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In the paper [5, Section 6], we quoted a crucial lemma in [7, Proposition 4.1] for the
proof of the main L2 decay estimates [5, Theorem 13]. Unfortunately, an omission
was recently discovered in its proof. We now present an alternative proof for [5,
Theorem 13] based on the methodology in [3,4] without using the method of [7,
Proposition 4.1].

We consider the following linearized Landau equation

∂t f + v · ∇x f + L f = �(g, f ). (1)

The initial-boundary condition of f is given by
⎧
⎪⎨

⎪⎩

f (0, x, v) = f0(x, v), if x ∈ � and v ∈ R
3,

f (t, x, v) = f (t, x, v − 2(v · nx )nx ), if x ∈ ∂� and v · nx < 0

‖ f0‖∞,ϑ+m < ε

(2)

for some small ε > 0, ϑ ≥ 0 and m > 3
2 . We say that the domain � is rotationally

symmetric if there exist vectors x0 and w such that

((x − x0) × w) · nx = 0

for all x ∈ ∂�. Without loss of generality, we assume that the conservation laws of
total mass and energy for t ≥ 0 terms of the perturbation f apply:

∫

�×R3
f (t, x, v)

√
μ dx dv = 0,

∫

�×R3
|v|2 f (t, x, v)

√
μ dx dv = 0. (3)

In addition, we assume that the conservation of total angular momentum if � is
rotationally symmetric:

∫

�×R3
((x − x0) × w) · f (t, x, v)v

√
μ dx dv = 0. (4)
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Define the energy

Eϑ( f (t))
def= ∣

∣ f (t)
∣
∣2
2,ϑ +

∫ t

0

∣
∣ f (s)

∣
∣2
σ,ϑ

ds. (5)

In order to prove the main L2 decay theorem (Theorem 3), we first intend to
prove the following positivity of L:

Proposition 1. Let f be a weak solution of (1)–(4) with Eϑ( f (0)) bounded for
some ϑ ≥ 0. Then there exists a sufficiently small positive constant ε > 0 such that
if

‖g‖∞,m ≤ ε (6)

for some m > 3
2 , then we have δε > 0 such that

∫ 1

0
(L f, f ) ds ≥ δε

∫ 1

0
‖ f ‖2σ ds.

In order to prove the positivity of L , it suffices to prove the following proposition
as we have Lemma 5 of [2]:

Proposition 2. Let f be a weak solution of (1)–(4) with Eϑ( f (0)) bounded for
some ϑ ≥ 0. Then there exists a sufficiently small ε > 0 such that if ‖g‖∞,m ≤ ε

for some m > 3
2 , we have Cε > 0 such that

∫ 1

0
‖P f (τ )‖2σ ds ≤ Cε

∫ 1

0
‖(I − P) f (τ )‖2σ ds.

Proof. If the proposition is not true, then there exist a sequence of family gn and
a sequence of solutions fn to (1)–(4) with g = gn and f = fn such that

‖gn‖∞,m ≤ 1

n
(7)

for some m > 3
2 , but

∫ 1

0
‖(I − P) fn(τ )‖2σ ds ≤ 1

n

∫ 1

0
‖P fn(τ )‖2σ ds (8)

for any n.

We first prove the weak compactness of fn . We first reformulate the Equation
(1) as

ft + v · ∇x f = Āg f + K̄g f, (9)

Āg f := ∂i

[{
φi j ∗ [μ + μ1/2g]

}
∂ j f

]

−
{
φi j ∗ [viμ1/2g]

}
∂ j f −

{
φi j ∗ [μ1/2∂ j g]

}
∂i f

=: ∇v · (σG∇v f ) + ag · ∇v f,

(10)
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K̄g f := K f + ∂iσ
i f − σ i jviv j f

− ∂i

{
φi j ∗ [μ1/2∂ j g]

}
f +

{
φi j ∗ [viμ1/2∂ j g]

}
f,

(11)

where G = μ + √
μg,

K f := −μ−1/2∂i

{
μ

[
φi j ∗

{
μ1/2[∂ j f + v j f ]

}]}
, (12)

and σ i j = σ
i j
μ , σ i = σ i jv j , with

σ
i j
u (v)

def= φi j ∗ u =
∫

R3
φi j (v − v′)u(v′) dv′.

