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1. Introduction
1.1. Formulation of the problem in Eulerian coordinates

In this paper, we are concerned with the plasma-vacuum MHD system, where the
plasma is confined inside a rigid wall and isolated from it by a region of low enough
density to be treated as a “vacuum”. This model describes confined plasmas in a
closed vessel, but separated from the wall by a vacuum region. We consider the
cylindrical domain {(x1,x2,2) € R? x 27T|z? + 23 < 72}, which is meant to model
the container holding the plasma and the container divides into two disjoint pieces,
Q(t) = {p(t) > 0} and Q"(t) = {p(t) = 0}, with the free boundary 3, ,, =
Q(t) N Qv(t) and the perfectly conducting wall 3, on the outside 7,,. For smooth
solutions, the compressible MHD system in the plasma region can be written in
Euler coordinates as

Op+ (u-V)p+pV-u=0 in Q(t),

p(Owu+ (u-V)u)+V (p-i— %|B|2) —V-S(u)=(B-V)B in Q(t),
(1.1)
B -V x (uxB)=0 1in Q(t),

V-B=0 in Q)

where the vector-field u = (u1, ug, us) denotes the Eulerian plasma velocity field, p
denotes the density of the fluid, B = (B, Bs, B3) is magnetic field, and p denotes
the pressure function. The above system is called compressible MHD equations
which describe the motion of a perfectly conducting fluid interacting with a mag-
netic field. Here, the open, bounded subset Q(t) C R? denotes the changing volume
occupied by the plasma with p(¢) > 0 in Q(¢). The strain tensor D(u) is defined as
twice the symmetric part of the gradient of the velocity u, that is, D(u) = Vu+Vu®,
with V-u the rate of expansion of the plasma. The deviatoric (trace-free) part of the
strain tensor D(u) is then D°(u) = D(u) — 2divu ], where I is the identity matrix.
The viscous stress tensor in fluid is then given by S(u) = eD°(u) + édiv u I, where
dynamic viscosity € and bulk viscosity § are constants. We have here considered
the polytropic gases, the constitutive relation, which is also called the equation of
state, and is given by p = A p?, where A is an entropy constant and v > 1 is the
adiabatic gas exponent. From the mass conservation equation in ([-I)) and pressure
satisfying v law, one can get that
Oop+u-Vp+ypV-u=0. (1.2)
In the vacuum domain 2%(t), we have the div-curl system
V-B=0 inQv(t),
A (1.3)
VxB=0 in Q")

which describes the vacuum magnetic field B. Here, we consider so-called
pre-Maxwell dynamics. That is, as usual in nonrelativistic MHD, we neglect the
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displacement current C%@,g]@, where c is the speed of the light and E is the electric
field. In general, quantities with a hat - denote vacuum variables.

We assume that the plasma region () is isolated from the fixed perfectly
conducting wall 3, by a vacuum region QV(¢), which makes the plasma surface free
to move. Hence, this model is a free boundary problem of the combined plasma-
vacuum system. To solve this system, we need to prescribe appropriate boundary
conditions. On the perfectly conducting wall ¥,,, the normal component of the
magnetic field must vanish:

n-B

2, =0, (1.4)

where n is the outer unit normal to the boundary of ¥,,.

We prescribe the following jump conditions on the free boundary to connect the
magnetic fields across the surface. These arise from the divergence B equation, and
the momentum equations:

n-B=n-B on X,y

Hp i %'BPH n—=Swn=0 onX,, (1.5)

where [[¢]]s, ,, denotes ¢ — ¢ on the free boundary X ,,, and n is the outer normal
to the boundary of (t).

In conclusion, denote V(X ., ) as the normal velocity of the free surface ¥; ,,, the
plasma-vacuum compressible MHD system can be written in Eulerian coordinates as

Ohp+V-(pu)=0 in Q(t),

p(Oru+ (u-Vu) +V (p + %|B|2> —V-S(u) =(B-V)B in Q(t),

hB-Vx(uxB)=0, V-B=0 inQ(t),

V-B=0 inQ(t),

V-B=0, VxB=0 inQt), (1.6)
V(Eipw) =u-n on Xy p,,

n-B=n-B onXp,,

1 1 =
(p+ 51802 = 31BR) 0 -5t =0 on iy

n-B

o =0, pli=o =po, uli=0 =uo, Bli=o = Bo.

1.2. Background

The z-pinch instability in plasma for the compressible MHD system with vacuum
and free boundary is an interesting and long-time open problem since the pinch
experiments of the 1960s and 1970s, see Refs.[12|and[13]and the references therein.
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There are many numerical simulations 24! Up to now, there is no rigorous mathe-
matical proof for viscous compressible MHD equations (I.6).

Note that Guo—TicéZ8! proved the linear Rayleigh-Taylor instability for inviscid
and viscous compressible fluids by introducing a new variational method. Later
on, using variational method, many authors considered the effects of magnetic field
in the fluid equations. Jiangf.]ianég considered the magnetic inhibition theory in
non-resistive incompressible MHD fluids. Jiang-Jiang™® considered the nonlinear
stability and instability in the Rayleigh-Taylor problem of compressible MHD equa-
tions without vacuum and established the stability /instability criteria for the strat-
ified compressible magnetic Rayleigh—Taylor problem in Lagrangian coordinates.
Jiang-Jiangl investigated the stability and instability of the Parker problem for
the three-dimensional compressible isentropic viscous magnetohydrodynamic sys-
tem with zero resistivity in the presence of a modified gravitational force in a
vertical strip domain in which the velocity of the fluid is non-slip on the boundary.
Wanngi proved the global well-posedness of the inviscid and resistive prob-
lem with surface tension around a non-horizontal uniform magnetic field for the
incompressible MHD equations. Wan got sharp nonlinear stability criterion of
viscous incompressible non-resistive MHD internal waves in 3D. Guit! considered
the Cauchy problem of the two-dimensional incompressible magnetohydrodynamics
system with inhomogeneous density and electrical conductivity and has showed the
global well-posedness for a generic family of the variations of the initial data and
an inhomogeneous electrical conductivity. All these results do not contain vacuum.
For presenting vacuum, under the Taylor sign condition of the total pressure on the
free surface, GufWan proved the local well-posedness of the ideal incompress-
ible MHD equations in Sobolev spaces. Recently, Bian—Guo-Ticé have established
any z-pinch linear instability for the ideal compressible MHD equations ([:6) with
€ = § = 0 and containing vacuum. In this paper, we will rigorously prove z-pinch
linear instability for system (1.6) with vacuum.

2. Steady State and Main Results
2.1. Derivation of the MHD system in Lagrangian coordinates

In this subsection, we mainly introduce the Lagrangian coordinates in which the
free boundary becomes fixed.
First, we assume the equilibrium domains are given by

Q={(r0,2)r <o, 0 €0,21], 2z € 2nT},
Q= {(r,0,2)|ro <7 <71y, 0 € [0,27'('],2’ € 2nT}.

Here, the constant rq is the interface boundary and the constant r,, is the perfectly
conducting wall position. This is meant to be a simplified model of the toroidal
geometry employed in tokamaks.
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Now, we introduce the Lagrangian coordinates.

(1) The flow map
Let h(t, X) be a position of the gas particle X in the equilibrium domain Q at
time ¢ so that

d _
Zh(t, X) = ut,h(t, X)), t>0,X €q,
dt
(2.1)
hlizo = X + go(X), X e
Then the displacement g(t, X) = h(t, X) — X satisfies
d
(2.2)
gli=0 = go-
We define the Lagrangian quantities in the plasma as follows (where X = (z,

y,2) € Q):

ft,X) = p(t,h(t, X)), v(t,X)=u(t,h(t,X)), q(t,X)=npt h(t X)),
b(t,X) = B(t,h(t,X)), A= (Dh)"', J=det(Dh).
According to definitions of the flow map h and the displacement g, for (i,7,k) €
{1,2, 3} one can get the following identities:
Abohd = ALk =67, Op(JAF) =0, Okl =6 + dig?, Al =5 — AForg,
(2.3)
where the Einstein notation is used and will be used in the whole paper. If the
displacement g is sufficiently small in an appropriate Sobolev space, then the flow

mapping h is a diffeomorphism from € to (¢), which allows us to switch back
and forth from Lagrangian to Eulerian coordinates.

(2) Derivatives of J and A in Lagrangian coordinates
We write the derivatives of J and A in Lagrangian coordinates as follows:

O = JALO,  OpJ = JAL9;00g", WAl = —ALALDWE,

Al = — AL AT, 0g", 907 = ;hF ALO? = ALDp? + ;98 AL
(2.4)
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(3) Plasma equations in Lagrangian coordinates
Denote (V.4); = AJ}9;. Then we can write the plasma equations in Lagrangian
coordinates as follows:

dg=v inQ,

1 _
f&tv+VA<q+§|b|2)—VA-SA(U):(b-VA)b in ,
Of+fVa-v=0 inQ,

Ot +bV4-v=(b-V4)v inQ, (2.5)
Vai-b=0 inQ,

n-b=mn-b on Xy,

1 1~
(q + §|b|2 — §|b|2) N— SA(U)N =0 on ZO,pva

where S4(v) = ¢ (VAU + V0T — %divA v H) + ddiv 4 v T and the exterior magnetic

field b satisfies the vacuum equations (5.107) in Lagrangian coordinates which can
be recalled from Appendix of Bian-Guo-Ticell

Since 8;J = JAIQjv' = JV 4 -v and J(0) = det(Dhg) = det(I + Dgp), with I
the identity matrix, we find from the equation of f in (28] that f.J = po(ho) det(I+
Dyyp), where pg is given initial density function. Taking po such that po(ho) det(I +
Dg()) = p, we get

f=J7'p, q=AJp. (2.6)

On the other hand, we multiply the magnetic field equation of (2.5) by JA”
to get

JALOY + JAY ALt = JA AL O,
which along with (2:4) implies
O (ALTV) = JALO + A 0] + TV 0, A = JA O + J A AL opo"
— Jb AL A} o0 = 0.
Therefore, we have
Jb AL = J(0)b)AL(0) = det(I + Dgo) B} (ho).A’(0), (2.7)

where By is given initial magnetic field. Taking By such that det(I +
Dgo)Bg(hg)Az-(O) = B', we obtain from (2.7) that

b= JVB o = VBT + S Blagk
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2.2. The equilibrium for the z-pinch plasma
‘We recall E"om BizinquofTicéI| a z-pinch steady state of w =0, B = (0, Bg(r),0),
p=p(r), B=(0,Bs(r),0). Assume the equilibrium domains are given by
Q={(r,0,2)|r <ro, 0 €0,2], 2 € 27T},
Q" = {(r,0,2)|ro <7 < T, 0 € [0,27], 2 € 2aT}.

Here, the constant r( is the interface boundary and the consatnt r,, is the perfectly
conducting wall position. This is meant to be a simplified model of the toroidal
geometry employed in tokamaks.

Then by Lemmas 2.1, 2.4, 2.5, 2.6 and Corollary 2.7 in BianquofTice we can
get the following proposition describing the steady solution.

Proposition 2.1. Assume that the function p(r) satisfies p(r) > 0 and p(r) = 0 if
and only if r = rg, and

—/ s*p'(s)ds >0 for all0<r <o, p(r)eC*([0,r]). (2.8)
0

Then, the cylindrically symmetric steady solution @ = 0, B = B(r), J, = J.(r),
B = B(r) with a function p(r) taking the form of

B, =0, B.=0, Ee(T)ZBe(To)TTO in Q,
solves the equilibrium equations in plasma domain,
Vp=IxB, V-B=0, JI=VxB, (2.10)

and the system (1.3) in the vacuum region. We can define the equilibrium density
1/
_ (p(r)
o= (1)

J. € Ct([0,70]), By € CH([0,70]), (2.11)

Moreover, we have

and the steady solution satisfies the following properties:
(i) There exists vy € (0,79) such that

2vp(r.) B3 (r.)
e (yp(ry) + B3 (r+))

p'(re) + <0. (2.12)
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(ii) For |m| > 2, suppose that J. : [0,79] — [0, 00) is non-increasing, then we have

B2
2p’ (1) + mzy >0 forallr€0,7].

(iii) For |m| > 2, we define « = (m? —2)/2 > 1. Suppose that 8 > o > 0 and J,
vanishes to order B at the origin v = 0 in the sense that |J.(r)| < Cr?, and
further suppose that By # 0 in (0,7¢], i.e. By has a sign. Then, there exists
r* € (0,79) such that

(iv) If J, > 0 and J. is compactly supported in (0,79), then for each m € Z\{0},
there exists r* € (0,79) such that

We remark that in Proposition[2:I] the property (i) implies unconditional insta-
bility of any z-pinch equilibrium for m = 0. The property (ii) implies absence of
instability for |m| > 2 for a general class of z-pinch equilibria. The property (iii)
implies the instability for |m| > 2 for some class of z-pinch equilibria. And the
property (iv) implies the instability for any m € Z\{0} for some class of z-pinch
equilibria.

From Proposition[2.1] we know that at the plasma-vacuum interface, the steady
solution B(r) in cylindrical r, 6, z-coordinates satisfies naturally

ng-B=mng-B=0, on gy,

due to ng = e,, B = (0, By(r),0) and B= (0, By(ro) 7=, 0).
Now, we introduce the admissibility of the pressure p, which will be used in the
following sections.

Definition 2.1. We say that p is admissible if p(r) > 0 for all » € [0,7¢] and
p(r) = 0 if and only if » = rg, p'(r) < 0 for r near ry, that is, p'(s) < 0 for
s € (ro — €,7o] with small constant € > 0, and p(r) satisfies (Z.8) and

p(r)

lim

fim o5 =0 (2.13)

2.3. Lagrangian formulation and main results

From the Lagrangian formulation in Appendix of BianquofTice the linearized
viscous compressible MHD system in a perturbation formulation around the steady
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solution in takes the following form:
Og=v in Q,
pOug =V(g-Vp+pV-g)+(V x B) x [V x (g x B)]

+{V x [V x (g x B)]} x B+div <€ <VU+VUT - ;divvl[)

+édivel), inQ

)

V-@=07 in §U7
VxQ=0, inQ, (2.14)
n-Vx(gxé):rr@, on o py;

[(—»ypv-g+B-Q+g-v <%|B|2>> I—e(Vo+ VoT)

2 PPN 1 ~
- (5— 55) divv]l} n= [(B-Q+g-v<§|3|2>) H] n, on Xopy,

n- @'Ew =0, gli=0 = g0,

with @ =V x (g x B).
Notations: Define the energy

Elg,Q] = E”[g) + E°[g] + E*[Q], (2.15)

-~

where EP[g], E®[g] and EV[Q] are three real numbers, satisfying

EP[g] = l/[WDIV-gI2 + QP+ (g* - Vp)(V-9) + (V x B) - (g% x Q)]du

2Ja
L v 24 01| + 25/div g2
+4u [ 1e|Vg+ Vg 3dlng[ + 24|div g|° | du, (2.16)
Q
1 1
Bl =y [ naPn- ||V (4 5152 an (2.17)
Y0, pv
~ 1 ~
E°[Q] = 5/@) Q| da. (2.18)

In order to introduce the energy E, using Lemma[5.4] formally we can get that

d d ~
ZIVpgilE: = - = Elg. Q) (2.19)

Our goal is to prove that there exists functions ¢ and @ such that
inffﬁpgzmzl Elg,Q] < 0.
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The main purpose of this paper is to construct the growing mode solution of
the form

g(r,0,2,t) = (grmr (1), gamk(r)’gz,mk(r))eut+i(me+kz)7
Q(r,0,2) = (iQrmk(r), Qo.mk (1), Qump (r)) et Himothz) (2.20)
where
p>0,

(r,0, z) are the cylindrical coordinates, m, k € Z, and the subscripts m and k will
be dropped for notational simplicity. Here, gp and g, are pure imaginary functions,
Grs QT, Q9 and Qz are real-valued functions, then we define new three real-valued
functions

E=e-g=gr, 1N=—le,-g=—ig., (=ries-g=1igy (2.21)

which together with ([2:20)), gives that
m m
Q =V x(9xB) = —=Bye, — [(Bo&)" = kBorleo — ——nBoe-,

1 m
g-Vp+pV-g=pé+wpV-g, V-g= ;(rf)' —kn+—¢, (2.22)

where the factor e#t+1(m0+k2) j5 dropped for notational simplicity.
Denote the Fourier decomposition

E= Y Enp

m,k€Z

In terms of &, n and ¢, from the expressions in (2.22), the boundary conditions in
(214) are transformed to

@T =0, atr=ry,, (2.23)
m§9§ = r@m at r = ro, (2.24)
(B3¢ — B3¢'r + kBinr — ByQorln

T
— e <2§’r, —i¢'r +imé& + i, in'r + i§kr>
— 1 (5 — §E> Er+&+m¢—knrjn=0, atr=ro. (2.25)

We impose the boundary conditions [2.23) and (2.24) as constraint for variational
problem setup and the boundary condition (2Z.25) follows the minimizer solution.
When m = 0, we know that @, = 0 on the boundary r = ry, which implies that

~

@, is separated from interior variational problem. Obviously, it holds that @ =0.
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Therefore, for the case m = 0 and any k € Z, the energy functional (2.15) reduces to

7o /¢2 2
Bou(en.¢) = 2 | {2“ B [m—}((@'—z@}

r

1 2 ro [y 2
+p [;(rf)' - kn} }rdr + 27r2/0 € [5 (—25' + é - kn)

2 2 2
+;(§’—2T—€—lm> +§<§’+§+2lm> +<—<’+%)

To _ g 2
+ (' + k&)? + k*¢? rdr + 27 / 5 (5' +- kn> rdr.
0
(2.26)

For the case m # 0 and any k, the solution @T and ¢ are related by the boundary
conditions (2.24)), so we cannot set @, = 0, therefore the energy functional takes
the form of

—kBy(ré) + 2kBy¢?
m?2 4 k2r2

Em,k(fﬂ%Qér) = 27? /TO {(m2 + ]{;2702) |:&77+
0 T
2 ‘o
+9p [%(Tf)/ —kn+ mTC] }rdr + 2%2/0 €

2 2
xl2<—2£'+§+mé—kn> +2<§'—%—2—mC—kn>
9 T r 9 r r

3

r

(B

¢

2 2
+2<5'+ +T¢+2kn) +<—¢’+—+T5> + (7 + ke)?
9 r roor

T0 ~ 2
rdr + 271'2/ ) (f’ + 3 + %C — kn) rdr
0

r

T0 2B2 T0
+ 272 / #(f —r&)dr + 7TL/ {Qp/ +
o r( 0

szg
m? + k2r2)

r

x£2dr+27r2/ 0. +

To

00, i
(2.27)

We define the weighted L? norm and the viscosity seminorm by

1€ n Ol = / 0P 4 nf? + (¢, (2.28)
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lemoni= [ |5 (-2 + b+ Bk P2(p 2 Bm
)1 2 = o £ 9 , , n 9 . - n

§

T

kadTO(S’fmk2d 2.29
—I—(?n— C)]rr—i—/o (5—1— +7C— n)rr. (2.29)

r

¢

2 2
42 (£’+ +@<+2kn) + (—<’+—+@§> + (0 + k&)?
9 T roor

When using the notation g, the norms ||(&,7,¢)||? and [|(¢, 7, ¢)||3 are equivalent to

912 = IIv/Agll2: = ﬂ pgd, (2.30)

t
2
o= [ [
0 Q

We denote Oy f = fu. Assume the steady solution (@, B,p) in plasma satisfies
u =0, B=(0,Bg(r),0), p=p(r) and the steady solution B in the vacuum region
satisfies B = (0, By(r),0) with By(r) = Bg(ro)™, which are stated in (29). Our

r?

