
Deep Molecular Programming:

A Natural Implementation of Binary-Weight ReLU Neural Networks

Marko Vasic 1 Cameron Chalk 1 Sarfraz Khurshid 1 David Soloveichik 1

Abstract

Embedding computation in molecular contexts

incompatible with traditional electronics is ex-

pected to have wide ranging impact in synthetic

biology, medicine, nanofabrication and other

fields. A key remaining challenge lies in de-

veloping programming paradigms for molecular

computation that are well-aligned with the un-

derlying chemical hardware and do not attempt

to shoehorn ill-fitting electronics paradigms. We

discover a surprisingly tight connection between

a popular class of neural networks (binary-

weight ReLU aka BinaryConnect) and a class

of coupled chemical reactions that are absolutely

robust to reaction rates. The robustness of rate-

independent chemical computation makes it a

promising target for bioengineering implemen-

tation. We show how a BinaryConnect neu-

ral network trained in silico using well-founded

deep learning optimization techniques, can be

compiled to an equivalent chemical reaction net-

work, providing a novel molecular programming

paradigm. We illustrate such translation on the

paradigmatic IRIS and MNIST datasets. Toward

intended applications of chemical computation,

we further use our method to generate a chemical

reaction network that can discriminate between

different virus types based on gene expression

levels. Our work sets the stage for rich knowl-

edge transfer between neural network and molec-

ular programming communities.

1. Introduction

Although molecular computation cannot compete with

electronics based on speed, the goal is to enable compu-

tation in contexts where traditional electronics cannot go.

1The University of Texas at Austin, USA. Correspondence to:
Marko Vasic <vasic@utexas.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Chemical control modules compatible with the chemical

environments within natural or synthetic cells, bioreactors,

and in-the-field diagnostics, are all envisioned applications

for such technology. Such computation could, for example,

recognize disease state based on chemical inputs and actu-

ate drug delivery to the affected cell. The extensive infor-

mation processing that occurs in natural cellular regulatory

networks underlying all complex life, is a strong proof-of-

principle that chemical computation is possible and useful.

Networks of coupled chemical reactions (chemical reaction

networks, CRNs) are known to be Turing universal (Fages

et al., 2017; Soloveichik et al., 2008), but the resulting sys-

tematic ways of programming their behavior can result in

extremely large reaction networks and exceedingly ineffi-

cient computation. Reasoning in chemical reaction space

is difficult: even a very small CRN can be hard to ana-

lyze. Thus, there were many previous attempts to build

intuitive, yet more efficient programming approaches for

CRNs. For example, (Senum & Riedel, 2011) describe

a number of computational modules including arithmetic

modules and control flow. Another example is CRN++ (Va-

sic et al., 2018), an imperative programming language that

compiles to CRNs. Here, we present a different program-

ming paradigm, one that allows translation of neural net-

works into chemical reactions. In a similar way that writ-

ing an image classifier in an imperative language is pro-

hibitively complex, writing a classifier in a molecular pro-

gramming language such as CRN++ is practically impossi-

ble. However, the technique of programming using neural

networks opens doors for such applications in the molecu-

lar programming community.

We focus on a class of neural networks called binary-

weight ReLU neural networks. These networks have bina-

rized weights {+1,−1}, and were originally popularized

due to their computational efficiency in electronics hard-

ware (Courbariaux et al., 2015). We show that binary-

weight ReLU networks have a tight correspondence to a

class of rate-independent CRNs (Chen et al., 2014a;b). In

rate-independent CRNs, computation arises solely from the

stoichiometric exchange of reactants for products and the

equilibrium is independent of reaction rates. The absolute

robustness to reaction rates makes rate-independent CRNs



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

a promising implementation target for bioengineering.

We first demonstrate our approach by training classifiers

on the widely used machine learning datasets IRIS and

MNIST. A promising envisioned application of molecu-

lar computation lies in medical diagnostics and so called

“smart drugs” which activate in response to specific molec-

ular cues. Thus, we next train a classifier to differentiate

between four viral infections using chemical information

as input (gene expression levels). In all cases, we translate

neural networks into CRNs, and simulate CRN behavior in

a chemical kinetics simulation framework. The chemical

reaction networks exhibit the same output as their corre-

sponding neural networks.

Section 2 first reviews CRNs, and how we can view

their behavior as computation, then reviews binary-weight

ReLU networks and the BinaryConnect (Courbariaux et al.,

2015) method for training them. In Section 3, we first in-

troduce a simple set of chemical reactions which compute

the ReLU function, then describe our general technique to

compile binary-weight ReLU networks into CRNs which

compute the same output. We also describe an optimization

procedure which reduces the number of chemical reactions

required to implement the neural network. In Section 4, we

give simulation results on our chemical classifiers for IRIS,

MNIST, and viral infection classification, and verify that

their outputs match the neural networks they implement.

2. Background

In this section we provide a brief description of chemical

reaction networks and BinaryConnect neural networks.

2.1. Chemical Reaction Networks

Chemical reaction networks (CRNs) formally model the

time evolution of concentrations of chemical species in a

solution undergoing chemical change. CRNs are typically

used to understand naturally occurring chemistry and ab-

stract the behavior of existing biological regulatory net-

works. The CRN formalism thus provides a standardized

way to specify the interaction rules that we expect inter-

acting chemicals to obey in order to perform computa-

tion. Closely related models from distributed computing

include population protocols (Angluin et al., 2006), Petri

nets (Petri, 1966), and vector addition systems (Karp &

Miller, 1969).

