0) = det(I +Dg0), with I
the identity matrix, we find from the equation of f in (2.5) that f J = ρ0(h0) det(I+
Dg0), where ρ0 is given initial density function. Taking ρ0 such that ρ0(h0) det(I +
Dg0) = ρ, we get

f = J−1ρ, q = AJ−γργ . (2.6)

On the other hand, we multiply the magnetic field equation of (2.5) by JAT

to get

JAi
j∂tb

j + JAi
jb

jAh
k∂hv

k = JAi
jb

hAk
h∂kv

j ,

which along with (2.4) implies

∂t(Ai
jJb

j) = JAi
j∂tb

j +Ai
jb

j∂tJ + Jbj∂tAi
j = JAi

j∂tb
j + JAi

jb
jAh

k∂hv
k

− JbjAi
kAh

j ∂hv
k = 0.

Therefore, we have

JbjAi
j = J(0)bj0Ai

j(0) = det(I +Dg0)B
j
0(h0)Ai

j(0), (2.7)

where B0 is given initial magnetic field. Taking B0 such that det(I +

Dg0)B
j
0(h0)Ai

j(0) = B
i
, we obtain from (2.7) that

bk = J−1B
i
∂ih

k = J−1B
k
+ J−1B

i
∂ig

k.

2.2. The equilibrium for the z-pinch plasma

In this paper, our goal is to study the linear z-pinch instability for the compressible
MHD equations (1.3). Therefore, we look for the cylindrically symmetric steady

solution u = 0, B = (0, Bθ(r), 0), p = p(r), B̂ = (0, B̂θ(r), 0). For notational sim-
plicity, in the following we abuse notation to denote steady state z-pinch solutions
as

p(r) = p(r), Bθ(r) = Bθ(r), B̂θ(r) = B̂θ(r),

which imply that B = B and B̂ = B̂.
Then we can get the following lemma describing the steady solution.

Lemma 2.1. Assume that the function p(r) satisfies p(r) ≥ 0 and p(r) = 0 if and
only if r = r0, and

−
∫ r

0
s2p′(s)ds ≥ 0 for all 0 ≤ r ≤ r0, p(r) ∈ C2,1([0, r0]). (2.8)
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Then the cylindrically symmetric steady solution u = 0, B = B(r), Jz = Jz(r),
B̂ = B̂(r) with a function p(r) taking the form of






Br = 0, Bz = 0, Bθ(r) =

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

,

Jz(r) =
1

2

(
− 2

r2

∫ r

0
s2p′(s)ds

)− 1
2
(

4

r3

∫ r

0
s2p′(s)ds− 2p′(r)

)

+
1

r

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

in Ω,

B̂r = 0, B̂z = 0, B̂θ(r) = Bθ(r0)
r0
r

in Ω
v
,

(2.9)

solves the equilibrium equations in plasma domain,

∇p = J×B, ∇ · B = 0, J = ∇×B, (2.10)

and the system (1.5) in the vacuum region. We can define the equilibrium density

ρ(r) =

(
p(r)

A

)1/γ

.

Moreover, we have

Jz ∈ C1,1([0, r0]), Bθ ∈ C1,1([0, r0]). (2.11)

Proof. In cylindrical r, θ, z-coordinates, the equilibrium equations (2.10) which
are equivalent to the system

∇
(
p+

1

2
|B|2

)
= (B ·∇)B, ∇ ·B = 0, J = ∇×B,

are reduced to

d

dr

(
p(r) +

1

2
|Bθ(r)|2

)
= −B2

θ(r)

r
,

1

r

d

dr
(rBr(r)) = 0,

1

r

d

dr
(rBθ(r)) = Jz(r).

(2.12)

The first equation of (2.12) is equivalent to p′ = −JzBθ, which together with the
third equation of (2.12) implies that −r2p′ = rBθ(rBθ)′. Set C(r) = rBθ(r) to
reduce this to (C2)′ = −2r2p′. Integrating and forcing Bθ(0) to be finite, which
gives C(0) = 0, we find that Bθ(r) = (− 2

r2

∫ r
0 s2p′(s)ds)

1
2 . Thus, given the pressure

p, we can compute Bθ. Then we define Jz by the third equation of (2.12) that

Jz(r) =
1

2

(
− 2

r2

∫ r

0
s2p′(s)ds

)− 1
2
(

4

r3

∫ r

0
s2p′(s)ds− 2p′(r)

)

+
1

r

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

.
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Therefore, solving the system (1.5) and (2.12), we get the steady solution z-pinch
(u = 0, B = B(r) = Bθ(r)eθ, Jz = Jz(r), B̂ = B̂(r) = B̂θ(r)eθ) as follows:






Br = 0, Bz = 0, Bθ(r) =

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

,

Jz(r) =
1

2

(
− 2

r2

∫ r

0
s2p′(s)ds

)− 1
2
(

4

r3

∫ r

0
s2p′(s)ds− 2p′(r)

)

+
1

r

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

in Ω,

B̂r = 0, B̂z = 0, B̂θ(r) = Bθ(r0)
r0
r

in Ω
v
.

Since p ∈ C2,1([0, r0]). The equilibrium magnetic field Bθ is determined in terms of
p by the equation

Bθ(r) =

(
− 2

r2

∫ r

0
s2p′(s)ds

) 1
2

,

which by forcing the value of Bθ(r) at r = 0 to finite Bθ(0) and the value
of Jz(r) at r = 0 to finite Jz(0), gives that Bθ(0) := limr→0Bθ(r) =
limr→0(− 2

r2

∫ r
0 s2p′(s)ds)

1
2 = 0. Since p′ = −Jz(r)Bθ(r), we have p′(0) = 0, which

gives that

B′
θ(0) := lim

r→0

Bθ(r)

r
= lim

r→0

(
− 2

r4

∫ r

0
s2p′(s)ds

) 1
2

= lim
r→0

(
−p′(r)

2r

) 1
2

=

(
−p′′(0)

2

) 1
2

.

Hence, we can get Bθ ∈ C1,1([0, r0]). By p′(r) = −Bθ(r)Jz(r), we have Jz ∈
C1,1([0, r0]).

From Lemma 2.1, we know that at the plasma–vacuum interface, the steady
solution B(r) in cylindrical r, θ, z-coordinates satisfies naturally

n0 · B = n0 · B̂ = 0, on Σ0,pv,

due to n0 = er, B = (0, Bθ(r), 0) and B̂ = (0, Bθ(r0)
r
r0
, 0).

Now we introduce the admissibility of the pressure p, which will be used in the
following sections.

Definition 2.2. We say that p is admissible if p(r) ≥ 0 for all r ∈ [0, r0] and
p(r) = 0 if and only if r = r0, p′(r) ≤ 0 for r near r0, that is, p′(s) ≤ 0 for
s ∈ (r0 − ε, r0] with small constant ε > 0, and p(r) satisfies (2.8) and

lim
r→r0

p(r)

p′(r)
= 0. (2.13)
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2.3. Perturbed ideal MHD system and main results

Our main results concern the stability of the linearized problem. From Appendix A,
we find that this linearization is





∂tg = v in Ω,

ρ∂ttg = ∇(g ·∇p+ γp∇ · g) + (∇×B)× [∇× (g ×B)]

+ {∇× [∇× (g ×B)]}×B, in Ω,

∇ · Q̂ = 0, in Ω
v
,

∇× Q̂ = 0, in Ω
v
,

n ·∇× (g × B̂) = n · Q̂, on Σ0,pv,

−γp∇ · g +B ·Q+ g ·∇
(
1

2
|B|2

)
= B̂ · Q̂+ g ·∇

(
1

2
|B̂|2

)
, on Σ0,pv,

n · Q̂|Σw = 0,

g|t=0 = g0,

(2.14)

with Q = ∇× (g ×B).
Define the energy

E[g, Q̂] = Ep[g] + Es[g] + Ev[Q̂], (2.15)

where Ep[g], Es[g] and Ev[Q̂] are given by

Ep[g] =
1

2

∫

Ω
[γp|∇ · g|2 +Q2

+(g∗ ·∇p)∇ · g + (∇×B) · (g∗ ×Q)]dx, (2.16)

Es[g] =
1

2

∫

Σ0,pv

|n · g|2n ·
[[

∇
(
p+

1

2
|B|2

)]]
dx, (2.17)

Ev[Q̂] =
1

2

∫

Ω
v
|Q̂|2dx.

The motivation for introducing E is two-fold. First, as we show in Lemma A.5, for
solutions to (2.14) we have the evolution equation

d

dt
‖√ρgt‖2L2 = − d

dt
E[g, Q̂]. (2.18)

Second, and more important for our analysis, is that upon using the Fourier
transform in the θ and z variables to decompose E into an infinite sum

E[g, Q̂] =
∑

m,k∈Z
Em,k, (2.19)
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we arrive at a mechanism for producing special normal-mode solutions to (2.14)
via a variational analysis applied to Em,k. Indeed, we seek normal mode solutions
of the form

g(r, θ, z, t) = (gr,mk(r), gθ,mk(r), gz,mk(r))e
µt+i(mθ+kz),

Q̂(r, θ, z) = (iQ̂r,mk(r), Q̂θ,mk(r), Q̂z,mk(r))e
µt+i(mθ+kz),

(2.20)

where (r, θ, z) are standard cylindrical coordinates, µ > 0, and m, k ∈ Z. As we
will prove in the next section, solutions of this form correspond to constrained
minimizers of Em,k, and the value of µ can be computed in terms of m and k via
this minimization.

It is convenient to introduce some new unknowns (here dropping subscripts m
and k for notational simplicity) to reduce to study only real-valued functions. In
the above ansatz, it is convenient to assume that gθ and gz are pure imaginary
functions, while gr, Q̂r, Q̂θ and Q̂z are real-valued functions. Then we define three
real-valued functions

ξ = er · g = gr, η = −iez · g = −igz, ζ = ieθ · g = igθ. (2.21)

which together with (2.20), gives that

Q = ∇× (g ×B) =
im

r
Bθξer − [(Bθξ)

′ − kBθη]eθ −
m

r
ηBθez,

g ·∇p+ γp∇ · g = p′ξ + γp∇ · g, ∇ · g =
1

r
(rξ)′ − kη +

m

r
ζ,

(2.22)

where the factor eµt+i(mθ+kz) is dropped for notational simplicity.
In terms of ξ, η and ζ, from the expressions in (2.22), the boundary conditions

in (2.14) are transformed to

Q̂r = 0, at r = rw, (2.23)

mB̂θξ = rQ̂r, at r = r0, (2.24)

B2
θξ −B2

θξ
′r + kB2

θηr − B̂θQ̂θr = 0, at r = r0. (2.25)

We impose the boundary conditions (2.23) and (2.24) as constraint for variational
problem setup and the boundary condition (2.25) follows the minimizer solution.
When m = 0, we know that Q̂r = 0 on the boundary r = r0, which implies that
Q̂r is separated from interior variational problem. Obviously, it holds that Q̂ = 0.
Therefore, for the case m = 0 and any k, the energy functional (2.15) reduces to

E0,k = E0,k(ξ, η) = 2π2

∫ r0

0

{[
2p′

r
+

4γpB2
θ

r2(γp+B2
θ)

]
ξ2

+(γp+B2
θ)

[
kη − 1

r

(
(rξ)′ − 2B2

θ

γp+B2
θ

ξ

)]2}
rdr. (2.26)
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For the casem += 0 and any k, the solution Q̂r and ξ are related by the boundary
conditions (2.24), so we cannot set Q̂r = 0, therefore the energy functional takes
the form of

Em,k = Em,k(ξ, η, ζ, Q̂r)

= 2π2

∫ r0

0

{
(m2 + k2r2)

[
Bθ

r
η +

−kBθ(rξ)′ + 2kBθξ

m2 + k2r2

]2

+ γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2}
rdr + 2π2

∫ r0

0

m2B2
θ

r(m2 + k2r2)
(ξ − rξ′)2

+2π2

∫ r0

0

[
2p′ +

m2B2
θ

r

]
ξ2dr

+2π2

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2
]
rdr. (2.27)

We can now state our main results.

Theorem 2.1. Assume that the equilibrium pressure is admissible in the sense of
Definition 2.2 and that (2.13) holds. For k,m ∈ Z set

λm,k = inf
A

Em,k (2.28)

where A = A1 as defined in (3.24) when m = 0 and A = A2 as defined in (3.50)
when m += 0. Then the following hold.

(1) λ0,k < 0 for every k ∈ Z. Upon setting µ0,k =
√
−λ0,k > 0, this yields an unsta-

ble growing mode solution to (2.14). In particular, the equilibrium is always
linearly unstable.

(2) If m += 0, k ∈ Z, and there exists r∗ ∈ [0, r0) such that

2p′(r∗) +
m2B2

θ(r
∗)

r∗
< 0, (2.29)

then λm,k < 0 and µm,k =
√
−λm,k > 0 is the growth rate of an unstable

growing mode solution to (2.14).
(3) If the pressure obeys the estimate |p′| ≤ Cρ an open neighborhood of r0, then

sup{−λm,k|m, k ∈ Z are such that λm,k < 0} < ∞. (2.30)

Remark 2.1. In the plasma literature, unstable modes with m = 0 are called
sausage instabilities, and modes with |m| = 1 are called kink instabilities.

The first item of this theorem establishes the unconditional instability of the
admissible equilibria, but the second item is conditional. In Sec. 2.4, we give some
conditions for determining when this conditional is and is not satisfied. The third
item is built on the assumption that |p′(r)| ≤ Cρ(r) for r ∈ (r0 − ε, r0). Since
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p = Aργ , this is a differential inequality that we can integrate to deduce that p
satisfies

p(r) ≤ C(r0 − r)γ/(γ−1) for r ∈ (r0 − ε, r0), (2.31)

where C > 0 is some constant. Thus, the assumption in the third item bounds
from below the rate at which p decays near the vacuum boundary; for instance, if
p(r) - (r0 − r)β near r0, then we must have that γ/(γ − 1) ≤ β. It is then natural
to examine what happens in the complementary regime. This is the content of our
second main result.

Theorem 2.2. Assume that the equilibrium pressure is admissible in the sense
of Definition 2.2 and that (2.13) holds. If there exist constants C0, C1 > 0 and
1 < β < γ/(γ − 1) such that

C0(r0 − r)β−1 ≤ |p′(r)| ≤ C1(r0 − r)β−1 (2.32)

for r in an open neighborhood of r0, then

lim
k→∞

λ0,k = −∞. (2.33)

Clearly, the hypotheses on p′ imply that p(r) - (r0 − r)β and β < γ/(γ −
1), so this is indeed a sort of complementary regime compared to the third item
of Theorem 2.1. The immediate consequence of Theorem 2.2 is that there exists
growing normal mode solutions to (2.14) with growth rate µ0,k → ∞, and as such
the linearized equations are ill-posed. Thus, depending on the rate of decay of the
pressure near the vacuum boundary, we either have instability with a bound on the
growth-in-time rates, or else ill-posedness due to the unboundedness of the growth
rates.

These theorems are proved in a number of separate results in Secs. 3 and 4.
We now turn to a somewhat technical survey of how we proceed in the proofs.
The key observation lies in Lemma 2.4, which leads to a growing mode in so-called
sausage instability. In order to construct a growing mode, we study the variational
problem for the linearized functional (2.15). It should be noted that (2.16) only
div g is expected to be bounded, which fails to provide necessary compactness to
find a minimizer or an eigenfunction.

To overcome this seemingly lack of compactness, we study carefully the varia-
tional problem in cylindrical charts. It turns out that, thanks to special symmetry
of the z-pinch profile, the energy takes the form of (2.26) for m = 0 and any k,
takes the form of (2.27) for m += 0 and any k. The only possible negative part which
needs compactness in (2.26) and (2.27) are given by

∫ r0

0
2p′ξ2dr.

We note crucially it depends only on ξ. Luckily, it is possible to control ∂rξ so
that the compactness is established away from r = 0 and r = r0.
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The compactness at r = r0 and r = 0 is delicate, due to subtle vanishing order of
the z-pinch. Near r = r0, we make use of an integration by parts to derive estimate
(3.13) and to gain compactness as in Lemmas 3.8 and 3.15. Near r = 0, however,
we make use of an expansion of exact z-pinch profile in Lemma 2.3, to gain subtle
but crucial higher vanishing power and positivity of lower power, more precisely,
we observe

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2 +

[
2p′ +

m2B2
θ

r

]
ξ2n

=

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2n +O(r3)ξ2n, for |m| = 1

and
[
2p′ +

m2B2
θ

r

]
ξ2n =

[(
m2

4
− 1

)
J2z(0)r +O(r2)

]
ξ2n, for |m| ≥ 2

to ensure compactness. See Proposition 3.19 for the details.
We establish the ill-posedness in Sec. 4. In the case p(r) = C(r0 − r)β for r near

r0 and β ≥ 1. If γ < β
β−1 , we use a careful scaling analysis to construct particular

test function of the form ξk = w(kα[r − r0]), without lower bound as k → ∞.

2.4. Some more properties of the equilibria

Here we record a few more properties of the equilibria that will be used in our
subsequent analysis. From Taylor expanding and the steady state (2.9), we have
the following lemma.