2

2
% ’Vg+VgT — ~divgl

—|—5|divg|2] dxds. (2.31)

main results are as follows.

Theorem 2.1. Assume (2.13) and Definition[21)/the admissibility of the pressure
p holds. Then, we have

(1) For the modes m = 0 and any k € Z, Ao = inf¢ pyea, Eor <0, with the set
A1 defined in (3.28), there is always growing mode of z-pinch instability.

(2) For the modes m # 0 and any k € Z, if there exists r* such that 2p'(r*) +
m?Bj(r*) o . . . .
—5— <0, then pum.k = \/—Amk 15 the growing mode to the linearized PDE
214, see also BI1) and (312).

(3)

O<supp=A<oo, where B={(m,k)€ZXZL|Ani<0}. (2.32)
B
(4) Moreover, assume the initial data /p(g:(0),gu(0)) € L*(0,79), Q:(0) €

L3(ro, ) and ||g¢(0)]|2 is bounded, which is defined in [231), and assume g be
a H? solution to 2I4). Then, we have

lgell¥ + llgells + Noreg (D117

< e (1lgi(0) 1 + llge(0)I13 + g )13 + 1Q:(0) 32 ).

Remark 2.1. The main goal of this paper is to study the growing modes to the
linearized system (214), and we will leave the construction of H? solutions for
general initial conditions for the future study.
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Remark 2.2. In plasma literature, instability with |m| = 0 is called a Sausage
instability, and instability with |m| =1 is called a Kink instability.

We construct a largest growing mode which dominates the linear dynamics
around a z-pinch steady state in the presence of viscosity effect. The main difficulties
and innovations are as follows. Beside the degeneracy both at the origin and the
boundary, and the singularity of % at the origin, we have several new difficulties in
this paper.

In the presence of viscosity, there is no natural variational framework for con-
structing growing mode solutions to the linearized problem. We use the modified
variational method by studying a family of modified variational problems to produce
the growing modes. More precisely, we artificially remove the linear dependence on
1, and we define two modified viscosities € = se and 6 = s6, instead of e and pd,
where s > 0 is an arbitrary parameter, then we can introduce a family of modified
problem along with boundary conditions

~

Q-=0, atr=ry,,
mggfzr@m at r =g,

[335 — Bgf'r + kBgnr — E@@g?"} n
T
. 5(25’1«, —iC'r 4 méE + iC, in'r + z‘kgr)

- (5—§5> E'r+&+ml—knrln=0, atr=r.

A solution to the modified problem with p = s corresponds to a solution to the
original problem (3.10). Modifying the problem in this way restores the variational
structure and allows us to apply a constrained minimization to the viscous analogue
of the energy Ey ) defined in (2:26) and E,, ) defined in (2:27) to find a solution
to (311) with u = u(s) > 0 when s > 0 is sufficiently small. When m = 0 and any
k € 7, we define

E .
)\(S) _ inf 0,1@(57777(75)7
Enoexy  J(Emn,¢)
and when m # 0 and any k € Z, we define
Ms)=inf  Eni(&n,¢Qrs),
((€,1,0),Qr)EA2
where the space X}, is defined in Definition[3.I] the space Yy, j is defined in Defini-
tion [3.2] and
Ay — ((57777C)7Qr) EYm,k XHl(T07rw)|j(£7n7C) =1,
9 = ~ —~ —~ .
mBel =1rQ,atr=1r9 and Q,=0atr=ry,
We then further exploit the variational structure to show that A is a continuous
function and is strictly increasing in s. Using this, we show in Proposition [3.6] when
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m = 0 and Proposition when m # 0 that the parameter s can be uniquely
chosen so that

s=pu(s) =v—=A, forany (m,k)€ZxZ,
which implies that we have found a solution to the original problem (3.10).

In contrast to the inviscid case, the ill-posedness is now excluded. Thanks to
the viscous effect, we are able to show that there exists the biggest growing mode
for any m and k, and prove lim, ;o ftm,r = 0 by a contradiction argument, see
Proposition More precisely, suppose that

lim sup Sm,k > 0.
m—oo O k—oo

Then, we have

Co+0C
Dm,k ’

Smk < for any (m,k) € Z x Z.

From (2.3T) and new coordinates (2.20), the dissipation rate is defined naturally as

B o9 L& m 22/, 2 2m 2
Dm,k—27f2/0 €[§<—25+;+7C—k77> +§<§—7—74—kn)

2(.,.§ m ? L ? ’ 2
+—(§ +—+—C+2kn) + (—C +—+—§> + (0 +kE)
9 roor r r
m 2 "o / 5 m ’
n (?n—kC) rdr+27r2/0 5 (f + ;4_ ?C—kn> rdr. (2.33)

The key is to establish
Dy 2 K> +m?,
which involves delicate analysis for weighted estimates for f;* §dr, IS édr and

for 0 %dr. Precise algebraic manipulations have to be carried out to analyze the

lower bound of the viscous dissipation, for each case of m =0, |m| =1 and |m| > 2
separately in Sec.

3. A Family of Modified Variational Problems
3.1. Growing mode ansatz and cylindrical coordinates

In order to see the property of the force operator
F(g) =V(g-Vp+pV - g) +(V x B) X [V x (g x B)]
+{Vx[Vx(9xB)}xB

2
+ div <5 (Vgt + Vgl — gdivgt H) + ddivg, ]I), (3.1)
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we consider two displacement vector fields g and h defined over the plasma volume
V', their associated magnetic field perturbations

Q=Vx(gxB), R=Vx((hxB),

and the vacuum perturbations @ and R defined over the vacuum volume V are
their extensions, that is, to “extend” the function g into the vacuum by means of
the magnetic field variable @7 and likewise to “extend” h by means of R. Then by
Theorem IV 4.11 of [2] Chap. 6 of Goedbloed Poedtd¥ and Lemma A.3 of Bian-
Guo-TiceX we have the following lemma.

Lemma 3.1. Assume g is a H? solution of the system (2.14), then we get a mean-
ing expression for the potential energy of interface plasma by identifying g, h, Q
and R, in the quadratic form

1
/h-F(g)dx:—/[7pV-gV-h+Q-R+5Vp-(gV-h+hV-g)
Q Q
1 ~ o~
+§V><B-(g><R+h><Q)]dx— | Q- Rdx
oL

2
— [ (é‘ (Vgt—FVgtT — gdivgtﬂ> —|—5divgt]l) : Vhdx
Q

1
—/ n-gn-hn- HV <p+—|B|2>H dx, (3.2)
EOJ_,,, 2
which is symmetric in g and h, and their extensions @ and R ife=0=0.
Proof. Note that

2
div (s (Vgt + Vgl — §div gt H) + ddiv gy ]1) -h
. T 2. .
=div |{e| Vgt + Vg; — gdlvgtﬂ +odivg: 1| h

— (s (Vgt + Vgl — %div gt ]1) + 4div g ]1) : Vh.
Using the estimates in Lemma A.3 in Bian-Guo-Tice™ we get that
heFlg) =~V gV h—Q R~ Vp-(gV - h+ ¥ g)
—%VxB~(ng+th)
+V - [h(g-Vp)] =V (hB-Q)+ V- (hypV - g)

+%V~[(VxB)B~(g><h)]+V'(Bh'Q)
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1
—§V-[(V><B><B)-(gh—hg)
. T 2. .
+div |{e| Vgt + Vg — §d1vgtH +ddivg: 1) h

2
= (5 (Vgt + Vgl — gdiv gt ]1) + 4div g ]1) : Vh.

(3.3)
Integrating (3.3) gives that
Lh - F(g)dx
Q
1
:—/[’ypv-gv-h—i-Q-R—i— 5Vp-(gV-h+hV-g)

Q
1

+§V><B-(g><R+h><Q)] dx

—|—/ n-h(g-Vp—B-Q+~pV -g)dx
20,pv

+ / n-hTr Ka <Vgt + Vgl - gdivgt 11) + ddiv gy 1[)] dx
EO.pv

2

_ [ (5 <Vgt + Vgl — Sdivg H) + 6div g ]1) . Vhda. (3.4)

Q

There are no contributions from the eighth, ninth and tenth terms of (3:3) to the
surface integral, since n- B =0 and n -V X B = 0 on the plasma surface, whereas
V x B x B is parallel to n. From the second interface condition of (2Z:14), the surface
integral takes the form of

/ n-h(g-Vp—B-Q +~pV -g)dx
30, puv

+ / n-hTr Kg (Vgt + Vgl - gdivgt 1[) + ddiv gy H)} dx
Y0, pv

1 ~ o~
:—/ n-hg-HV(p—!——|B|2>ﬂda:—/ n-hB-Qdx
Zo,pv 2 Zo,pv
:—/ n-gn-hn-[[V(p—i—hBF)H dx—/ n-hB-Qdx
30,pv 2 >o0,pv

:—/ n-gn-hn- HV <p+1|B|2)H dx — Q- Rdux. (3.5)
So,p0 2 [k

Here, we have used the facts — [, n- hB-Qdr = — f5 Q- Rdz (Lemma A.3
in Ref.[T), the equilibrium jump condition [[p+ 1|B|?]] = 0, which implies that the
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tangential derivative of the jump vanishes as well - [V (p + £|B[*)]] = 0, where t
is an arbitrary unit vector tangential to the surface.
This finishes the proof. O

We now record several computations in cylindrical coordinates.

Lemma 3.2. Let & = pe and 6 = 1é. We decompose E,, i, as follows:
Emi(6,1,¢,Qr) = BV + E% . + B, 1, (3.6)
where the fluid energy takes the form of

7o B —kBy(ré) + 2kBye 1>
E . :27T2/ {(m2+k2r2) [Ten+ o(ré)" + 95]
0

mQ + k2r2

mC 2 T0~ 2 , g m 2

2 2
+2<€’_%_2_m< k) +2(€’+§+ﬂ<+2kn)
9 T 9 oo

2
+ (—c’ T %&) F 0 57 + (T k)

2

’r‘g~
+27T2/ 5<€'+§+%C—kn> rdr
0

T0 2 2
2 m-Bg 2
+ 27 /0 77‘(7712 PRy (€ —r&)?dr

70 2B
+ 272 / [2}7 + ]5% (3.7)
0
the surface energy vanishes
m,k _27]— [39 Bg]T:Toé-?(ro) = 07 (38)

and when m # 0 and any k, the vacuum energy takes the form of

v s 1 A
Ep, =21 / [|Qr|2 + WWQTYF] rdr. (3.9)

Proof. Recall (¢,7,¢) in (22I) and (220). The proofs of (3.8) and 3.9) can be
recalled from the Lemma 3.1 in Ref.[I] so we only need to prove (3.7). Inserting the

expressions of (222) into (ZI6) and using & = i(, we can get (3.7). In fact,

@D 9) = (o) b+ 7).

(5B (g" % Q) = (B 22 ) | or (Boan) ~ o) ~ " Bugeai
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= (Bé + Be) [—gr ((Bogr)' — kBon) + ?CBegr} ,

r

87“97’ 8rg(9 argz
m, r m, T m z
Vg — g _ 9o imgo . gr img
r r r r r
ikg, ikge ikg,
¢ i
im i m & m
S el Ber Sy
r roor r r
k€ k¢ —kn
2’ i+ e L Gy ke
r r
Vg+ Vgl = —z’C’—i—@f—kﬁ 2_mg+% —@77+k6 ,
T T r r r
in + kg —%n + k¢ “2kn
P L 0 0
r r
. 13 m
divg I = 0 &+ —kn+—¢ 0
r r
r € m
0 0 &+ —kn+ —¢
r r

2
By p' = —ByBj — %, we have

To 2B2 , 2 232
[ (et + e rar - | oe]

m2 + k272
- /0 ’ {%(5 —r€)? 2% + %] dr,
with
8, = 1 m?g 2m’By(82)  4k*m*B3 2k%p’
rlor r(m2 4+ k%r2)  r(m2+k2r2)2  m?2+ k2r2
Combining the above identities with (2.16) and (2:22) yields (3.7). O

Using g(r, 0, z,t) = (g-(r,1), go(r, 1), g=(r, 1))e’™H*2) e can prove that the
second equation in (2.14) is reduced to the following system.
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Lemma 3.3. Assume g(r,0,2,t) = (g,.(r,t),go(r,t), g (r,1))e’ ™+ solves the
second equation in (2.14)), then
dyp+B;d m?_, B2\ d o 2kB2  dm
LTI, Mg . (20) % B2) - om
dr r dr 200 T T 2 dr (yp+ By) dr r
2 2 m2 mk
S ~K0p+ B}~ 5 Bs  —~w
_mypd mk _m?
r2 dr r P 7z P
3 din diz diz\ [& &t
X |n|+|dor doo do3 e | =p | M| (3.10)
¢ ds1 ds2 dsz) \Gt Gt

with
3
dyo = —(§+6)k—

& ed m? 4e 9 5 mk
dzg_aﬁju;%—ar——(—ﬂs)k, dos = (5 +6) 2,

d31:_(§+6) %d%_ (%4'5) %v d32=(§+6) mTk,

d? d1 4e m?
dsz = e— — === +6) = — ek
33 EdT‘Q—’_EdT‘T <3+) 3

Proof. Inserting the expression (2:22) into the second equation in (2ZI4), by
g(r, 0, z,t) = (gr(r,t), go(r, 1), g-(r, 1))’ ™0T#2) and the definitions of &, 7 and ¢ in
(221), we can easily get that the second equation in ([2:14) reduces to (3-10).

O

We now use the idea of modifying the viscosity parameters in Guo-Ticel¥ Tak-
ing the normal mode in Lemma [3.2] in order to restore the ability to use
variational methods, we artificially remove the linear dependence on p. We define
two modified viscosities &€ = se and & = s6, instead of e and pd, where s > 0 is an
arbitrary parameter, we can get modified problem as follows.
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Lemma 3.4. Assume g(r,0,z,t) = (g,(r, 1), go(r,t), g (1, 1))ertTmOTk2) solyes the
second equation in (2.14), then

dyp+B3d m?_, B2\ d o, 2kBZ dm
ST E 2, g (28) g B2) — =
dr r dr r2 0 72 dr (yp+ Bo) r dr r P
k(yp+B}) d  2kB3 ) o m? o mk
B TROp B g B S
myp d mk m?
T2 JT TWP —T—Q’)’P
&\ [fan a2 a3\ [¢§ 3
X |n az1 Q22 @23 ny = PH2 UK (3.11)
¢/ \as1 a3z as3 ¢ ¢

E <\ dm 2m g < d E =\ Kk
ng—(§+5)%7—r—2, Q21—(§+5)k%+<§+6 ;,

2 Ed 2 (48 = 2\ mk
a22=é—+§——5m—2—<§+5>k2, a23=<5+5 me

a = — (S4) L (TE L5\ = (S 5)
T 3 rodr 3 2t T3 r’

_d? _d1 46 N\ m?  _,
&33—€W+€%;—<—+6)—2—€]€ .

Proof. Inserting the expression (2:22) into the second equation in (2.14), by
g(r,0,2,t) = (gr(r, 1), go(r,t), g. (1, t))ertTim0Hk2) and the definitions of &, n and ¢
in (Z21)), we can easily get that the second equation in (2.14) reduces to (3:11). O

In order to study the stability to use variational methods in vacuum domain,
we use the following second-order ODE about @, for m # 0 and any k.

Lemma 3.5. Lemma 3.5 in Ref.[1l The vacuum equations 214)3 and 2I4)4 can
be reduced to the second-order differential equation
!/

(rQ.)| —Qr =0, (3.12)

m2 + k212

with the other two components Qg = —W(r@r)’ and Q, = —W(T@r)/-
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3.2. Modified variational problem when m = 0

In this subsection, we will introduce the definition of the function space X and its
properties, then give the modified variational analysis for the case m = 0 and any
k € Z. We first introduce the definition of the function space X}, for any k € Z and
its properties.

Definition 3.1. The weighted Sobolev space X}, is defined as the completion of
{(&n,¢) € C>([0,m0]) x C=([0,70]) x C*([0,70])(0) = ¢(0) = 0}, with respect

to the norm

To 2 9 2
& Ol%, = /0 l<—25’+ g - kn> 1 (5' - 75 _ kn)

¢

r

§

S rdr
,

2
) + (0 + k&) 4+ k2¢?

2
+ (£’+ +2kn) + (—<’+

0 2 To
+ / (5/ + é — kn) rdr —|—/ p(|€% + In2 + [¢[P)rdr. (3.13)
0 0
Next, we consider the basic estimate of { on the interval (0, 7).

Lemma 3.6. For any r € (0, %), it holds that

0

E(r) < % (/%0T |§(a)|2da> + (/TT |§'|2sds> ’ln%o —Inr|’. (3.14)

Proof. Notice that [¢(r)| = [€(a) — [ €dr| < |€(a)] + |([*]€'|?sds)z ([ 1ds)3].
Integrating the above inequality about a on the interval (7, %), we have

ro

o : .
le(r)] < / €(@)]da + 2 / sds ) |02 1|
6 o 6 |\ J, 3

6

which gives (3:14).

Then, we introduce the estimate of {(r) for any r € (%,70).