A CRN is formally a set of chemical species (typically

written with capital letters) and a set of reactions between

them. A state of the CRN is an assignment of a nonnegative

real value to each species, representing the species’ con-

centrations (quantity per unit volume). As the state varies

over time, we denote by a(t) the concentration of species

A at time t. Each reaction is composed of two multisets

over the species, the reactants and products, which spec-

ify the stoichiometry (the relative quantities of the involved

species). For example, species A and B might react to pro-

duce species C, which we write as the reaction

A+B −→ C.

Each reaction has an associated rate constant which affects

the dynamics of state change of the system. Under typical

mass-action kinetics, the instantaneous rate of a reaction

is the product of the rate constant and the concentrations

of the reactants (i.e., k · a(t) · b(t) for the reaction above).1

The behavior of the whole system is then described by a set

of ordinary differential equations (ODEs) generated based

on the reactions. For example, if the reaction above is the

only one producing C, the kinetics of C is governed by

dc(t)/dt = k · a(t) · b(t).

To define CRN computation, some chemical species are

considered input species, and some others, disjoint from the

first, are considered output species. The initial concentra-

tions of the input species are the input to the computation.

The system asymptotically converges to a state where the

concentrations of the output species are equal to the desired

output values.

Many CRN computations work under strong assumptions

about the rates of the reactions, but engineering reactions

with precise rates is difficult, and small changes in the en-

vironment can further disturb these rates. Instead, compu-

tation can be achieved by stoichiometry alone (Chen et al.,

2014a;b), which forms the basis of the computation con-

sidered in this paper. The essential example is the reac-

tion we have already seen: A + B −→ C. The concen-

tration of C as time approaches infinity is the min of the

initial concentrations of A and B, since the reaction can

occur only as long as both A and B are present. This

fact holds for any (nonzero) reaction rate. Thus we say

this CRN rate-independently computes the min function:

c = min(a(0), b(0)).

A programmable chemical process called DNA strand

displacement can in principle (and, to some extent, ex-

perimentally (Chen et al., 2013; Srinivas et al., 2017))

implement arbitrary, rationally designed CRNs (Solove-

ichik et al., 2010). Watson-Crick base pairing enables

programmability, since interactions are mediated by nu-

cleotide sequence complementarity. In the basic DNA

strand displacement reaction, an “output” strand is initially

bound to a complementary strand. A single-stranded “in-

1Although the details of CRN kinetics is not essential for un-
derstanding the results in this paper, the numerical simulations are
done using continuous mass-action kinetics. In other models of
chemical kinetics the amounts of species are represented by non-
negative integer molecular counts and the system corresponds to
a continuous time Markov chain. Our results apply to this setting
as well, as long as real-valued signals are properly discretized.



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

put” binds to the double-stranded complex, displacing the

“output” strand. Extended designs based on this elemen-

tary reaction allow enzyme-free synthetic DNA systems to

behave as arbitrary CRNs.2

Rate-independent computation aligns well with the design

of DNA strand displacement systems. The stoichiometry

of a strand displacement reaction is engineered by setting

regions on two or more strands to be complementary or

orthogonal. In contrast, setting precise reaction rates re-

quires designing specific sequences that achieve desired

hybridization free energies. Hybridization rates are highly

dependent on the temperature and on the chemical com-

position of the solution. Further, for a particular chemical

implementation, there is some maximum rate possible, so

requiring some reactions to be fast and others slow neces-

sarily requires slowing the entire system down.

Although concentrations of species are nonnegative, to im-

itate the computation done by a neural network we need

to store and process negative values. To do so, we repre-

sent negative values by the dual-rail convention: a value x
is represented not by the concentration of one species X ,

but by the difference in concentration between two species

X+ and X− (Chen et al., 2014b). More precisely, at time

t, x(t) = x+(t) − x−(t). Note that values have multiple

representations: x = 3 can be represented as either x+ = 3
and x− = 0 or x+ = 4 and x− = 1. Although the value is

the same, the choice of representation affects convergence

time. (Convergence time is an important question for future

work as mentioned in Section 6.)

2.2. Binary-Weight ReLU (BinaryConnect)

In recent years we have seen a growing interest in building

specialized deep learning hardware to enable new and more

complex deep learning applications as well as deploying

deep learning systems on low-power devices (Chen et al.,

2014c; Dean et al., 2012; Kim et al., 2009). One direction

of work tries to tackle this problem by designing more com-

putationally efficient neural networks (Courbariaux et al.,

2015; Hubara et al., 2016; Li et al., 2016; Simons & Lee,

2019). One of the initial works in this area introduces Bi-

naryConnect networks (Courbariaux et al., 2015) which re-

strict the weights of neural networks to values ±1. This re-

striction on the weight values enables replacement of most

of the multiply units by simple accumulators which leads to

a drastic reduction of computational expenses, considering

2No reaction is truly irreversible; that is to say, if A+B −→
C, then C −→ A+B with some non-zero rate. However, nature
provides many examples of reactions which are effectively irre-
versible due to a large change in free energy between reactions
and products. Reactions implemented by DNA strand displace-
ment are thermodynamically driven by the formation of additional
nucleotide base pairs, which provide enough free energy for the
reaction to behave effectively irreversibly.

that the multipliers are the most space and power hungry

components of specialized deep learning hardware. More-

over, in spite of severe restriction on the weight values, Bi-

naryConnect still achieves near state-of-the-art results on

standard machine learning datasets.