Lemma 2.3. Assume the function Jz(r) satisfies (2.11), we have Jz(r) = Jz(0) +
rJ′z(0) +O(r2). Moreover, we have

Bθ(r) =
1

2
Jz(0)r +

1

3
J′z(0)r2 +O(r3), (2.34)

p′(r) = −1

2
J2z(0)r −

5

6
J′z(0)Jz(0)r2 +O(r3). (2.35)

Proof. Since Jz(r) satisfies (2.11), we can expand Jz(r) near r = 0 as

Jz(r) = Jz(0) + rJ′z(0) +O(r2). (2.36)

From the steady state (2.9), we know that

Bθ(r) =
1

r

∫ r

0
Jz(r)rdr,

which together with (2.36) gives (2.34). Therefore, we have

B′
θ(r) =

1

2
Jz(0) +

2

3
J′z(0)r +O(r2),

p′(r) = −Bθ(r)B
′
θ(r) −

B2
θ (r)

r
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= −
[
1

2
Jz(0)r +

1

3
J′z(0)r2 +O(r3)

] [
1

2
Jz(0) +

2

3
J′z(0)r +O(r2)

]

−
1
4J

2
z(0)r

2 + 1
3J

′
z(0)Jz(0)r3 +O(r4)

r

= −1

2
J2z(0)r −

5

6
J′z(0)Jz(0)r2 +O(r3).

Now, we give the properties of the steady solution that will be essential in
proving the instability of any z-pinch equilibrium for m = 0.

Lemma 2.4. There exists r∗ ∈ (0, r0) such that

p′(r∗) +
2γp(r∗)B2

θ (r∗)

r∗(γp(r∗) +B2
θ (r∗))

< 0. (2.37)

Proof. First note that simple algebra reveals that (2.37) is equivalent to the exis-
tence of r∗ ∈ (0, r0) such that

p′(r∗) +
2γ

r∗
p(r∗)−

2γ2p2(r∗)

r∗(γp(r∗) +B2
θ(r∗))

< 0.

Consider the function q ∈ C1([0, r0]) given by q(r) = r2γp(r). We have that q(0) =
0 and q(r0) = r2γ0 p(r0) = 0, so by the mean-value theorem there exists r∗ ∈ (0, r0)
such that

0 = q′(r∗) = r2γ∗ p′(r∗) + 2γr∗
2γ−1p(r∗) = r2γ∗

(
p′(r∗) +

2γp(r∗)

r∗

)
.

Consequently,

0 = p′(r∗) +
2γp(r∗)

r∗
. (2.38)

We know that p(r∗) > 0, and so

− 2γ2p2(r∗)

r∗(γp(r∗) +B2
θ (r∗))

< 0. (2.39)

Combining (2.38) and (2.39), we conclude that

p′(r∗) +
2γ

r
p(r∗)−

2γ2p2(r∗)

r∗(γp(r∗) +B2
θ(r∗))

= − 2γ2p2(r∗)

r∗(γp(r∗) +B2
θ(r∗))

< 0.

This concludes the proof.

Next, we give the following property of the steady solution when |m| ≥ 2 and
Jz(r) is non-increasing and non-negative.
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Lemma 2.5. For |m| ≥ 2, suppose that Jz : [0, r0] → [0,∞) is non-increasing, then
we have

2p′(r) +m2B
2
θ (r)

r
≥ 0 for all r ∈ [0, r0].

Proof. Note that

2p′(r) +m2B
2
θ(r)

r
= Bθ(r)

(
−2Jz(r) +m2Bθ(r)

r

)
.

Since Jz is non-increasing and non-negative, we have

Bθ(r) =
1

r

∫ r

0
sJz(s)ds ≥ Jz(r)

r

∫ r

0
sds =

rJz(r)
2

.

Hence,

−2Jz(r) +m2Bθ(r)

r
≥ −2Jz(r) +

m2

2
Jz(r) ≥ Jz(r)

(m2 − 4)

2
≥ 0.

Since Bθ(r) ≥ 0 as well which can be obtained from the third equation of the ODEs
(2.12), we deduce that

2p′(r) +m2B
2
θ(r)

r
≥ 0.

Note that Lemma 2.5 implies that the hypothesis of the second item of Theo-
rem 2.1 fails. Now we will give an example when |m| ≥ 2, the instability condition

2p′(r∗) +m2B2
θ(r

∗)
r∗ < 0 holds for some r∗ ∈ (0, r0) and Jz vanishing at the origin

r = 0 in suitable order.

Lemma 2.6. For |m| ≥ 2, we define α = (m2 − 2)/2 ≥ 1. Suppose that β > α ≥ 0
and Jz vanishes to order β at the origin r = 0 in the sense that |Jz(r)| ≤ Crβ ,
and further suppose that Bθ += 0 in (0, r0], i.e. Bθ has a sign. Then there exists
r∗ ∈ (0, r0) such that

2p′(r∗) +m2B
2
θ(r

∗)

r∗
< 0.

Proof. We will only prove the result assuming that Bθ > 0 in (0, r0], as the other
case follows similarly. For r ∈ [0, r0], we compute that

2p′(r) +m2B
2
θ (r)

r
= −2

B2
θ(r)

r
− 2Bθ(r)B

′
θ(r) +m2B

2
θ (r)

r

= (m2 − 2)
B2

θ(r)

r
− 2Bθ(r)B

′
θ(r)

= −2Bθ(r)
(
B′

θ(r) −
α

r
Bθ(r)

)

= −2rαBθ(r)(r
−αBθ(r))

′.



February 28, 2021 15:51 WSPC/103-M3AS 2150009

426 D. Bian, Y. Guo & I. Tice

Now, we may estimate from the third equation of (2.12) and the assumption that

|Bθ(r)|
rα+1

≤ 1

r2+α

∫ r

0
s|Jz(s)|ds ≤ C

r2+α

∫ r

0
s1+βds =

C

2 + β

r2+β

r2+α
=

C

2 + β
rβ−α

and

|B′
θ(r)|
rα

≤ Jz(r)
rα

+
1

r2+α

∫ r

0
s|Jz(s)|ds ≤ Crβ−α +

C

2 + β
rβ−α

in order to conclude that [0, r0] / r 0→ Bθ(r)/rα ∈ [0,∞) is a continuous function.
Hence if we define q : [0, r0] → [0,∞) via q(r) = r−αBθ(r), then we find that
q ∈ C1([0, r0]). Note that

q(0) = 0 and q(r0) = r−α
0 Bθ(r0) > 0

since Bθ(r0) > 0. By the mean-value theorem there exists r∗ ∈ (0, r0) such that
q′(r∗) > 0. Therefore, we have

2p′(r∗) +m2B
2
θ (r

∗)

r∗
= −2r∗αBθ(r

∗)q′(r∗) < 0.

We remark that Lemma 2.6 implies the instability for |m| ≥ 2 for some class
of z-pinch equilibria. An interesting corollary is found if we suppose that Jz is
non-negative and is compactly supported.

Corollary 2.7. If Jz ≥ 0 and Jz is compactly supported in (0, r0), then for each
m ∈ Z\{0} there exists r∗ ∈ (0, r0) such that

2p′(r∗) +m2B
2
θ(r

∗)

r∗
< 0.

We remark that Corollary 2.7 implies the instability for any m ∈ Z\{0} for
some class of z-pinch equilibria.

3. A Family of Variational Problems

3.1. Growing mode ansatz and cylindrical coordinates

In this paper, we mainly study the normal mode solution for the linearized pertur-
bation (2.14) in cylindrical coordinates er, eθ and ez. In order to write the energy
in cylindrical coordinates, we now record several computations in cylindrical coor-
dinates. In cylindrical coordinates, under the normal mode (2.20), the result of the
gradient operator becomes algebraic multipliers ∇ = er∂r + ikez + im

r eθ and we
can get the following lemma.

Lemma 3.1. We decompose Em,k as follows :

Em,k(ξ, η, ζ, Q̂r) = Ep
m,k + Es

m,k + Ev
m,k, (3.1)
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where the fluid energy takes the form of

Ep
m,k = 2π2

∫ r0

0

{
m2B2

θ

r2(m2 + k2r2)
[(rξ)′]2 + β0(rξ)

2

+(m2 + k2r2)

[
Bθ

r
η +

−kBθ(rξ)′ + 2kBθξ

m2 + k2r2

]2

+ γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2}
rdr − 2π2

[
2m2B2

θ

m2 + k2r2
ξ2
]

r=r0

, (3.2)

with

β0 =
1

r

[
m2B2

θ

r3
+

2m2Bθ

(
Bθ
r

)′

r(m2 + k2r2)
− 4k2m2B2

θ

r(m2 + k2r2)2
+

2k2p′

m2 + k2r2

]
,

the surface energy vanishes

Es
m,k = −2π2[B̂2

θ −B2
θ ]r=r0ξ

2(r0) = 0, (3.3)

and when m += 0 and any k, the vacuum energy takes the form of

Ev
m,k = 2π2

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2
]
rdr. (3.4)

Proof. Recall (ξ, η, ζ) in (2.21) and (2.20). We begin with the proof of (3.2). Insert-
ing the expressions of (2.22) into (2.16) and using g∗θ = iζ, we can get (3.2). In
fact,

(g∗ ·∇p)(∇ · g) = ξp′
(
1

r
(rξ)′ − kη +

m

r
ζ

)
,

(∇×B) · (g∗ ×Q) =

(
B′

θ +
Bθ

r

)[
−ξ((Bθξ)

′ − kBθη)−
im

r
Bθξg

∗
θ

]

=

(
B′

θ +
Bθ

r

)[
−ξ((Bθξ)

′ − kBθη) +
m

r
ζBθξ

]
,

which combining with (2.16) and (2.22) gives (3.2).
Now we turn to the proof of (3.3). From (2.17) and the equilibrium equations

(2.12), we have

Es
m,k = −2π2[B̂2

θ −B2
θ ]r=r0ξ

2(r0),

which together with p+ 1
2B

2
θ = 1

2 B̂
2
θ and p = 0 on the interface boundary r = r0,

gives that Es
m,k = 0.
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Finally, we prove (3.4). From the vacuum equation (2.14)3 and Q̂ in (2.20), it
follows that

1

r
(rQ̂r)

′ +
m

r
Q̂θ + kQ̂z = 0, (3.5)

that is, Q̂z = − (rQ̂r)
′+mQ̂θ

kr . Inserting the expression of Q̂z into Ev
m,k[Q̂] =

1
2

∫
Ω |Q̂|2dx, implies that

Ev
m,k = 2π2

∫ rw

r0

[|Q̂r|2 + |Q̂θ|2 + |Q̂z|2]rdr

= 2π2

∫ rw

r0

[
|Q̂r|2 + |Q̂θ|2 +

1

k2r2
|(rQ̂r)

′ +mQ̂θ|2
]
rdr. (3.6)

From the vacuum equations (2.14)2 and Q̂ in (2.20), we have






d

dr
Q̂θ +

m

r
Q̂r +

1

r
Q̂θ = 0,

kQ̂r +
d

dr
Q̂z = 0,

m

r
Q̂z − kQ̂θ = 0.

(3.7)

Using the third equation in (3.7), from (3.5), we can obtain the tangential compo-
nents of Q̂ in terms of radial component

Q̂θ = − m

m2 + k2r2
(rQ̂r)

′, Q̂z = − kr

m2 + k2r2
(rQ̂r)

′. (3.8)

From (3.8), we know that the first equation and the second equation in (3.7) are
equivalent. From (3.6) and (3.8), the vacuum energy takes form of

Ev
m,k = 2π2

∫ rw

r0

[
|Q̂r|2 + |Q̂θ|2 +

1

k2r2
|(rQ̂r)

′ +mQ̂θ|2
]
rdr

= 2π2

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2 + m2 + k2r2

k2r2

×
∣∣∣∣Q̂θ +

m

m2 + k2r2
(rQ̂r)

′
∣∣∣∣
2
]
rdr

= 2π2

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2
]
rdr.

We will use Lemma 3.1 to prove the following equivalent energy functionals.

Proposition 3.2. The energy functionals (3.1) to (3.4) take forms of (2.26) and
(2.27), respectively.
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Proof. From Lemma 3.1 and let m = 0 in (3.2), we can get directly

E0,k(ξ, η) = 2π2

∫ r0

0

{
2p′ξ2

r
+B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2
+ γp

[
1

r
(rξ)′ − kη

]2}
rdr.

Together with the identity

4γpB2
θξ

2

r(γp+B2
θ )

+ (γp+B2
θ)

[
4B4

θξ
2

r2(γp+B2
θ)

2
+

(
kη − 1

r
(rξ)′

)
4B2

θξ

r(γp+B2
θ)

]
r

=
4B2

θξ
2

r
+ 4B2

θξ

(
kη − 1

r
(rξ)′

)
,

we establish (2.26). From Lemma 3.1, it follows that

Em,k(ξ, η, ζ, Q̂r) = 2π2

∫ r0

0

{
m2B2

θ

r2(m2 + k2r2)
[(rξ)′]2 + β0(rξ)

2

+(m2 + k2r2)

[
Bθ

r
η +

−kBθ(rξ)′ + 2kBθξ

m2 + k2r2

]2

+ γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2}
rdr − 2π2

[
2m2B2

θ

m2 + k2r2
ξ2
]

r=r0

+2π2

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2
]
rdr,

with

β0 =
1

r

[
m2B2

θ

r3
+

2m2Bθ

(
Bθ
r

)′

r(m2 + k2r2)
− 4k2m2B2

θ

r(m2 + k2r2)2
+

2k2p′

m2 + k2r2

]
.

By p′ = −BθB′
θ −

B2
θ
r , we have

∫ r0

0

(
m2B2

θ

r2(m2 + k2r2)
[(rξ)′]2 + β0(rξ)

2

)
rdr −

[
2m2B2

θ

m2 + k2r2
ξ2
]

r=r0

=

∫ r0

0

[
m2B2

θ

r(m2 + k2r2)
(ξ − rξ′)2 + 2p′ξ2 +

m2B2
θξ

2

r

]
dr,

which implies the energy (2.27).

Using g(r, θ, z, t) = (gr(r, t), gθ(r, t), gz(r, t))ei(mθ+kz), we can prove that the
second equation in (2.14) is reduced to the following system.
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Lemma 3.3. Assume g(r, θ, z, t) = (gr(r, t), gθ(r, t), gz(r, t))ei(mθ+kz) solves the
second equation in (2.14), then





d

dr

γp+B2
θ

r

d

dr
r − m2

r2
B2

θ − r

(
B2

θ

r2

)′

− d

dr
k(γp+B2

θ)−
2kB2

θ

r

d

dr

m

r
γp

k(γp+B2
θ )

r

d

dr
r − 2kB2

θ

r
−k2(γp+B2

θ)−
m2

r2
B2

θ
mk

r
γp

−mγp

r2
d

dr
r

mk

r
γp −m2

r2
γp





×




ξ

η

ζ



 = ρ




ξtt

ηtt

ζtt



 . (3.9)

Proof. Inserting the expression (2.22) into the second equation in (2.14), by
g(r, θ, z, t) = (gr(r, t), gθ(r, t), gz(r, t))ei(mθ+kz) and the definitions of ξ, η and ζ in
(2.21), we can easily get that the second equation in (2.14) reduces to (3.9).

In order to study the stability to use variational methods, we use the following
second-order ODE system.

Lemma 3.4. Assume g(r, θ, z, t) = (gr(r, t), gθ(r, t), gz(r, t))eµt+i(mθ+kz) solves the
second equation in (2.14), then





d

dr

γp+B2
θ

r

d

dr
r − m2

r2
B2

θ − r

(
B2

θ

r2

)′

− d

dr
k(γp+B2

θ)−
2kB2

θ

r

d

dr

m

r
γp

k(γp+B2
θ )

r

d

dr
r − 2kB2

θ

r
−k2(γp+B2

θ)−
m2

r2
B2

θ
mk

r
γp

−mγp

r2
d

dr
r

mk

r
γp −m2

r2
γp





×




ξ

η

ζ



 = ρµ2




ξ

η

ζ



. (3.10)

Proof. Inserting the expression (2.22) into the second equation in (2.14), by
g(r, θ, z, t) = (gr(r, t), gθ(r, t), gz(r, t))eµt+i(mθ+kz) and the definitions of ξ, η and ζ
in (2.21), we can easily get that the second equation in (2.14) reduces to (3.10).

In order to study the stability to use variational methods in vacuum domain,
we use the following second-order ODE about Q̂r for m += 0 and any k.
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Lemma 3.5. The vacuum equations (2.14)3 and (2.14)4 can be reduced to the
second-order differential equation

[
r

m2 + k2r2
(rQ̂r)

′
]′

− Q̂r = 0, (3.11)

with the other two components Q̂θ = − m
m2+k2r2 (rQ̂r)′ and Q̂z = − kr

m2+k2r2 (rQ̂r)′.

Proof. Inserting (3.8) into the first or second ODE in (3.7), we can easily deduce
that the radial component satisfies (3.11).