Lemma 3.7. For any r € (%,70), it holds that

£r) < E(/__ |€(b)l2db> +</_ |€'I2lro—8|d8>

=
N

2
In % —1In(rg — 1)

(3.15)
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Proof. Notice that

o+ [z ([1er ) ([ )

Integrating the above inequality about b on the interval (%, %), we have

0

e < [ lewlars ( /, |€’I2lro—8|d8> (

which is divided by %2, gives (3.15). 0

From Definition [3.1] Lemmas[3.6]land[3.7] we can show the following compactness
results.

Proposition 3.1. Let m; for = 1,2,3 denote the projection operator onto the ith
factor, there holds that w; : Xx — Z; is a bounded, linear, compact map for i =
2,3, where the spaces

Zy ={6€ L*0,r0)}, Zy={necL*0,r0)}, Zs=1{Ce€L*0,r0)}. (3.16)
We denote them by

X, CC Zy, (3.17)
Xy, CC Zs, (3.18)
X CC Zs. (3.19)

Proof. Assume that ||($n, 70, Go)llx, < C for n € N. When m = 0, from Proposi-
tion L1l we know that

T0 9 T0 9 T0 2
/ &, rdr—i—/ m, rdr—i—/ ¢ rdr < C.
0 0 0

Fix any x > 0. We claim that there exists a subsequence {,,} so that

Sup ||§’I’Ll - fnj HZ1 S K. (320)
]

Therefore, from Lemma [3.6] choosing 0 < so < % small enough such that C (% +

|In 2| +1)so < &, then we have
S0
/ & (rydr < —so +C/ / €] |2sds
0
70
< —s0+C ’hl g‘ s0 + Clso In sg]

6C
To

‘ln — — lnr‘ dr

<C< ‘1 —’+) 30<g (3.21)
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On the other hand, choosing % < s; < 79 and s; close enough to ro, such that
C(Z + [ 20|+ 1)(rg — s1) < &, by Lemma[37] we can show that

T0 60 T0 T
[ @< Sma—syro [ [ 1l - slas
S1 0 S1 TTO

2
In % —In(rg —r)|dr

< %(ro—sl)—i—C/:) lnzﬂ—ln(ro—r) dr
< %(ro—sl)—i—C ln@ (ro —s1) +C(ro — s1)
+ Cln(rg — s1)(ro — s1)|
<cC (% n 1n23ﬂ n 1) (ro — s1) < g, (3.22)

where we have used the facts

T0 70 To
/ lro — 7||€'|2dr < / €' |2rdr —|—/ 1€ Prodr < C.
o o o
3 3 3

Since the subinterval (sg,s1) avoids the singularity of % and the degenerate of
the density p on the boundary r = rg, the function &, is uniformly bounded in
H'(s0,51). By the compact embedding H!(so,s1) CC C%(sq,s1), one can extract
a subsequence {&,, } that converges in L>(sq, s1). So for i, j large enough, it holds

that sup; ; [|§n; — &n; 3 s0u51) < m Then along the above subsequence one
can get from (3.21) and (3.22)) that

T0o S0 S1 70
1€, = Ens ooy = / (e — b, [2dr = / 4 / 4 /
0 0 S0 S1

6 T
<20 <— + \m —0\ + 1) 50 + (51 — 80) sup |7,
o 3 ij

'm 2ro
3

—|—1) (ro — s1) <k,

(3.23)

6
2
_nn]‘HLm(so,sl) +2C (E +

which implies the claim ([3:20) and the compactness result (3.I7). Similarly as the
above estimates, we can prove (3.18) and (3.19). We finish the proof. O

Now, we give the variational analysis about the case m = 0 and any k € Z. In
order to understand p, we consider the energy (2.26) and

T(En,C) = 27 / " D(EP + Il + |¢I?)rdr. (3.24)

From Definition[3.I]and Proposition[3] we can get that Ey j and J are both well
defined on the space Xj.
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Lemma 3.8. Eyj, and J are both well defined on the space Xj.

Proof. Applying Lemma [3.6] we get for 0 < s < @ small enough that

[ veal<c["cazc [ (/ |db)
+C/050 (/T |§'|23ds> ‘m%o “lnr
SCJ+C</O?|§'|2sds> /0

SOJ+O/3W%%SCJ+W@%OﬁM
0

dr

dr

lnT—O—lnr
3

On the other hand, from the proof of Proposition[3.1] it follows that

To
/ p'E2dr
s0
o
/ p'E%dr
0

which implies from Proposition [.I]that

< c/ dr < (&, 0%, -

Hence, we get that

<CT +ClIEn Ol (3.25)

ro 2
Boa(en. 01 < CT +ClEnOlfy, +C {%[w—%«wy—%ﬂ}nw

—|—C/ ‘ (re)
2 2
+C/ K 26/ 4 2 —kn> +<§’—¥—lm)

2 2
+ (5’ + é + 2k77> + (—c’ + %) + (0 + k&) + k¢

)
e+ ClplE! [ o
0

o g 2
mw+cé @4;—m)nﬁsm@%o&y

Hence, Ey  and J are both well-defined on the space Xj. O

Define function g(r) = sup,<,<y, = ()S) then by Definition 2.1} admissibility of
the pressure p, we can get the following lemma.
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Lemma 3.9. Lemma 3.7 in Ref.[1l Assume s1 near ro, then it holds that

[P0 < 2p(s0)€s0) +aglsn) [ pePar (3.26)

with g(s1) — 0 as s1 — 79.

Now, we define
. Eok(fﬂ?»C;S)
A(s) = f —_— 3.27
°) €nexs  JT(Em,C) (3:27)
Consider the set

A =A{(&n,¢) € Xi|T(&,n,¢) = 1}. (3.28)

We want to show that the infimum of Ey x(&,n,¢) over the set A; is achieved and
is negative. And then we show that the minimizer solves (3:11) with m = 0 and
k # 0 and the corresponding boundary conditions. First, we prove that the energy
Ey x, has a lower bound on the set A; and the coercivity estimate holds.

Lemma 3.10. The energy Eo . (£,m,¢) has a lower bound on the set Ay and any
minimizing sequence (&, M, Cn) s bounded in Xy.

Proof. We can directly get from (2:26) that

EO,k(§7 m, C)

T0 2/2 1 2
Z27r2/0 {pTﬁ +p {;(rf)'—kn} }rdr
5 To~ 2 , € 2 2 ) 2§ 2
+27T/ € §<_2€+;_k7]) +§<€—7—k’7]) rdr
0
2 < / §_ )2
—|—27r/0 6<§+r kn ) rdr
>2772min(58)/m g<—2€'+§—k)2—|—2(€'+§—k)2 rdr
B , 0 9 r 1 9 r "
+2”2min(58)/ro g(fl—%—k>2+g<f'+§—k)2 rdr
’ 0 9 r K 9 r "
4 2 "o /2d
+ 7T/0 p'&dr

~ 70 ~ To ¢2 T0
> 27% min(g, 6) / ¢*rdr + 272 min(é, ) / >dr + 472 / p'&%dr,
0 o T 0

(3.29)
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for any (&,7,¢) € A. Here, we have used the facts that a® 4+ b? > 1(a — b)?, with
a=-28+5—knb=¢+5~kpa=¢ % —kn, b=¢ +5 —kn. By Lemmal[3.6]
choosing 0 < s < ¢ small enough such that Cso < %7 we obtain that

/ p'&3dr| < C/ dr < C/ (/ |5(b)|2db> dr
0 0 0 %)
S0 i}
+C/ (/ ’ |§'|2$ds> ‘lnr—0 — lnr’ dr
0 r 3
<CJso+C / ¢ |2sds /
0 0

o
< CJso+ CSO/ ¢ 2 sds
0

ln%0 —lnr’dr

< CJsg + 2Csem? min(é, 5)/ f’zrdr
0

1 < [T
< CJTso+ §7r2 min(g, d) / rdr. (3.30)
0

On the other hand, from the proof of Proposition [B:I] choosing so < s1 < rg close
to 7o such that C(rg — s1) < i, we get that

51
/ p'E2dr
s0

0
<c / €2dr < C(ro — s)IIEl 2 (o0
S1

< C/ 1£2dr <cJg (3.31)

and

ro
/ pE2dr
51

< C(TQ — 31)”5”%11(31,7”0)

5 ~ 70 9 0 62
< C(rp — s1)7™° min(g, §) (/ & rdr —|—/ 7dr)

1

9 . 70 9 0 62
< C(rp — s1)7™° min(g, §) (/ & rdr —|—/ 7dr)
0 0

~ 70 To ¢2
< 1 ming, §) ( / ¢rdr + / g—dr> , (3.32)
4 0 0 T

where we have used the facts H'(sy,79) CC L*(s1,70). Therefore, we can prove

ro ¢2

Eo x(€,1,¢) > 7? min(é, 5)/ rdr + 3772 min(g, 5)/ 7dr 207
0 0

> 207 = —2C, (3.33)
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which gives that the energy Eo (£, 7, () has a lower bound on the set A;. Using the
facts that J = 1 and Ej ;, has a lower bound on set A;, we can choose a minimizing
sequence such that along the minimizing sequence, we have M < E 1. (&n, Mn, Cn) <
M 4+ 1, and for the minimizing sequence, we can show coercivity estimate:

(s 0 Co)ll%,, < CT +C(M +1) < C. (3.34)
O

We now show that the infimum of Ej ; over the set A; is negative for the case
m =0 and any k € Z.

Proposition 3.2. For any fixed k = kg, there exists constant so > 0 depending on
g, 6 and ko so that for sufficiently small s < sq, it holds that A = inf Ey; < 0.

Proof. Since both Ej j and J are homogeneous degree 2, it suffices to show that

in EO,k(va;C)
endex, J(En, Q)

Since J is positive definite, one may reduce to constructing (£,7,¢) € Xy (see
(3:13)) such that Ep x(&,7,¢) < 0. Notice that the first integral in the energy (2:20)
can be rewritten as

o (T2p 4ypBj
27r2/0 {[T I _T2(w+%3) &+ (vyp+ Bj)

{kn o (005) 7p2f 232 5)]2} o

From the property (i) of Proposition B-I] we can choose a smooth function £* €
C2°(0,rg) such that

o r2p! 4ypBj 2
2 2/ Dl L )
"o [T r2(vp + BE) <rdr

< 0.

2
Then, we can assume that kn* = 2((r£*) — vif%Q £*), such that the second term in
6

Eo (&%, n*, ¢*) vanishes. Here, £* and n* are smooth function, belong to the space
Xj. Then we choose ¢* = 0.

From £* € C2°(0, 7o) and kn* = L((r€*) — 222,£%), for any finite fixed k = ko,
o
it follows that

To * 2 * 2
& ’
(E*’ + >+ 2kn’* ) + (™ + ki*)ﬂ rdr

0 % 2
—|—27r25/ (5*/ + % — kn*) rdr < C.
0
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Therefore, the energy takes as follows:

_ 1 2B}

E(&") = Eo (5*7 . <(7”§*)/ - Wf ) )
oo (2 | 4B} }
=2 /0 [ r +7'2(7p+33)

2 */ 5* *2 2 */ 25* *2
9<2§+ kn)—f'g(f—r—k‘n)

o
x &% rdr + 27r2/ g
0

* 2

To * 2
+ 272 / ) (5 § — kn* ) rdr
0

o r2p! 471732 2
< 27r2/ [— R Erdr + sC.
o Lr 2w+ Bj)

Then, there exists sg > 0 such that s < sq,

~ o r2p 4ypB2 2
E€*§ﬂ2/ [—+7‘) &2rdr <0,
) o L rOwp+Bj)

which implies the result. O

We now deduce the existence of a minimizer of Ey j on the set A;.

Proposition 3.3. The energy Ey 1 achieves its infimum on the set A;.

Proof. First note that Ej 5 is bounded below on the set A;. Let (&, 1, Cn) € As
be a minimizing sequence. Then, we know that (&,,n,,(,) is bounded in Xy, so
up to the extraction of a subsequence ¢, = |By|[kn, — £((r&,) — 2)|rz — ¢ =
|Bo|lkn — L((r&) — 26)]rz weakly in L2, and &, — €, 0, — 1 and ¢, — ¢ strongly
in L? from the compactness results in Proposition

By weak lower semi-continuity, since 1,, — 1 in the space L?(0,7(), we have

2 ro 2

/ h B} [kn - %((rf)' — 25)} rdr <liminf [ B2 [knn — %((rfn)’ —2&,)
0

n—oQ 0

Because of the quadratic structure of all the terms in the integrals defining Ey .,
similarly by weak lower semicontinuity and strong L? convergence, we get that

Eo,k(§7 7, C) < lim inf EO,k(€n7 T, Cn) = inf E07k~
n—00 Ay
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All that remains is to show that (£,7,() € A;. By the compactness results in
Proposition [3.1] when m = 0 and any k € Z, we can prove up to subsequence
limy— 00 T (&ns My Cn) = T (€, 1, ¢) = 1, which implies that (§,7,¢) € A;. O

We now prove that the minimizer constructed in the previous result satisfies
Euler-Lagrange equations equivalent to (3.11) with m = 0 and any k € Z.

Proposition 3.4. Let (§,7,() € Ai be the minimizer of Ey y, constructed in Propo-
sition[3.3] Then (&,n,C) are smooth when restricted to (0,7¢) and satisfy

d B2 d B2\’ d 2k B2
_f)/p"' 9_,,,,_,,,( 0) __k(7p+Bg)_ r0 0

dr r dr 2 dr £
2 2
k(’yp-i-Bg)ir_ 2kB; _k2(yp + B2) ol |7
r dr r ¢
0 0 0
L5 L (E45) Rl 0
3 r2 3 dr
46 <\ d 1
— 40 —= —&k?
i ( 3 + ) drr  ©
g = d E <\ k > &d
+ —+0)k— —+0) - 35 -
<3+ ) d7'+<3 )r dr?  rdr 0
4e <
— (= +6) K
(5+7)
d? d 1
~ 7 ~ - ~k2
0 0 ser +€drr 5
£ £
x [n]=-pX|n|, (3.35)
¢ ¢
along with the interface boundary conditions
[B2¢ — B2¢'r + kBinrin
+&(=2¢r,i¢'r — i¢, —in'r — ikér)"
< 2
- (5 - §5> [£'r+&—knrln=0, atr=r. (3.36)

Proof. Since we want to use the structure of the energy and properties of functional
space, we first change the spectral formula (3.35) into the following equations by a
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simple computation

4 2\ 2 42 Nde _, [ <\,d

r T (3.37)
+ (§+5) kd%gjt (§+S> If
+5d2277+ f; - (435 5) k*n = —pAn,

5%( + édii% — &K% = —pX(.

Next, we prove the minimization &, n and ¢ satisfy Eqs. (3:37) in weak sense on
(0, 7“0).

Fix (&0, 10,C0) € Xk (see (3:13)). Define

it 7(t) = T (€ +tlo + T(R)E,n + tno + 7(t)n, ¢ + o + 7(£)C)
and note that j(0,0) = 1. Moreover, j is smooth,
9j

%0,0) = 2 /0 2p(E0€ + 1o+ CoC)rdr,
9

o
5 (0,0) = 27r2/ 20(&% 4+ n? + ¢)rdr = 2.
T 0

So, by the inverse function theorem, we can solve for 7 = 7(¢) in a neighborhood

of 0 as a C! function of ¢ so that 7(0) = 0 and j(¢, 7(t)) = 1. We may differentiate
the last equation to find

9j 9j oy
at (070) + 87' (070)7— (0) - 07
which gives that

(0) = —2 2

537 (0,0) = —27T2/0 ) p(&o€ + nom + ¢Co)rdr.

Since (&, 7, ¢) is the minimizer over the set A;, we may make variations with respect
to (€0,M0,Co) to find that

0= L1 Bou(e+ 160+ m(0)n+ tro + (00, + 160+ 7(1)0),
t=0
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which together with and (3:28)), implies that
0 To 1
0 = 4r? /0 2pE€odr + 4 /0 Bj [lm — ;((rf)/ — 25)}
< {=tHeay - 280 brar+ 4w [ op [Loey -] eoyar +an? [k
1 / 2 [ 1 /
X [kn ——((r§) — 25)] nordr + 4w / P {—(rf) — kn} (—kno)rdr
r o r
"o 28 / / 2 de N 1&1 ~
war? [ 2 (<06 + L) o (5 45) i + eiegor
- To (/98 . 28 .
+9 (5'50 + &£, + %)} dr + 47r2/0 [(§ — 6) kn&yr + <§ - 5) kné&o
+ én’kgor] dr + 4n® / h [5k2<<0r —&C'¢o — ECCH + 5%
0

TOrr28 < 28~
—|—47r2/ K?E - 5) k& nor + (g - 5) k&no + ékfn{)r} dr
0

To 4~ ~
+ 472 / K; + 5) E2amor + 577'7767} dr + 27" (0)\.
0

+ 5((61"] dr

Since &y, no and (p are independent, one has the triplet of equations
"o / "o 2 ]‘ / /
W/codr — | B} |kn— ~((r)' = 20) | [(r0)’ — 26o]dr
0 0

+ / m {25 (‘f’ﬁo — &8 + 2@) + (43—6 + 5) €'€or + Ek*€gor
0

3 a

(s o [ (2 5)er (¥ )

+5n/k£07“} dr —|—/0 ' vp [%(rﬁ)' — kn] (r&) dr = /0 ’ pAEoérdr, (3.38)

o

"o 1 , 1, .
/0 kBj {kn - ;((7“5) - 25)} nordr +/0 vpk [kn - ;(7“5) } nordr

+ / [(23—5 - 5) k& nor + (23—8 - 5) k&no + ékfn{)r} dr
0

T0 4~ _ T0
+ / K? + 6) E2nmor + 577’7767"} dr = / pAnonrdr, (3.39)
0 0

/T0 (§k2<<07' — &8¢0 — ECCh + éﬁ + 5(’(61") dr = /TO PAoCrdr. (3.40)
0 r 0
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So &, n and (¢ satisfy (3.37) in a weak sense on (0,7¢), if (€0, 710, (o) are chosen com-
pactly supported in (0,7). Now we prove that the interface boundary conditions

(3.36) are satisfied. From Eqs. (337), we get
d , 1, e &
{8 - Loy 2] b+ (£ 48) 4

4 Nd& (e N\, d s wé’
+<3+6>drr <3—|—6>de Ek°E + —

2vp’ 2 2B? 1 2p
+’W5—1ﬁ——ikm—#ww—%ﬂ—ifzw&,

r r2 r

&2 :d N d &N kE [4F N\ L
E—dr277+ ;—drn‘f'(g-f—(;) k_drf+<§+6> _7” —<—3 +5)k77
1 2B2
_ B2 _Z Ut Y o) [
k(yp + Bj) {kn T(Tf) + r(,yijBQ)é} P,

2
;ng ¢+ Eig —Ek*C = —pAC. (3.41)

From (¢,7,¢) € X and the compactness results in Proposition[3.1] we deduce that
(&,n,¢) € H (%2, r0) x H (%, r0) x H'(%2,ro) when m = 0 and any k € Z, which

gives that

slowe s - teer—20|+ (5 +5) (¢+5) - (5 +5) ]

S L2 <§ 7’0)

d? gd d
dr2n+ drn cL? (— 7"0),5 (EC +EC> € LQ(O,rO).