Note that the eigenvalues λ(v) of σ(v) satisfy [2, Lemma 3]

(1 + |v|)−3 � λ(v) � (1 + |v|)−1. (13)

For any fixed l < 0, we multiply (1) for f = fn and g = gn by (1 + |v|)2l fn and
integrate both sides of the resulting equation and obtain

∫∫

�×R3

1

2

(
(1 + |v|)2l f 2n (t, x, v) − (1 + |v|)2l f 2n (t0, x, v)

)
dx dv

+
∫ t

t0

∫∫

�×R3
(1 + |v|)2l(L fn) fn dx dv ds

=
∫ t

t0

∫∫

�×R3
(1 + |v|)2l�(g, fn) fn dx dv ds

≤
∫ t

t0
‖gn‖∞‖ fn‖2σ,l ds,

by Theorem 2.8 of [6]. Also, since l < 0, we deduce by Lemma 6 of [2] that
∫ t

t0

∫∫

�×R3
(1 + |v|)2l(L fn) fn dx dv ds

≥
∫ t

t0
ds

(
1

2
‖ fn(s)‖2σ,l − Cl‖(1 + |v|)l fn(s)‖2L2

)

.

Thus, we have

1

2
‖(1 + |v|)l fn(t)‖2L2 +

∫ t

t0
ds

1

4
‖ fn(s)‖2σ,l ≤ ‖(1 + |v|)l fn(t0)‖2L2

+C
∫ t

t0
ds‖(1 + |v|)l fn(s)‖2L2 .

Thus, by (7) and Grönwall’s inequality, we obtain that

‖(1 + |v|)l fn(t)‖2L2 +
∫ t

t0
‖ fn(s)‖2σ,l ds ≤ Cet−t0‖(1 + |v|)l fn(t0)‖2L2 . (14)
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On the other hand, we note that

‖ f ‖σ ≥ C‖(1 + |v|)−1/2 f ‖L2 ,

by (13). Thus we have

d

dt

∫ t

t0
‖ fn(s)‖2σ ds = ‖ fn(t)‖2σ ≥ C‖(1 + |v|)−1/2 fn(t)‖2L2

≥ C‖(1 + |v|)−1/2 fn(t0)‖2L2 − 2C
∫ t

t0

∫∫

�×R3
(1 + |v|)−1(L fn) fn dx dv ds

−2C
∫ t

t0
‖gn‖∞‖ fn‖2σ,−1/2 ds

≥ C‖(1 + |v|)−1/2 fn(t0)‖2L2 − 2C
∫ t

t0

(
3

2
‖ f (s)‖2σ,−1/2 − C‖ f (s)‖2σ

)

ds

−2C
∫ t

t0
‖gn‖∞‖ fn‖2σ,−1/2 ds

≥ C‖(1 + |v|)−1/2 fn(t0)‖2L2 − C ′
∫ t

t0
‖ f (s)‖2σ ds,

for some C ′ > 0 by Lemma 2.7 of [6]. By (7) and Grönwall’s inequality, we obtain
that

∫ t

t0
‖ fn(s)‖2σ ds ≥ C(1 − e−C ′(t−t0))‖(1 + |v|)−1/2 fn(t0)‖2L2 . (15)

Now we define the normalized term Zn of fn as

Zn
def= fn

√∫ 1
0 ‖P fn‖2σ ds

.