3.2. Variational problem when m = 0

In this section, we will introduce the definition of function space Xk, then give the
variational analysis for the case m = 0 and any k ∈ Z.

Let us first introduce the function space Xk for any k and its properties.

Definition 3.6. The weighted Sobolev space Xk is defined as the completion of
{(ξ, η) ∈ C∞([0, r0])× C∞([0, r0])|ξ(0) = 0}, with respect to the norm

‖(ξ, η)‖2Xk
=

∫ r0

0

{
p

∣∣∣∣
1

r
∂r(rξ(r))

∣∣∣∣
2

+B2
θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2}
rdr

+

∫ r0

0
ρ(|ξ|2 + |η|2)rdr. (3.12)

Define function g(r) = supr≤s≤r0
p(s)

−p′(s) , then we can get the following lemma.

Lemma 3.7. Assume s1 near r = r0, then it holds that
∫ r0

s1

−p′(r)ξ2dr ≤ 2p(s1)ξ
2(s1) + 4g(s1)

∫ r0

s1

pξ′2dr, (3.13)

with g(s1) → 0 as s1 → r0.

Proof. From Definition 2.2/admissibility of the pressure p, we have p
p′ → 0 for r →

r0, which together with the definition of function g, gives that p(s) ≤ −g(s1)p′(s)
for s1 ≤ s ≤ r0, with g(s1) → 0 as s1 → r0. Since p > 0 for all r ∈ (0, r0) and
p′(r) ≤ 0 for r near r0, the Hölder inequality provides

∫ r0

s1

−p′(r)ξ2dr = p(s1)ξ
2(s1) + 2

∫ r0

s1

pξξ′dr

≤ p(s1)ξ
2(s1) + 2

(∫ r0

s1

pξ2dr

) 1
2
(∫ r0

s1

pξ′2dr

) 1
2

≤ p(s1)ξ
2(s1) + 2g

1
2 (s1)

(∫ r0

s1

−p′ξ2dr

) 1
2
(∫ r0

s1

pξ′2dr

) 1
2

,

which by Cauchy inequality ensures (3.13).

From the Definition 3.6, we can show the following compactness results.
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Lemma 3.8. Assume s1 is near r = r0 and p is admissible. Let π1 denote the
projection operator onto the first factor. Then π1 : Xk → Z is a bounded, linear,
compact map, with the norm

‖ξ‖2Z =

∫ s1

0
ξ2dr +

∫ r0

s1

−p′ξ2dr, (3.14)

and we denote it by

Xk ⊂⊂ Z. (3.15)

Proof. For any (ξ, η) ∈ Xk, we have for r ∈ (0, r0
2 ) that

|rξ(r)p(r)| =
∣∣∣∣
∫ r

0
∂s(sξ(s)p(s))ds

∣∣∣∣ ≤
∣∣∣∣
∫ r

0
∂s(sξ(s))p(s)ds

∣∣∣∣ +
∣∣∣∣
∫ r

0
sξ(s)p′(s)ds

∣∣∣∣

≤
(∫ r

0
p(s)

∣∣∣∣
1

s
∂s(sξ(s))

∣∣∣∣
2

sds

) 1
2 (∫ r

0
p(s)sds

) 1
2

+

∣∣∣∣
∫ r

0
JzBθξ(s)sds

∣∣∣∣

≤ r√
2
‖p‖L∞(0,r)

(∫ r

0
p(s)

∣∣∣∣
1

s
∂s(sξ(s))

∣∣∣∣
2

sds

) 1
2

+
r√
2
‖Jz‖L∞(0,r)‖Bθ‖L∞(0,r)

(∫ r

0
ξ2(s)sds

) 1
2

,

which gives that

|ξ(r)p(r)| ≤ 1√
2
‖p‖L∞(0,r)

(∫ r

0
p(s)

∣∣∣∣
1

s
∂s(sξ(s))

∣∣∣∣
2

sds

) 1
2

+
1√
2
‖Jz‖L∞(0,r)‖Bθ‖L∞(0,r)

(∫ r

0
ξ2(s)sds

) 1
2

. (3.16)

Here ‖p‖L∞ , ‖Jz‖L∞ and ‖Bθ‖L∞ are bounded from Lemma 2.1 and (2.11).
Assume that ‖(ξn, ηn)‖Xk ≤ C, for n ∈ N. Fix any κ > 0. We claim that there

exists a subsequence {ξni} so that

sup
i,j

‖ξni − ξnj‖Z ≤ κ. (3.17)

To prove the claim, let s0 with 0 < s0 < s1 < r0 and s0 be chosen small enough,
so that

3s0C
2

(
‖p‖2L∞ +

‖Jz‖2L∞‖Bθ‖2L∞

inf0<r≤s0 ρ

)
1

inf0<r≤s0 p2
≤ κ. (3.18)

From Definition 2.2/admissibility of p, we have p
p′ → 0 for r → r0, which together

with the definition of g, gives that g(s1) → 0 as s1 → r0. Choose s1 close enough
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to r0, such that

g(s1)C ≤ κ

6
,

Cp(s1)

3(s1 − s0)
≤ 1

6
. (3.19)

Since the subinterval (s0, s1) avoids the singularity of 1
r and degenerate of p at

the boundary r = r0, the function ξn is uniformly bounded in H1(s0, s1). By the
compact embedding H1(s0, s1) ⊂⊂ C0(s0, s1), one can extract a subsequence {ξni}
that converges in L∞(s0, s1). So for i, j large enough, it holds that

sup
i,j

‖ξni − ξnj‖2L∞(s0,s1)
≤ κ

3(s1 − s0)
.

Since p′(r) ≤ 0 near r = r0, by Lemma 3.7 and (3.19), we deduce for i and j large
enough that
∫ r0

s1

−p′(r)(ξni − ξnj )
2dr ≤ 2p(s1)(ξni − ξnj )

2(s1) + 4g(s1)

∫ r0

s1

p(ξ′ni
− ξ′nj

)2dr

≤ Cp(s1)κ

3(s1 − s0)
+ g(s1)C ≤ κ

3
,

where we have used the facts ‖(ξn, ηn)‖Xk ≤ C and

∫ r0

s1

pξ′n
2
dr !

∫ r0

s1

p

∣∣∣∣
1

r
∂r(rξn(r))

∣∣∣∣
2

rdr +

∫ r0

s1

pξ2nrdr

!
∫ r0

s1

p

∣∣∣∣
1

r
∂r(rξn(r))

∣∣∣∣
2

rdr + ‖ρ‖γ−1
L∞(s1,r0)

∫ r0

s1

ρξ2nrdr

!
∫ r0

0
p

∣∣∣∣
1

r
∂r(rξn(r))

∣∣∣∣
2

rdr + ‖ρ‖γ−1
L∞(s1,r0)

∫ r0

0
ρξ2nrdr.

Then along the above subsequence one can get from (3.16) and (3.18) that

‖ξni − ξnj‖2Z =

∫ s1

0
|ξni − ξnj |2dr +

∫ r0

s1

−p′|ξni − ξnj |2dr

=

(∫ s0

0
+

∫ s1

s0

)
|ξni − ξnj |2dr +

∫ r0

s1

−p′|ξni − ξnj |2dr

≤ s0C
2

(
‖p‖2L∞ +

‖Jz‖2L∞‖Bθ‖2L∞

inf0<r≤s0 ρ

)
1

inf0<r≤s0 p2

+(s1 − s0) sup
i,j

‖ξni − ξnj‖2L∞(s0,s1)

+
Cp(s1)κ

3(s1 − s0)
+ g(s1)C ≤ κ, (3.20)

which implies the claim (3.17) and the compactness result (3.15).
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Now, we consider the case m = 0 and any k ∈ Z. In order to understand µ, we
consider the following energy

E0,k(ξ, η) = 2π2

∫ r0

0

{
2p′ξ2

r
+B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2

+ γp

[
1

r
(rξ)′ − kη

]2}
rdr, (3.21)

which is equivalent to (2.26) from Proposition 3.2. We denote

J (ξ, η) = 2π2

∫ r0

0
ρ(|ξ|2 + |η|2)rdr.

From the Definition 3.6 and Lemma 3.7, it follows that E0,k and J are both well-
defined on the space Xk.

Lemma 3.9. E0,k(ξ, η) and J (ξ, η) are both well-defined on the space Xk.

Proof. From (2.35), we have for every s1 < r0 that
∣∣∣∣2π

2

∫ s1

0
2p′ξ2dr

∣∣∣∣ =
∣∣∣∣4π

2

∫ s1

0

[
−1

2
J2z(0)r −

5

6
J′z(0)Jz(0)r2 +O(r3)

]
ξ2dr

∣∣∣∣

≤ CJ (ξ, η). (3.22)

Using Lemma 3.7, for s1 near r0, we get
∣∣∣∣

∫ r0

s1

2p′(r)ξ2dr

∣∣∣∣ =
∫ r0

s1

−2p′ξ2dr ≤ 4p(s1)ξ
2(s1) + 8g(s1)

∫ r0

s1

pξ′2dr

≤ CJ (ξ, η) + C‖(ξ, η)‖2Xk
, (3.23)

where we have used the facts

ξ2(s1) ≤ ‖ξ‖2H1(s0,s1) ≤ CJ (ξ, η) + C‖(ξ, η)‖2Xk
for 0 < s0 < s1 < r0,

and
∫ r0

s1

pξ′
2
dr !

∫ r0

s1

p

∣∣∣∣
1

r
∂r(rξ(r))

∣∣∣∣
2

rdr +

∫ r0

s1

pξ2rdr

!
∫ r0

0
p

∣∣∣∣
1

r
∂r(rξ(r))

∣∣∣∣
2

rdr + ‖ρ‖γ−1
L∞(s1,r0)

∫ r0

0
ρξ2rdr

≤ C‖(ξ, η)‖2Xk
.

Hence, we get
∣∣∣∣

∫ r0

0
2p′ξ2dr

∣∣∣∣ ≤ CJ (ξ, η) + C‖(ξ, η)‖2Xk
,
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which implies that

|E0,k(ξ, η)| ≤ CJ (ξ, η) + C‖(ξ, η)‖2Xk
+ C

∫ r0

0

{
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2}
rdr

+C

∫ r0

0
p

∣∣∣∣
1

r
(rξ)′

∣∣∣∣
2

rdr + C‖ρ‖γ−1
L∞

∫ r0

0
ρ|η|2rdr ≤ C‖(ξ, η)‖2Xk

.

Therefore, E0,k(ξ, η) and J (ξ, η) are well-defined on the space Xk.

Now we define

λ = inf
(ξ,η)∈Xk

E0,k(ξ, η)

J (ξ, η)
.

Consider the set

A1 = {(ξ, η) ∈ Xk|J (ξ, η) = 1}. (3.24)

We want to show that the infimum of E0,k(ξ, η) over the set A1 is achieved and is
negative and that the minimizer solves (3.10) with m = 0 and any k ∈ Z and the
corresponding boundary conditions.

First, we prove that the energy E0,k has a lower bound on the set A1.

Lemma 3.10. The energy E0,k(ξ, η) has a lower bound on the set A1.

Proof. We can directly get from the energy (3.21) for 0 < s0 < s1 < r0 that

E0,k(ξ, η) ≥ 2π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη

]2
rdr + 2π2

∫ r0

0
2p′ξ2dr

≥ 2π2

∫ r0

s0

γp

[
1

r
(rξ)′ − kη

]2
rdr

+2π2

(∫ s1

0
+

∫ r0

s1

)
2p′ξ2dr, ∀ (ξ, η, ζ) ∈ A1.

Recall (3.22), for every s1 < r0, we have |2π2
∫ s1
0 2p′ξ2dr| ≤ CJ (ξ, η). Hence, we

get

E0,k(ξ, η) ≥ 2π2

∫ r0

s0

γp

∣∣∣∣
1

r
(rξ)′

∣∣∣∣
2

rdr + 2π2

∫ r0

s1

2p′ξ2dr − CJ (ξ, η).

The key is to control
∫ r0
s1

2p′ξ2dr. Since in the interval (s1, r0), using Lemma 3.7,
we know that
∣∣∣∣
∫ r0

s1

2p′(r)ξ2dr

∣∣∣∣ =
∫ r0

s1

−2p′ξ2dr ≤ 4p(s1)ξ
2(s1) + 8g(s1)

∫ r0

s1

pξ′2dr

≤ C(σ)J (ξ, η)p(s1) + (Cp(s1)σ + Cg(s1))

∫ r0

s0

pξ′2dr, (3.25)
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where we have used the facts for 0 < s0 < s1 < r0 and σ small enough

ξ2(s1) ≤ ‖ξ‖2L∞ ≤ ‖ξ‖L2(s0,s1)‖ξ‖H1(s0,s1) ≤ C(σ)‖ξ‖2L2(s0,s1)
+ σ‖ξ‖2H1(s0,s1)

≤ C(σ)J (ξ, η) + Cσ

∫ s1

s0

pξ′2dr (3.26)

and
∫ s1

s0

pξ′2dr ≤
∫ r0

s0

pξ′2dr,

∫ r0

s1

pξ′2dr ≤
∫ r0

s0

pξ′2dr.

Choosing s1 close enough to r0 and σ small enough such that Cp(s1)σ+Cg(s1) ≤ γ
2 ,

yields that

E0,k(ξ, η) ≥ π2

∫ r0

s0

γp

∣∣∣∣
1

r
(rξ)′

∣∣∣∣
2

rdr − 3CJ (ξ, η) ≥ −3CJ (ξ, η) = −3C,

which implies that the energy E0,k(ξ, η) has a lower bound on the set A1.

Using the fact that J (ξ, η) = 1 and E0,k has a lower bound on the set A1,
we can choose a minimizing sequence such that along the minimizing sequence, we
have M ≤ E0,k(ξn, ηn) < M + 1, and for the minimizing sequence, we can show
coercivity estimate

‖(ξn, ηn)‖2Xk
≤ J + C(M + 1) + C

∫ r0

0
(2p′ξ2n + γpk2η2nr)dr ≤ C. (3.27)

We now show that the infimum of E0,k over the set A1 is negative.

Proposition 3.11. It holds that λ = −µ2 = inf E0,k < 0.

Proof. Since both E0,k and J are homogeneous degree 2, it suffices to show that

inf
(ξ,η)∈Xk

E0,k(ξ, η)

J (ξ, η)
< 0.

But since J is positive definite, one may reduce to constructing any (ξ, η) ∈ Xk

(see (3.12)) such that E0,k(ξ, η) < 0. Using Lemma 2.4, we can choose a smooth
function ξ∗ ∈ C∞

c (0, r0) such that

2π2

∫ r0

0

[
2p′

r
+

4γpB2
θ

r2(γp+B2
θ )

]
ξ∗2rdr < 0.

Then, we can assume that kη∗ = 1
r ((rξ

∗)′ − 2B2
θ

γp+B2
θ
ξ∗), such that the second term

of E0,k(ξ∗, η∗) in (2.26) vanishes. Here, ξ∗ and η∗ are smooth functions and belong
to the space Xk.

Therefore, the energy (2.26) becomes

Ẽ(ξ∗) = 2π2

∫ r0

0

[
2p′

r
+

4γpB2
θ

r2(γp+B2
θ)

]
ξ∗2rdr < 0,

which implies the result.



February 28, 2021 15:51 WSPC/103-M3AS 2150009

Linear instability of Z–pinch in plasma: Inviscid case 437

With Proposition 3.11 in hand, we apply the direct methods to deduce the
existence of a minimizer of E0,k on the set A1.

Proposition 3.12. E0,k achieves its infimum on the set A1.

Proof. First note that E0,k is bounded below on the set A1. Let (ξn, ηn) ∈ A1 be
a minimizing sequence. Then, we know that (ξn, ηn) is bounded in Xk (see (3.12)),
so up to the extraction of a subsequence ψn = |Bθ|[kηn − 1

r ((rξn)
′ − 2ξn)]r

1
2 ⇀

ψ = |Bθ|[kη − 1
r ((rξ)

′ − 2ξ)]r
1
2 weakly in L2, and ξn → ξ strongly in Z from the

compact embedding in Lemma 3.8. By weak lower semi-continuity, since ψn ⇀ ψ
in the space L2(0, r0), we have
∫ r0

0
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2
rdr ≤ lim inf

n→∞

∫ r0

0
B2

θ

[
kηn − 1

r
((rξn)

′ − 2ξn)

]2
rdr.

Because of the quadratic structure of all the terms in the integrals defining E0,k,
similarly by weak lower semi-continuity and ξn → ξ strongly in Z, we get that

E0,k(ξ, η) ≤ lim inf
n→∞

E0,k(ξn, ηn) = inf
A1

E0,k.

All that remains is to show that (ξ, η) ∈ A1.
Again by lower semi-continuity, we know that J (ξ, η) ≤ 1. Suppose by way

of contradiction that J (ξ, η) < 1. By the homogeneity of J , we may find α > 1
so that J (αξ,αη) = 1, i.e. we may scale up (ξ, η) so that (αξ,αη) ∈ A1. By
Proposition 3.11, we know that inf E0,k < 0, and from this we deduce that

E0,k(αξ,αη) = α2E0,k(ξ, η) = α2 inf E0,k < inf E0,k,

which is a contradiction since (αξ,αη) ∈ A1. Hence J (ξ, η) = 1, so that we show
that (ξ, η) ∈ A1.