Hence (yp + Bf)[kn — 2((r6)" — 2] + (% +0)(¢' + %) — (5 + 6)kn, &' + £n and
e’ + é% are well-defined at the endpoint r = rg. Make variations with respect
to (£0,7M0,C0) € C((0,79]) x C((0,70]) x C°((0,r0]). Integrating the terms in
(3:38)([3:40) by parts and using that (£,7,¢) solve Egs. on (0,79), we get
that

+9p [ (r§)" — ] (réo)

-8 [l = 209y 20| (&)

r=TgQ T=ro

e +ieo+ (5 +8) e+ (5-5)mer]| o

(EkEnor + En'nor)lr=r, =0,  (E¢"Cor — E¢o)|r=r, = 0. (3.42)
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Since the test functions &y, 19 and {p may be chosen arbitrarily, by the pressure
p = 0 on the boundary r = 1o, we get the interface boundary conditions

- 9
— B3[knr — €7 + €] |p—p, + {(6 — EE) (& —knr+¢&'r) + 255'70} =0,
r=ro (3.43)
(EkEr + En'r)lr=r, =0,  (&C'r — EQ)r=r, = 0,
which ensures that (3:36) holds. We finish the proof. O

Next, we establish the continuity and monotonicity properties of the eigen-
value A(s).

Proposition 3.5. Let A: (0,00) — R be given by (3.21). Then the following hold:
(1) A e CLl((0,00)), and X € CO((0, 00)).

loc
(ii) There exists a positive constant Co = Ca(rg,p,€,0,k) so that

A(s) > —C + sCs. (3.44)
(iil) A(s) is strictly increasing.
Proof. Fix a compact interval = [a,b] CC (0,00), and fix (£o,70, o) € A1. We

can decompose Ejy j as follows:

EO,k(§7 m, Ca 8) = E8,k(€7 m, C) + SEék(fv , C)v (345)
with

o 2p’ 4ypB?
E° =2 2/ AL st Y
0,]@(57777() ™ 0 { |: r + TQ(’YP—FBg) 5

1 282 2
+(wp + Bj) {k’n - (re) = ﬁa] }rdr, (3.46)
o 2 2 2 2 2
Eé,k(fv”;() :2772/0 £ [5 <—2§I+§—l€77> +§ <§I—7§—]§n>
2 (., ¢ ? A N
+§<f+;+2k77> +<—C+;) + (0 + k&) + k22| rdr
2 "o / 5 2
e /0 O 5 = hm)rdr. (3.47)

The non-negativity of E&  implies that Ey j is non-decreasing in s with (£,7,() €
A; kept fixed. By Proposition [B:3] for each s € (0,00) we can find (£,7,¢) € Ay so
that

E 87878;82 lnf E 77;82)\8'
0,k(&s5Ms5 Cs3 8) Endetr 0,k(§:7m,C; 8) (s)
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From the non-negativity of E&k, the minimality of (&s,7s,(s) and for 0 < so < 19

2

&m0z [ |§<rs>’ v —3CT > —3C7,  (348)

S0

which can be proved from Lemma 3.10 of Ref.[I] using Lemma[3.9] we have

EO,k(fO? 7o, C()a b) 2 EO,k(va Mo, C()a S) 2 EO,k(§S7 Ns, Csa S) 2 sEé,k(£S7 Ns, CS) - C7
for all s € (). This implies that there exists a constant
0<K= K(a7b7§07n07<07ﬂ-7p) <0

so that

sup Ej(&6imsi G) < K. (3.49)

Let s; € @ for i« = 1,2. Using the minimality of (&s,,7s,,Cs,) compared to
(€535 M55 (s, ), We have

)‘(31) = EO,k(fﬁ y st s CS1 ) Sl) < EO,k(sz y Ns2s CSz; 31)7 (3'50)
which together with (3.45) gives that

EO,k(gswnsngm; 51) < EO,k(fsgvnsmCm; 52) + |31 - 82|Eé,k(552777527C52)

= )‘(82) + |81 - 82|Eé,k(€sg ) 7752;C52)~ (351)

Combining (3.49)- (B:51)), we get that A(s1) < A(s2)+ K |s1 — s2|, which implies that
(i) holds.

Now, we prove (ii). Note that (3.48) and the non-negativity of E&k imply that

As)>s inf  EL (&n,0) —C,
()25 it B0

where we denote the constant Co = inf(¢ , c)ca E&k(f,n,C) and this constant is
positive.

Finally, we show (iii). Notice that if 0 < s; < s9 < 00, then the decomposition
(3.45) ensures that

)\(81) = EO,k(fsl ) 7731 ) CSl a 81) g Eo,k(5827n827c‘92; 81)
< Eo,k}(5827n827é-82;82) = )‘(82)

So A is non-decreasing in s. Suppose by way of contradiction that A(s1) = A(s2).
Then, the above inequality implies that s1Ef (€5, 7s55 Css) = 525 (557525 Csn)
which gives that Ej (s, 7s,,Cs,) = 0. This in turn implies &, = 75, = (s, =
0, which contradicts that (£s,,7s,,Cs,) € A1. Therefore, the equality cannot be
achieved, and A is strictly increasing in s. |

Remark 3.1. Define the open set S = A7!(—00,0) C (0,00), then we calculate
i =+/—X> 0. The open set S is nonempty by Proposition [3.2]
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From Proposition[3.2]and lower bound (3:44)), we can show the uniqueness of s.

Proposition 3.6. There exists a unique s € S so that pu(s) = V=X > 0 and
s = u(s).

Proof. From Proposition[3.2] we know that there exist two constants Co > 0 and
C1 > 0 such that A\(s) < —Cj + sCy. On the other hand, the lower bound (3:44)
implies that A(s) — +o00, as s — co. Since A is continuous and strictly increasing,
there exists s* € (0,00) so that

S=A"1((~00,0)) = (0,3*).
Since A < 0, on S, we can define p = \/—)\ . Now, we define the function
® : (0,8") — (0,00) according to ®(s) = MOR
increasing in s from the continuity and monotonicity properties of A\. Moreover, we
know that lims_,o ®(s) = 0 and lims_, s P(s) = +oo. By the intermediate value
theorem, there exists s € (0, s*) so that ®(s) = 1, that is, s = u(s). This s is unique
since ® is strictly increasing. O

So ® is continuous and strictly

Now, we consider the regularity of £, n and (.

Proposition 3.7. Let (&,7,() be the solutions to (3:35) or (3:37), then there exists
A, such that

Hf(n)r(Qn_l)/Q ||L2(O,rg) < A'rm

Hn(n (2n-1) /2||L2(O,T‘0) < A'rm

HC(n T(Qn_l /2||L2(O,T‘0) < A'rm
with A,, depending on rq, k, ™ and the pressure p.

Proof. Applying (£,71,() € X) and the compactness results in Proposition [3.1]
when m = 0 and any k € Z, we can get that (£,1,() € L?(0,r9) and

(Vre' v, \/_C' ) € L%(0,79). From the system (3.37), we have

e 3/2||L2<0,m> <c (m N2 })

S
Hnn 3/2||L2(0,r0) < C (57777 \/7_0517 \/7_”77/7 W)

)

L2(0,70)

)

L2(0,70)

17372 || 20,9y < C

(579

By induction on n. Suppose for some n > 1,

Hg(n)r(Qn_l)/Q||L2(O,r0) < A,,

L2 (O,To)

HU(")T(%_D/Q||L2(o,r0) < A,,

[¢TrEn=DI2| 1o 0y < A
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By Remark[3.1] then differentiating (3.37), we get that there exists a constant C
depending on the various parameters so that

Hf(n+1)r(2n+1)/2HLz(wo) <CA, < Apiq,
B g gy < CAp < Apa,s
||§(”+1)r(2”+1)/2HLz(o,ro) <CA, < Api1.

Then, the bound holds for n 4 1, and so by induction the bound holds for all
n > 1. O

3.3. Modified variational problem when m # 0

In this subsection, we will first introduce the definition of function space Y, , and
its properties, then prove the instability for any m # 0 and any k € Z.
First, let us introduce the definition of the space Y, j.

Definition 3.2. The weighted Sobolev space Y, 1 is defined as the completion of

{(&m,¢) € ([0, m0]) x C>([0,70]) x C*([0,70])[£(0) = n(0) = ¢(0) = 0}, with
respect to the norm

7o 2 26 2 2
IEm Ol , = /O K—%' +E4 T kn) + (5' JE e kn)

r r

, E m : ;. C,m : / 2
+ (5 +—+—<+2kn> + (—C +—+—£) + (" + k)
T T T T
To 2
+ (%n—kgﬂ rdr—i—/o <5’+§+%g—kn) rdr
" / € P+ Pyrdr, (3.52)
0

Applying Definition Lemmas and [3.7] similarly as Proposition we
can get the following compactness results.

Proposition 3.8. Let m; for = 1,2,3 denote the projection operator onto the ith
factor. Then m; : Y, p — Z; is a bounded, linear, compact map for i =1,2,3, with
the spaces Z1, Zy and Zs in (3.16). We denote them by Yy, , CC Z; fori=1,2,3.

Now, we consider the case m # 0 and any k € Z. We need to consider the energy

227 and (3.24).
First, we can show that E,, , and J are well defined on the space Y, X
H(ro, 7).

Lemma 3.11. E,, ; and J are well defined on the space Yy, 1 X H(rg, 7).
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Proof. By Lemmal[3.6] and Proposition [3.8] similar to the proof of (3.25), we also
have by Definition[3.2] that

ro
/ pE2dr
0

<CT + &, Ol . (3.53)

which implies that
B n.¢, Q)]

0 2
<cg+clenol,, +c [ B [ﬂ (re) - 25)] rdr

r o om2+ k2r2
2
+C/ [ (re) +m7§] dr—i—C/ 952d +C/ _g &—rg)dr
2 2
+c/ l( 2 + 2 Sy kn) (5——5—2—”’@ k)
r
;€ m : ;¢ m ?

+<5+—+—§+2lm) +<—c +—+—5>

rooor roor

T0 2

rdr—l—C/ (fl—l—g—k%é—kn) rdr

0

~ _ To
Ol ey + CUAG [ plnrar
0

o+ ke + (T k)

< ClEm O3, + ClQrla(ro,ra)-

Therefore, E,,  and J are well defined on the space Yy, x H*(rg, ). O

Consider the set

e {((f,mc),@) € Yo x H(ro,7)T (€1, 0) =1,}
2 — )

= ~ ~ (3.54)
mBe =rQ, at r=1ry and @Q,=0atr=r,

where the functions &, n and ( are restricted to (0,79), and the function Q. is
restricted to (rg, ). Then, we write
Ms):= b B (€0, Qs s). (3.55)
((€,1,0),Qr)EA2
We want to show that the infimum of E,, 1(&,n,C, @T) over the set A is achieved
and is negative and that the minimizer solves (3.11) and (BI12) with the corre-

sponding boundary conditions. First, we prove that the energy E,, ; has a lower
bound on the set Ay and the coercivity estimate holds.

Lemma 3.12. The energy Em7k(£,77,c,@7,) has a lower bound on the set Ay and
any minimizing sequence s bounded in Yy, 1.
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Proof. Similarly as (3.29), we can get from (2.27)) that for any ((£,, (), @T) € As,

—~ - To T0
Bk (€,1,¢,Q,) > 272 min(£, 0) / *rdr + 4n? / P E2dr. (3.56)

0
By Lemma choosing 0 < s9 < % small enough such that C'sg < 4, similarly as
(3.30) we deduce that

S0
/ pE2dr
0

On the other hand, from the definition of 7 and Lemmal[3.7] choosing 2 <s1 <19
close enough to ¢ such that C(rg — s1) < %, we can prove

51
/ pE2dr
50

| R
< CJso+ §7r2 min(g, 5)/ ¢rdr.
0

gc/ 2dr < CF
S0

d/:g(r)dr
<c/ (/ |db>dr+0/ (/ |§||r0—s|ds>

X 1112% —In(rg —r)|dr
To 712 To 27‘0
<CJ(ro—s1)+C €)% |ro — s|ds hl? —1In(rg —r)| dr
= 81
< CJ(ro —s1) +C(ro — s1) /TO €' [P|ro — slds
< CJ(ro — s1) + 2C(ro — 51)72 min(é, 5)/ f’zrdr
0
]. 2 . ~ = o /2
<CJ(ro—s1)+ 37 min(é, J) & rdr, (3.57)
0
where we have used the facts
[, 16710~ slds
0
T0 T0 - 70 9
S/ |f’|2rd7"+/ 1€ Prodr < 2C7° min(é, 0) & rdr
32 2 2
~ 70
< 2C7? min(é, §) / ¢rdr. (3.58)
0

Hence, we can get

En (&, ¢, Q,) > 2 min(é, 5)/ i *rdr —3CT > —3CJ, (3.59)
0
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which implies that the energy E,, (£, 7, ¢, @T) has a lower bound on the set As.
Now, we prove the coercivity estimate. Using the facts that 7 =1 and E), ; has a
lower bound on the set A2, we can choose a minimizing sequence such that along
the minimizing sequence, we have M < E,, 1.(&n, W, Cns @m) < M + 1, and for the
minimizing sequence, we can prove coercivity estimate:

||(§n777n7<-n)”§/mk + ||@rnHH1(r0,rw) < CJ + C(M + ]-) < C. O

From Lemma and Proposition [3.8] we can show that £, achieves its
infimum on the set As.

Proposition 3.9. E,, ;; achieves its infimum on the set As.

Proof. First from Lemma [3.12] we have that E,, ;. is bounded below on the set
As. Let ((fn,nn,gn),@\m) € Ay be a minimizing sequence. Then (&,,n,,(,) are
bounded in Y, (see (3:52)), and Qrn is bounded in H (ro,mw), so up to the
extraction of a subsequence Yy = V'm? + k?r2|By|[ 1= — m2+k2r2 ((rén) —26,)|rz —
Y = vVm? 4 k*r?|By|[ — W((rf)' —28)]rz weakly in L2, and &, — &, 7, — 1
strongly in L? from the compact embeddings in Proposition By weak lower
semi-continuity, since 1, — v in the space L?(0, 7o), we get

| [2 R 2@] v

m2 + k2r2

70 2
- 2 2 2\ n2 | n k
< hmlnf/0 (m* + k°r°)B; {7 ) ((rén)" — 2€n)] rdr

n—oo

Because of the quadratic structure of all the terms in the integrals defining E,, 1,
similarly dealing with the other positive terms by weak lower semi-continuity, strong

L2(0,70) convergence in Proposition[3.8]and Q,, — Q, strongly in L%(ro, ), we
deduce

Em,k(f» 7,¢, @r) < lirginf Em,k(fn» My Cns érn) = ij‘lf Em,k'
n oo 2

All that remains is to show that ((ﬁ,n,C),@r) € A. The fact that &, — &,
Nn — 1, Cn — ¢ strongly in L? from the compact embeddings in Proposition [3.8]
implies that J(&,n,¢) = 1, so that ((£,7n,(), Q) € Az. We complete the proof. O

We know that £ = se and & = sd are smooth, and bounded from above and

below by positive quantities for fixed s > 0. Now, we prove the infimum of E,, j
over the set Ay is negative, if there exists r* such that 2p/(r*) + w < 0 for

m # 0.

Proposition 3.10. If there exists r* such that 2p'(r*) + % <0 form #0,
then for any fized large k = ko and any fized m # 0, there emsts constant sg > 0
depending on €,0 and ko so that for s < sg, it holds that A = inf E,, ;, < 0.
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Proof. Since both E,, ;, and J are homogeneous degree 2, it suffices to show that

~

inf Em,k(§7n7C7Qr)

<0.
(€11,0,00))EYm kX H (royr) T (§:1,C)

~

Since J is positive definite, one may reduce to constructing ((£,7,¢), Qr) € Y i X
H'(rp,7) (see (3:52)), such that

Eme(év , Cv @\7’) < 0.

From the assumption in Proposition[3.10l we can choose a smooth function £* €
C°(0,70) such that

To 232
271'2/ [2p’ + u} &2dr < 0.
0 T

Then, we can assume that n* = % and ¢* = Z(kn* — L(r&*)’), such

that the first and second terms of E,, (&, n*, ", @j) in (2.27) vanish, that is,

"o B —kBy(re*) + 2kBpt*]?
2 2 2,2 0 x 2
27 /0 (m* + k°r ){777 + Sy Ko rdr =0,

)
mg ] rdr = 0.
r

T0 1
27T2/ P {—(Tf*)’ —kn* +
0 r

Here, £, n* and (* are smooth functions and belong to the space Y, 1.
Fix k = ko large enough and fix m = my, and choose @) = 0 so that
2

To m2B2 1 To m2B
2 2 2] * s/ 2d < _Z 2/ 2 / 2] *Qd
T /0 r(m? + k%r?) (& —rg")dr < 2" 0 Pt r §dr,

v o~ 1 A
27r2/ [ler2+ 7m2+k2r2l(r@>’l2} rdr =0,
0

and from £* € C°(0,79), n* = % and ¢* = Z (kn* — 1(r£*)’), we know
that

o |9 * 2 9 2% 9 2
e [ [ B o3 -
0

r r
r r

* 2 * 2
9 r r

2 To
F + kE)? (%n - kg*) rdr + 27r2(5/0

* 2
X (f*/ + . + %C* - kn*) rdr < C.
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Therefore, we get for k = kg and m = myg that

EnL,k(€*7n*7 <*7 Q:)

ro * 2
:27T2/0 El3< 25*/4—5 TC —kn*>

2 26% 2 2
+§<f*/—i——m§*—lm*)
T T

2 */ 5* ? s/ C* m* ? */ *\2
§<f + ==+ C + 2kn ) +<—C +7+7§> + (" + k&)

) v \ 2
+ (@n* - kC*) rdr + 271'2/ (f*l + = f C - kn*) rdr
r 0 r

2

0 232 0 2B
—|—27r2/ ST k) ™ g (& —rf*/)er+27r2/ {2p'+ '} 0] & 2dr
0 0 r

r(m?2 + k2r?)
Two [ 1 N
2 *|2 *\/2
v2rt [ |G + s 000 P e

70 2 2
ssc+%w2/ {2 L M5 }é”d
0

Then there exists sg > 0 depending on g, § and kg, so that s < sg, it holds that
. 70 2B2
E(¢) < 7r2/ [2 + }5*% <0,
0

which implies the result. O

We now prove that the minimizer constructed in the previous result satisfies
Euler-Lagrange equations equivalent to (8:11) and (3.12) with suitable boundary
conditions.