BinaryConnect networks are trained similarly to tradi-

tional neural networks through a repeated sequence of: (a)

forward-propagation pass computing the output of a net-

work given an input; (b) backward-propagation pass com-

puting error terms (derivatives of the cost function in re-

spect to weights and bias terms); and (c) parameter updates

(updating weight and bias terms based on the error terms).

BinaryConnect maintains real-valued weights throughout

training, but discretizes them to 1 or −1 (if positive or

negative, respectively) during the forward and backward-

propagation passes. The parameter update is then per-

formed on the real-valued weights. The final binary-weight

neural network is generated by discretizing the resulting

real-valued weights at the end of training. (Other variations

of BinaryConnect training, such as stochastic discretiza-

tion, are described in the original paper.)

3. Technique

First we describe the technique for compiling binary-

weight ReLU networks to CRNs. Then we show how to

optimize the CRNs to reduce the total number of reactions.

Ultimately, there will be one reaction per ReLU node.

3.1. ReLU Chemical Reaction Network

We propose the following CRN to compute the ReLU func-

tion:

X+ −−→ M + Y + (1)

M +X− −−→ Y − (2)

In order to understand why the above reactions compute

ReLU, suppose we start with x+(0) amount of X+ and

x−(0) amount of X− and no other species. These concen-

trations represent the input value x(0) = x+(0) − x−(0)
in dual-rail form. Although the two reactions will be hap-

pening in parallel, the first reaction converges to produc-

ing x+(0) amount of M and Y +. Therefore, the sec-

ond reaction converges to producing min(x+(0), x−(0))
of Y −. This implies that the system converges to the dual-

rail value of the output y = y+(t) − y−(t) = x+(0) −
min(x+(0), x−(0)) = (x+(0) − x−(0)) − min(x+(0) −
x−(0), x−(0) − x−(0)) = x − min(x, 0) = max(x, 0).
Note that this CRN is rate-independent because the com-

putation will be correct no matter what the rates of the in-

dividual reactions are.

Since the output species Y + and Y − are not consumed

in the above CRN, they can be used as input species for



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

�✁

✂✄

✂☎

✆✄

✆☎

✆✝

✞

✟✠✡

☛✡

✡

☛✡

✡

☛✡

✡

✡

☛✡

Figure 1. Binary-weight neural network.

any composed downstream computation without interfer-

ing with the computation of ReLU. Reactions 1–2 form the

simplest CRN computing ReLU in the sense that there is

no composable CRN with fewer than 2 reactions or fewer

than 5 species computing this function (Vasic et al., 2019).3

3.2. Compiling Binary-Weight ReLU Networks

Figure 1 shows an example binary-weight ReLU network.

This network consists of an input layer, a single hidden

layer with the ReLU activation function, and an output

layer without an activation function. Let us initially ignore

the bias terms. Then the output of the network is defined

by y = ReLU(x⊤ ·W1) ·w2, where x ∈ R
2 is an input

vector, W1 ∈ {−1, 1}2×3 is a weight matrix into the hid-

den layer, w2 ∈ {−1, 1}3 is a weight vector into the output

layer, and y ∈ R is the output. The Figure 1 neural network

weight values are:

W1 =

[

1 1 1
−1 −1 −1

]

,w2 =
[

1 1 −1
]⊤

We now convert this binary-weight ReLU network into a

CRN. Initially, for each input xi in the input vector, species

X+

i and X−

i will be present such that x+

i (0)−x−

i (0) = xi.

We multiply the input vector by the weights W1 by the

following reactions:

X+

1 −−→ I+1,1 + I+1,2 + I+1,3 (3)

X−

1 −−→ I−1,1 + I−1,2 + I−1,3 (4)

X+

2 −−→ I−1,1 + I−1,2 + I−1,3 (5)

X−

2 −−→ I+1,1 + I+1,2 + I+1,3 (6)

Species Il,i represents the ith intermediate (before applying

nonlinearity) species of the layer l. For a weight with value

3There is a simpler, non-composable ReLU computing CRN:
X+ −→ Y +, Y + +X− −→ W . (W is an inert waste species.)
It cannot be combined with another CRN which uses species Y +

as an input, as Y + may be consumed by the downstream CRN
before it is annihilated by the second reaction. Composability is a
well-understood feature in rate-independent CRNs (Chalk et al.,
2018; Severson et al., 2019).

1 we include a reaction with a positive input species as a re-

actant and positive output species as a product, as that has

the effect of addition to the product species’ value. For a

weight with value −1 we include a reaction with a positive

input species as a reactant and negative output species as a

product, as that has the effect of subtraction from the prod-

uct species’ value. To maintain the dual-rail convention we

also include a reaction which contains all the same species

with signs flipped. Next, to implement the ReLU activation

function we use the module discussed above (reactions 1–

2), with the appropriate renaming of species:

I+1,1 −−→ M1,1 +H+

1,1 (7)

M1,1 + I−1,1 −−→ H−

1,1 (8)

I+1,2 −−→ M1,2 +H+

1,2 (9)

M1,2 + I−1,2 −−→ H−

1,2 (10)

I+1,3 −−→ M1,3 +H+

1,3 (11)

M1,3 + I−1,3 −−→ H−

1,3 (12)

Each intermediate species Il,i of the hidden layer l is a part

of a separate ReLU module producing output species Hl,i.