We now prove that the minimizer constructed in the previous result satisfies
Euler–Lagrange equations equivalent to (3.10) with m = 0 and any k += 0.

Proposition 3.13. Let (ξ, η) ∈ A1 be the minimizers of E0,k constructed in Propo-
sition 3.12. Then (ξ, η) are smooth when restricted to (0, r0) and satisfy





d

dr

γp+B2
θ

r

d

dr
r − r

(
B2

θ

r2

)′

− d

dr
k(γp+B2

θ)−
2kB2

θ

r

k(γp+B2
θ)

r

d

dr
r − 2kB2

θ

r
−k2(γp+B2

θ )





×
(
ξ

η

)
= −ρλ

(
ξ

η

)
, (3.28)

along with the interface boundary condition

B2
θ [kηr − ξ′r + ξ]|r=r0 = 0. (3.29)
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Proof. Since we want to use the structure of the energy and properties of functional
space, we first change the spectral formula (3.28) into the following equations by a
simple computation






− d

dr

{
γp

[
kη − 1

r
(rξ)′

]}
− d

dr

{
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]}

− 2B2
θ

r

[
kη − 1

r
((rξ)′ − 2ξ)

]
− 2p′ξ

r
= −ρλξ,

−k(γp+B2
θ )

[
kη − 1

r
(rξ)′ +

2B2
θ

r(γp+B2
θ)
ξ

]
= −ρλη.

(3.30)

Next, we prove that the minimization ξ and η satisfy Eqs. (3.30) in weak sense on
(0, r0).

Fix (ξ0, η0) ∈ Xk (see (3.12)). Define

j(t, τ(t)) = J (ξ + tξ0 + τ(t)ξ, η + tη0 + τ(t)η)

and note that j(0, 0) = 1. Moreover, j is smooth,

∂j

∂t
(0, 0) = 2π2

∫ r0

0
2ρ(ξ0ξ + η0η)rdr,

∂j

∂τ
(0, 0) = 2π2

∫ r0

0
2ρ(ξ2 + η2)rdr = 2.

So, by the inverse function theorem, we can solve for τ = τ(t) in a neighborhood
of 0 as a C1 function of t so that τ(0) = 0 and j(t, τ(t)) = 1. We may differentiate
the last equation to find

∂j

∂t
(0, 0) +

∂j

∂τ
(0, 0)τ ′(0) = 0,

hence that

τ ′(0) = −1

2

∂j

∂t
(0, 0) = −2π2

∫ r0

0
ρ(ξ0ξ + η0η)rdr.

Since (ξ, η) are minimizers over A1, we may make variations with respect to (ξ0, η0)
to find that

0 =
d

dt

∣∣∣∣
t=0

E0,k(ξ + tξ0 + τ(t)ξ, η + tη0 + τ(t)η),

which implies that

0 = 4π2

∫ r0

0
2p′ξ(ξ0 + τ ′(0)ξ)dr + 4π2

∫ r0

0
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]

×
{
kη0 + τ ′(0)kη − 1

r
[(r(ξ0 + τ ′(0)ξ))′ − 2(ξ0 + τ ′(0)ξ)]

}
rdr

+4π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη

] [
1

r
(r(ξ0 + τ ′(0)ξ))′ − k(η0 + τ ′(0)η)

]
rdr
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= 4π2

∫ r0

0
2p′ξξ0dr + 4π2

∫ r0

0
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

][
kη0 −

1

r
((rξ0)

′ − 2ξ0)

]
rdr

+4π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη

] [
1

r
(rξ0)

′ − kη0

]
rdr

+4τ ′(0)π2

∫ r0

0

{
2p′ξ2 +B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2
r + γp

[
1

r
(rξ)′ − kη

]2
r

}
dr.

Hence, we have

−τ ′(0)λ = 2π2

∫ r0

0
ρλ(ξ0ξ + η0η)rdr

= 2π2

∫ r0

0
2p′ξξ0dr + 2π2

∫ r0

0
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]

×
[
−1

r
((rξ0)

′ − 2ξ0)

]
rdr + 2π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη

]
(rξ0)

′dr

+2π2

∫ r0

0
kB2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]
η0rdr

+2π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη

]
(−kη0)rdr.

Since ξ0 and η0 are independent, we deduce that

∫ r0

0
2p′ξξ0dr −

∫ r0

0
B2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]
[(rξ0)

′ − 2ξ0]dr

+

∫ r0

0
γp

[
1

r
(rξ)′ − kη

]
(rξ0)

′dr =

∫ r0

0
ρλξ0ξrdr,

∫ r0

0
kB2

θ

[
kη − 1

r
((rξ)′ − 2ξ)

]
η0rdr +

∫ r0

0
γpk

[
kη − 1

r
(rξ)′

]
η0rdr

=

∫ r0

0
ρλη0ηrdr. (3.31)

Therefore, ξ and η satisfy (3.30) in weak sense on (0, r0). Now we prove that the
interface boundary condition (3.29) is satisfied. From the first equation of (3.30),
we get

− d

dr

{
(γp+B2

θ)

[
kη − 1

r
((rξ)′ − 2ξ)

]}
+

d

dr

(
γp

2ξ

r

)

− 2B2
θ

r

[
kη − 1

r
((rξ)′ − 2ξ)

]
− 2p′ξ

r
= −ρλξ, (3.32)
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that is

− d

dr

{
(γp+B2

θ )

[
kη − 1

r
((rξ)′ − 2ξ)

]}
+

2γpξ′

r
+

2γp′ξ

r
− 2γpξ

r2

− 2B2
θ

r

[
kη − 1

r
((rξ)′ − 2ξ)

]
− 2p′ξ

r
= −ρλξ, (3.33)

which together with (ξ, η) ∈ Xk (see (3.12)), ξ ∈ Z (see (3.14)) and the claim√
pξ′ ∈ L2( r02 , r0) gives that

d

dr

{
(γp+B2

θ)

[
kη − 1

r
((rξ)′ − 2ξ)

]}
∈ L2

(r0
2
, r0
)
. (3.34)

Now we prove the claim
√
pξ′ ∈ L2( r02 , r0). In fact, from (ξ, η) ∈ Xk, it follows that

‖(ξ, η)‖2Xk(
r0
2 ,r0)

=

∫ r0

r0
2

{
p

∣∣∣∣
1

r
∂r(rξ(r))

∣∣∣∣
2

+B2
θ

[
kη − 1

r
((rξ)′ − 2ξ)

]2}
rdr

+

∫ r0

r0
2

ρ(|ξ|2 + |η|2)rdr ≤ C. (3.35)

Together with 1
r∂r(rξ(r)) = ξ

r + ξ′, we deduce that
√
pξ′ ∈ L2( r02 , r0). So (γp +

B2
θ )[kη− 1

r ((rξ)
′ − 2ξ)] is well-defined at the endpoint r = r0. Make variations with

respect to ξ0 ∈ C∞
c ((0, r0]). Integrating the terms in (3.31) by parts and using that

ξ solves the first equation of (3.30) on (0, r0), we obtain

−B2
θ

[
kη − 1

r
((rξ)′ − 2ξ)

]
(rξ0)|r=r0 + γp

[
1

r
(rξ)′ − kη

]
(rξ0)|r=r0 = 0, (3.36)

which implies by p = 0 on the boundary r = r0 that

−B2
θ

[
kη − 1

r
((rξ)′ − 2ξ)

]
(rξ0)

∣∣∣∣
r=r0

= 0. (3.37)

Since ξ0 may be chosen arbitrarily, we get the interface boundary condition

B2
θ [kηr − ξ′r + ξ]|r=r0 = 0. (3.38)

This completes the proof.

3.3. Variational problem when m != 0

In this section, we prove the Kink (|m| = 1) instability, in fact, we give the analysis
for any m += 0 and any k ∈ Z. Let us first introduce the definition of the space
Ym,k.

Definition 3.14. The weighted Sobolev space Ym,k is defined as the completion of
{(ξ, η, ζ) ∈ C∞([0, r0]) × C∞([0, r0]) × C∞([0, r0])|ξ(0) = 0)}, with respect to the
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norm

‖(ξ, η, ζ)‖2Ym,k
=

∫ r0

0
p

[
1

r
(rξ)′ +

mζ

r

]2
rdr +

∫ r0

0

B2
θ

r
ξ2dr

+

∫ r0

0
B2

θ

[
η

r
− k

m2 + k2r2
((rξ)′ − 2ξ)

]2
rdr

+

∫ r0

0

B2
θ

r
(ξ − rξ′)2dr +

∫ r0

0
ρ(|ξ|2 + |η|2 + |ζ|2)rdr. (3.39)

From Definition 3.14, we can get the following compactness result.

Lemma 3.15. Assume s1 is near r = r0 and p is admissible. Let Π1 denote the
projection operator onto the first factor. Then Π1 : Ym,k → V is a bounded, linear,
compact map, with the norm

‖ξ‖2V =

∫ s1

0
B2

θξ
2dr +

∫ r0

s1

−p′ξ2dr, (3.40)

and we denote it by

Ym,k ⊂⊂ V. (3.41)

Proof. For any (ξ, η, ζ) ∈ Ym,k, we have for r ∈ (0, r02 ) that

|rξ(r)Bθ(r)| =
∣∣∣∣
∫ r

0
∂s(sξ(s)Bθ(s))ds

∣∣∣∣

≤
∣∣∣∣
∫ r

0
sξ′(s)Bθ(s)ds

∣∣∣∣+
∣∣∣∣
∫ r

0
sξ(s)B′

θ(s)ds

∣∣∣∣+
∣∣∣∣
∫ r

0
ξ(s)Bθ(s)ds

∣∣∣∣

≤
(∫ r

0
B2

θ(s)(ξ
′(s))2sds

) 1
2
(∫ r

0
sds

) 1
2

+

(∫ r

0
(B′

θ(s))
2sds

) 1
2

×
(∫ r

0
ξ2(s)sds

) 1
2

+

(∫ r

0

B2
θ(s)

s
ξ2(s)ds

) 1
2
(∫ r

0
sds

) 1
2

≤ r√
2

(∫ r

0
B2

θ (s)(ξ
′(s))2sds

) 1
2

+
r√
2
‖B′

θ‖L∞

(∫ r

0
ξ2(s)sds

) 1
2

+
r√
2

(∫ r

0

B2
θ(s)

s
ξ2(s)ds

) 1
2

,

which gives that

|ξ(r)Bθ(r)| ≤
1√
2

(∫ r

0
B2

θ(s)(ξ
′(s))2sds

) 1
2

+
1√
2
‖B′

θ‖L∞

(∫ r

0
ξ2(s)sds

) 1
2

+
1√
2

(∫ r

0

B2
θ(s)

s
ξ2(s)ds

) 1
2

. (3.42)
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Assume that ‖(ξn, ηn, ζn)‖Ym,k ≤ C, for n ∈ N, then we have

‖(ξn(r), ηn(r), ζn(r))‖2Y (0,
r0
2 )

=

∫ r0
2

0
p

[
1

r
(rξn)

′ +
mζn
r

]2
rdr +

∫ r0
2

0

B2
θ

r
ξ2ndr

+

∫ r0
2

0
B2

θ

[
ηn
r

− k

m2 + k2r2
((rξn)

′ − 2ξn)

]2
rdr

+

∫ r0
2

0

B2
θ

r
(ξn − rξ′n)

2dr +

∫ r0
2

0
ρ(|ξn|2 + |ηn|2 + |ζn|2)rdr ≤ C2,

which implies that for r ∈ (0, r02 ),






∫ r

0
B2

θ (s)(ξ
′
n(s))

2sds ≤ C2,

∫ r

0
ξ2n(s)sds ≤ 1

min(0,r) ρ
C2,

∫ r

0

B2
θ (s)

s
ξ2n(s)ds ≤ C2.

(3.43)

Fix any κ > 0. We claim that there exists a subsequence {ξni} so that

sup
i,j

‖ξni − ξnj‖V ≤ κ. (3.44)

To prove the claim, from (3.42) and (3.43), let s0 ∈ (0, r0
2 ) be chosen small enough

so that

3s0

(
2C2 +

1

min(0,s0) ρ
‖B′

θ‖2L∞C2

)
≤ κ. (3.45)

From Definition 2.2/admissibility of p, we have p
p′ → 0 for r → r0, which

together with the definition of g, gives that g(s1) → 0 as s1 → r0. Choose s1 close
enough to r0, such that

g(s1)C ≤ κ

6
,

Cp(s1)

3(s1 − s0)‖Bθ‖2L∞(0,r0)

≤ 1

6
. (3.46)

Since the subinterval (s0, s1) avoids the singularity of 1
r and the degenerate of pres-

sure p on the boundary r = r0, the function ξn is uniformly bounded in H1(s0, s1).
By the compact embedding H1(s0, s1) ⊂⊂ C0(s0, s1), one can extract a subse-
quence {ξni} that converges in L∞(s0, s1). So for i, j large enough, it holds that

sup
i,j

‖ξni − ξnj‖2L∞(s0,s1) ≤
κ

3(s1 − s0)‖Bθ‖2L∞(0,r0)

.
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Since p′(r) ≤ 0 near r = r0, by Lemma 3.7 and (3.46), we deduce for i and j large
enough

∫ r0

s1

−p′(r)(ξni − ξnj )
2dr

≤ 2p(s1)(ξni − ξnj )
2(s1) + 4g(s1)

∫ r0

s1

p(ξ′ni
− ξ′nj

)2dr

≤ Cp(s1)κ

3(s1 − s0)‖Bθ‖2L∞(0,r0)

+ g(s1)C ≤ κ

3
. (3.47)

Then along the above subsequence we can get from (3.45) that

‖ξni − ξnj‖2V =

∫ s1

0
B2

θ |ξni − ξnj |2dr +
∫ r0

s1

−p′|ξni − ξnj |2dr

=

(∫ s0

0
+

∫ s1

s0

)
B2

θ |ξni − ξnj |2dr +
∫ r0

s1

−p′|ξni − ξnj |2dr

≤ s0

(
2C2 +

1

min(0,s0) ρ
‖B′

θ‖2L∞C2

)

+(s1 − s0) sup
i,j

‖ξni − ξnj‖2L∞(s0,r0)
‖Bθ‖2L∞(0,r0)

+
Cp(s1)κ

3(s1 − s0)‖Bθ‖2L∞(0,r0)

+ g(s1)C ≤ κ,

which implies the claim (3.44) and the compactness result (3.41).

Now, consider the case any m += 0 and any k ∈ Z. We need to consider the
energy (2.27) in Proposition 3.2 and

J (ξ, η, ζ) = 2π2

∫ r0

0
ρ(|ξ|2 + |η|2 + |ζ|2)rdr. (3.48)

Then from the Definition 3.14, we can get the following lemma.

Lemma 3.16. Em,k(ξ, η, ζ, Q̂r) defined in (2.27) and J (ξ, η, ζ) are both well-
defined on the space Ym,k ×H1(r0, rw).

Proof. From (2.35) and Lemma 3.7, similar to the proof of Lemma 3.9, we can get
∫ r0

0
2p′ξ2dr ≤ CJ (ξ, η, ζ) + C‖(ξ, η, ζ)‖2Ym,k

,

which implies that

|Em,k(ξ, η, ζ, Q̂r)| ≤ CJ (ξ, η, ζ) + C‖(ξ, η, ζ)‖2Ym,k

+C

∫ r0

0
B2

θ

[
η

r
− k

m2 + k2r2
((rξ)′ − 2ξ)

]2
rdr
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+C

∫ r0

0
p

[
1

r
(rξ)′ +

mζ

r

]2
rdr + C

∫ r0

0

B2
θ

r
ξ2dr

+C

∫ r0

0

B2
θ

r
(ξ − rξ′)2dr + C‖ρ‖γ−1

L∞

∫ r0

0
ρ|η|2rdr

+C

∫ rw

r0

[|Q̂r|2 + |Q̂′
r|2]rdr

≤ C‖(ξ, η, ζ)‖2Ym,k
+ ‖Q̂r‖2H1 .

Therefore, Em,k(ξ, η, ζ) and J (ξ, η, ζ) are well-defined on the space Ym,k ×
H1(r0, rw).

Now, we define

λ = inf
((ξ,η,ζ),Q̂r)∈Ym,k×H1(r0,rw)

Em,k(ξ, η, ζ, Q̂r)

J (ξ, η, ζ)
. (3.49)

Consider the set

A2 =

{
((ξ, η, ζ), Q̂r) ∈ Ym,k ×H1(r0, rw)|J (ξ, η, ζ) = 1,

mB̂θξ = rQ̂r at r = r0 and Q̂r = 0 at r = rw

}
, (3.50)

where the functions ξ, η and ζ are restricted to (0, r0), and the function Q̂r is
restricted to (r0, rw). We want to show that the infimum of Em,k(ξ, η, ζ, Q̂r) over
the set A2 is achieved and is negative and that the minimizer solves (3.10) and
(3.11) with the corresponding boundary conditions. First, we study the lower bound
of the energy Em,k(ξ, η, ζ, Q̂r) on the set A2.