Proposition 3.11. Let ((f,n,C),@r) € Ay be the minimizer of E,,  constructed
in Proposition[3.91 Then (f 1,¢) are smooth in (0,79) and satisfy

dop+Bid B2 d o 2kBZ dm
QT By, —B - 2 B2) - am
- r  dr 6"\ T2 dr (fyp + 9) ar v P
k(yp+B2) d  2kB} m? mk
MANE N (R —k? B} - —B; —
P (w+By) - 5By ——w
_mypd mk _m?
= P aly
13 a1 aiz a3\ [§ §
X |n|+ a1 ae ass nl=-pX|n| (3.60)

¢ azy Gz ass ¢ ¢
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with

E <\ dm 2m g < d E =\ Kk
ng—(§+5)%7—r—2, Q21—(§+5)k%+<§+6>;,

2  £d 2 (4E I
am:g_+§_-gm—2_(g+5)k2, m:(m mk.

_ (g \md _(TE 5\m _ (S 5\ ™k
431 = 3 r dr 3 2 273 r’

_d? _d1 46 N\ m?  _,
&33—€W+€%;—<§+6)—2—€]€ .

The solution @T is smooth on (ro,r,) and satisfies

/
r ~ .
|:m2 + k272 (T‘QT)/:| —Qr =0, (361)
with the other two components Qp = _W(T@r)/ and Q, = _mz—ﬁerQ (T@r)"

Moreover, the solution (§,7,() and @T satisfy the interface boundary conditions
B3¢ — B3€'r + kBjnr — ByQorln
—&(2&'r, —iC'r +imé + i, in'r + ikér)T

_ (5 — %g) [Er+&+ml—knrin=0, atr=ro. (3.62)

Proof. Fix ((£0,70,C0), @) € Ymk X Hi(ro,7w) (see (3352)), and satisfy m§9£0 =
rq, on the boundary r = ry and ¢, = 0 on the boundary r = ry,.

Define
j(t77—) = j(£+t£0 +Tf»77+t770 +T777<+tC0 +TC)

and note that j(0,0) = 1. Moreover, j is smooth,

%(o, 0) = 2n° /0 " 2p(60€ + o+ GO

0j ro
—](0,0) = 271'2/ 20(E2 +n? + )rdr = 2.
or 0
So, by the inverse function theorem, we can solve for 7 = 7(¢) in a neighborhood
of 0 as a C! function of ¢ so that 7(0) = 0 and j(¢, 7(t)) = 1. We may differentiate
the last equation to find

9j 9j 1) —
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hence that

0 ro
7(0) = ~5 5 (0.0) = ~2¢ [ gl + mon+ GO

Since ((£,1,¢),Q,) is the minimizer over the set Ay, we may make variations with
respect to (€o,m0,¢p) to find that

| B+t + 700+ tno + 780, ¢ + 1o + T(1)C, Qr +tg, +7Q,),
t=0

which implies that

0 = 472 /OTO Bj B(rﬁ) —kn— %} (r&o)"dr

war? [Cap | 106 < kn+ 7 oy

0=

sz(g] §&odr

To 1 2 To
+ 47r2/ 2B} {kn - ;(rf)' + 75} Eodr + 47r2/ [2;0’ +
0 0

0 1 —k(re) +2k¢ o
4 2 2 k2 2 32 - d 4 2/
+4m /0 (m* + k“r°)B; 1 + I | + 47 ; yp

X [%(Tf)/ — kn + mTC] (—knor)dr + 4772/0 ' yp [%(Tf)/ —kn + mTC]
meodr+4ﬂ2/T0{ ( 550—5504-@)4—( +5)§€or
0 3
2 v
+§<m_2+k2) E&or +6 <5§0+550+ @)}dr—kéhr?/
" 0

. { - +5> megs + (735 +5> 2o — &'y + (23—5 —5) Fnéor

+ (25 — 5) kné&o + én/kfor} dr + 47? /T0 {(5 - —) &'mlo — emE(
0

T - ro ro
+4 dr — 472 5 k dr + 4
(5 +8) Feanpar—azt [ (545 bmcoar 42 |

N
> {(43—8 +6) CCo + EK*Clor — E¢'¢o — E¢¢ +5@ +&¢ Cor}
_|_

|

+
wl
SE

3

- 28 -
+ 42 — 6) k& nor + (g — 6) k&no + ék&n{)r} dr
5) k2 nnor + 5m777770 + 577'7767“} dr — 4n? / (g + 5)
0

Tw . 1 .
2
x kmCnodr + 4w /TO g [qur + m(r@ﬁ'(rqﬁ'} rdr + 27/ (0)\.

+ 472

el el |

Il
Il
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Since &y, 19, o and ¢, are independent, we deduce

/TO B} [l(rf)' —kn — %} (r&) dr + /TO vp [ (r&) —kn+ m_(} (r&o) dr
o r r 0 r

—|—/02B§ [kn—%(rf)'—ki—é} fodr—F/o{ m’Bj :|€€0d7‘
0 0
To 2
+/0 {2 ( ffo_ffo"‘@)"‘(g +5>§50 +E<m_2 k2)§§0r
o (/2 - % -
ri(gareg+r S hars [(-F 1) meg+ (T +5) Tes

—&C'mé&y + (%6 — 5) knéyr + (23—5 — 5) kn&o + én/kﬁor} dr

Tw Y 1 o T0
+ /T0 |:qu7- + m(rQr)/(rqr)/} rdr = /0 p/\f()f’r‘d’r‘, (363)
o 1 —k(re) + 2ke
2 2.2 2
/0 (m + k°r )Bg |:;’I7+ W nodr

T0 1 T0 2~ _
+ / P [—(7"5)' —kn+ m—c] (—knor)dr +/ {(—6 - 5) k& nor
0 T r 0 3
26 ¢ To (/48 - 2
+ (EE — 5) k&no + ékfnf)r} dr + / {<§ + 5) E2nmor + 5m77m0
0

To =~ - To
+ 577'7767"} dr — / (% + 6) km(nodr = / pAnonrdr, (3.64)
0 0

[ ey =+ 2 g [7(5- 5 ) emea - emecs
7E B To ~ 70 AZ B
+ (g—i—(;) ?fCo}dr—/O <6+ %) knm(odr—i—/o {(;—i—&)

2 T0
X mTCCO + 5/€2CCQT‘ —&C'Co — ECC) + 5@ +&C COT} dr = /0 PAoCrdr.
(3.65)

By making variation with &y, 79 and {y compactly supported in (0,7¢), and make
variation ¢, compactly supported in (rg,7,), one gets that £, n and ¢ satisfy
in a weak sense in (0,70) and Q, solves (3.61) in a weak sense in (ro, 7).

Now we show that the interface boundary conditions (3.62) are satisfied. Since
from Proposition [3.8] we know that (£,1,¢) € L%*(0,79) x L?(0,79) x L%(0,70),
which together with (£,7,() € Y1 (see (352), gives that (&,1,¢) € H' (%, o) X
H'(%,rg) x H'(%,r9). We make variations with respect to &, no and ¢y €
C(0,70], g» € C[ro,mw). Integrating the terms in (3.63)(3:65) with derivatives
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of &o, gr, mo and (p by parts, using &, n and ¢ solve the system (3.60) on (0, ry) and
Q. solves (3.61) on (rp,7y), we get that

5 (oo k=T ow| [ (feor -t 2 0w)]
- {r f o (TQT)/@]T_TO + K%E + 5) &'éor + (5 - —) &o

+ (5 - 23—5> mc€o + (%5 - 5) knfor] . =0,
E(m'r 4+ kéryno =0,  &('r — ¢ —m&)¢ = 0.

Since &y, 1m0, (o and ¢, may be chosen arbitrarily, and qr ¢ satisfies mBgfo = rq, on
the boundary r = rg, using B3 (r¢)’ = B2 + Bypé'r and Qg W(T‘Qr) we
deduce the interface boundary conditions (3.62). This proves the result. O

Now, we establish the continuity and monotonicity properties of the eigenvalue
A(s).

Proposition 3.12. Let X : (0,00) — R be given by (3.53). Then the following hold:

(i) A e CY((0,00)), and A € CO((0,00)).

loc
(ii) There exists a positive constant Cs = Cs(ro,J.,€,0, m, k) so that

A(s) > —C + sCs. (3.66)

(iil) A(s) s strictly increasing.

Proof. Fix a compact interval Q = [a,b] CC (0, 00), and fix any (£, 70, C0), Qro) €
Ay. We can decompose E,, i, as follows:

EM,k(fv , Cv Q\T; S) = Egz,k(f? , Cv Q\T) + SE7171,1€(§7 m, C)7 (367)
with

Em,k(fv , Cv Q\T)

" l 2
- | {<m2 k) [%m —kBo(rt) +2kBe£}
0

m2 + k212

¢ 2 o 232 )
+’yp{ (re) — kn + "ﬂ }rdr+27r2/0 7&7&“2)(545 )2dr

T0 2B Tw - 1 .
22 9 2d ) / 'r2 'rl2 d7
+ w/o [p+ ]f rea | g[IQI t o gy Q) rdr
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r

70 2 2
By (&m,0) = 27r2/0 € lg <—2§’ +E4 %g —~ kn)

2 2
+2<5’—%—2—m§—lm) +g<§’+§+@c+2kn>
9 r r 9 r r
+ —<’+§+@£ 2+(’+l<:§)2+(m —k<)2 rdr
T r K 7"77
To 2
+27r2/ 5(5’+§+@c—lm) rdr > 0. (3.68)
0 T T

The non-negativity of E}n . implies that F,,; is non-decreasing in s with
((€,1,0),Q,) € Ay kept fixed. By Proposition[3.9] for each s € (0, 00) we can find
a suit ((&,7,(),Qr) € Az so that

Em,k(€Svnsa<syér5§5) = inf Em7k(57777<7Qr§3) = )‘(3)

((¢:m,0),Qr)EA

From the non-negativity of E%Lk, the minimality of (§s,ns,Cs,@m), and for 0 <
So < To
2

Enad6cn 6.0 22 [ o[ oey| rar -0 2 g o)

S0

which can be established from Lemma 3.17 of Ref.[I] using Lemma [3.9] we have
B i(€0, 10, G0, @103 0) = Erm (€0, 70, Co, Qros 8)
> Bk (Ess M5, Coy Qrsi 8) > B, 1(E6,75.Cs) — C,
for all s € @. This implies that there exists a constant
0 < K = K(a,b,&, 0, o, Qro, 7, L, ) < 00
so that
sup B}, 1. (&,7s,(s) < K. (3.70)
s€Q
Let s; € Q for i = 1,2. Using the minimality of (€513 751+ Cs,), Qrs,) compared to
((€s25755+Cs3)s @rsy ), we have
A(51) = B i (€sy s sy Cors @rsyi51) < Bk (€ss Msys Coas Qrsgi s1), (3.71)
which together with gives that
B (Esy s Msa s Coar Qrag: 51)
< Epno(€oas Moz Goas Qroai 52) + 151 — 82| By (6o s Coa)
= A(s2) + |s1 = s2|Epy o (Esa sz Gsa)- (3.72)
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Combining (3.70)—(3.72), we can get A(s1) < A(s2) + K|s1 — s2|, which shows that
(i) holds.

Now, let us prove (ii). Note that (3.69) and the non-negativity of £}, , imply
that

)\(8) >5 ln,f E’rln,k(57 m, C) - 07
((€,1,€),Qr)EA2

?vhere. We denote the constant Cs = inf((s,n,C),@r)eAg E}n’k(f, 7, ¢) and this constant
1S positive.

Finally, we prove (iii). Notice that if 0 < s1 < s2 < 0o, then the decomposition

(3.67) ensures that
)\(31) = Em,k(§s1 y Ms1s Csl ) Qrsl 5 31) < Em,k(fm y Msas CSQ ) QTSQ; 51)
< Em,k(gm y Nsas CSQ ) QTSQ 5 32) = /\(52)~

So A is non-decreasing in s. Suppose by way of contradiction that \(s1) = A(s2).
Then, the above inequality implies that le}an(ﬁs2 s Msgs Cog) = 82E}n’k(552  Mszs Csn)s
which gives that E}n’k(fswn”,(&) = 0. This in turn implies &, =75, = (5, = 0,
which contradicts that ((552777527@2),@”2) € A,. Therefore, equality cannot be
achieved, and A is strictly increasing in s. O

2 2 *
If there exists r* such that 2p’(r*)+ % < 0 for m # 0, by Proposition[3.10]
we can get the existence of s.

Remark 3.2. Define the open set S = A71((—00,0)) C (0,0), then we calculate
it =+/—X > 0. The open set S is nonempty by Proposition [3.10]

. * 10 % m2B2(r*) L.
If there exists r* such that 2p’(r*)+——%"— < 0 for m # 0, by Proposition[3.10}

r*

we can prove the uniqueness of s on the open set S.

Proposition 3.13. There exists a unique s € S so that u(s) = V=X > 0 and
s = u(s).

Proof. From Proposition[3.10] we know that there exist two constants Cy > 0 and
Cy > 0 such that A(s) < —Cjy + sC1. On the other hand, the lower bound (3.66)
implies that A(s) — 400, as s — 0o. Since \ is continuous and strictly increasing,
there exists s* € (0,00) so that

S = A"((—00,0)) = (0, 5%).

Since A < 0, on the set S, we can define u = 1/—\(s). Now, we define the function
O : (0,5*) — (0,00) according to ®(s) = 757+ So @ is continuous and strictly
increasing in s from the continuity and monotonicity properties of A\. Moreover, we
know that lims_,o ®(s) = 0 and lims_, s P(s) = +oo. By the intermediate value
theorem, there exists s € (0, s*) so that ®(s) = 1, that is, s = u(s). This s is unique
since @ is strictly increasing. O
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Finally, we establish the regularity about &, n and (.
Proposition 3.14. Let (£,1,() be the solutions to (3.60), then there exists A, such
that

||§(n)7,,(2n—1)/2 HLz(O,ro) < An7

||,',’(7L),r,(2n—1)/2HL2(07T0) < An7 ||C(n)rn||L2(0,r0) < An

with A, depending on rq, k,m and the pressure p.

Proof. From (£,7,() € Y, and the compactness results in Proposition [3.8] we

can get (£,1,¢) € L*(0,70), (V7€' /i ,v/r('s 2, (5 + B8)\/r) € L*(0,70). From
the system (3:60), we can get

)

L2(0,70)

€2 20 < C (€ €V VR VR (€48 ) V)

)

L2(0,r0)

I a0y < C (é,n,é, NN %)

16l < € .6, v7E Vi (£ 4 T 07)

L2(0,r0)
By induction on n. Suppose for some n > 1,

Hf(n)r(zn*l)/?||L2(o,r0) < A,,

Hn(n)r@nil)/?||L2(O,r0) < An; Hc(n)rnHLQ(O,ro) < An

By Remark[3.2] then differentiating (3.60), we get that there exists a constant C
depending on the various parameters so that

Hf(n+1)r(2n+1)/2HLz(wo) <CA, < Aniq,
B g gy < CAp < Apa,s
IV 20,y < CAp < Ay

Then, the bound holds for n+ 1, and so by induction the bound holds for all n > 1.
O

4. Lower Bound of the Dissipation Rate D,,  in (2.33)

In this section, we will prove the lower bound of the dissipation rate D, ; defined
in (Z.33) and the existence of the biggest growing mode for any (m, k) € Z x Z. For
notational simplicity, we use o(1) and O(1) to denote constants independent of k
and m to be 1. First, we introduce the following lemma which will be used in the
proof of Proposition[4.1]
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Lemma 4.1. For any function (f1, f2, f3) € X or Yo, i (see (3.13) and (3.52),
there holds that fori=1,2,3

1
2

ff(rg) <2 (/mo |f1|2dr> (/mg |f{|2dr + /r_oo |fl|2dr> , (41)

2 2

ol < ot0) ([ 15iPrar) " o) ([ sierar) L

Proof. We choose the smooth cutoff function ¥(r), satisfying 0 < ¥U(r) < 1 for
r € [Z,r0], ¥(r) = 0 for r € [0, 2] and ¥(rg) = 1. Then we can prove that for
i=1,2,3

2 . o X Y o 42 r % o 4/2 r %
o) =2 | (w»(xlffl)drsa(/o wmd) (/ |<wl>|d)
<> (/ |fi|2dr> (/ s [ |fi|2dr>

2
For 0 < r. < 79 we choose the smooth cutoff function ®(r) with support in
(

N

(fo, =70 gatisfying 0 < @(r) < 1 for r € [, Z220) ®(r) = 0 for r €
[0, 2] U [2=£ o] and ®(r.) = 1. Then we can show that for i =1,2,3

1
rx+ro 2

fAr) =2 /0 C(@f@fydr <2 ( /0 = I‘I>fil2dr> % ( /0
<2 (/T_D$ |fi|2d’l"> (/T_D% |f1|2dr + /T_Dw |fi|2d7”>%

rs+7ro rx+70 Tx+1r0

< (/_ 2 (/_ T ifiPrar+ [

70 T0
<o) [ IiPrdr+0W) [ plfiPrar
0 0

|(‘I’fi)'|2d7”>

[N

1 1
2 2

P|fi|27“d7“> P|fi|27”d7”>

[N

Hence, for (rg — r«)2 = o(1), we get

|fi(ro)| < [fi(ro) — fi(r:)| + [ fi(r)]

< ( / fﬁdr) * o — )t + o(1) ( / K |f;|2rdr) 2

+0() (/00p|fi|2rd7‘)2
<oty ([ 1sPrar) o) ([ slsirar)” .
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Now, we establish the lower bound of the dissipation rate D,, j in (2.33)).