Finally, to multiply by the weight vector w2 we use the

following reactions (similar to the multiplication by W1):

H+

1,1 −−→ Y + (13)

H−

1,1 −−→ Y − (14)

H+

1,2 −−→ Y + (15)

H−

1,2 −−→ Y − (16)

H+

1,3 −−→ Y − (17)

H−

1,3 −−→ Y + (18)

The Y species are the output species, and the value y =
y+(t)− y−(t) approaches ReLU(x⊤ ·W1) ·w2 as t goes

to infinity.

The complete equation of the neural network with bias

terms is: y = ReLU(x⊤ · W1 + b1
⊤) · w2 + b2. To

encode bias terms b1, it is enough to set initial concen-

trations of the hidden layer I1,i species accordingly (e.g.,

i+11(0)− i−11(0) should be equal to the first component of

vector b1); similarly for b2 and Y species.

We summarize the compilation procedure in Algorithm 1.

The input of the algorithm is a binary-weight ReLU net-

work (nn), and the output is its CRN equivalent. We iter-

ate through all the layers of nn starting from the first hid-

den layer and including the output layer (layer number 1 is

the input layer). If a layer does not contain the nonlinear

activation (ReLU) we include reactions directly producing

the layer output species (named H), otherwise intermediate



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

Algorithm 1 NNCompile(±1-weight neural network: nn)

1: crn = newCRN()
2: for l = 2 to nn.numLayers() do
3: layer = nn.getLayer(l)
4: W, b, a = layer.params()
5: pName = ‘H’ if a.linear() else ‘I’
6: for i = 1 to W.dimsX do
7: rxn = newReaction()
8: rxn.reactants = {X+

i if l == 1 else H+

l−1,i}
9: for j = 1 to W.dimsY do

10: pSign = ‘ + ’ if W [i, j] == 1 else ‘ − ’

11: rxn.products.add(pName
pSign

l,j )
12: end for
13: crn.add(rxn)
14: crn.add(rxn.reverseSigns())
15: end for
16: for j = 1 to W.dimsY do
17: if b[j] > 0 then

18: crn.setConc(pName+l,j , b[j])
19: else
20: crn.setConc(pName−l,j ,−b[j])
21: end if
22: if a.nonlinear() then

23: crn.add(I+l,j −→ Ml,j +H+

l,j)

24: crn.add(Ml,j + I−l,j −→ H−

l,j)
25: end if
26: end for
27: end for
28: return crn

species are produced first (named I); the name of the ap-

propriate product species is stored in pName (line 5). We

iterate through the rows of the weight matrix (W ), creating

one reaction per row, where the reactant is H+

l−1,i (ith unit

of the previous layer), or X+

i in the case where the previous

layer is the input layer (line 8). To construct the products

of the reaction, we iterate through all of the columns of W ,

adding pName species with positive sign when the weight

is +1 or negative sign when the weight is −1 (lines 10–11).

For a valid dual-rail computation, we include such a con-

structed reaction to the CRN (line 13), as well as the same

reaction with the signs of all the species flipped (line 14).

Next, we set the initial concentrations of pName species to

correspond to the bias terms. If a bias term is positive, we

set the positive species to b[j], otherwise we set the negative

species to −b[j] (lines 17–21). Finally, if the layer contains

a ReLU activation, we include the ReLU CRN taking as

inputs layer intermediate (I) species and producing layer

output (H) species. Note that unlike in the previous exam-

ple, the network output species will be denoted by HN,j

(where N is the number of layers in the network).

To compute with the CRN, we provide input x by setting

the initial concentrations of the input species X as follows.

If a component xi of the input vector is non-negative, then

the concentration of the positive input species X+

i is set

to xi; otherwise the concentration of the negative input

species X−

i is set to −xi. Note that in chemistry, reactions

occur in parallel, so layers begin their computation before

the previous ones complete, unlike typical neural network

architectures.

3.3. Optimization: Reducing the Compiled CRN

We find that unimolecular reactions, such as the first reac-

tions of ReLU modules, can be eliminated from the CRN

by altering the bimolecular reactions and the initial concen-

trations of the CRN species, a process which we describe

next. Unimolecular reactions are those with exactly one

reactant like A −→ B + C. Whenever A is produced in

another reaction, we can replace it with B + C. For exam-

ple, if there is another reaction X −→ A + B, we replace

the reaction with X −→ 2B + C. Further, we adjust the

initial concentrations of the product species (B and C) by

increasing them by the initial concentrations of the reactant

(A). Importantly, this transformation works only if A is not

a reactant in any other reaction; for example, if there were

another reaction like X + A −→ Y , it is not clear what to

replace instances of A with, and indeed it is not possible to

remove the unimolecular reaction in that case. Luckily, our

construction has the property that any species occurs as a

reactant in at most one reaction.

We will now illustrate the aforementioned elimination pro-

cedure on the neural network CRN presented in Sec-

tion 3.2, characterized by reactions 3–18. We start by re-

moving the downstream-most unimolecular reactions (re-

actions 13–18), although the order does not matter. Remov-

ing these reactions and adjusting the products accordingly

results in the following CRN:

X+

1 −−→ I+1,1 + I+1,2 + I+1,3 (19)

X−

1 −−→ I−1,1 + I−1,2 + I−1,3 (20)

X+

2 −−→ I−1,1 + I−1,2 + I−1,3 (21)

X−

2 −−→ I+1,1 + I+1,2 + I+1,3 (22)

I+1,1 −−→ M1,1 + Y + (23)

M1,1 + I−1,1 −−→ Y − (24)

I+1,2 −−→ M1,2 + Y + (25)