Lemma 3.17. The energy Em,k(ξ, η, ζ, Q̂r) has a lower bound on the set A2.

Proof. We can directly get from the energy (2.27) that for 0 < s0 < s1 < r0,

Em,k(ξ, η, ζ, Q̂r) ≥ 2π2

∫ r0

0
γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2
rdr + 2π2

∫ r0

0
2p′ξ2dr

≥ 2π2

∫ r0

s0

γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2
rdr

+2π2

(∫ s1

0
+

∫ r0

s1

)
2p′ξ2dr, ∀ (ξ, η, ζ) ∈ A2.

Recalling (3.22), for every s1 < r0, we have |2π2
∫ s1
0 2p′ξ2dr| ≤ CJ . Hence, we get

Em,k(ξ, η, ζ, Q̂r) ≥ 2π2

∫ r0

s0

γp

∣∣∣∣
1

r
(rξ)′

∣∣∣∣
2

rdr + 2π2

∫ r0

s1

2p′ξ2dr − CJ .
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The key is to control
∫ r0
s1

2p′ξ2dr. Since in the interval (s1, r0), using Lemma 3.7,
similarly as (3.25), we know that

∣∣∣∣
∫ r0

s1

2p′(r)ξ2dr

∣∣∣∣ =
∫ r0

s1

−2p′ξ2dr ≤ Cp(s1)ξ
2(s1) + Cg(s1)

∫ r0

s1

pξ′2dr

≤ C(σ)J p(s1) + (Cp(s1)σ + Cg(s1))

∫ r0

s0

pξ′2dr. (3.51)

Choosing s1 close enough to r0 and σ small enough such that Cp(s1)σ+Cg(s1) ≤ γ
2 ,

yields that

Em,k(ξ, η, ζ, Q̂r) ≥ π2

∫ r0

s0

γp

∣∣∣∣
1

r
(rξ)′

∣∣∣∣
2

rdr − 3CJ ≥ −3CJ = −3C,

which implies that the energy Em,k(ξ, η, ζ, Q̂r) has a lower bound on the set A2.

Now we prove the coercivity estimate. Using the fact that J (ξ, η, ζ) = 1 and
Em,k has a lower bound on the set A2, we can choose a minimizing sequence such
that along the minimizing sequence, we know that M ≤ Em,k(ξn, ηn, ζn, Q̂rn) <
M + 1, and therefore we have coercivity estimate:

‖(ξn, ηn, ζn)‖2Ym,k
≤ J + C(M + 1) + C

∫ r0

0
(2p′ξ2n + γpk2η2nr)dr ≤ C.

(3.52)

Next, we prove that the infimum of Em,k(ξ, η, ζ, Q̂r) over the set A2 is negative.

Proposition 3.18. If there exists r∗ ∈ (0, r0) such that 2p′(r∗) + m2B2
θ(r

∗)
r∗ < 0,

then it holds that λ = inf Em,k < 0.

Proof. Since both Em,k and J are homogeneous degree 2, it suffices to show that

inf
((ξ,η,ζ),Q̂r))∈Ym,k×H1(r0,rw)

Em,k(ξ, η, ζ, Q̂r)

J (ξ, η, ζ)
< 0.

But since J is positive definite, one may reduce to constructing any ((ξ, η, ζ), Q̂r)) ∈
Ym,k ×H1(r0, rw) such that

Em,k(ξ, η, ζ, Q̂r) < 0.

If there exists r∗ ∈ (0, r0) such that 2p′ + m2B2
θ

r < 0, then we can choose a smooth
function ξ∗ ∈ C∞

c (0, r0) such that

2π2

∫ r0

0

[
2p′ +

m2B2
θ

r

]
ξ∗2dr < 0.
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Then, we can assume that η∗ = rk(rξ∗)′−2rkξ∗

m2+k2r2 and ζ∗ = r
m (kη∗ − 1

r (rξ
∗)′), such

that the first and second terms of Em,k(ξ∗, η∗, ζ∗, Q̂∗
r) in (2.27) vanish, that is

2π2

∫ r0

0
(m2 + k2r2)

[
Bθ

r
η∗ +

−kBθ(rξ∗)′ + 2kBθξ∗

m2 + k2r2

]2
rdr = 0,

2π2

∫ r0

0
γp

[
1

r
(rξ∗)′ − kη∗ +

mζ∗

r

]2
rdr = 0.

Here, ξ∗, η∗ and ζ∗ are smooth functions and belong to the space Ym,k.
Minimizing energy Em,k(ξ, η, ζ, Q̂r) with respect to η∗ and ζ∗, so we consider

the limit k → ∞, then we can get that

Ẽ(ξ∗, Q̂∗
r) = lim

k→∞

(
2π2

∫ r0

0

m2B2
θ

r(m2 + k2r2)
(ξ∗ − rξ∗′)2 + 2π2

∫ r0

0

[
2p′ +

m2B2
θ

r

]

× ξ∗2dr − 2π2

[
r

m2 + k2r2
(rQ̂∗

r)
′rQ̂∗

r

]

r=r0

)

= 2π2

∫ r0

0

[
2p′ +

m2B2
θ

r

]
ξ∗2dr < 0,

which implies the result.

Using Proposition 3.18, we can achieve the minimizer of the energy
Em,k(ξ, η, ζ, Q̂r).

Proposition 3.19. If λ = inf Em,k < 0, then Em,k(ξ, η, ζ, Q̂r) achieves its infimum
on the set A2.

Proof. First from Lemma 3.17, we have that Em,k(ξ, η, ζ, Q̂r) is bounded below on
the set A2. Assume that ((ξn, ηn, ζn), Q̂rn) ∈ A2 be a minimizing sequence. Then
(ξn, ηn, ζn) is bounded in Ym,k (see (3.39)), and Q̂rn is bounded in H1(r0, rw), so
up to the extraction of a subsequence ψn =

√
m2 + k2r2|Bθ|[ηn

r − k
m2+k2r2 ((rξn)

′−
2ξn)]r

1
2 ⇀ ψ =

√
m2 + k2r2|Bθ|[ηr − k

m2+k2r2 ((rξ)
′ − 2ξ)]r

1
2 weakly in L2, and

(ξn, Q̂rn) → (ξ, Q̂r) strongly in V × L2(r0, rw) from the compact embedding in
Lemma 3.15 and the compact embedding H1(r0, rw) ⊂⊂ L2(r0, rw). By weak lower
semi-continuity, since ψn ⇀ ψ in the space L2(0, r0), we have

∫ r0

0
(m2 + k2r2)B2

θ

[
η

r
− k

m2 + k2r2
((rξ)′ − 2ξ)

]2
rdr

≤ lim inf
n→∞

∫ r0

0
(m2 + k2r2)B2

θ

[
ηn
r

− k

m2 + k2r2
((rξn)

′ − 2ξn)

]2
rdr.

Because of the quadratic structure of all the terms in the integrals defining Em,k,
similarly by weak lower semi-continuity, we have
∫ r0

0
γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2
rdr ≤ lim inf

n→∞

∫ r0

0
γp

[
1

r
(rξn)

′ − kηn +
m

r
ζn

]2
rdr.
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Now let us deal with
∫ r0
0

m2B2
θ

r(m2+k2r2) (ξn−rξ′n)
2+
∫ r0
0 [2p′+m2B2

θ
r ]ξ2ndr by the following

two cases.

Case I. When |m| = 1, we can write for every s0 > 0,

∫ r0

0

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2dr +

∫ r0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr

=

(∫ s0

0
+

∫ r0

s0

)
m2B2

θ

r(m2 + k2r2)
(ξn − rξ′n)

2dr

+

(∫ s0

0
+

∫ r0

s0

)[
2p′ +

m2B2
θ

r

]
ξ2ndr. (3.53)

Applying (2.34) and (2.35) in Lemma 2.3, for fixed k we have

∫ s0

0

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2dr +

∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr

=

∫ s0

0

[
1

4
J2z(0)r +

1

3
J′z(0)Jz(0)r2 +O(r3)

]
(ξn − rξ′n)

2dr

+

∫ s0

0

[
−3

4
J2z(0)r −

4

3
J′z(0)Jz(0)r2 +O(r3)

]
ξ2ndr

=

∫ s0

0

[
1

4
J2z(0)r +

1

3
J′z(0)Jz(0)r2 +O(r3)

]
(r2ξ′2n − 2rξnξ

′
n)dr

+

∫ s0

0

[
−1

2
J2z(0)r − J′z(0)Jz(0)r2 +O(r3)

]
ξ2ndr

=

∫ s0

0

[
1

4
J2z(0)r +

1

3
J′z(0)Jz(0)r2 +O(r3)

]
r2ξ′2n dr

+

∫ s0

0

[
1

2
J2z(0)r + J′z(0)Jz(0)r2

]
ξ2ndr

+

∫ s0

0

[
−1

2
J2z(0)r − J′z(0)Jz(0)r2 +O(r3)

]
ξ2ndr

=

∫ s0

0

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2n dr +

∫ s0

0
O(r3)ξ2ndr.

On the other hand, it follows from Bθ = 1
r

∫ r
0 sJz(s)ds that

sup
0≤r≤r0

|Bθ|
r

≤ ‖Jz‖L∞

2
,

which gives that Bθ(0) = 0. Assume (ξn, ηn, ζn) ∈ Ym,k and J (ξn, ηn, ζn) = 1, by
(3.43) and Bθ(0) = 0, we choose s0 small enough, such that Cs0 + Cs20 ≤ κ with
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κ = 1
l , l ∈ N, then we have for n large enough such that

∫ s0

0
O(r2)r2|ξ′n − ξ′|2dr +

∫ s0

0
O(r3)|ξn − ξ|2dr

≤ Cs0

∫ s0

0
r3|ξ′n − ξ′|2dr + Cs20

∫ s0

0
r|ξn − ξ|2dr

≤ Cs0 + Cs20 ≤ κ, (3.54)

which together with weak lower semi-continuity, gives that
∫ s0

0

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2dr +

∫ s0

0
O(r3)ξ2dr

≤ lim inf
n→∞

{∫ s0

0

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2n dr +

∫ s0

0
O(r3)ξ2ndr

}
. (3.55)

Hence, we have
∫ s0

0

m2B2
θ

r(m2 + k2r2)
(ξ − rξ′)2dr +

∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2dr

=

∫ s0

0

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2dr +

∫ s0

0
O(r3)ξ2dr

≤ lim inf
n→∞

{∫ s0

0

[
1

4
J2z(0)r +O(r2)

]
r2ξ′2n dr +

∫ s0

0
O(r3)ξ2ndr

}

= lim inf
n→∞

{∫ s0

0

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2dr +

∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr

}
.

(3.56)

On the other hand, by weak lower semi-continuity, we can show that
∫ r0

s0

m2B2
θ

r(m2 + k2r2)
(ξ − rξ′)2dr +

∫ r0

s0

m2B2
θ

r
ξ2dr

≤ lim inf
n→∞

∫ r0

s0

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2dr + lim inf
n→∞

∫ r0

s0

m2B2
θ

r
ξ2ndr.

(3.57)

From Lemma 3.15, for s1 near r = r0, it holds that as n → ∞,

∫ s1

s0

p′|ξn − ξ|2dr ≤
(∫ s1

s0

B2
θ |ξn − ξ|2dr

) 1
2
(∫ s1

s0

J2z|ξn − ξ|2dr
) 1

2

≤
(∫ s1

s0

B2
θ |ξn − ξ|2dr

) 1
2
(∫ s1

s0

|ξn − ξ|2dr
) 1

2

‖Jz‖L∞

≤ C

(∫ s1

s0

B2
θ |ξn − ξ|2dr

) 1
2

→ 0,
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and ∫ r0

s1

−p′|ξn − ξ|2dr → 0,

where we have used ξn is uniformly bounded in H1(s0, s1) and Jz ∈ L∞([0, r0]).

Case II. When |m| ≥ 2, the positive term
∫ r0
0

m2B2
θ

r(m2+k2r2) (ξn − rξ′n)
2 is dealt by

weak lower semi-continuity, which implies that
∫ r0

0

m2B2
θ

r(m2 + k2r2)
(ξ − rξ′)2 ≤ lim inf

n→∞

∫ r0

0

m2B2
θ

r(m2 + k2r2)
(ξn − rξ′n)

2.

For the term
∫ r0
0 [2p′ + m2B2

θ
r ]ξ2ndr, we have for every s0 > 0,

∫ r0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr =

(∫ s0

0
+

∫ r0

s0

)[
2p′ +

m2B2
θ

r

]
ξ2ndr. (3.58)

Applying (2.34) and (2.35) in Lemma 2.3, we deduce
∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr

=

∫ s0

0

[
−J2z(0)r −

5

3
J′z(0)Jz(0)r2 +m2

(
1

4
J2z(0)r +

1

3
J′z(0)Jz(0)r2

)
+O(r3)

]

× ξ2ndr =

∫ s0

0

[(
m2

4
− 1

)
J2z(0)r +O(r2)

]
ξ2ndr. (3.59)

Assume J (ξn, ηn, ζn) = 1, we choose s0 small enough, such that Cs0 ≤ κ, with
κ = 1

l , l ∈ N, then we have for n large enough such that
∫ s0

0
O(r2)|ξn − ξ|2dr ≤ Cs0

∫ s0

0
r|ξn − ξ|2dr ≤ Cs0 ≤ κ, (3.60)

which together with weak lower semi-continuity, gives that
∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2dr =

∫ s0

0

[(
m2

4
− 1

)
J2z(0)r +O(r2)

]
ξ2dr

≤ lim inf
n→∞

∫ s0

0

[(
m2

4
− 1

)
J2z(0)r +O(r2)

]
ξ2ndr

= lim inf
n→∞

∫ s0

0

[
2p′ +

m2B2
θ

r

]
ξ2ndr. (3.61)

On the other hand, by weak lower semi-continuity, we can show that
∫ r0

s0

m2B2
θ

r
ξ2dr ≤ lim inf

n→∞

∫ r0

s0

m2B2
θ

r
ξ2ndr. (3.62)

From Lemma 3.15, for s1 near r = r0, similarly it holds that as n → ∞,
∫ s1

s0

p′|ξn − ξ|2dr ≤ C

(∫ s1

s0

B2
θ |ξn − ξ|2dr

) 1
2

→ 0,

∫ r0

s1

−p′|ξn − ξ|2dr → 0.
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Therefore, we get that for any fixed k and m += 0,

Em,k(ξ, η, ζ, Q̂r) ≤ lim inf
n→∞

Em,k(ξn, ηn, ζn, Q̂rn) = inf
A2

Em,k.

All that remains is to show that ((ξ, η, ζ), Q̂r) ∈ A2.
Again by lower semi-continuity, we know that J (ξ, η, ζ) ≤ 1. Suppose by way

of contradiction that J (ξ, η, ζ) < 1. By the homogeneity of J , we may find
α > 1 so that J (αξ,αη,αζ) = 1, i.e. we may scale up ((ξ, η, ζ), Q̂r) so that
((αξ,αη,αζ),αQ̂r) ∈ A2. By Proposition 3.18, we know that inf Em,k < 0, and
from this we deduce that

Em,k(αξ,αη,αζ,αQ̂r) = α2Em,k(ξ, η, ζ, Q̂r) = α2 inf Em,k < inf Em,k,

which is a contradiction since ((αξ,αη,αζ),αQ̂r) ∈ A2. Hence J (ξ, η, ζ) = 1, so
that ((ξ, η, ζ), Q̂r) ∈ A2.

We now prove that the minimizer constructed in the previous result satisfies
Euler–Lagrange equations equivalent to (3.10) and (3.11) with suitable boundary
conditions.

Proposition 3.20. Let ((ξ, η, ζ), Q̂r) ∈ A2 be the minimizers of Em,k constructed
in Proposition 3.19. Then (ξ, η, ζ) are smooth in (0, r0) and satisfy





d

dr

γp+B2
θ

r

d

dr
r − m2

r2
B2

θ − r

(
B2

θ

r2

)′

− d

dr
k(γp+B2

θ)−
2kB2

θ

r

d

dr

m

r
γp

k(γp+B2
θ )

r

d

dr
r − 2kB2

θ

r
−k2(γp+B2

θ)−
m2

r2
B2

θ
mk

r
γp

−mγp

r2
d

dr
r

mk

r
γp −m2

r2
γp





×




ξ

η

ζ



 = −ρλ




ξ

η

ζ



, (3.63)

the solution Q̂r is smooth on (r0, rw) and satisfies

[
r

m2 + k2r2
(rQ̂r)

′
]′

− Q̂r = 0, (3.64)

along with the interface boundary condition

B2
θξ −B2

θξ
′r + kB2

θηr = B̂θQ̂θr, at r = r0, (3.65)

where the other two components of Q̂ are denoted by Q̂θ = − m
m2+k2r2 (rQ̂r)′ and

Q̂z = − kr
m2+k2r2 (rQ̂r)′.