Proposition 4.1. Assume that 0 < p < C, J = f (&2 +n% + P)rdr = 1, when
=0, (&n,¢) € Xi, and when m #0, (§,n,¢) € Ym,k Then for any |m| # 1 and
ke,

Do Z (€0, VTl L2 + K2+ m? = O(1). (4.3)

For|m| =1 and any k € Z,

T0 1
Do Z € IR+ 2+ [ Lofar
0

(MY o), (4.4)
[ (G5)

Proof. We can estimate the dissipation rate D,, ; as that

2

To |9
Dy > 2w min(e.) [ lg (—25/ bEeme kn)
2
42 <§’+§+@g—kn>
9 r r

2
+ 272 m1n€§ l; (f—i— + C—l—?kn)

rdr

9
w3 (et e kn)
[2 om 2
4272 m1n56 —(f' ———C—k’n)
0 9 T
2
<§+ + C kn)]
0 2 2
+27r2€/0 K—g’+%+%§) +(n’+k£)2+(%n—k§)1rdr
E(s/m g STy L
3 0 r T K

0 To
> 2% min(e, §) / ¢*rdr + 27 min(e, 6) / E*n?rdr
0 0

2. " £, m ’ 2 [ 2
+ 27 min(g, 9) . + " ¢ | rdr+ 2em (0" + k&) rdr
0 0
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+2€7r2/0m (?n—kC)2rdr+2w2€/or ( ¢ +<+m£>

272 s & m 2
(4.5)

where we have used the facts that a®+b? > 1(a— b) with a = 2§’+ + (¢ —kn,
b= €SB a = €4S+ BCH 2k, b= &+ E4 B¢ hpsa = &~ B _2mC_fy,
b=¢&+ 5+ 2~ kn.

Now, we prove our result by the following three cases.
Case I: when m = 0, the estimate (£.3) holds.

From (45), we can get

T0 TO ¢2
Do > 27 min(e, 6)/ ¢*rdr + 272 min(e, 6)/ 5—alr
0 0

r

T0 2 o
i 271_25/ (—C/ + %) rdr + 272 min(e, §) / k*n*rdr
0

0
0 To
+ 2e7? /0 k2CPrdr + 2em? /0 (0 + k&)?rdr. (4.6)

Since the minimizer (&,7,() € X, Definition [3.1]implies that £(0) = 0. From
Proposition[3:3] we know that [ nrdr and [;° n?dr are bounded, which shows
that (nr)’ € L?(0,70). So, we get that nr is well-defined at the origin r = 0.
Therefore, the boundary term nkér|,.—o = 0.

Then we can prove from integrating by parts that

T0 0 0 0
"+ k&) rdr = n?rdr + K2Erdr + 2 0 k&rdr
o 0 0

0

0 70 0 To
= / n?rdr —|—/ k22 rdr 4 2nkEr|p—r, — 2/ k& rdr — 2/ nk&dr.
0 0 0 0
(4.7)
Notice that

T0 T0 T0
‘—2/ nk& rdr §/ k2n2rdr—|—/ &2 rdr,
0 0

70 70 52 70
’—2/ nk&dr g/ dr—i—/ k2 rdr.
0 o T 0
70 To To
5#2/ (0 + k&)*rdr > 5#2/ n?rdr + 5772/ k22 rdr 4 2em*nkér| ey,
0 0 0

0 0 ro ¢2
— 2em? / k*nPrdr — en? / ?rdr — en® / €—dr,
0 0 o T

Then, we have
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which gives that
)
€7r2/ (0 + k&)*rdr > €7r2/
0 0

+ 2em?nkér|p=r, — O(1) Do . (4.8)

On the other hand, since the minimizer (£,7,() € Xk, Definition [31] implies
that ((0) = 0. Therefore, we get

0 C 2 70 <2
67‘(‘2/ <—</ + —) rdr = en® / (C/QT + _> dr — €7T2<2|7’:7’0'
0 r 0 "

which combining (L8] with (48), we deduce

To

ro
n?rdr + €7r2/ k2&%rdr
0

o To ¢2
O(1) Do, > 27* min(e, 5)/ ¢?rdr + 27 min(e, 5)/ 5—alr
0 0

r

T0 ro
+ 272 min(e, 6) / E*n?rdr 4 2en? / K22 rdr
0 0

0 0 T0 2

+ 2e7? / n'2rdr + 2em? / k2E%rdr + 2em? / (C'Qr + %) dr
0 0 0

+ 45W2nk£r|T:T0 — 2E7T2<2|T:T0.

The remaining thing is to deal with the boundary terms.
By (£2) in Lemmal[ZI] we get

| = 2em2C?|pry| < 0(1) / Prdr +0(1)J. (4.9)
0

Using (4.1) in Lemmal[4.1] and Cauchy inequality, we have

|4C€77277k€7'|rzro|
1
o o o 4
< 8croken? / |n|2dr / |77'|2d7“+/ |n|2dr
7 2 7
1 1
e\ " e e\
< [ tepar) ([ Crepars [ lepar
2 2 2

FST

2
1 1 1 1
T0 4 ro 1 0 1 ro 1
< 8croem? (/TO |k77|2dr> (/TO |kf|2dr> (/TO |77'|2dr> (/TO |£'|2dr>
7 7 7

2

+ 8croem? (/ |kn|2dr> (/ |§|2dr> (/ |§'|2dr>
o o o

+ 8croem? (/ |77|2dr> (/ |k§|2dr> (/ |77'|2dr>
o o o

2 2

ESEY

W=
FST
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1 1
To 2 T0 2
+ 8croem? (/TO |kn|2dr> (/TO |§|2dr>

2 2

o ro To 0
< o(1) (/ n2rdr +/ k2§2rdr> +0(1) (/r |kn|2rdr+/ §'2rdr>
0 0 o o

2

To T0
<o(1) (/ n?rdr +/ k2§2rdr> +O(1)Do ,
0 0
(4.10)
where we have used the facts that for any function h and k # 0, it holds that

T0 2 T0
h2dr < —/ k2h2rdr.
7“0 0

ro
2

Then by the steady density 0 < p < C and J = [;° p(£* +n* + (*)rdr = 1, we can

show that
2

0 o
O(1)Do 1, > 2 min(e, 5)/ leTdr + 272 min(e, 5)/ €7dr
0 0

To 0 o
+ 27% min(e, 5)/ E*n%rdr + 25772/ K2CPrdr + 5#2/ o 2rdr
0 0 0

r

0 To 2 2
+5772/ k2€27‘d7’+5772/ (C/2T+ : )dT—O(l)j
0 0
ro
> 7% min (20, 5)/ &2+ 0%+ P)rdr
0

+ 72 min (26

2o )@ [ o e+ rar - o)

0
= 7% min(26, 5)/ (€% + 0 + (*)rdr + 7° min (2—5, %) k* —O(1),
0

which implies that (Z3) holds.

Case (II): when |m| = 1, the estimate (4.4) holds.
From (4.5), we have

Dy, > 2" min(e, 5)/ ¢*rdr + 27 min(e, 5)/ k*n?rdr
0 0
.
9 70 m 2 ) 70 , C m 2
+2em (—n—kz() rdr + 277 — 2+ —=¢) rdr
o 7 0 roor

2 2 70 2
+%6/0 (§’+§+%g—kn) rdr, (4.11)

T0 2 To
+ 272 min(e, 6) / (5 + mC) rdr + 2cem? / (1 + k&)?rdr
0 r 0
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with small constant ¢ < 1 (to be determined). When |m| = 1, using that 2(a®+b%) >
(a —mb)? with a = % +2Cand b= —¢ + % + ¢, we can get that

To
Dy > 7 min(e, 5)/ ¢?rdr. (4.12)
0
The term [;°(Zn — k¢)*rdr can be estimated as
ro 2 To 1 To ro
/ (@n— kC) rdr :/ —n2dr+/ k2CPrdr —/ 2mnk(¢ + mé&)dr
0 r o T 0 0
70 T0
+ / 2n(n" + k&)dr —/ 20 dr
0 0
T0 1 T0 T0
— / ;ner +/ k*CPrdr — / 2mnk(¢ + mé)dr
0 0 0

)
4 / (1] + KE)dr — 12 ly—ry + 72(0).
0

Note that
T0 T0 2
§/ k2n2rdr+/ 7(C+m§) dr,
0 0

r

’— /TO 2mnk(¢ + mé&)dr
0

‘/0 2n(n' + k&)dr

L (™1, . 2

< = —n7dr + 2 (0 + k&) rdr.
2/ T 0

When |m| = 1, we have

[ me? [ mo)?
0 0

r r

Then, we get
T0 2 T0 1 T0
2571'2/ (ﬂn — kC) rdr > 571'2/ —ntdr + 2571'2/ E2C2rdr
0 r o T 0

T0 T0 2
— 2£7r2/ k*n?rdr — 2en? / 7@ +me) dr
0 0

r

ro
- 4&‘7‘(‘2/0 (0 + k&)?rdr — 2em®n?|r=ry,
which implies that
T s 2 To | )
267‘(‘2/ (—n — k() rdr > 67‘(‘2/ —ner+2£7r2/ k2CPrdr
0 r o T 0

—2em®0?|p=ry — O(1) Dy 1. (4.13)

We now estimate the term cen? [°(n' + k&)*rdr. Since the minimizer (£, n,¢) €
Yok, Definition 3:2] implies that £(0) = 0. From Proposition [3.8] we know that
Jo" n*rdr and []° n*dr are bounded, which gives that (nr)’ € L*(0,7q). So we get
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that nr is well-defined at the origin r = 0. Therefore, we prove the boundary term
nkér|r=o = 0. Similarly as (£7), we have

C/ (0 + k&)*rdr = C/ n?rdr + c/ k2 rdr + 2c/ n'k&rdr
0 0 0 0
= c/ n?rdr + c/ k2 rdr + 2enkér|p—r,
0 0

70 To
— 2c/ k&' rdr — 2c/ nké&dr.
0 0
Notice that

o
‘—20/ k& rdr
0
o
’—20/ nk&dr
0

To To i)
ce7r2/ (n' + k&)?rdr > c€7r2/ n?rdr + gETFQ/ k& rdr + 2cem?nkéry,
0 0 0

0 To
< c/ E*n?rdr + c/ &%rdr,
0 0

1, c [ 2.0
< 2c —ndr + = k=& rdr.
o T 2 Jo

So we deduce

T0 To To 1
— cem? / E*n?rdr — cer? / E?rdr — 2€7r2c/ —n?dr,
0 0 o T

which gives that

o
cs7r2/ (n + k&)?rdr
0

70 T0
> cs7r2/ n?rdr + g€7r2/ E2E2rdr + 2cem®nkér| =y,
0 0

T0 1
- 2571'26/ ;ner —O(1)Dy, . (4.14)
0

Choosing the constant ¢ small enough such that ¢ < %, by (4.11), (4.13) and
(4.14), we can show that

To 1 0 ro
OM) D = 87T2/ —n’dr + 2€7T2/ k2P rdr + 2cs7r2/ n?rdr
o T 0 0

70 T0
+ cem? / k*E%rdr 4 2% min(e, 0) / &Prdr
0 0

ro 2
+ 272 min(e,d)/o (§ + m7<> rdr — 20| r=r

,
0
+27% min(e, §) / E*n*rdr + dcem®nkér|p—r, - (4.15)
0

The remaining thing is to deal with the boundary terms.
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By Lemmal[£.I]and Cauchy inequality, similarly as (£.9) and (4.10)), we can prove

70
= 2em%P o | < 0(1) / Wrdr + 0(1)7,
0

T0 T0
|4cem?*nkér|p—r,| < o(1) </ n*rdr +/ k2§2rdr) +O(1)Dyy ;-
0 0

Combining the above estimates with (I2) and (ZI5), by 0 < p < C and [;° p(£?+
n? + ¢?)rdr = 1, we have

0] To o
O(1) Dy > 5772/ ~nPdr + 25772/ k2 rdr + E5772/ k2E%rdr
0 r 0 2 0
2 [ 1 2 . o 9 0 . o
+ cem 7' “rdr + 27° min(e, §) & rdr + 77 min(e, §) ¢ Erdr
0 0 )

2. ro 2 9 2 . o f mC 2
+ 27" min(e, 0) k*n?rdr + 27° min(e, 0) 242 pdr
0

0 r r

0 To
> cen? / n*rdr + 27° min(e, §) / ?rdr + 2 min(g, 0)
0 0
To 9 T0 c T0
x / ¢"rdr + 2em? / K*Crdr + en? / k&P rdr
0 0 0

T0 T0 1 70
+ 27? min(e, §) / k2 nrdr + em? / —n?dr + 2% min(e, 0) /
0 o T 0

2
X <§+m_C) rdr
r

r

70 70 ro
> cen? / n*rdr + 27? min(e, §) / ¢*rdr + 7* min(e, ) / ¢rdr
0 0 0

2 2 2 : T0
+ min <2€Zf 5E e mgl(g’é)) k2/0 P + n? + C)rdr

To 1 T0 2
+E7T2/ ;n2dr + 272 min(e, 6)/ <§ + m_C) rdr
0 0

r r

70 T0 To
= cem? / n*rdr + 272 min(e, §) / &?rdr + 72 min(e, §) / CPrdr
0 0 0

+ min <C€7T2 272 min(e, 5)) 12 e /TO 1772d7“
O r

2C"° C
T0 2
+ 27% min(e, 6)/ <§ + m_C) rdr,
0 T T

which gives that (4] holds
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Case (III): when |m| > 2, the estimate holds.
From (4.5), we can get

0 o
Dyn,je > 27" min(e, 5)/ ¢*rdr 4 27 min(e, 5)/ k*n?rdr
0 0

T0 2 To
+ 272 min(e, 6) / (é + mC) rdr + 2em? / (' + k&)?rdr
0 LA 0

2

To 2 ro
+ 257?2/ (@n - k:() rdr + 205772/ (—C/ + ¢ + @§> rdr
o \r 0 roor
2 2 70 2
%5/0 (5’ + g + ?g - kn) rdr. (4.16)

We temporarily write g = —(' + % + ¢, then we have £ = L(r¢’ — ¢ + rg).
Moreover, we get

T0 2 To ¢2 0 2 0
/ <§+@g>r _/ 5dr+/ m—g2dr+2/ mEC gy
0 T T 0 T 0 T 0 T
To ¢2 70 2 T0
_/ gdr+/ m—<2dr+2/ <(g+<—§)dr
o T o T 0
To ¢2 0 2 0 0
_/ 5dr+/ m—C2dr+2/ ngr—i—?/ ¢Cldr
o T 0 r 0 0
To 2
—2/ C—dr
0 T

To ¢2 70 2 _ 2 T0
:/ § dr+/ m—= Cer+2/ Cgdr + ¢*(ro),
0 0 r 0

T
ro 2 0 !
/ (§+ﬂ<> rdr:i?/ ¢ =CHr9) g [ =2,
0 T T m 0 T 0
2 h d 2
+ /0 Codr + ¢2(ro)
=$/0 <<'2r+< + g% +2(r¢’ = Q)g —%C’)dr
2_9
+ m <2dr+2/ Cgdr + ¢3(ro)
0

=i2/00<4’2r+C + ¢*r +2(r¢’ —g)>

m

0 2 _ 2 T0 1
+ / o Cdr + 2/ Cgdr + (1 - —2) (ro),
0 r 0 m
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which implies that

70 2 To ¢2 0 2 70 2 _ 4
2/ <§ + @c) rdr = / $ ar +/ ™ Cdr +/ T —_"ar
0 T T 0 T 0 T
1 0 2 2 0o
+ —2/ (C’Qr + ¢ +92r> dr + —2/ ¢ grdr
m 0 T m 0

—%/Ooggdr—l—él/OOngr—F (2—#) (ro).

'—/ Cgrdr| < 37 2/ C'2rdr+—/ grdr,
m
1 T0 <2
_ = < =
’ m2/0 Cgdr _2m2/0 rd r+ /0 g*rdr,

0 1 0 22 0
’4/ Cgdr| < = m’¢ dr + %/ ggrdr.
m= Jo

0 2 /o r

Notice that

Hence, we have

27r2min(£,5)/0 (5 mg)

0 . To 52 T0 2 )
> 7 min(e, J) —dr—i— —7?min(e, §) —(%dr
0 r 2 0 T

To 2 _ 4 1 0o 2
rtmin(e,) [ TS o winge.) [ (c " 4—) dr
0 r 2m 0 r

U o "y 1 2 . 2
T mln(£,5)/0 g-rdr + (2— W)TF min(e, §)¢*(ro).- (4.17)

We can estimate the term 2e7? [ (2n — k()*rdr as follows:
0 2 0 2 0
2€7r2/ (@77 — kC) rdr = 2€7r2/ m—ner + 257r2/ k2Crdr
0 r o T 0
)
— 2£7r2/ 2mnk(dr.
0
ro
— / 2mnk(dr
0

To T0 m2
< / Enrdr + / —?dr,
0 o T
which implies that

O s m 2 0 m2 0
287T2/ (—n — k:() rdr > 287T2/ —n?dr + 287T2/ E2Crdr
0 r o T 0

-0(1) (/OTO k*n*rdr + /07’0 mTQCQdT) . (4.18)

Notice that
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We now estimate the term 2em? fo 0 + k€)?rdr. Similarly as , we can get

To

70 T0 7o
/ (0 4 k&)*rdr = / n?rdr + K22 rdr 4 2nkér|p—p, — 2/ nk& rdr
0 0 0 0

—2/ nk&dr.
0

T0 T0 T0
‘—2/ k& rdr S/ k2n2rdr+/ &rdr,
0 0 0

) 70 o ¢2
’—2 / nk&dr| < / e [ Sar
0 0 o T

70
2E7T2/ (n' + kf)zrdr
0

Note that

Hence we have

70 T0
> 25#2/ n?rdr + 2en? / k22 rdr 4 4em*nkér|r—r,
0 0

—-0(1) (/OTO K22rdr + /OTO ?rdr + /Om idr) . (4.19)

On the other hand, since the minimizer (£,7,¢) € Yy, x, Definition [32]implies
that £(0) = ¢(0) = 0. Therefore, we get the boundary terms m¢€|,—o = ¢?|,—o = 0,
which gives that

2
/ (C—!—C ﬂf) rdr
0 T
= Y C 2§2>d -2 d
/0 (C r4 = / ¢Cdr
" " mé(
:/T (C'%—i—c 2§2>dr—g2(r0)
0