M1,2 + I−1,2 −−→ Y − (26)

I+1,3 −−→ M1,3 + Y − (27)

M1,3 + I−1,3 −−→ Y + (28)

Note that the initial concentrations of Y species are un-

affected as species H1,i are initially set to 0. Next, we

remove the now downstream-most unimolecular reactions

(reactions 23,25,27) and obtain the following CRN:

X+

1 −−→ M1,1 +M1,2 +M1,3 + 2Y + + Y − (29)

X−

1 −−→ I−1,1 + I−1,2 + I−1,3 (30)



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

X+

2 −−→ I−1,1 + I−1,2 + I−1,3 (31)

X−

2 −−→ M1,1 +M1,2 +M1,3 + 2Y + + Y − (32)

M1,1 + I−1,1 −−→ Y − (33)

M1,2 + I−1,2 −−→ Y − (34)

M1,3 + I−1,3 −−→ Y + (35)

The initial concentrations of M1,1, M1,2, M1,3, Y + and

Y − are also affected:

m1,i(0) += i+
1,i(0), ∀i ∈ {1, 2, 3}

y+(0) += i+1,1(0) + i+1,2(0)

y−(0) += i−1,3(0)

The only remaining unimolecular reactions are those

whose reactants are input species (X). We do not apply the

above elimination procedure to these unimolecular reac-

tions because doing so would remove the input species en-

tirely. Then giving the input to the CRN would require set-

ting the initial concentrations of a number of other species,

complicating the input representation.

Note that the CRN can be further simplified while preserv-

ing dual-rail values. Reactions 29 and 32 can be reduced

to:

X+

1 −−→ M1,1 +M1,2 +M1,3 + Y + (36)

X−

2 −−→ M1,1 +M1,2 +M1,3 + Y + (37)

Further, the initial concentrations of Y + and Y − can be

reduced by the same amount to make the smaller one zero.

In general, the CRN resulting from the optimization proce-

dure has the following properties. There are no unimolecu-

lar reactions besides the input layer, for which there are two

reactions per input. There is one bimolecular reaction per

ReLU node of the original network. There are no other re-

actions. Optimization of some adversarial ReLU networks

results in reactions with a number of products exponential

in the depth of the network. Understanding the scaling of

the number of products is an important avenue for future

work to ensure feasible CRNs.

Algorithm 2 summarizes the reduction procedure. The al-

gorithm first collects a list of all unimolecular reactions

(line 1). Then, for each unimolecular reaction (R −→
∑

i Pi) the following steps are done: (a) if reactant R is

an input species the following steps are skipped and the

next reaction is processed (line 4); (b) for every reaction in

the CRN producing R, the list of products is altered by re-

moving the product R and adding products Pi (lines 6–11);

(c) the initial concentrations of species Pi are increased

by the amount of the initial concentration of R (line 13);

and (d) the unimolecular reaction is removed from the

CRN (line 15). After these steps we perform the follow-

ing behavior-preserving transformations that further sim-

plify the CRN. For each dual-rail value represented by S+

Algorithm 2 reduce(CRN: crn)

1: uniRxns = crn.getUnimolecularReactions()
2: for all uniRxn ∈ uniRxns do
3: R = uniRxn.getF irstReactant()
4: if crn.inputSpecies(R) then continue

5: r(0) = crn.getConc(R)
6: for all rxni ∈ crn.reactions do
7: if rxni.containsProduct(R) then
8: rxni.removeProduct(R)
9: rxni.addProducts(uniRxn.products)

10: end if
11: end for
12: for all Pi ∈ uniRxn.products do
13: crn.addConc(Pi, r(0))
14: end for
15: crn.remove(uniRxn)
16: end for
17: for all S+, S− ∈ crn.getDualRailPairs() do
18: for all rxni ∈ crn.reactions do
19: while S+, S− ∈ rxni.products do
20: rxn.removeProduct(S+)
21: rxn.removeProduct(S−)
22: end while
23: end for
24: m = min(crn.getConc(S+), crn.getConc(S−))
25: crn.addConc(S+,−m)
26: crn.addConc(S−,−m)
27: end for

and S− species we: (i) for every reaction whose products

multiset contain both S+ and S−, remove both species as

long as both are present (lines 18–23); (ii) reduce the ini-

tial concentrations of S+ and S− by the minimum of their

values (lines 24–26).

4. Experiments

In this section we describe computational experiments

showcasing compilation from neural networks to CRNs.

We train BinaryConnect networks on IRIS (Anderson,

1936; Fisher, 1936), MNIST (LeCun et al., 1998), and

virus infection datasets (GSE73072). We then translate

trained neural networks to CRNs following our compila-

tion technique (Section 3), and simulate the reactions’ be-

havior using an ODE simulator (CRNSimulator). The sim-

ulator models CRNs with real-valued concentrations in the

standard mass-action model of chemical kinetics, where the

rate of a reaction is directly proportional to the concentra-

tions of the reactants. Our main goal is to show the equiva-

lence of the trained neural network and the compiled CRN,

and not to improve accuracy of machine learning models,

which is orthogonal to our work.

4.1. Datasets

IRIS. The IRIS dataset consists of 150 examples of 3
classes of flowers (Setosa, Versicolor or Virginica), and



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

4 features per example (sepal length and width, and petal

length and width). Considering the small dataset size and

that our goal is to show the equivalence of the neural net-

work and the translated CRN, we use the whole dataset for

both training and evaluation.