February 28, 2021 15:51 WSPC/103-M3AS 2150009

Linear instability of Z–pinch in plasma: Inviscid case 451

Proof. Fix ((ξ0, η0, ζ0), qr) ∈ Ym,k ×H1(r0, rw) and assume they satisfy mB̂θξ0 =
rqr on the boundary r = r0 and qr = 0 on the boundary r = rw. Define

j(t, τ) = J (ξ + tξ0 + τξ, η + tη0 + τη, ζ + tζ0 + τζ).

Note that j(0, 0) = 1. Moreover, j is smooth

∂j

∂t
(0, 0) = 2π2

∫ r0

0
2ρ(ξ0ξ + η0η + ζ0ζ)rdr,

∂j

∂τ
(0, 0) = 2π2

∫ r0

0
2ρ(ξ2 + η2 + ζ2)rdr = 2.

So, by the inverse function theorem, we can solve for τ = τ(t) in a neighborhood
of 0 as a C1 function of t so that τ(0) = 0 and j(t, τ(t)) = 1. We may differentiate
the last equation to find

∂j

∂t
(0, 0) +

∂j

∂τ
(0, 0)τ ′(0) = 0,

which gives that

τ ′(0) = −1

2

∂j

∂t
(0, 0) = −2π2

∫ r0

0
ρ(ξ0ξ + η0η + ζ0ζ)rdr.

Since ((ξ, η, ζ), Q̂r) are minimizers over the set A2, we may make variations with
respect to ((ξ0, η0, ζ0), qr) to find that

0 =
d

dt

∣∣∣∣
t=0

E(ξ + tξ0 + τ(t)ξ, η + tη0 + τ(t)η, ζ + tζ0 + τ(t)ζ, Q̂r + tqr + τQ̂r),

which implies that

0 = 4π2

∫ r0

0

{
m2B2

θ

r2(m2 + k2r2)
(rξ)′(rξ0)

′ + β0(rξ) · (rξ0) +
(m2 + k2r2)B2

θ

r2
ηη0

− kB2
θ(rξ0)

′η

r
+

2kB2
θ

r
ξ0η +

k2B2
θ

m2 + k2r2
(rξ)′(rξ0)

′ − 2k2B2
θ

m2 + k2r2
ξ(rξ0)

′

− kB2
θ

r
(rξ)′η0 +

2kB2
θ

r
ξη0 −

2k2B2
θ

m2 + k2r2
ξ0(rξ)

′ +
4k2B2

θ

m2 + k2r2
ξξ0

+ γp

[
1

r2
(rξ)′(rξ0)

′ +
−k(rξ)′η0 +

m
r (rξ)

′ζ0
r

+
−k(rξ0)′η +

m
r (rξ0)

′ζ

r

+
(
−kη +

m

r
ζ
)(

−kη0 +
m

r
ζ0
)]}

rdr − 4π2

[
2m2B2

θ

m2 + k2r2
ξξ0

]

r=r0

+4π2τ ′(0)

∫ r0

0

{
m2B2

θ

r2(m2 + k2r2)
|(rξ)′|2 + β0(rξ)

2 + (m2 + k2r2)

[
Bθ

r
η

+
−kBθ(rξ)′ + 2kBθξ

m2 + k2r2

]2
+ γp

[
1

r
(rξ)′ − kη +

m

r
ζ

]2}
rdr
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− 4π2τ ′(0)

[
2m2B2

θ

m2 + k2r2
ξ2
]

r=r0

+4π2

∫ rw

r0

[
Q̂rqr +

1

m2 + k2r2
(rQ̂r)

′(rqr)
′
]
rdr

+4π2τ ′(0)

∫ rw

r0

[
|Q̂r|2 +

1

m2 + k2r2
|(rQ̂r)

′|2
]
rdr,

that is

0 = 4π2

∫ r0

0

{
γp+B2

θ

r
(rξ)′(rξ0)

′ + rβ0(rξ) · (rξ0)− kB2
θ(rξ0)

′η +
2kB2

θ

r
(rξ0) · η

− 2k2B2
θ

m2 + k2r2
rξ(rξ0)

′ − 2k2B2
θ

m2 + k2r2
rξ0(rξ)

′ +
4k2B2

θ

m2 + k2r2
ξ(rξ0)− kγp(rξ0)

′η

+
m

r
γp(rξ0)

′ζ +
(m2 + k2r2)B2

θ

r2
η · (rη0)−

kB2
θ

r
(rξ)′(rη0) +

2kB2
θ

r
ξ · (rη0)

− kγp

r
(rξ)′ · (rη0) + k2γpη · (rη0)−

mk

r
γpζ · (rη0) +

mγp

r2
(rξ)′(rζ0)

− mk

r
γpη(rζ0) +

m2

r2
γpζ · (rζ0)

}
dr − 4π2

[
2m2B2

θ

m2 + k2r2
ξξ0

]

r=r0

+4π2

∫ rw

r0

[
Q̂rqr +

1

m2 + k2r2
(rQ̂r)

′(rqr)
′
]
rdr + 2τ ′(0)λ.

Therefore, we can prove that

−τ ′(0)λ = 2π2

∫ r0

0
ρλ(ξ0ξ + η0η + ζζ0)rdr

= 2π2

∫ r0

0

{
γp+B2

θ

r
(rξ)′(rξ0)

′ + rβ0(rξ) · (rξ0)− kB2
θ(rξ0)

′η

+
2kB2

θ

r
(rξ0) · η −

2k2B2
θ

m2 + k2r2
rξ(rξ0)

′ − 2k2B2
θ

m2 + k2r2
rξ0(rξ)

′

+
4k2B2

θ

m2 + k2r2
ξ(rξ0)− kγp(rξ0)

′η +
m

r
γp(rξ0)

′ζ +

(
m2

r2
+ k2

)
B2

θη

· (rη0)−
kB2

θ

r
(rξ)′(rη0) +

2kB2
θ

r
ξ · (rη0)−

kγp

r
(rξ)′ · (rη0) + k2γpη

· (rη0)−
mk

r
γpζ · (rη0) +

mγp

r2
(rξ)′(rζ0)−

mk

r
γpη(rζ0) +

m2

r2
γpζ

· (rζ0)
}
dr − 2π2

[
2m2B2

θ

m2 + k2r2
ξξ0

]

r=r0

+2π2

∫ rw

r0

[
Q̂rqr +

1

m2 + k2r2
(rQ̂r)

′(rqr)
′
]
rdr. (3.66)
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Noting that

β0 =
1

r

[
m2B2

θ

r3
+

2m2Bθ

(
Bθ
r

)′

r(m2 + k2r2)
− 4k2m2B2

θ

r(m2 + k2r2)2
+

2k2p′

m2 + k2r2

]
,

p′ = −1

r
(rBθ)

′Bθ,

we can get that

∫ r0

0

{
rβ0(rξ) · (rξ0)−

2k2B2
θ

m2 + k2r2
rξ(rξ0)

′ − 2k2B2
θ

m2 + k2r2
rξ0(rξ)

′

+
4k2B2

θ

m2 + k2r2
ξ(rξ0)

}
dr

=

∫ r0

0

{
m2

r2
B2

θξ · (rξ0) +
(
B2

θ

r2

)′

(rξ) · (rξ0)
}
dr −

[
2k2r2B2

θ

m2 + k2r2
ξξ0

]

r=r0

.

Since ξ0, η0, ζ0 and qr are independent, and using

−
[

2k2r2B2
θ

m2 + k2r2
ξξ0

]

r=r0

−
[

2m2B2
θ

m2 + k2r2
ξξ0

]

r=r0

= −2[B2
θξξ0]r=r0 ,

inserting the above identity into (3.66), one has the triplet of equations

−
∫ r0

0
(γp+B2

θ)kη(rξ0)
′dr +

∫ r0

0
2B2

θkηξ0dr +

∫ r0

0

(
B2

θ

r2

)′

(rξ) · (rξ0)dr

+

∫ r0

0

γp+B2
θ

r
(rξ)′(rξ0)

′dr +

∫ r0

0

m2

r2
B2

θξ · (rξ0)dr +
∫ r0

0

m

r
γp(rξ0)

′ζdr

− 2[B2
θξξ0]r=r0 +

∫ rw

r0

[
Q̂rqr +

1

m2 + k2r2
(rQ̂r)

′(rqr)
′
]
rdr =

∫ r0

0
ρλξ0ξrdr,

∫ r0

0

(
m2

r2
+ k2

)
B2

θη · (rη0)dr −
∫ r0

0

k(γp+B2
θ)

r
(rξ)′(rη0)dr +

∫ r0

0

2kB2
θ

r
ξ

· (rη0)dr +
∫ r0

0
k2γpη · (rη0)dr −

∫ r0

0

mk

r
γpζ · (rη0)dr =

∫ r0

0
ρλη0ηrdr,

∫ r0

0

mγp

r2
(rξ)′(rζ0)dr −

∫ r0

0

mk

r
γpη(rζ0)dr +

∫ r0

0

m2

r2
γpζ · (rζ0)dr

=

∫ r0

0
ρλζ0ζrdr. (3.67)

By making variation with ξ0 compactly supported in (0, r0), and make variations
qr compactly supported in (r0, rw), one gets that (ξ, η, ζ) satisfy (3.63) in a weak
sense in (0, r0) and Q̂r satisfies (3.64) in a weak sense in (r0, rw).
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Now we show that the interface boundary condition (3.65) is satisfied. From the
first equation (3.63), we know that

d

dr

[
γp

(
1

r
(rξ)′ − kη +

m

r
ζ

)]
+

d

dr

[
B2

θ

(
1

r
(rξ)′ − kη

)]
− 2BθB′

θξ

r

− B2
θξ

′

r
+

B2
θξ

r2
+

B2
θ

r

(
1

r
(rξ)′ − 2kη − m2

r
ξ

)
= −ρλξ,

which together with (ξ, η, ζ) ∈ Ym,k (see (3.39)) and ξ ∈ V (see (3.40)), gives that

d

dr

[
γp

(
1

r
(rξ)′ − kη +

m

r
ζ

)
+B2

θ

(
1

r
(rξ)′ − kη

)]
∈ L2

(r0
2
, r0
)
.

After a similar argument, we have

d

dr

[
r

m2 + k2r2
(rQ̂r)

′
]
∈ L2(r0, rw),

so γp(1r (rξ)
′−kη+m

r ζ)+B2
θ (

1
r (rξ)

′−kη) and r
m2+k2r2 (rQ̂r)′ are well-defined at the

endpoint r = r0. Make variations with respect to ξ0 ∈ C∞
c (0, r0], qr ∈ C∞

c [r0, rw).
Integrating the terms in (3.67) with derivatives of ξ0 and qr by parts, using ξ solves
the first equation of (3.63) on (0, r0) and Q̂r solves (3.64) on (r0, rw), we get that

[(γp+B2
θ)(rξ)

′ξ0 − k(γp+B2
θ )ηξ0r − 2B2

θξξ0 +mγpζξ0]r=r0

−
[

r

m2 + k2r2
(rQ̂r)

′rqr

]

r=r0

= 0.

Since ξ0 and qr may be chosen arbitrarily, and qr satisfies mB̂θξ0 = rqr on the
boundary r = r0, using p = 0 on the boundary r = r0 and Q̂θ = − m

m2+k2r2 (rQ̂r)′,
we deduce the interface boundary condition

[B2
θξ −B2

θξ
′r + kB2

θηr − B̂θQ̂θr]|r=r0 = 0.

4. Analysis About the Growing Mode as a Function of m and k

In this section, we first prove the growing mode is bounded for any (m, k) ∈ Z×Z,
if the pressure satisfies |p′| ≤ Cρ for r near r0, and then show that the growing
mode has no lower bound under suitable condition of the pressure p. First, we prove
the growing mode is bounded for any m and k, under the condition |p′| ≤ Cρ for r
near r0.

Proposition 4.1. If |p′| ≤ Cρ for r near r0, then the growing mode is bounded for
any m and k.

Proof. We can directly get from the energy E0,k and Em,k in (2.26) and (2.27)
that for any m and k

Em,k ≥ 2π2

∫ r0

0
2p′ξ2dr = 2π2

∫ s1

0
2p′ξ2dr + 2π2

∫ r0

s1

2p′ξ2dr.
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From p′ = −BθB′
θ −

B2
θ
r = −BθJz, it follows that for s1 near r0

∣∣∣∣
∫ s1

0
p′ξ2dr

∣∣∣∣ =
∣∣∣∣
∫ s1

0

p′

r
ξ2rdr

∣∣∣∣ =
∣∣∣∣−
∫ s1

0

BθJz
r

ξ2rdr

∣∣∣∣ ≤ sup
0≤r≤r0

∣∣∣∣
Bθ

r

∣∣∣∣ sup
0≤r≤r0

|Jz|J

and
∣∣∣∣
∫ r0

s1

p′ξ2dr

∣∣∣∣ =
∣∣∣∣
∫ r0

s1

p′

ρ
ρξ2dr

∣∣∣∣ ≤ sup
0≤r≤r0

∣∣∣∣
p′

ρ

∣∣∣∣J .

On the other hand, it follows from Bθ = 1
r

∫ r
0 sJz(s)ds that

sup
0≤r≤r0

|Bθ|
r

≤ ‖Jz‖L∞

2
.

Therefore, we get from |p′| ≤ Cρ for r near r0 that
∣∣∣∣
∫ r0

0
2p′ξ2dr

∣∣∣∣ ≤ C(J ),

which ensures that the energy E0,k and Em,k have a uniform lower bound. There-
fore, the growing mode is bounded.

Now we introduce the following examples which ensures the condition in
Proposition 4.1.

Example 4.1. (I) Assume p(r) = C(r0 − r)β for r near r0 and β ≥ 1. If γ ≥ β
β−1 ,

then |p′| ≤ Cρ for r near r0 and the growing mode is bounded for any m and k.
(II) Assume p = Cexp{−(r0 − r)−β} for r near r0 and β > 0. If γ > 1, then

|p′| ≤ Cρ for r near r0 and the growing mode is bounded for any m and k.

Proof. (I) Since p = C(r0− r)β for r near r0, we deduce that p′(r) ∼ −(r0− r)β−1

for r near r0. By p = Aργ , we have ρ ∼ (r0 − r)
β
γ for r near r0. Hence, if γ ≥ β

β−1 ,
then |p′| ≤ Cρ for r near r0. By Proposition 4.1, we get that the growing mode is
bounded for any m and k.

(II) Since p = Cexp{−(r0 − r)−β} for r near r0, we get that for r near r0,

p′(r) ∼ − β

(r0 − r)β+1
exp{−(r0 − r)−β}.

By p = Aργ , we have ρ ∼ exp{− 1
γ (r0 − r)−β}. Hence, if γ > 1, then |p′| ≤ Cρ for

r near r0. By Proposition 4.1, similarly we get that the growing mode is bounded
for any m and k.

Finally, we prove that the growing mode has no lower bound under suitable
condition of the pressure.

Proposition 4.2. Assume p(r) = C(r0 − r)β for r near r0 and β ≥ 1. If γ < β
β−1 ,

then p′

ρ → −∞ as r → r0 and the growing mode has no lower bound.
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Proof. Since p(r) = C|r − r0|β for r near r0, from (I) in Example 4.1, we know

that p′ ∼ −|r − r0|β−1 and ρ ∼ |r − r0|
β
γ for r near r0. Hence, if γ < β

β−1 , then
p′

ρ → −∞ as r → r0.
Now we prove the ill-posedness by the above facts. We can choose w as any

smooth function with compact support near 0 and define a sequence of test functions

ξk = w(kα[r − r0]), ηk = 1
kr ((rξk)

′ − 2B2
θ

γp+B2
θ
ξk), such that

2π2

∫ r0

0
k2(γp+B2

θ)

[
ηk − 1

kr

(
(rξk)

′ − 2B2
θ

γp+B2
θ

ξk

)]2
rdr = 0.

It follows that

∂rξk = kαw′(kα[r − r0])

and

ηk ∼ kα−1w′(kα[r − r0]) + k−1w(kα[r − r0]).

Therefore, we get for 0 < α < 1 that

J0,k =

∫ r0

0
ρ(ξ2k + η2k)rdr

∼
∫ r0

0
|r − r0|

β
γ (ξ2k + η2k)rdr

∼
∫ r0

0
|r − r0|

β
γ |w(kα[r − r0])|2dr

+

∫ r0

0
|r − r0|

β
γ k2α−2|w′(kα[r − r0])|2dr

+

∫ r0

0
|r − r0|

β
γ k−2|w′(kα[r − r0])|2dr (let z = kα[r − r0])

∼ k−α−αβ
γ

∫ kαr0

0
z

β
γ |w(z)|2dz + kα−2−αβ

γ

∫ kαr0

0
z

β
γ |w′(z)|2dz

+ k−2−α−αβ
γ

∫ kαr0

0
z

β
γ |w′(z)|2dz

∼ k−α−αβ
γ . (4.1)

Since p(r) ∼ |r − r0|β and p′ ∼ −|r − r0|β−1 for r near r0, we obtain

E0,k = E0,k(ξk, ηk) = 2π2

∫ r0

0

{[
2p′

r
+

4γpB2
θ

r2(γp+B2
θ )

]
ξ2k

+ k2(γp+B2
θ )

[
ηk −

1

kr

(
(rξk)

′ − 2B2
θ

γp+B2
θ

ξk

)]2}
rdr
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= 2π2

∫ r0

0

[
2p′

r
+

4γpB2
θ

r2(γp+B2
θ)

]
ξ2krdr

∼ −
∫ r0

0
|r − r0|β−1w2(kα[r − r0])dr

+

∫ r0

0
|r − r0|βw2(kα[r − r0])dr (let z = kα[r − r0])

∼ −k−α−α(β−1)

∫ kαr0

0
zβ−1w2(z)dz

+ k−α−αβ

∫ kαr0

0
zβw2(z)dz ∼ −k−α−α(β−1).