For s ∈ [0, 1], we have

‖(1 + |v|)−1/2Zn(s)‖2L2 = ‖(1 + |v|)−1/2 fn(s)‖2L2
√∫ 1

0 ‖P fn‖2σ dτ

≤ Ces‖(1 + |v|)−1/2 fn(0)‖2L2
∫ 1
0 ‖P fn‖2σ dτ

,

by (14) for l = −1/2. On the other hand, by the assumption (8) we have

(n + 1)
∫ 1

0
‖P fn‖2σ dτ ≥ n

∫ 1

0
‖P fn‖2σ dτ + n

∫ 1

0
‖(1 − P) fn‖2σ dτ

≥ n
∫ 1

0
‖ fn‖2σ dτ.
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Thus,

‖(1 + |v|)−1/2Zn(s)‖2L2 = ‖(1 + |v|)−1/2 fn(s)‖2L2
√∫ 1

0 ‖P fn‖2σ dτ

≤ n + 1

n

Ces‖(1 + |v|)−1/2 fn(0)‖2L2
∫ 1
0 ‖ fn‖2σ dτ

≤ 2
C‖(1 + |v|)−1/2 fn(0)‖2L2

∫ 1
0 ‖ fn‖2σ dτ

,

for any n ≥ 1. Now, by (15), we have
∫ s

0
‖ fn(τ )‖2σ dτ ≥ C(1 − e−Cs)‖(1 + |v|)−1/2 fn(0)‖2L2 .

Thus, we obtain the uniform bound

sup
0≤s≤1

‖(1 + |v|)−1/2Zn(s)‖2L2 ≤ C

for some C > 0. Also, by the normalization we already had
∫ 1
0 ‖Zn(s)‖2σ ds = 1.

Note that this will also imply that there is no concentration in time. Therefore, there
exists the weak limit Z of Zn in

∫ 1
0 ‖ · ‖2σ ds.

Also, by (8), we have
∫ 1

0
‖(I − P)Zn‖2σ ds ≤ 1

n
→ 0. (16)

By the triangle inequality, we also have that
∫ 1
0 ‖PZn(s)‖2σ ds is uniformly bounded

from above. In addition, the norm ‖ · ‖σ is an anisotropic Sobolev norm with
respect to direction of the velocity v by definition. Since the eigenvalues λ(v) of
the matrix σ(v) satisfies the bound (13), the normed vector space with the norm
‖ · ‖σ can be understood as a weighted L2 Sobolev space and is reflexive. Then
by Alaoglu’s theorem and Eberlein–šmulian’s theorem, PZn converges weakly to
PZ in

∫ 1
0 ‖ · ‖2σ ds up to a subsequence. Thus, we conclude that (I − P)Z = 0 and

Z = PZ . Thus, we can write Z(t, x, v) as

Z(t, x, v) = (a(t, x) + b(t, x) · v + c(t, x)|v|2)√μ.

Also, by taking the limit n → ∞, we note that the limit Z satisfies

∂t Z + v · ∇x Z = �(g∞, Z) = 0 (17)

in the sense of distribution, as the condition (7) makes g∞ = 0 a.e. outside a null
set that results in the vanishing integral

∫
�(g∞, Z)φ via an integration by parts

and we also have
∫
LZφ vanishes as Z = PZ , for a test function φ ∈ C1

c .
Now our main strategy is to show that Z has to be zero by (16), the specular

reflection boundary conditions, (17), and the conservation laws (3) and (4). On the
other hand, we will show the strong convergence of Zn to Z in

∫ 1
0 ‖ · ‖2σ ds by

proving the compactness. This will lead us to a contradiction.
We first introduce the following lemma, which provides more information on

the form of Z :
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Lemma 1. (Lemma 6 of [4]) There exist constants a0, c1, c2, and constant vectors
b0, b1 and w̄such that Z(t, x, v) takes the form

( (c0
2

|x |2 − b0 · x + a0
)

+ (−c0t x − c1x + w̄ × x + b0t + b1)

×v +
(
c0t2

2
+ c1t + c2

)

|v|2
)√

μ.

Moreover, these constants are finite.

Our case also shares the same transport equation (17) for Z that deduces the
same macroscopic equations as (72)–(76) of [4] with Z = PZ and the lemma
holds. Moreover, a better bound (14) provides that the coefficients are finite.

0.1. Plan for the proof of the strong convergence

We first show the strong convergence of Zn to Z in
∫ 1
0 ‖ · ‖2σ ds. First of all, we

note thatwe have seen already that there is no concentration in time-boundary at s =
0 or s = 1 by (14). Then regarding the remainder of the domain (ε, 1−ε)×�×R

3

for some ε > 0, we split it into three parts; we define the interior Dε
int , the non-

grazing set Dε
ng , and the singular grazing set Dε

sg so that

(ε, 1 − ε) × � × R
3 = Dε

int ∪ Dε
lv ∪ Dε

ng ∪ Dε
sg.