MNIST. The MNIST dataset consists of labeled handwrit-

ten digits, where features are image pixels, and labels are

digits (0 to 9). We split the original MNIST training set

consisting of 60, 000 images into 50, 000 for the training

set, and 10, 000 for the validation set. We use the original

test set consisting of 10, 000 images. In preprocessing, we

center the images (as is done in the BinaryConnect work),

and additionally we scale them from 28× 28 to 14× 14.

Virus Infection. For the virus infection classifier, we used

data from NCBI GSE73072 (GSE73072). The dataset con-

tains microarray data capturing gene expression profiles of

humans, with the goal of studying four viral infections:

H1N1, H3N2, RSV, and HRV (labels). There are 148 pa-

tients in the dataset, each with about 20 separate profiles

taken at different times during their infection period, for a

total of 2, 886 samples. The dataset contains information

about which patient was infected and during which point

of time. We filter the samples leaving only those that cor-

respond to an active infection, and thus make the data suit-

able for classification of the four viruses. Finally, we have

a total of 698 examples, split into 558 for training, 34 for

validation, and 104 for testing. Each sample measures ex-

pression of 12, 023 different genes (features); we use the

10 most relevant genes as features which are selected using

GEO2R tool (GEO2R) from the NCBI GEO.

4.2. Results

IRIS. We train a neural network with a single hidden layer

consisting of 8 units, 4 input units (capturing the features

of IRIS flowers), and 3 output units where the unit with the

highest value determines the output class. Given that our

primary goal is to show the equivalence of a neural net-

work and the compiled CRN, and since the dataset size is

quite small (150 examples), we train and evaluate on the

whole IRIS dataset. We achieve accuracy of 94% (141 out

of 150 examples correctly classified) with a trained Bina-

ryConnect neural network. The equivalent CRN consists

of 40 chemical reactions (unoptimized compilation), and

16 chemical reactions (optimized compilation). We simu-

late both versions of the CRN and confirm that their outputs

(labels) match the neural network in all 150 examples. Fig-

ure 2 shows the simulation results of the IRIS CRNs on an

example input, which is classified with label 0 (since the y0
output is largest). In both CRNs, the final simulation val-

ues of y0, y1 and y2 match the output units values of the

neural network (approaching up to 4 decimal places in the

time of simulation). Thus not only does the CRN have the

same classification output, but also the numerical values of

the individual dual-rail outputs match the output units of

the neural network. In regard to the dynamics of CRN con-

vergence, the reduced CRN converges significantly faster.

MNIST. We train a binary-weight neural network with 2
hidden layers and 512 units per each hidden layer, where

hyperparameter values are obtained via a random search.

We downscale MNIST images from original 28 × 28 res-

olution to 14 × 14; thus the neural network has 142 input

units (one per pixel). We use 10 output units (for digits 0
to 9), and train the neural network to maximize the output

unit corresponding to the correct digit. Our trained model

achieves accuracy of 97.76% on the test set. Note that we

did not focus on achieving high accuracy; BinaryConnect

in the original paper achieves accuracy of over 98%, but

uses larger networks (3 hidden layers with 1024 units each).

We translate the network to an equivalent CRN consist-

ing of 4488 chemical reactions (unoptimized compilation),

and 1024 chemical reactions (optimized compilation). The

CRN consists of 2 · 142 input species (two species per in-

put unit encoding positive and negative parts), and simi-

larly 2 · 10 output species. We simulate the CRN on 100
randomly chosen examples from the test set, and confirm

that the output matches that of the neural network in all of

the cases. Figure 3 shows simulation results on an example

input image (unoptimized CRN). In regard to the dynamics

of convergence, note the complex non-monotonic behavior

resulting from the mass-action kinetics.

Virus Infection. We train a neural network with 1 hid-

den layer with 32 units, 10 input units capturing expression

of different genes, and 4 output units classifying between

virus infections. We achieve test set accuracy of 95.20%.

The equivalent CRN consists of 148 chemical reactions

(unoptimized compilation), and 32 chemical reactions (op-

timized compilation). We simulate the CRN on 100 ran-

domly chosen examples from the test set and confirm that

the output matches that of the neural network in all cases.

Figure 4 shows simulation of the unoptimized CRN on an

example that is misclassified.

The performed experiments empirically confirm the sound-

ness of our compilation technique.

4.3. Training Specifics

We use the published implementation of BinaryConnect

networks (Courbariaux et al., 2015), and follow the train-

ing procedure outlined in Section 2.2. We do not use Batch

Normalization (Ioffe & Szegedy, 2015) because it would

incur multiplication and division operations at the infer-

ence stage (training stage is not a problem) that would be

hard to efficiently implement in CRNs. Instead, we rely on

Dropout (Srivastava et al., 2014) (stochastically dropping

out units in a neural network during training) as a regular-





Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

Recently, Moorman et al (Moorman et al., 2019) proposed

an implementation of ReLU units based on a fast bimolec-

ular sequestration reaction which competes with unimolec-

ular production and degradation reactions. In contrast to

the prior work, our implementation relies solely on the sto-

ichiometric exchange of reactants for products, and is thus

completely independent of the reaction rates. Our CRN

is also more compact, using only a single bimolecular re-

action per neuron, with two species per every connection

(without any additional species for the neuron itself). Fi-

nally, in contrast to the prior schemes, our CRN converges

to a static rather than a dynamic equilibrium, which means

that all reactions cease firing. This implies that our imple-

mentation does not waste energy to maintain state.

We use neural networks as a way to program chemistry.