(4.2)

Choosing 0 < α < 1, if γ < β
β−1 , then we get as k → ∞ that

λk = min
E0,k

J0,k
∼ −k−α−α(β−1)

k−α−αβ
γ

= −k
αβ
γ −α(β−1) → −∞.

Appendix A. Perturbed MHD System in Lagrangian Coordinates

A.1. Harmonic extension of the free surface

According to Sec. 2.1, we know that the equation of the free surface St,pv may be
read as follows:

h(t,X ) = X + g(t,X ), (X ∈ Σ0,pv = {x = r0}),

that is





hr(t, r0, θ, z) = r0 + gr(t, r0, θ, z),

hθ(t, r0, θ, z) = θ + gθ(t, r0, θ, z),

hz(t, r0, θ, z) = z + gz(t, r0, θ, z).

We consider the fixed equilibrium vacuum domain

Ωv
0 = {(r, θ, z) ∈ C(0; r0, rw)× [0, 2π]× 2πT|r0 < r < rw, θ ∈ [0, 2π], z ∈ 2πT}

(A.1)

for which we will write the coordinates as X̂ ∈ Ωv
0. We will think of Σ0,pv =

{(r, θ, z)|r = r0, θ ∈ [0, 2π], z ∈ 2πT} as the plasma–vacuum interface of Ωv
0, and

we will write Σw = {(r, θ, z)|r = rw, θ ∈ [0, 2π], z ∈ 2πT} for the outer perfectly
conducting wall.

We continue to view g(t, r0, θ, z) = gr(t, r0, θ, z) er + gθ(t, r0, θ, z) eθ +
gz(t, r0, θ, z) ez as a vector field on R+×Σ0,pv. We then define a vector field in cylin-
drical coordinates Ψ(t, r, θ, z) = Ψr(t, r, θ, z) er+Ψθ(t, r, θ, z) eθ+Ψz(t, r, θ, z) ez as
the displacement in vacuum

Ψ(t, r, θ, z) = Hvg = generalized harmonic extension of g into Ωv
0 , (A.2)
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where Hvg solves the following Laplacian equations:
{
∆Ψ = 0, in Ωv

0 ,

Ψ|R+×Σ0,pv
= g, Ψ|R+×Σw

= 0,
(A.3)

that is





(
∆̃− 1

r2

)
Ψr − 2

r2
∂θΨ

θ = 0, in Ωv
0,

Ψr|R+×Σ0,pv
= gr, Ψr|R+×Σw

= 0,






(
∆̃− 1

r2

)
Ψθ +

2

r2
∂θΨ

r = 0, in Ωv
0,

Ψθ|R+×Σ0,pv
= gθ, Ψθ|R+×Σw

= 0,

{
∆̃Ψz = 0, in Ωv

0 ,

Ψz|R+×Σ0,pv
= gz, Ψz|R+×Σw

= 0,

with ∆̃ = ∂2r + ∂r
r + ∂2z + 1

r2 ∂
2
θ .

The generalized harmonic extension Φ := Id + Ψ in vacuum of the flow map h
allows us to flatten the coordinate domain via the mapping

Ωv
0 / (rs, θs, zs) 0→ Φ(t, rs, θs, zs) = (x, y, z) ∈ Ωv(t).

Remark A.1. Note that

Φ(t,Σ0,pv) = Σt,pv, Φ(t, ·)|Σw = Id|Σw ,

that is, Φ maps Σ0,pv to the free surface and keeps the outer perfectly conducting
wall fixed.

A.2. Vacuum equations in Lagrangian coordinates

According to the extended co-moving frame X̂ (t) = Φ(t, r, θ, z), we may introduce
the“virtual velocity” field û(t,Φ) = d

dtΦ(t, r, θ, z) reduced by the virtual particle
in vacuum (which satisfies | ûc | = o(1) when we consider the non-relativistic MHD,
here c is the light speed).

We define Lagrangian quantities in vacuum as follows:

b̂(t, X̂ ) = B̂(t,Φ(t, X̂ )), v̂(t, X̂ ) = û(t,Φ(t, X̂ )), Â = (DΦ)−1, Ĵ = det(DΦ).

Similar to (2.3) and (2.4), thanks to definitions of the mapping η and the displace-
ment Ψ in vacuum, we may also get the following identities:

Âk
i ∂kΦ

j = Âj
k∂iΦ

k = δji , ∂k(ĴÂk
i ) = 0, ∂iΦ

j = δji + ∂iΨ
j,

Âj
i = δji − Âk

i ∂kΨ
j ,

∂#Âj
i = −Âj

kÂ
h
i ∂h∂#Ψ

k, ∂iv̂
j = ∂iΦ

kÂh
k∂hv̂

j = Âh
i ∂hv̂

j + ∂iΨ
kÂh

k∂hv̂
j ,

∂tĴ = ĴÂj
i∂j v̂

i, ∂#Ĵ = ĴÂj
i∂j∂#Ψ

i, ∂tÂj
i = −Âj

kÂ
#
i∂#v̂

k. (A.4)
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If the displacement Ψ is sufficiently small in an appropriate Sobolev space, then the
flow mapping Φ is a diffeomorphism from Ωv

0 to Ωv(t), which allows us to switch
back and forth from Lagrangian to Eulerian coordinates.

Denote (∇Â)i = Âj
i∂j , then we may write the vacuum equations in Lagrangian

coordinates as follows:

∇Â · b̂ = 0, ∇Â × b̂ = 0 in Ωv
0 . (A.5)

A.3. Decompositions of Lagrangian quantities around the
equilibrium

A.3.1. Decompositions of J and b

We may compute the Jacobian of the Lagrangian transformation as follows:

J = det(D(h)) =

(
1 +

∂θgθ

r
+

1

r
gr
)
((1 + ∂zg

z)(1 + ∂rg
r)− ∂zg

r∂rg
z)

+

(
∂θgr

r
− gθ

r

)
∂zg

θ∂rg
z +

∂θgz

r
∂rg

θ∂zg
r −

(
∂θgr

r
− gθ

r

)
∂rg

θ(1 + ∂zg
z)

− ∂θgz

r
∂zg

θ(1 + ∂rg
r) = 1 + J1 = 1 +∇ · g + J2,

where

J1 := ∇ · g + J2, ∇ · g = ∂rg
r +

1

r
gr + ∂zg

z +
∂θgθ

r
,

J2 := ∂rg
r∂zg

z +

(
∂θgθ

r
+

1

r
gr
)
(∂zg

z + ∂rg
r + ∂rg

r∂zg
z − ∂rg

z∂zg
r)− ∂zg

r∂rg
z

+

(
∂θgr

r
− gθ

r

)
∂zg

θ∂rg
z +

∂θgz

r
∂rg

θ∂zg
r −

(
∂θgr

r
− gθ

r

)
∂rg

θ(1 + ∂zg
z)

− ∂θgz

r
∂zg

θ(1 + ∂rg
r).

Denote

b1 = b0 ·∇g − b0∇ · g,

b2 = −J−1((J2 +∇ · g)b1 + J2b0),
(A.6)

then we can split b into three parts

b = b0 + b1 + b2. (A.7)

A.3.2. Decompositions of the pressure q

We first write

q = A ργ0 J
−γ = p0 J

−γ = p0 + p0 J
−γ(1− Jγ)

= p0 + p0 J
−γ(1− (1 +∇ · g + J2)

γ),

which implies q = p0(1− γ∇ · g+Q2), with Q2 = (1+∇ · g+ J2)−γ − (1− γ∇ · g).
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Since we expect that J − 1 = ∇ · g + J2 is small, we obtain from the Taylor
expansion that

Q2 = −γ J2 +
1

2
γ (γ + 1)(∇ · g + J2)

2

− 1

2
γ (γ + 1)(γ + 2)(∇ · g + J2)

3

∫ 1

0
(1 − τ)2(1 + τ(∇ · g + J2))

−γ−3 dτ.

Therefore, we split q into three parts q = p0 + q1 + q2, with q1 = −γp0∇ · g and
q2 = p0 Q2.

A.3.3. Decompositions of the normal vector N on the free surface

Let n0 = er, Ni = JAj
in0,j, then we have

N = n0 + n1 + n2, (A.8)

with

n1 =

(
∂zg

z +
∂θgθ

r
+

gr

r

)
er +

(
gθ

r
− ∂θgr

r

)
eθ − ∂zg

rez,

n2 =

[(
∂θgθ

r
+

gr

r

)
∂zg

z − ∂zgθ∂θgz

r

]
er +

[(
gθ

r
− ∂θgr

r

)
∂zg

z +
∂θgz∂zgr

r

]
eθ

+

[(
∂θgr

r
− gθ

r

)
∂zg

θ −
(
gr

r
+
∂θgθ

r

)
∂zg

r

]
ez.

A.3.4. Decompositions of Lagrangian quantities around the
equilibrium in vacuum

From Lemma 2.1, we know that the equilibrium vacuum magnetic field B̂ =
B̂θ(r)eθ = Bθ(r0)

r0
r eθ. So in vacuum, we will use (A.2) and (A.3) to split b̂ into

three parts in Lagrangian coordinates as

b̂ = b̂0 + b̂1 + b̂2, (A.9)

where

b̂0 = Bθ(r0)
r0
r
eθ,

b̂1 (first order aboutΨ),

b̂2 = O (nonlinear term aboutΨ).
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From the vacuum equations in Lagrangian coordinates (A.5), we can get the
linearized vacuum equations in a perturbation around steady solution as follows:






∇ · b̂1 +∇Â1
· b̂0 = 0,

∇× b̂1 +∇Â1
× b̂0 = 0,

n · b̂1 = 0, on r = rw,

n0 · (b1 − b̂1) = n1 · (̂b0 − b0) on r = r0,

with

n0 = er, b1 = b0 ·∇g − b0∇ · g,

n1 =

(
∂zΨ

z +
∂θΨθ

r
+

Ψr

r

)
er +

(
Ψθ

r
− ∂θΨr

r

)
eθ − ∂zΨ

rez,

Â1 =





−∂rΨr −∂rΨθ −∂rΨz

−∂θΨ
r

r
+

Ψθ

r
−∂θΨ

θ

r
− Ψr

r
−∂θΨ

z

r

−∂zΨr −∂zΨθ −∂zΨz




.

From the steady solution b̂0 = B̂θ(r)eθ = Bθ(r0)
r0
r eθ in vacuum domain, it follows

that

∇b̂0 =





0 − B̂θ

r
0

∂rB̂θ 0 0

0 0 0




,

which gives that

∇Â1
· b̂0 = Tr(ÂT

1 ∇b̂0) =
B̂θ

r
∂rΨ

θ − ∂rB̂θ

(
1

r
∂θΨ

r − Ψθ

r

)
= −∇ · (Ψ ·∇b̂0).

On the other hand, we have

∇Â1
× b̂0 = εijkÂ1jl∂lb̂

k
0 = εijk(Â1jl(∇b̂0)kl) = εijk(Â1(∇b̂0)

T )jk

= εijk





∂rΨ
θ B̂θ

r
−∂rΨr∂rB̂θ 0

(
∂θΨθ

r
+

Ψr

r

)
B̂θ

r

(
−∂θΨ

r

r
+

Ψθ

r

)
∂rB̂θ 0

∂zΨθ B̂θ

r
−∂zΨr∂rB̂θ 0





jk

= er∂zΨ
r∂rB̂θ + eθ∂zΨ

θ B̂θ

r
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+ ez

[
−
(
∂θΨθ

r
+

Ψr

r

)
B̂θ

r
− ∂rΨ

r∂rB̂θ

]
,

−∇× (Ψ ·∇b̂0) = −
(
er∂r +

eθ
r
∂θ + ez∂z

)
×
(
eθΨ

r∂rB̂θ − er
ΨθB̂θ

r

)

= er∂zΨ
r∂rB̂θ + eθ

∂zΨθB̂θ

r
− ez

∂θΨθB̂θ

r

− ez∂rΨ
r∂rB̂θ − ez

ΨrB̂θ

r2
.

So we can show that ∇Â1
× b̂0 = −∇×(Ψ·∇b̂0). Therefore, from b1 = b0 ·∇g−b0∇·g

in (A.6), it follows that





∇ · (̂b1 −Ψ ·∇b̂0) = 0,

∇× (̂b1 −Ψ ·∇b̂0) = 0,

n · b̂1 = 0, on r = rw ,

n0 · (b0 ·∇g − b0∇ · g − b̂1) = n1 · (̂b0 − b0), on r = r0,

with n1 = (∂zΨz+ ∂θΨ
θ

r +Ψr

r )er+(Ψ
θ

r − ∂θΨ
r

r )eθ−∂zΨrez. Denoting Q̂ = b̂1−Ψ·∇b̂0,

using the fact that b̂0 = b0 on the boundary r = r0, from (A.2) and (A.3), we can
show that on the boundary r = r0

n0 · (b0 ·∇g − b0∇ · g − b̂1) = n0 · (b0 ·∇g − b0∇ · g − g ·∇b̂0 − Q̂)

= n0 · (b0 ·∇g − b0∇ · g − g ·∇b0 − Q̂) = n0 · (∇× (g × b0)− Q̂) = 0.

Therefore, in vacuum domain, we obtain





∇ · Q̂ = 0,

∇× Q̂ = 0,

n · Q̂ = 0, on r = rw,

n0 ·∇× (g × b̂0) = n0 · Q̂ on r = r0.

(A.10)

A.4. Perturbed MHD system in plasma

Thanks to the decomposition of b and q again, we have

q +
1

2
|b|2 = p0 + q1 + q2 +

1

2
|b0 + b1 + b2|2

= p0 +
1

2
|b0|2 − γp0∇ · g + b0 · b1 +R1,p (A.11)

with

R1,p = b0 · b2 + q2 +
1

2
|b1 + b2|2. (A.12)
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While for b · ∇Ab, it shows that J b · ∇Ab = b0 · ∇b, where we have used the
equality (2.7) JbjAi

j = bi0.
Since b = J−1(b0 + b0 ·∇g), we decompose J b ·∇Ab as

J b ·∇Ab = b0 ·∇b0 + b0 ·∇b1 + b0 ·∇b2 = b0 ·∇b0 + b0 ·∇b1 + JR1,b.

(A.13)

Using (A.11), we may deduce that
(
∇A

(
q +

1

2
|b|2
))k

= Aj
k∂j

(
p0 +

1

2
|b0|2 − γp0∇ · g + b0 · b1

)
+Aj

k∂j R1,p.

(A.14)

Combining (A.13) with (A.14), we obtain

J ∇A

(
q +

1

2
|b|2
)
− J b ·∇Ab = J ∇A

(
p0 +

1

2
|b0|2 − γp0∇ · g + b0 · b1

)

− b0 ·∇b0 − b0 ·∇b1 + J ∇A R1,p − J R1,b.

(A.15)

Substituting (2.6) and (A.15) into the momentum equations of (2.5) results in

ρ0∂tv + J∇A

(
p0 +

1

2
|b0|2 − γp0∇ · g + b0 · b1

)
− b0 ·∇b0 − b0 ·∇b1

= J R1,b − J ∇A R1,p.

Let us now deal with the jump conditions on Σ0,pv in (2.5). In fact, thanks to
(A.11), we know that
(
q +

1

2
|b|2 − 1

2
|̂b|2
)∣∣∣∣

Σ0,pv

=

(
p0 +

1

2
|b0|2 − γp0∇ · g + b0 · b1 +R1,p −

1

2
|̂b|2
)∣∣∣∣

Σ0,pv

.