More precisely, we define the interior Dε
int as

Dε
int

def= (ε, 1 − ε) × Sε,

where

Sε =
{

(x, v) ∈ � × R
3 : ζ(x) < −ε4 and |v| ≤ 4

ε

}

.

Then we define sets of the compliment. Firstly, define the set of large velocity Dε
lv

as

Dε
lv

def= (ε, 1 − ε) × � ×
{

|v| >
4

ε

}
def= (ε, 1 − ε) × Scε,0.

We define the singular grazing set Dε
sg as

Dε
sg

def= (ε, 1 − ε) × Scε,1,

where

Scε,1 =
{

(x, v) ∈ � × R
3 : ζ(x) ≥ −ε4 and

[

|nx · v| <
ε

2
or |v| >

1

ε

]}

.

Lastly, we define the non-grazing set Dε
ng as

Dε
ng

def= (ε, 1 − ε) × Scε,2,
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where

Scε,2 =
{

(x, v) ∈ � × R
3 : ζ(x) ≥ −ε4 and

[

|nx · v| ≥ ε

2
and |v| ≤ 1

ε

]}

.

Here recall that ζ(x) is the smooth function such that � = {x : ζ(x) < 0}.
To prove the strong convergence in

∫ 1
0 ‖ · ‖2σ ds, it suffices to show

∑

1≤ j≤5

∫ 1

0
ds‖〈Zn, e j 〉e j − 〈Z , e j 〉e j‖2σ → 0,

where e j are an orthonormal basis for

span{√μ, v
√

μ, |v|2√μ},
as we have (16). Since e j (v) is smooth and the 0th and the 1st derivatives are
exponentially decaying for large |v|, it suffices to prove

∫ 1

0
ds

∫

�

dx |〈Zn, e j 〉 − 〈Z , e j 〉|2 → 0.

We establish this by considering the decomposition of the domain as above.

0.2. Interior compactness on Dε
int

Suppose χ1 is a smooth cutoff function that is supported on Dε
int and consider

Zn = (1 − χ1)Zn + χ1Zn .

In this subsection, we will consider the contribution χ1Zn via the averaging lemma.
We define another smooth cutoff function χ̃1 such that χ̃1 = 1 on Dε

int and χ̃1 = 0

outside Dε/2
int . Then χ̃1 has a larger support than χ1 and χ̃1 = 1 on Dε

int . The reason
that we additionally define χ̃1 with a larger support than χ1 is in order to make
(1 − χ1)Zn = Zn outside Dε

int and to make χ̃1Zn = Zn on Dε
int .

We first observe that χ̃1Zn satisfies the following equation:

(∂t + v · ∇x )(χ̃1(1 + |v|)−1/2Zn) = (1 + |v|)−1/2

(−χ̃1L[Zn] + Zn[∂t + v · ∇x ]χ̃1 + χ̃1�(gn, Zn)) .

We claim that the right-hand side is uniformly bounded in L2([0, 1] × � × R
3).

We observe that the second term is easily uniformly bounded by the L2 norm of
(1+ |v|)−1/2Zn , which is uniformly bounded by (14). We also observe that the L2

norms of the first and the third terms are bounded as follows. By Lemma 1 of [2],
χ̃1LZn can be written as

(1 + |v|)−1/2χ̃1LZn =
(

− ∂i (σ
i j∂ j Znχ̃1) + σ i j∂ j Zn∂i χ̃1 − ∂iσ

i Znχ̃1

+σ i jviv j Znχ̃1 + ∂i (μ
1/2(φi j ∗ (μ1/2(∂ j Zn + v j Zn)))χ̃1)
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−μ1/2(φi j ∗ (μ1/2(∂ j Zn + v j Zn)))∂i χ̃1 − viμ
1/2(φi j

∗(μ1/2(∂ j Zn + v j Zn)))χ̃1

)

(1 + |v|)−1/2 ≡ ∂i g1 + g2, (18)

where χ̃1 has a compact support and g1, g2 ∈ L2([0, 1] × � × R
3) as

‖g1‖L2 + ‖g2‖L2 � ‖(I − P)Zn‖σ .