The programming is done offline in the sense that neu-

ral networks are trained in silico. However, there is a

body of work on creating chemical systems that are ca-

pable of learning in chemistry (Blount et al., 2017; Chi-

ang et al., 2015). Although these constructions are much

more complex than ours, and arguably difficult to realize,

they demonstrate the proof-of-principle that chemical in-

teractions such as those within a single cell are capable of

brain-like behavior.

Besides the above-mentioned theoretical work on chemical

neural networks, wet-lab demonstration of synthetic chem-

ical neural computation argues that the theory is not vapid

and that neural networks could be realized in chemistry.

A chemical linear classifier reading gene expression lev-

els could perform basic disease diagnostics (Lopez et al.,

2018). Larger systems based on rate-dependent strand dis-

placement cascades were used to implement Hopfield as-

sociative memory (Qian et al., 2011), and winner-take-all

units to classify MNIST digits (Cherry & Qian, 2018).

6. Conclusion

We demonstrate how BinaryConnect (weight ±1) neural

networks could be implemented in chemistry using rate-

independent chemical reaction networks. As proof of prin-

ciple, we demonstrate our scheme with numerical simula-

tions of resulting CRNs classifying the MNIST and IRIS

datasets. We further simulate a CRN constructed from a

ReLU network trained to classify a virus gene expression

dataset. Since this network relies on chemically available

information for input, this example argues for the poten-

tial biological and medical utility of programming chemi-

cal computation via a translation from neural networks.

Performing the simulations with rate constants on the or-

der of magnitude of those reported for DNA strand dis-

placement (103 to 104 M/s) (Srinivas et al., 2017) results

in roughly the conversion factor of 1 time unit = 100 to

1000 seconds of real time (assuming 10−6 M concentra-

tions). Although molecular systems may be orders of mag-

nitude slower than electronics, the time scales are compat-

ible with the intended applications such as interfacing with

biological regulatory networks or disease marker detection.

As a point of comparison, other implementations of chem-

ical neural networks also take hours to complete (Cherry &

Qian, 2018).

The convergence time of the CRNs described here scales

in a complicated way with many variables, from the depth

of the implemented neural network to the choice of rep-

resenting input values in dual-rail representation (an input

x = 3 can be represented for example as x+ = 3 and

x− = 0, or as x+ = 4 and x− = 1). Thus an important

area of future research is the formal proof of convergence

properties of the system. Empirically, we observed that de-

pending on the network architecture, the 90%-completion

time may increase sublinearly, linearly, or superlinearly (in

some contrived examples) with the number of layers.

Note that the concentrations of the positive (S+) and neg-

ative (S−) dual-rail species can become very large, despite

the value they represent remaining small. This can occur

in special cases of the networks we construct. This is un-

desired generally; in synthetic implementations, reactions

can use additional “fuel” species in addition to the species

designed in the formal CRN, so higher concentrations re-

quire more of such species. However, there is an easy fix to

this problem: inclusion of the reaction S+ + S− −→ W ,

where W is some inert waste species. This cancellation re-

action leaves the signal value unchanged and reduces the

concentrations of the two species.

Although in principle arbitrary CRNs can be implemented

using DNA strand displacement reactions, current lab-

oratory demonstrations have been limited to small sys-

tems (Srinivas et al., 2017), and many challenges remain in

constructing large CRNs in the laboratory. Rate indepen-

dent CRNs offer an attractive implementation target due to

their absolute robustness to reaction rates.

Our construction is surprisingly compact in the sense that

we use exactly one reaction per ReLU node. This compact-

ness argues that neural networks may be a fitting paradigm

for programming chemical computation. This invites the

exchange of knowledge between the molecular program-

ming and deep learning communities.

Acknowledgements

We thank the anonymous reviewers for constructive com-

ments and suggestions. This work was funded by NSF

grants CCF-1718903 to SK and CCF-1901025 to DS.



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

References

Anderson, E. The species problem in iris. Annals of the

Missouri Botanical Garden, 1936.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M. J., and

Peralta, R. Computation in networks of passively mobile

finite-state sensors. Distributed computing, 18(4):235–

253, 2006.

Blount, D., Banda, P., Teuscher, C., and Stefanovic, D.

Feedforward chemical neural network: An in silico

chemical system that learns xor. Artificial life, 23(3):

295–317, 2017.

Bray, D. Protein molecules as computational elements in

living cells. Nature, 376(6538):307–312, 1995.

Buchler, N. E., Gerland, U., and Hwa, T. On schemes

of combinatorial transcription logic. Proceedings of

the National Academy of Sciences, 100(9):5136–5141,

2003.

Chalk, C., Kornerup, N., Reeves, W., and Soloveichik,

D. Composable rate-independent computation in con-

tinuous chemical reaction networks. In Ceska, M. and

Safránek, D. (eds.), Computational Methods in Systems

Biology - 16th International Conference, CMSB 2018,

Brno, Czech Republic, September 12-14, 2018, Pro-

ceedings, volume 11095 of Lecture Notes in Computer

Science, pp. 256–273. Springer, 2018. doi: 10.1007/

978-3-319-99429-1\ 15. URL https://doi.org/

10.1007/978-3-319-99429-1_15.

Chen, H.-L., Doty, D., and Soloveichik, D. Deterministic

function computation with chemical reaction networks.

Natural Computing, 13(4):517–534, 2014a.