From the decomposition of b̂ in (A.9), it follows that

1

2
|̂b|2 =

1

2
|̂b0|2 + b̂0 · b̂1 +

1

2
|̂b1|2 +

1

2
|̂b2|2 + b̂0 · b̂2 + b̂1 · b̂2

=
1

2
|̂b0|2 + b̂0 · b̂1 + R̂1,p, (A.16)

which along with (2.9), (A.2), (A.3) and (A.6), yields that
(
q +

1

2
|b|2 − 1

2
|̂b|2
)∣∣∣∣

Σ0,pv

=
(
−γp0∇ · g + b0 · b1 +R1,p − b̂0 · b̂1 − R̂1,p

)∣∣∣
Σ0,pv

=

(
−γp0∇ · g + b0 ·Q+ g ·∇

(
1

2
|b0|2

)
− b̂0 · Q̂

− g ·∇
(
1

2
|̂b0|2

)
+R1,p − R̂1,p

)∣∣∣
Σ0,pv

, (A.17)

with Q = ∇× (g × b0), Q̂ = b̂1 −Ψ ·∇b̂0.
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In conclusion, we rephrase the MHD system (2.5) in a perturbation formulation
around the steady solution (see special steady solution for a z-pinch in (2.9)) as
follows:






∂tg = v in Ω0,

ρ0∂tv + J∇A

(
p0 +

1

2
|b0|2 − γp0∇ · g + b0 · b1

)

− b0 ·∇b0 − b0 ·∇b1

= J R1,b − J ∇A R1,p in Ω0,

∇Â · b̂ = 0, ∇Â × b̂ = 0 in Ωv
0 ,

n · b|Σ0,pv = n · b̂|Σ0,pv = 0, n · b̂|Σw = 0,

−γp0∇ · g + b0 ·Q+ g ·∇
(
1

2
|b0|2

)
− b̂0 · (̂b1 − g ·∇b̂0)

− g ·∇
(
1

2
|̂b0|2

)
+R1,p − R̂1,p = 0 on Σ0,pv,

g|t=0 = g0, v|t=0 = v0,

(A.18)

with Q = ∇ × (g × b0), b1 defined in (A.6), R1,p defined in (A.12), JR1,b defined
in (A.13) and R̂1,p defined in (A.16). Let the initial data as the steady solution,
from the force ∇(p+ 1

2 |B|2) = B ·∇B of the z-pinch (p,B, B̂), then the linearized
MHD system in a perturbation formulation around the steady solution takes the
following form:






∂tg = v in Ω,

ρ∂ttg +∇(−γp∇ · g +B · b1)−B ·∇b1 +∇A1

(
p+

1

2
|B|2

)

+(∇ · g)∇
(
p+

1

2
|B|2

)
= 0 in Ω,

∇ · b̂1 +∇Â1
· B̂ = 0, in Ω

v
,

∇× b̂1 +∇Â1
× B̂ = 0, in Ω

v
,

n0 · (b1 − b̂1) = n1 · (B̂ −B) on Σ0,pv,

−γp∇ · g + B ·Q+ g ·∇
(
1

2
|B|2

)

= B̂ · (̂b1 − g ·∇B̂) + g ·∇
(
1

2
|B̂|2

)
, on Σ0,pv,

n · b̂1|Σw = 0, g|t=0 = g0,

(A.19)
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with Q = ∇× (g×B), b1 = B ·∇g−B∇ · g and A1 is the first order of A, that is,
in cylindrical coordinates

A1 =





−∂rgr −∂rgθ −∂rgz

−∂θg
r

r
+

gθ

r
−∂θg

θ

r
− gr

r
−∂θg

z

r

−∂zgr −∂zgθ −∂zgz




, (A.20)

n1 =

(
∂zΨ

z +
∂θΨθ

r
+

Ψr

r

)
er +

(
Ψθ

r
− ∂θΨr

r

)
eθ − ∂zΨ

rez,

Â1 =





−∂rΨr −∂rΨθ −∂rΨz

−∂θΨ
r

r
+

Ψθ

r
−∂θΨ

θ

r
− Ψr

r
−∂θΨ

z

r

−∂zΨr −∂zΨθ −∂zΨz




. (A.21)

Denote the new function Q̂ = b̂1 −Ψ ·∇b̂0 = b̂1 −Ψ ·∇B̂, after a computation, we
can get the above system which is equivalent to the following equations:





∂tg = v in Ω,

ρ∂ttg = ∇(g ·∇p+ γp∇ · g) + (∇×B)× [∇× (g ×B)]

+ {∇× [∇× (g ×B)]}×B, in Ω,

∇ · Q̂ = 0, in Ω
v
,

∇× Q̂ = 0, in Ω
v
,

n ·∇× (g × B̂) = n · Q̂, on Σ0,pv,

−γp∇ · g +B ·Q + g ·∇
(
1

2
|B|2

)
= B̂ · Q̂+ g ·∇

(
1

2
|B̂|2

)
, on Σ0,pv,

n · Q̂|Σw = 0, g|t=0 = g0,

(A.22)

with Q = ∇× (g ×B).
From the divergence free condition about the magnetic field in (2.5), we know

that ∇A · b = 0 holds in Lagrangian coordinates. We now prove that the linear
perturbation of ∇A · b = 0 holds automatically.

Remark A.2. Assume the steady solution b0 = Bθ(r)eθ , then ∇A1 · b0+∇ · b1 = 0
is the linear perturbation of ∇A · b = 0 and this linear perturbation holds for any
function g, where b1 is defined in (A.6) and A1 is defined in (A.20).

Proof. From the decomposition of A and b in Lagrangian coordinates, that is, A =
I +A1 +O(nonlinear matrix about g) and (A.7), it follows that the corresponding
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linear perturbation is ∇A1 · b0 +∇ · b1 = 0. From the steady solution b0 = Bθ(r)eθ ,
it follows that

∇b0 =





0 −Bθ

r
0

∂rBθ 0 0

0 0 0




,

which gives that

∇A1 · b0 = Tr(AT
1 ∇b0) =

Bθ

r
∂rg

θ − ∂rBθ

(
1

r
∂θg

r − gθ

r

)
= −∇ · (g ·∇b0).

Therefore, ∇A1 · b0+∇ · b1 = ∇ · (b0 ·∇g− b0∇ · g− g ·∇b0). On the other hand, we
have ∇ · b0 = 0, which implies the identity b0 ·∇g− b0∇ · g− g ·∇b0 = ∇× (g× b0).
Since from b0 = Bθ(r)eθ , we can show that

∇ · [∇× (g × b0)]

=
(
er∂r +

eθ
r
∂θ + ez∂z

)
·
[(

er∂r +
eθ
r
∂θ + ez∂z

)
× (grBθez − gzBθer)

]

=
(
er∂r +

eθ
r
∂θ + ez∂z

)
·
[
er

Bθ∂θgr

r
− eθ (∂r(g

rBθ) +Bθ∂zg
z) + ez

Bθ∂θgz

r

]

= ∂r

(
Bθ∂θgr

r

)
+

Bθ∂θgr

r2
− 1

r
(∂r(∂θg

rBθ) +Bθ∂z∂θg
z) +

Bθ∂θ∂zgz

r
= 0.

Hence, ∇A1 · b0 +∇ · b1 = 0 holds automatically, which implies the result.

In order to see the property of the force operator

F (g) = ∇(g ·∇p+ γp∇ · g) + (∇×B)× [∇× (g ×B)]

+ {∇× [∇× (g ×B)]}×B,

we consider two displacement vector fields g and h defined over the plasma volume
V , their associated magnetic field perturbations

Q = ∇× (g ×B), R = ∇× (h×B),

and the vacuum perturbations Q̂ and R̂ defined over the vacuum volume V̂ are
their extensions, that is, to “extend” the function g into the vacuum by means of
the magnetic field variable Q̂, and likewise to “extend” h by means of R̂. Then by
Chap. 6 in Ref. 7, we have the following lemma.

Lemma A.3. Assume g ∈ H2 is a solution of (A.22), then we get a meaning
expression for the potential energy of interface plasma by identifying g, h, Q̂ and R̂,
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in the quadratic form (Appendix A)
∫

Ω
h · F (g)dx = −

∫

Ω

[
γp∇ · g∇ · h+Q · R+

1

2
∇p · (g∇ · h+ h∇ · g)

+
1

2
∇×B · (g ×R+ h×Q)

]
dx−

∫

Ω
v
Q̂ · R̂ dx

−
∫

Σ0,pv

n · g n · hn ·
[[

∇
(
p+

1

2
|B|2

)]]
dx,

which is symmetric in the variables g and h, and their extensions Q̂ and R̂.

Proof. The proof can be recalled from Chap. 6 of Ref. 7, for completeness, we give
it as follows. By the equilibrium equation ∇p = (∇×B)×B, we have

∇(g ·∇p) = (∇g) ·∇p+ g ·∇∇p = (∇p×∇)× g +∇p∇ · g + g ·∇∇p

= (((∇×B)×B)×∇)× g +∇p∇ · g + g ·∇∇p

= (B(∇×B) ·∇− (∇×B)B ·∇)× g +∇p∇ · g + g ·∇∇p

= B × ((∇×B) ·∇g)− (∇×B)× (B ·∇g) +∇p∇ · g + g ·∇∇p,

which together with

(∇×B)× [∇× (g ×B)] = (∇×B)× (B ·∇g −B∇ · g − g ·∇B)

= (∇×B)× (B ·∇g)− (∇×B)×B∇ · g

− g ·∇((∇×B)×B)−B × (g ·∇(∇×B)),

implies that

∇(g ·∇p) + (∇×B)× [∇× (g ×B)]

= B × ((∇×B) ·∇g)−B × (g ·∇(∇×B))

= −B × (∇× (∇×B × g))− (∇×B)×B∇ · g

= −B × (∇× (∇×B × g))−∇p∇ · g. (A.23)

Exploiting the inner products and by the expression (A.23), we can rewrite
h · F (g) as

h · F (g) = h ·∇(γp∇ · g)− h · B × {∇× [∇× (g ×B)]

+∇× (∇×B × g)}− h ·∇p∇ · g. (A.24)

The first term in (A.24) gives the following expression

h ·∇(γp∇ · g) = −γp∇ · g∇ · h+∇ · (hγp∇ · g). (A.25)
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From the definitions of Q and R, the second term in (A.24) can be rewritten as

−h · B × {∇× [∇× (g ×B)]} = −{∇× [∇× (g ×B)]} · (h×B)

= −∇× (g ×B) ·∇× (h×B) +∇ · [(h×B)×∇× (g ×B)]

= −Q ·R+∇ · [(h×B)×Q] = −Q ·R +∇ · [Bh ·Q− hB ·Q]. (A.26)

Applying the definitions of R and the equilibrium equation ∇p = (∇ × B) × B =
∇×B ×B, we can rewrite the third and fourth terms in (A.24) as

−h ·B × [∇× (∇×B × g)]− (h ·∇p)∇ · g

= −∇×B × g · R+∇ · [(h×B)× (∇×B × g)]− (h ·∇p)∇ · g

= g · (∇×B)×R+∇ · [(∇×B)B · (g × h) + gh · (∇×B ×B)]

− (h ·∇p)∇ · g

= g · [∇(h ·∇p) + (∇×B)×R] +∇ · [(∇×B)B · (g × h)],

which together with (A.23) can be symmetrized as

h · {∇(g ·∇p) + (∇×B)× [∇× (g ×B)]} = h · [∇(g ·∇p) + (∇×B)×Q]

=
1

2
h · [∇(g ·∇p) + (∇×B)×Q] +

1

2
g · [∇(h ·∇p) + (∇×B)×R]

+
1

2
∇ · [(∇×B)B · (g × h)]

=
1

2
∇ · [∇p · (gh+ hg)]− 1

2
∇p · (g∇ · h+ h∇ · g)− 1

2
∇

×B · (g ×R+ h×Q) +
1

2
∇ · [(∇×B)B · (g × h)]− 1

2
∇

· [(∇×B ×B −∇p) · (gh− hg)]

= −1

2
∇p · (g∇ · h+ h∇ · g)− 1

2
∇×B · (g ×R+ h×Q)

+∇ ·
[
h(g ·∇p) +

1

2
(∇×B)B · (g × h)

]

− 1

2
∇ · [(∇×B ×B) · (gh− hg)]. (A.27)

Adding up (A.25), (A.26) and (A.27) shows that

h · F (g) = −γp∇ · g∇ · h−Q ·R− 1

2
∇p · (g∇ · h+ h∇ · g)

− 1

2
∇×B · (g ×R + h×Q)

+∇ · [h(g ·∇p)]−∇ · (hB ·Q) +∇ · (hγp∇ · g)
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+
1

2
∇ · [(∇×B)B · (g × h)] +∇ · (Bh ·Q)

− 1

2
∇ · [(∇×B ×B) · (gh− hg)].

(A.28)

Integrating (A.28) gives that
∫

Ω
h · F (g)dx = −

∫

Ω

[
γp∇ · g∇ · h+Q · R+

1

2
∇p · (g∇ · h+ h∇ · g)

+
1

2
∇×B · (g ×R+ h×Q)

]
dx

+

∫

Σ0,pv

n · h(g ·∇p−B ·Q+ γp∇ · g)dx. (A.29)

There are no contributions from the eighth, ninth and tenth terms of (A.28) to
the surface integral, since n · B = 0 and n · ∇ × B = 0 on the plasma surface,
whereas ∇×B ×B is parallel to n. From the second interface condition of (A.22),
the surface integral takes the form of

∫

Σ0,pv

n · h(g ·∇p−B ·Q+ γp∇ · g)dx

= −
∫

Σ0,pv

n · hg ·
[[

∇
(
p+

1

2
|B|2

)]]
dS −

∫

Σ0,pv

n · hB̂ · Q̂dx

= −
∫

Σ0,pv

n · g n · hn ·
[[

∇
(
p+

1

2
|B|2

)]]
dS −

∫

Σ0,pv

n · hB̂ · Q̂dx.

(A.30)

Here, we have used the facts the equilibrium jump condition [[p + 1
2 |B|2]] = 0,

which implies that the tangential derivative of the jump vanishes as well t · [[∇(p+
1
2 |B|2)]] = 0, where t is an arbitrary unit vector tangential to the surface.

Next, let us transform the last term in (A.30).
For some of the derivations here, it is useful to exploit the alternative represen-

tation of test function R̂ in vacuum in terms of the vector potential R̂ = ∇ × Ĉ,
and using the first interface condition (A.22)5 in terms of the vector potential Ĉ,
that is, n · hB̂ = −n× Ĉ, one has

−
∫

Σ0,pv

n · hB̂ · Q̂dx =

∫

Σ0,pv

n× Ĉ · Q̂dx = −
∫

Σ0,pv

Q̂× Ĉ · ndx

=

∫

Ω
v
∇ · [Q̂× Ĉ]dx =

∫

Ω
v
[Ĉ ·∇× Q̂− Q̂ ·∇× Ĉ]dx

= −
∫

Ω
v
Q̂ ·∇× Ĉdx = −

∫

Ω
v
Q̂ · R̂dx. (A.31)
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Now we prove R̂ = ∇ × Ĉ. First, extend function R̂ to the domain Ω ∪ Ω
v
as

follows:

A =





R in Ω,

R̂ in Ω
v
.

Note that divR = 0 in Ω and divR̂ = 0 in Ω
v
. So for test function ψ in Ω ∪ Ω

v
, we

have
∫

Ω∪Ω
v
A ·∇ψdx =

∫

Ω
v
R̂ ·∇ψdx+

∫

Ω
R ·∇ψdx

= n · R̂ψ|∂Ωv + n ·Rψ|∂Ω −
∫

Ω
v
divR̂ · ψdx−

∫

Ω
divR · ψdx

= n · R̂ψ|rw + n · (R− R̂)ψ|rs −
∫

Ω
v
divR̂ · ψdx−

∫

Ω
divR · ψdx

= −
∫

Ω∪Ω
v
divA · ψdx = 0,

where we have used the boundary conditions n · R̂ψ|rw = 0 and n · (R− R̂)ψ|rs = 0,
with rw the solid boundary and rs the interface. Hence, we get divA = 0 in the
domain Ω ∪ Ω

v
in the sense of distributions, which together with that the domain

Ω ∪ Ω
v
is simply connected and the weak Poincáre lemma, see Theorem IV 4.11

in Ref. 2, gives that A = ∇ × C. When restricted to the vacuum domain Ωv, we
obtain A = R̂ = ∇× Ĉ, and denote Ĉ = C|Ωv . Combining (A.29) with (A.30) and
(A.31) yields (Appendix A), which concludes the proof.

Remark A.4. Even though it is natural to expect the existence of such H2 solu-
tions, their construction is beyond the focus of this paper, which will be left for the
future.

From Lemma A.3, we can get the following energy identity.

Lemma A.5. Assume g is a H2 solution to the system (A.22) with the correspond-
ing jump and boundary conditions, then we can get

∫

Ω
[|Q|2 + γp|∇ · g|2]dV +

∫

Ω
[(∇×B) · (g∗ ×Q) +∇ · g(g∗ ·∇p)]dx

+

∫

Ω
v
|Q̂|2dx+ ‖√ρgt‖2L2

=

∫

Ω
[|Q0|2 + γp|∇ · g0|2]dx+

∫

Ω
[(∇×B) · (g∗0 ×Q0)

+∇ · g0(g∗0 ·∇p)]dx+

∫

Ω
v
|Q̂0|2dx+ ‖√ρg0t‖2L2 , (A.32)

with Q = ∇× (g ×B).
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Proof. Multiplying (A.22)2 by g∗t , similarly as the proof of Lemma A.3, we can
show

1

2

d

dt
‖√ρgt‖2L2 = −1

2

d

dt

∫

Ω
v
|Q̂|2dx− 1

2

d

dt

∫

Ω
[|Q|2 + γp|∇ · g|2]dx

− 1

2

d

dt

∫

Ω
[(∇×B) · (g∗ ×Q) +∇ · g(g∗ ·∇p)]dx, (A.33)

with Q = ∇× (g ×B). Integrating (A.33) about time, we have (A.32).
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