—2m(€|r=r, + 2 /OTO Cmé'dr + 2/07’0 ngcdr

T0 70 0 22
’2 / ¢médr| < / 2rdr + / G
0 0 r

T0 To ¢2 0 2,2
‘2/ m—&dr’ﬁ/gd—k/ e
0 r o T 0 r

Since
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we can show that

70 2 T0
2E7T2/0 <—§' + ¢ + ?f) rdr > 2€7r2/0 (C'Qr + ¢ + m2§2> dr — 2em*¢3(ro)

; Tt
~dex g€y, ~ OQ) [ €2rdr
0

—0(1) /OTO S o(1) /OTO SN

r r

which together with (@I6)-(419), gives that for |m| > 2
O(1) Dy

70 T0
> 2% min(e, §) / ¢*rdr + 272 min(e, §) / k*n*rdr
0 0

To ¢2 1 T0 2
+ 72 min(e,d)/ €—d7“+ —7? min(e, 6) m—Cer
0 r 2 0 r

T0 2 _ 4 2 T0 2
+ 72 min(a,a)/ mn . Cdr + 2” : min(5,6)/ (g’% + < ) dr
0 0

m o
70 m2 70 70
+2€7r2/ —n2dr + 2E7T2/ E2Crdr + 2€7r2/ n*rdr
o T 0 0
70
+ 2em? / K22 rdr 4 dem*nkér|rmr, — 4em*mCE|rmr,
0
To 2 2¢2
—1—25772/ <<’2r+<—+m€
0 r r

The remaining thing is to deal with the boundary terms 4em?nkér|,.—,,
—4cem®mCE|y=r, and 2e72(?(rp). Similarly as (£I0), by Cauchy inequality and (Z1)
in Lemmal41] it follows from (ZI6) and (4I17) that

70 To
[ 4emnkér|pmyp,| < o(1) (/ n?rdr —|—/ k2£2rdr> + O(1) Dy i,
0 0

) dr — 2em2¢? (). (4.20)

0 m2€2

enmCels | < o(1) ( [ |

where we have used the facts that for any function h and |m| > 2, it holds that

70 T0 2h2 T0 2 70
R2dr < 1 / R n2dr < = / h2rdr.
0 T To 0

ro o
2 2

dr) + O(l)Dm,k,

By (£2) in Lemmal[ZT] the same estimate in (£.9), implies that

| —2em%C?|pmry| < 0(1)/0 i CPrdr +0(1)J.
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Then it follows from (4.20), 0 < p < C and foro p(€%2 +n? + (*)rdr = 1 that

To 0 0
O(1)Dp j, > 27° min(e, 5)/ & rdr + 6#2/ n?rdr + 5772/ Prdr — O(1)T
0 0 0
o T0 ro
+ 27° min(e, 6) / k*n?rdr + 2en? / E2CPrdr + en® / k2% rdr
0 0 0

1 T0 2 70 2 70 2¢2
+ —m? min(e, §) / m—C2dr + 2em? / m—772dr + en? / ﬁdr
2 o T o T 0

r

70 T0 To
> 272 min(e, 6)/ &Prdr + E7T2/ n*rdr + €7r2/ Prdr —O(1)
0 0 0
2m25 e 72 min(e, §)
: a7t k2 g s ry 2
+mm<c’c> Y TyEe
which implies that ([@3) holds. Therefore, the result is proved from case (I), case
(IT) and case (III). m|

Next, we show the existence of the biggest growing mode for any m and k.

Proposition 4.2. There exists the biggest growing mode w for any (m,k) € Z x Z.

Proof. The proof is divided into the following steps.

Step 1: Assume that when m = 0, inf(¢ , c)ea, Fox(§,7,¢) <0, and when m # 0,

inf ¢ 0.8l Em7k(§,n,C,@T;sm7k) < 0 for any fixed large k, any fixed m and
small enough sy, 1.

Step 2: By Propositions[3.3] and [3.9] then a minimizer exists, which ensures that,
for any fixed m and k, we can define the function A : (0,00) — R by

A (L k = j f E, 57563 ) lle = 07
( ) @W}?)eAl ka(€ n C Sk) wnen m
)\(m7 k) = inf Em,k(f? m, Cv @r§ Sm,k), when m ?é 0.

((€,1,0),@r)EA>

Step 3: Let A(m, k) = —p?(m, k) for any m and k, then from Steps 1 and 2, we
get p(m, k) > 0 for any fixed m and k. By Propositions[3.6]and [3:13] it holds that
there exists a unique sy, such that u(m, k) = /—=A(m, k) = sy, i, for any fixed m
and k.

Step 4: We will use a contradiction to show that
u(m,k) =smp—0, asm—o0 or k— oco. (4.21)
Suppose

lim sup S,k > 0. (4.22)

m—oo O  k—oo
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It is convenient to decompose E,, ;. according to that when m = 0,
Eox(&m,¢s1) = Eg,k + E(%,k + Eg,k = Eg,k + Eé,k + 50,k Do, ks

with

and when m # 0,
Em,k(f? m, Cv Q\T; sm,k) = Egmk + Erlmk + E?n,k = Egmk + Erln,k + sm,kDm,k7
with

— 0 2B2
EY = 2%2/ {Zp' + M] dr,
, o -

~ ro B —kByg(rf)" + 2kBgg 2
1 _9-2 2 2,.2 0 6
Em,k 2 /0 {(m —l—kr)[rn—i— mZ 4 22

(6 — €'

1, ., m¢]? 9 /TO m?Bj
- _ 5 ) L
+p L(rﬁ) kn + " } }rdr + 27 L rm? k2D

T [ 1 .
20 [ @+ sl
o

Similarly as (£35), we can get that for any (£,7,¢) € Aj,

) To ¢2
Eor(&,m,Cs,) > 271’280’]@ min(a,é)/ f'2rdr + 27r230,k min(e, 6)/ =—dr
0 0

r

+ 4r? / p'E2dr, (4.23)
0
and for any ((£,7,¢),Qr) € Az,

- T0 T0o
Bomi(&,10,6,Qr Smk) > 2728 m & min(a,é)/ 5/27"d7" + 47T2/ p'E3dr.  (4.24)
0 0

By Lemmal[3.0] choosing 0 < 71 < % small enough such that Cry < 1, similarly

as (3.30), we deduce

r1
/ p'E%dr
0

1 o
<CJr + §7r2sk min(e, 6)/ §’2rdr.
0
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On the other hand, from the Definition of J and Lemma [3.7] choosing % <
1y < 1g close enough to rq such that C(rg —ry) < I, similarly as (3:331) and (3.57),
we can show that

/ p'§2d7'

T0 1 To
/ E(rydr < CJ(rg —r2) + =728 min(e, 6)/ 5'2rdr.
T2 0

2
o
/ p'E2dr
0

which together with Step 1 gives that for any m and k, |]3772I sl < C(J)+ C. Since
Eo,k(é, n,¢;80.%) <0 and E,, 1(€,1,C, @T; Sm.k) < 0, and for any m and k, it holds
that E}mk > 0, we get that 0 < 8,y D < Co + C for any m and k, which gives
that

< c/ dr <07,

Hence, we can get

<COJ)+C,

Co+0C

Smkg )
’ Dmk

for any m and k. Hence, we can get from Proposition[4.1]that when |m| # 1, s, <

Co+C — < Co+C :
||(5’,7}’,(’)\/F||2LQ+k2+m270(1)’ and when |m| 17 Sm,k > ||(§’77]’7C’)\/FHingkQ*O(l) . This

shows that

limsup  sp =0,
m—00 O k— 00
which contradict with ([@:22). This ensures (4:21). The existence of growing mode
Sm.k > 0 requires that m and k are finite. By Propositions[3.3]and [3.9] for any fixed
m and k, the corresponding energy achieves its negative infimum with a growing
mode, therefore, we can choose the biggest growing mode for these finitely many
m and k. This proves the result. O

5. Growth of Solutions to the Linearized Problem

In this section, we will prove estimates for the growth in time of arbitrary solutions
to in terms of the biggest growing mode A for any m and k. In fact, from
Proposition[4£:2] we know that there exists the biggest growing mode for any m and
k, so we can define the biggest growing mode as follows:

A? = s:gz(—/\mk). (5.1)

5.1. Estimates about &, nn and ¢

In this subsection, let us introduce the following two lemmas describing the basic
estimates about &, n and (.
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Lemma 5.1. Assume (&,7,() is the H? solution of the system

dyp+B}d m?_, B2\ d o 2kBZ2  dm
awrTPy 2, T p2 (20 _ B2) _ el
- r  dr 20T\ drk(’yp_k 0) dr v P
k(yp+B3) d  2kB} 5 m? mk
AN e P _ B2y - -—_RB2 -
r ar’ r k= (vp + By) r2 Y r P
map d mhk m
T2 ar r P TP
&t dir diz dig\ (& &ttt
X\ |+ dor doz dos | | e | =0 | meee | (5.2)
Ge d31 ds3z ds3 Gt e
with
4e d? 4e d1 m
dip = — — — 46 —=—e| —+k?
o= ()i (50) e ().
€ d
d :—(— 5)k;—,
12 3 * dr
dm 2em € d € k
= (o) EE I e (et (o)
13 + dr r 2 2 3 + dr + 3 + r
5.3)
2 ed m? 4e € mk (
d c2 SR das = (— 5) e
2=E0e Tl r? (3 + ) b0 3" '
€ m d Te m € mk
G2 (BB wm )
o 3 + r dr (3 + ) r? o2 + T
d? d1 de m?
d3z = e— ——— [ =40) = —ck?
33 = &2 +€drr (3 + ) 2
and the function @T is the H? solution of the equation
T N SN
0| @ o)
with the other two components @gt = —%(r@m)’ and @zt =
—%(r@”)’, along with the boundary conditions
@Ttt = 07 at r = Tw, (55)
mﬁgftt = T@rm at r =g, (5.6)

(B3¢, — Bi&r + kB3nr — BeQourln

— (28], —ill,r 4 iméss 4 iCop, inyr 4 ikEgr)T

2
— (5 — 55) (&7 + &t + MGy — knurln =0, at r = 7. (5.7)
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Then, it holds that
1d

ia 2
5 7 Yrdr

0
p(|&)* + Inel? + |Cu

0
To 2
* / ) [ ( 264, + 2= gtt + 2 - k’ntt)
0 9 r

2 2
2 2m 2 m
(ftt - —f,tt - —Ctt - kntt) + 9 (é_;t + % + 7Ctt + 2k77tt>

2

2

rdr

2
+ (—Ctt + e + ftt) + (mhy + k&) + (%nn - k’Ctt)
0 2
+ / (ftt + fue + Ctt - kﬁtt) rdr
0

1d "o B —kB '+ 2kBy&]?
:‘m{/ {(m2+k2r2) {TQT]H— olr&e)’ + eft]
0

m2 + k2r2

r(m? + k%r?)

+/TO 2 /_'_szg £2dr+/rw |Q\ |2+ 1 |(’I“Q\ )/|2 rdr
0 P r t o rt m2—|—k2r2 rt .

(5.8)

2 0
+p [ (r&) — ke + m—cﬂ } rdr + / __miB (& — r&))2dr
r 0 (

Proof. Multiplying the first equation of (5:2) by r&:, the second one by rny and
the third one by r(, integrating by parts over (0,7), we get

[€ee(vp + BE)(r&) 11200 — [k(vp + B3)uner]i=o° + [mypéudeli—
1d [™ vp+ B}
[

(&) Pr + 5 [ K-+ By

2dt r
- %/OTO Py pGa(ree) dr — %% Beft
%i/ K (yp + B urdr — %% "™ B

d 0 1d [T m?
— k dr — = — —pC2d
+dt/0 mkypmCedr th/o " ypé; dr

45 e / T=To
+ 3 +0 ) &plur + [Enmur] o
r=0



2892 D. Bian, Y. Guo & I. Tice

4e 4e
+5[C£t<tt7" Ctt]r 0 _/ +o grdr _/ +0 fttfttdr
o \3 o \3
70 T0
n / L 5) el ndr — / s 5“ St g / k22 rdr
0 3 0 3 0
0 To €
- /0 (5 +96) knpygeardr + / (5 +9) kelimardr
0 0 To 4
+ / (E + 5) k&ymprdr — / sngrdr — / = +0 anftrdr
0 3 0 0 3
To 0 T0 C?
— / eCl2rdr + 2/ eClCurdr —/ et dr
0 0 0 r
0 0 m2 0 c m /
_ ‘/0 gk.?CtQtrdr _ /0 ngtztdr + /0 (§ + (5) (?Ctt) Eyprdr
T0 m To m2 0 €
— 2/ s—fttgtdr — / E—?]?tdr + / (— + 6) kmgtnttdr
0 r 0 r 0 3
" e "o Te m
- /0 (g + 5) mCu&dr — /0 (3 + 5) 7Cttfttd7”

45 m2 1 d "o
_ /0 ( 3 + 5) TCftdr = 5@/0 P& + i + G )rdr.

Using the following identities

To 2\ / ro ro 2¢2
/ (B—g) (rgt)%zr:/ 2§§Bng,dr—/ 2Bo&t 4,
0 r 0 0 r

ro
—2&arm—/‘@m%$+4ﬁag+
0

"o ([ 4e "0 [ 4e
—/ — 40 ) & &udr +/ — 40 ) &, &uedr
0 3 0 3

o "0 4e r=r 2
—— [Nt [ e vy - o]
0 0

r=0
—/T0 (5 +0) kmisg rdr+/
0 3 1St

r=r 2
= 25/ kftt’ﬂttdr =+ 26/ kfttnttrdr — [5k§tt77ttr] 0 |:§€k€tt77ttr:|

L
r )

To

(5 +0) kmardr+ [ (5 +6) ks

T=T0o
r=0

"0 4e
[Ekftt’flttr — 25/ k?’]ttftt’/’d’/’ / k’ftt’f]tt’f'd’f'
0

"0 4e
- / — k&needr,
. 3
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/07’0 (% + 5) (%Qt)lfttrdr = (% + 5) (mCee&ee]r—y’ — /0”’ (% + 5) %Cttgttdr
_ /Om (% + 5) mG&y, dr,

T0 25 T0 T0
_ / gmgtfétdr + 2/ em&yClpdr — 2/ em&yClpdr
0 0 0

r=r "o "0 de
= —2€[m<tt€tt] O + 2/ €m€tt<£td’f' + / gmctté.étd’/’,
0 0

we deduce

[l + B3)(r&)'11=0° — [k(yp + Bg)&umer]i—o® + [myp&uCe)i=

4e r=ro _
— [2Bg&&ull=p + Kg + 5) fétftﬂ} + [enineer + ek€unur], —y°
r=0
2 T=To
+ [e¢ Cur — €€ — em&uCuli=y® — [0k&uneer]—y° [gﬁkftmttr}
r=0

[5€tt]r 0’ — Effft] ) (5 - _) [mfttCtt]

r=0
1d o 5 o 0 [Bo —kBy(r&) + 2kBo&; |°
2dt{/0 {(m +kr>[rm+ m?2 + k2r2
1 Ct o mQBg 2
+p [;(Tft) —]ﬁ?t+—} }rdr+/0 m(ft—rﬁ) dr

2

T0 QB 0 2
+ /0 [2p n ]gt dr} /0 e lg ( 2¢!, + >t 5“ + %ctt - k:ntt)
2 2
(ftt % - 2_m<tt - ’th) g (ftt + Sue + Ctt + 2k7ltt>

2

2
G+t su)~+mg+k&»2+(§wu—k@0

/ it m ?
(ftt + — + 7<tt — kntt) rdr

d

dt

1
i [ P+ G (59)

rdr
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On the other hand, multiplying the first equation of (5.4) by rc,jm, integrating over
(ro,7w), one can show by (5.5)) that
1d Tw ~ 1 PN
—— r _— - d
2dt [|Q d +m2+k2r2|(rQ o | rr

+ [W(TQM) rQTtt:| |r:r0 =0. (510)

Applying the boundary conditions (5.6)-(5.1), (§,7,¢) € Yo, and Definition [3.2]
of function space Yy, i, from (5.9) and (5.I0), one can establish that (5.8) holds.
Hence, the result is proved. O

Lemma 5.2. Assume |[(&,n:, Cell1 and ||(&,me,Ct)||2 are bounded, then it holds that
o B —kBy(r&;)' + 2kByé; ]
_{/ {(m2—|—k2r2) [TGUH- o(rée)’ + 95t:|
0

m2 + k2r2

C 2 To 2B2 ,
+’yp[ (rée) —knt—k%} }rdr+/0 Ty G e
+/0 [2]9 + ]ft

Tw N 1 N
2 2
+/ro ! {|Qrt| + m? + k2r? [(rGre)' } rdr}

70
< A2 / P62 + el + |G 2)rdr

2
+A/ l (2§t+§t+%<t_km)
2
o R T I CRS PRy

2 2
+ <—Ct + — G + §t> + (77; + /ﬂft)Q + (%7]1‘, - kCt)

2

2
+A/ (Et—i- + Ct knt> rdr. (5.11)

Proof. From the energy (2.27), it follows that
o B —kBy(r&;) + 2k By, ]
— {2772/ {(m2 + k*r?) {70771& + o(r&) + 9&}
0

m2 + k212

2 o
+p [ (r&)" — kng + _m(t} }rdr + 2772/ 7m2B3 (& — r§£)2dr
r 0 (

r(m? + k2r2)
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) 2
—|—27r2/ [2;0 + B ]ft dr
0
Tw R 1 R
+27r2/ g |:|Qrt|2 + 7|(TQT,5)/|2:| rdr}
o m?2 + k2r2
2
) ( 26, + - €
9 9 2 2
(ét - ﬁ -G km) (ft - G+ 2km>

2
( <t+<t+%) e+ (Cm- k)

~ o m 2
_E(gtvnhcthrt) + 2772/ e ¢ 4+ 7<t _ k]’f]t)
0

2

+27T2/ o (ft + = & + %Ct — knt) rdr.
0

Hence, it follows from (5.1 that

To _ , 9
o [ o [P )
0

m2 + k2r2

mgy ? 5 [T szg N2
+"Yp |: (rft) k’l’]t + T:| rdr + 27 A m(ft — ’l"gt) dr

70 2B
+ 27r2/ [2;0 + ] ft dr
0
+ 272 /T |C§rt|2 + ;KTQ\”)'F rdr
. m2 + k252

<on’x? [ p(lef? ? )rdr + 2An® [
= ™ /0 p(&e|” + [me]” + [Ce|")rdr + 2A7 /0 €
2 2 2
x [9< 26+ 54 TG~k + 5 (6 - 22— 2 )
ft ? Gt ? , 2
ft + =+ Ct+2k'77t Ct"‘ + ft + (771& +kft)

2 2
+ (ﬂnt - k’Ct) } rdr + 2A772/ (ft + = b + ﬂét — knt) rdr.
T 0 r

O

5.2. FExzponential growth about &, nn and ¢

In this subsection, we will use Lemmas[5.1]and [5.2]to prove the exponential growth
about &, n and (.
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Theorem 5.1. Let (&,7,() be a H? solution to the system and @T be a H?
solution to Eq. with the corresponding boundary conditions, then it holds that

1€ 1, CO@NIT + 11ty e, DI + 106 (€1, (DT

< CM g ([[(Ees ey G ONIT + 11 e, G O3 + [104(€,m O (O)IF

+Qr(0)[3129). (5.12)

Proof. Integrating (5.:8) of Lemma[5.1]in time over [0,t], we get
L[ 2 2 2
3 [ oGl + I + 1GaPyrdr
0
bopro |2 m ?
+ / / € [5 <_2££t + S + =G — kntt>
o Jo rooor

2 2

2 2 2m 2 m

$ 2 e, - B 2 ) 2 (e S T 2k
9 r r 9 r r

2
m m 2
+ <_Cét + e + —ftt) + (ny + kéw)® + (—mt — kCtt) rdrds
T T T
t T0 2
+ / / 5 (5& Ll e, kmt) rdrds
0 0 T T

1 fro By . —kBy(r&) + 2kBe&]*
— N, = 2 2.2\ | 28
0 2{/0 {(m +k:7’){rnt+ I T

1 , mé;” /TO m?B32
= —k 5t d "7
+p [T(Tft) et } }7” T+ o r(m2 1+ k2r2)

+/TO oy 4+ B8 fzdr+/m 1Ol? + —[(0r)' |
0 p r t o rt m2—|—/€27‘2 rt )
(5.13)

(& —r&)3dr

with

DO =

No = / 0 p(I€e(0)* + e (O] + [ (0)[*)rdr

0
1 o B —kBy(r&,) (0) + 2kBp&,(0) 17
[ i [ 80

+p [%(r&)’(o) — ke (0) + mii(‘))} }rdr
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[ - o+ [ EE 232}53<o>dr

r(m? + k?r?)