Chen, H.-L., Doty, D., and Soloveichik, D. Rate-

independent computation in continuous chemical reac-

tion networks. In Proceedings of the 5th conference on

Innovations in theoretical computer science, pp. 313–

326, 2014b.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen,

Y., and Temam, O. Diannao: A small-footprint high-

throughput accelerator for ubiquitous machine-learning.

ACM SIGARCH Computer Architecture News, 42(1):

269–284, 2014c.

Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A.,

Cardelli, L., Soloveichik, D., and Seelig, G. Pro-

grammable chemical controllers made from DNA. Na-

ture nanotechnology, 8(10):755, 2013.

Cherry, K. M. and Qian, L. Scaling up molecular pattern

recognition with DNA-based winner-take-all neural net-

works. Nature, 559(7714):370–376, 2018.

Chiang, H.-J. K., Jiang, J.-H. R., and Fages, F. Recon-

figurable neuromorphic computation in biochemical sys-

tems. In 2015 37th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society

(EMBC), pp. 937–940. IEEE, 2015.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-

nect: Training deep neural networks with binary weights

during propagations. In Advances in neural information

processing systems, pp. 3123–3131, 2015.

CRNSimulator. Mathematica package for work-

ing with networks of coupled chemical reac-

tions. http://users.ece.utexas.edu/

˜soloveichik/crnsimulator.html.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,

Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang,

K., et al. Large scale distributed deep networks. In

Advances in neural information processing systems, pp.

1223–1231, 2012.

Fages, F., Le Guludec, G., Bournez, O., and Pouly, A.

Strong Turing completeness of continuous chemical re-

action networks and compilation of mixed analog-digital

programs. In International conference on computational

methods in systems biology, pp. 108–127. Springer,

2017.

Fisher, R. A. The use of multiple measurements in taxo-

nomic problems. Annals of eugenics, 1936.

GEO2R. Identifying Differentially Expressed Genes.

https://www.ncbi.nlm.nih.gov/geo/

geo2r/.

GSE73072. Host gene expression signatures of

H1N1, H3N2, HRV, RSV virus infection in adults.

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE73072.

Hellingwerf, K. J., Postma, P. W., Tommassen, J., and

Westerhoff, H. V. Signal transduction in bacteria:

phospho-neural network(s) in Escherichia coli? FEMS

microbiology reviews, 16(4):309–321, 1995.

Hjelmfelt, A., Weinberger, E. D., and Ross, J. Chemi-

cal implementation of neural networks and Turing ma-

chines. Proceedings of the National Academy of Sci-

ences, 88(24):10983–10987, 1991.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and

Bengio, Y. Binarized neural networks. In Advances in

neural information processing systems, pp. 4107–4115,

2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-

ing deep network training by reducing internal covariate

shift. arXiv preprint arXiv:1502.03167, 2015.



Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks

Karp, R. M. and Miller, R. E. Parallel program schemata.

Journal of Computer and system Sciences, 3(2):147–

195, 1969.

Kim, S. K., McAfee, L. C., McMahon, P. L., and Olukotun,

K. A highly scalable restricted boltzmann machine fpga

implementation. In 2009 International Conference on

Field Programmable Logic and Applications, pp. 367–

372. IEEE, 2009.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.

Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 1998.

Li, F., Zhang, B., and Liu, B. Ternary weight networks.

arXiv preprint arXiv:1605.04711, 2016.

Lopez, R., Wang, R., and Seelig, G. A molecular multi-

gene classifier for disease diagnostics. Nature chemistry,

10(7):746–754, 2018.

Moorman, A., Samaniego, C. C., Maley, C., and Weiss, R.

A dynamical biomolecular neural network. In 58th IEEE

Conference on Decision and Control. IEEE, 2019.

Petri, C. A. Communication with automata. 1966.

Qian, L., Winfree, E., and Bruck, J. Neural network com-

putation with DNA strand displacement cascades. Na-

ture, 475(7356):368–372, 2011.

Senum, P. and Riedel, M. Rate-independent constructs for

chemical computation. In Biocomputing 2011, pp. 326–

337. World Scientific, 2011.

Severson, E. E., Haley, D., and Doty, D. Composable

computation in discrete chemical reaction networks. In

Proceedings of the 2019 ACM Symposium on Princi-

ples of Distributed Computing, PODC 19, pp. 1423,

New York, NY, USA, 2019. Association for Comput-

ing Machinery. ISBN 9781450362177. doi: 10.1145/

3293611.3331615. URL https://doi.org/10.

1145/3293611.3331615.

Simons, T. and Lee, D.-J. A review of binarized neural

networks. Electronics, 8(6):661, 2019.

Soloveichik, D., Cook, M., Winfree, E., and Bruck, J.

Computation with finite stochastic chemical reaction

networks. Natural Computing, 7(4):615–633, 2008.

Soloveichik, D., Seelig, G., and Winfree, E. DNA as a

universal substrate for chemical kinetics. Proceedings of

the National Academy of Sciences, 107(12):5393–5398,

2010.

Srinivas, N., Parkin, J., Seelig, G., Winfree, E., and Solove-

ichik, D. Enzyme-free nucleic acid dynamical systems.

Science, 358(6369):eaal2052, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine

learning research, 2014.

Vasic, M., Soloveichik, D., and Khurshid, S. CRN++:

molecular programming language. In International Con-

ference on DNA Computing and Molecular Program-

ming, pp. 1–18, 2018.

Vasic, M., Soloveichik, D., and Khurshid, S. CRNs ex-

posed: Systematic exploration of chemical reaction net-

works. arXiv preprint arXiv:1912.06197, 2019.