[ 10 + o 00 OF e .

(5.14)

Applying Lemma [5:2] we show that

1 [T 9
—/ p(|&)* + Inel® + |Cu

2
2
L[S

2 2
2 2m 2 m
<§tt ﬁ - —Ctt — kntt) + 9 (fét + % + 7Ctt + 2kntt)

2

Hrdr

2
m m
+ <_C£t + % + ?ftt> + (n,lgt + kgtt)z + (?ntt - kCtt) rdrds

/ / (Ett LA Ctt - kntt) : rdrds

< Ny + A2/ p(1&% + [me]® + G )rdr

2
+ A/ l <2§t+&+ G- knt>

2 2
<§t S Q_mg ) (é} I ct + 2W>

2
( ¢+ = Ct + ft) + () + k&) + (%nt — kCt)Q

2
+ A/ (ft—i— + Ct knt) rdr. (5.15)

Using the definitions of the norms || - ||; and || - |2 given by (Z28)—(2:29) in the
introduction, we prove from (5.15) that

1 2 ! 2
S10u(E€n Ol + [ 10u(e.n. )l

A2 2 A 2
< No+ 7”(&77%7@)”1 + 5||(§tﬂ7t»§t)|\2~ (5.16)



2898 D. Bian, Y. Guo & I. Tice

Integrating in time and using Cauchy inequality, we obtain

Al (& nes )13

= A (O3 + A / 2 < (€01, Co)s Dua (6,1, C) >3 ds

t t
< Al ) (O)2 + / 10ue(€.m, ©)||3ds + A / I m &) 3ds,  (5.17)

ABy| (&6, me, C)lIT = 28 < 9 (€1, C), 0e(€,m, C) >1

< A2/ (& e, G)IIT + 196 (€ 1, Q1T

(5.18)
Combining estimates (-I0)—(5:I8), we deduce that

el (& mes CONT + 1 (Ees s G113

< e )O3 + /I\att5n4|\2d8+1\/ 1Eer s Gil12ds

1
+ A& mes GOl + KHatt(fﬂ?,C)H% - %/0 [0:(&,m, Q) |5ds

2N

< S Al I+ 1m0 I + 1€ 7 )O3
[ 1w GlBds + AlE s IR~ 3 [ 1006 n.0)13ds
2Ny

< —

+ 2]/ (&6 e, G ()13 + 241 (€, e, Go)IIR +2A/ (&2, 71e, Go) 1 3ds,

(5.19)
where we have used the facts
[1(&es 65 SIS < [1(€es e, G)(0)]13 + / 106:(€,m, O)ll3ds
t
8 [ e s (5.20)
0
It follows from the Gronwall’s inequality that
t
6t + [ 6l
N s Mt 0)[2
< (e, IO + (3 + LE2DORY v gy 51
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From (5.16), we know that

1 2 [
o€ n Ol + 5 [ 1@u(en. IS

2N
< T A e I+ 11 me I3 (5:22)

Therefore,

1
T 190 (&m Ol + 1€ me, I3

2Ny
< ——/ 19k (&, 1, C))lI3ds + ——= A + Al e, CONIT + 211G e, I3,

(5.23)
which together with (5.17) gives that

1
3 106 (&, O + 11, Go)II3

2Ny
<2 [ 1@uten 03 + 2+ Al IR

2 t
#2060 IO+ 2 [ uen. o)1z +28 [ lem GolBas

= 20 1 Al Em GOIR + 20 O + 20 [ 16,1
< e (216 m O + 222 + 206, QIO ) (5.24)
From the definitions of Ny in (5.14), it follows that
No = CIE s OV + 16 )OI

+110e (&1, O O)1F + 1@re(0) 17, (5.25)
which implies the result. O

5.3. Exponential growth about original notation g

In this subsection, we will prove the exponential growth about solution g. First, let
us introduce the basic estimates about the solution g.

Lemma 5.3. Assume g is a H? solution to the system (2.14) with the corresponding
jump and boundary conditions, then we can get

VAl

+ /ﬁ QP + |V - gP)da + /ﬁ (V x B) - (4" x Q)

2
Vg + Vgl — 5 divg: 1% +26

divg:| 2} dxds
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+V - gla" Voo + [ 1QF e + [ VFals
N /§[|Q0|2 + |V - gol*ldx + /g[w x B) - (95 x Qo)

9ol Vollde+ [ 1Qode -+ ol
(5.26)
with Q =V x (g x B).

Proof. Taking the time derivation about the system (2I4)s, then multiplying the
resulted equation by g¢;, similarly as the proof of Lemma [3.1] we can show

1d ,  1d 2 _li/ ,
5Vl = 57 [ 1QRdz =55 [ 107 +pIV - gPlds

1d

24t /ﬁ[(v X B)-(g" x Q)+ V-g(g" - Vp)ldz

—_

2
-3 /_ [swgt + Vgl — gdivgtm? + 26|divgt|2} da.
Q

Integrating the above equality about time, we have ([5.26)). O

Lemma 5.4. Assume g is a H? solution to the system (2.14) with the corresponding
Jgump and boundary conditions, we can get

1d , 1 1d ,
5@”\/59&”1:2 = 2dt/ |Q¢[?dx 57 [|Qt| + |V - ge|*]da

1d

-5= ﬁ[(va) (95 x Qi)+ V - ge(gf - Vp)lda

1 2 .
~3 /7 [E|Vgtt + Vgtj,; — gdivgtt I[|2 + 25|dwgtt|2 dx
Q

(5.27)
with Qt =V X (gt X B)

Proof. Taking the time derivation about the system (2.14)2, then multiplying the
resulted equation by g4, similarly as the proof of Lemma [3.1] we can show that

(527) holds. 0

Lemma 5.5. Assume that ||g||1 and ||g||2 are bounded with their definitions in
2:30) -@31), and assume g is a H? solution to the system (2.14), we can get

- /_ 1QI? + |V - gP)de — /_ (VX B)-(g" x Q)+ V - g(g" - Vp)lda
Q Q
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- /, 10[2dz
Q'U

2
< A?||/pgll2: + A/ﬁ E|Vg + Vgl — gdivgm? + 6| divg|? | da
Q
(5.28)
with Q@ =V x (g x B).

Proof. Notice that

gr(r,0,2) Z Fagr(r,m, ke tmb+ikz
m,keZ

go(r,0,2) Z Fago(r,m, ke imb+ikz
m,keEZ

g:(r,0,2) Z Fg.(r,m, ke tmf+ikz
m,keZ

@ (r,0,2) Z .FQT (r,m,k)e imO+ikz

m,keZ

@ (r,0,2) Z .FQ(; r,m, k)e tmb+ikz

m,keZ

@ (r,0,2) Z .FQZ (r,m,k)e imOtikz

m,keZ

Define the energy £ and the dissipation term D as follows:

€= ﬁ 1QP +p|V - gP)de + [ (V x B)- (g x Q)+ V - gg" - Vp)lda
Q Q

+ [ 10

2
2
D= u/f [g ‘Vg+ng — gdivgl
Q

+ 5|divg|2] dx.

Inserting the above Fourier expansions of g,.(r, 0, 2), go(r,0, 2), g-(r, 0, 2), Q- (r,0,2),
Qo(r,0,2) and Q.(r,0, z) into the above energy £ and dissipation term D, we have

&= Z Sm,k(§7n7<7Q\T): Z (Em,k(ﬁﬂva;@r)—Dm,k(fyna@),

m,keZ m,keZ

Z Dm,k(&”v(%

m,keZ

with Ep, x(€,7,¢,Q,) defined in (Z27) when m # 0 and defined in (Z26) when
m =0, and Dy, (&, 7, () defined in (2:33).
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In fact, in cylindrical coordinates, we know that

Q =V x (g X B) = _69(8TQTBG + grarBG + azngG)
Oyg, B 0yg. B
, 0gr 0 +e, 0d-D¢

+e 5.
) (5.29)
B
(v X B) : (g* X Q) = - (Bé + TG> gT(aTgTBe +g'rBé + azngO)
B *09gr B
- (Bé - 79> W, (5.30)
* 1 0

(9" Vp)(V-g9) = g7 (;(rgr)’ + 9799 + 8zgz> : (5.31)

Orgr Orge 0rg=

Oogr 0 - Oogs
vo= | ST T T (5:32

azgr 8299 8zgz

gy Sy Qo 0 0
r r
+0.9.
0 g4 &y Qo 0
divgll = r r
+ 0.9,
0 0 5/ + é + Os 96
r r
+ 0.9,

(5.33)

Inserting the Fourier expansions about g¢,, gs and g, into (5.29)(5.33), we can get

Q = Z eim9+ikzg{ — €9 (-FargrBG + -FgrarBG + Zk-ng-BG)
m,k€Z

. B ) B
sz]—'g 0. zzm]—'g 9}7 (5.34)

x> (FOrg:Bo + FgrBj + ikFg.By)
m,keZ
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(394——) S Fa > @, (5.35)

m,keZ m,k€Z
(¢*-Vp)(V-9)= > For > ( 4 im7 g0 +ik:]-"gz> (5.36)
r )
m,k€EZ m,keZ
FOrgr FOrgo FOrg,
Vg — Z im0+l imFgr  Fgo imFge n Fgr imFg, |
r T r r r
m,k€EZ
ikFgr ikFge ikFg.
(5.37)
dlng — Z eim,e—i-ikz 0 a 0 , (538)
m,keZ a
with a = F¢' + 78 4 220 4 ik Fg..
On the other hand,
900 N
V-Q=0Q,+ Q_ + 0529 40,0, =0, (5.39)
2 Do Qr ~ .
VXQ:@Z<8Q9_ 0Q Q9>—|—69(8Q - 0,Q.)
Q. . ~
+er< ‘9? —8ZQ9>. (5.40)

Inserting the Fourier expansions about Q,, Qg and Q, into (539) and (5:40), we
obtain

@)

1,ke

_ . FO. imFQ ~
Z imb+ikz (.FQ; + ? + @ +ZkFQz> =0, (541)

~ o ~ imFQ, FQ
V x Q =e, Z elm0+7,k72 (-FarQé _ ZmrQ + ?9)
m,keZ

teg Y emMITE(iEFQ, — F0,Q.)

m,keZ

te, Z pimO+ikz (meQz —z’k]—"@9> = 0. (5.42)

m,keZ
From (5.41), it follows that

i(r]-'@r)’ — m]-"@e

FQ. =
@ kr

(5.43)
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which together with % —ikF @9 = 0, gives that
ikr

]:@0 = (T‘FQ\T‘)/7 ]:@z =

im
m2 + k2r2

Hence, we can show that

27 2w Tw =R N R
/ﬁ,, QP da = / / / gllQ-1? +1Qo|* + Q.| g)rdrdodz
0 0 0

=Y / GIFQU2 + |F O + | FQ-[2g)rdr

m,keZ
Dy / {|J-‘QT|21" b k2 (e FO,) | rdr.  (5.45)
m,k€Z
Inserting (5.34)- (5.38) into the energy F and dissipation term D, and at the same
time, letting
§=Fgr, n=—iFg., (=iFgs, iQ,=FQ,

we can show that

S—ngk€77<7Qr ZDmk§n<)

m,keZ m,keZ

Here we have used the facts that £, n and ( are real-valued functions.

From Proposition[4.2] we know that there exists the biggest growing mode for
any (m, k) € Z x Z. Denoting the biggest growing mode as A, which can be found
in (5.0)), then we get that

_Em,k(ga 7, C; Q\T) < A2Jm,k(§7 7, C)

Therefore, letting & = Fg,, n = —iFg., ( = iFgy, iQr = FQ,, using (5.34)(5.30),
we can show by Lemmal[5.2] that

—/,[IQI2 +7p|V - g*)dx — [[(V x B)- (9" x Q)+ V -g(g* - Vp)|dx
Q Q

- / QP dx
.

, 2
S / { m? 4 K [%Wr —kBo(r€) + 2kBy

2 202
m? + k?r
m,ke€Z

+7p{ (ré) — kn +m7<r}rdr

m2B2
— 472 Z / e T 1527"2) (€ —re)dr

m,k€Z
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—27TLZ/ [ }§2dr 42 Z/

m,ke€Z m,ke€Z
% (10,7 + —— (0, | rdr
" m? + k2r? "

<apZz2 30 / €2 + [nf? + CP)rdr + 472 3

m,keZ m,keZ

o
X/ e

9

¢

2 2
§<f+ + C+2k) +<—c’+—+ﬂg> + (0 + k&)?
r r

2
rdr 4+ 4A7? Z/ (f-i- + C kn) rdr

(1)

r

m,keZ

€ 2., .
= A?||/pgl32 + A/ﬁ {§|Vg + Vgl — §d1vg]l|2 + 5|d1vg|2] dz.

2
2(25+5+ —(— k>+2<5’—%——§ k
9 T

2905

)

|

Similar to the proof of Theorem [5.I] by Lemmas [5.4] and we can get the

following result.

Theorem 5.2. Assume g is a H? solution to the system (ZI14) with the corre-

sponding boundary conditions, then it holds that

lgell¥ + llgell3 + 10eg (B)117

< C*M ([l (0)1 + 19:(0) 13 + 19 (O + 1Q(0)IIZ2).

Proof. Integrating (5.27) of Lemma[5.4] about time over [0, ¢], we have

1
sl = Lo=5 [ 1QuPds =5 [ 1@+ 3017 - g1 fda

5 (7% B) (6 x Q) + 9 - aulai - s

¢
€ 2 .
_/ /[E’Vgtt-FVg;";—gdwgttI[P—ké
0 Ja

with

(5.46)

divgtﬂ dxds, (5.47)

Lo = %H\/ﬁgtt( 0)z: + 5 / Q2 (0)dz + - /[|Qt| (0) +p|V - g:|*(0)]dx

+ % /_[(V x B) - (g5 x Q)(0) +V - gi(g7 - Vp)(0)]da.
Q

(5.48)
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Using Lemma [5.5] we deduce
1 2 t e T 2 . 2 . 2
S Iv/Pgellzs + | §|Vgtt + Vi, — gdivon I° + §|divge|” | dzds
_Lo——/ mgdx——/n@ﬁ+meg4]
1 % *
~5 U7 % B (67 x Q) + - au(si - )l

A2 A € 2 .
< Lo+ VAl + 5 [ [51V0 + 9ol - Saivatf + dldivaf | do
Q
(5.49)

Using the definitions of the norms || - ||; and || - ||2 given by (2:30)-(231) in the
introduction, we obtain

1 2 ! 2 A? 2 A 2
5 I9ueglls + ; 1eegliz2ds < Lo+ —-llgelly + 5 llgellz- (5.50)
Integrating in time and using Cauchy’s inequality, we get

t
Mm@zwm@ﬁ+A/2<%&m>m8
0

t t
SAI\gt(0)|\§+/ I\att9||§d8+1\2/ lgell3ds, (5.51)
0 0

Ady||gell} = 2A < Bieg, Deg >1< A\ gellF + 10ugll?. (5.52)
Combining estimates (5.50)—(5.52), we obtain

) t t
ol + ol < 1+ 5 [ N0l + & [ lanlBs + Al

+ Lo W—l/ﬂan%
A tt |1 A ttgd||2as

< 2L
e + AllgellF + llgell3 + llg:(0 ||2+A/ llgell5ds + Allgell3

1
S AT

2L
< 222 4 2o + 24l + 24 [ a3, (55)

where we have used the facts

lgell3 < lge (0113 + /Hattg”QdS_"A/ lg¢l13ds. (5.54)
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It follows from the Gronwall’s inequality that

f Lo a3
ol + [ s < o + (52 + Q) @ 0. 5
From (5.50), it follows that
1 2 [ 2L
KH%&QH% + X/o [0ugl3ds < T Allgell? + llgell3- (5.56)

Therefore,
1 2 [t 2L,
T10usl ol <~ [ Wowalas + 552+ Al + 2l (.57

which together with (5.51) gives that

1 2t 2L
L 10ugl +llgill3 <~ / [0uegl3ds + =57 + Allgillf +2]9: (03

) t t
41 [ louglzs+2a [ ailds
0 0

2L ‘
= 204 Al + 211 + 24 [ ol
2At 2, 2Lo 2
< M A O0) 1 + 25 +2],(0) 7). (5.59)

From the definition of Ly in (5.48), we can get

Lo < C(llge (01 + [lge )13 + 19:eg (0)[1 + 1Q2(0)[|72), (5.59)
which implies the result. O
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