Also, we apply Lemma 7 at (56) of [2] to estimate χ̃1�(gn, Zn) with g1 there is
our gn and g2 = Zn to see that

(1 + |v|)−1/2χ̃1�(gn, Zn) = ∂i j g
i j + ∂i g

i + g,

where

‖gi j‖L2 + ‖gi‖L2 + ‖g‖L2 � ‖gn‖L2‖Zn‖σ � ‖gn‖∞,m‖Zn‖σ ,

as m > 3
2 by the assumption (7). Therefore, we have

(∂t + v · ∇x )(χ̃1(1 + |v|)−1/2Zn) = h,

where h ∈ L2([0, 1] × �; H−2(R3)). Then by the averaging lemma [1, Theorem
5], we have

〈χ̃1(1 + |v|)−1/2Zn, e j 〉 ∈ H1/6([0, 1] × �),

which holds uniformly in n. Thus, up to a subsequence, we have the convergence

〈χ̃1(1 + |v|)−1/2Zn, e j 〉 → 〈χ̃1(1 + |v|)−1/2Z , e j 〉 in L2([0, 1] × �). (19)

0.3. Near the time-boundary and the grazing set Dε
sg

Now, note that the leftover from the previous section is now
∫ 1

0
ds

∫

�

dx |〈(1 − χ1)(Zn − Z), e j 〉|2.

Regarding the contribution, we note that
∫ 1

0
ds

∫

�

dx |〈(1 − χ1)|Zn − Z |, e j 〉|2

≤
∫ 1

0
ds

∫

�

dx
∫

R3
dv(1 − χ1)

2|Zn − Z |2e j

=
(∫ ε

0
+

∫ 1

1−ε

)

ds
∫

�×R3
dx dv +

2∑

j=0

∫ 1

0
ds

∫

Scε, j

dx dv (20)

In this subsection, we only consider the contribution

(∫ ε

0
+

∫ 1

1−ε

)

ds
∫

�×R3
dx dv +

1∑

j=0

∫ 1

0
ds

∫

Scε, j

dx dv (21)
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near the time-boundary and the grazing set Dε
sg .

The first integral of (21) is bounded as
(∫ ε

0
+

∫ 1

1−ε

)

ds
∫

�×R3
dx dv (1 − χ1)

2|Zn − Z |2e j
≤ 2ε sup

0≤s≤1
(‖(1 + |v|)−1/2Zn(s)‖22 + ‖(1 + |v|)−1/2Z(s)‖22).

Note that we have the uniform boundedness

sup
0≤s≤1, n≥1

‖(1 + |v|)−1/2Zn(s)‖2L2 < C,

by (14) and that ‖(1 + |v|)−1/2Z(s)‖22 = ‖(1 + |v|)−1/2Z(0)‖22, by the transport
equation (17). Then this rules out the possible concentration at t = 0 or t = 1.

Regarding another term in (21), we observe that
∫ 1

0
ds

∫

Scε,0

dx dv (1 − χ1)
2|Zn − Z |2e j

≤
∫ 1

0
ds

∫

�

dx
∫

|v|≥ 4
ε

dv (1 + |v|)−1/2(|Zn|2 + |Z |2)(1 + |v|)2+1/2√μ.

Then for a sufficiently small ε � 1, we have

(1 + |v|)2+1/2√μ ≈ (1 + |v|)2+1/2 exp(−|v|2/2) � exp(−c|v|2)
� exp

(

−16c

ε2

)

� ε,

for some uniform constant 0 < c < 1
2 . Therefore, we have

∫ 1

0
ds

∫

Scε,0

dx dv (1 − χ1)
2|Zn − Z |2e j

≤
∫ 1

0
ds

∫

�

dx
∫

|v|≥ 4
ε

dv (1 + |v|)−1/2(|Zn|2 + |Z |2)(1 + |v|)2+1/2√μ

� ε sup
0≤s≤1

(‖(1 + |v|)−1/2Zn(s)‖22 + ‖(1 + |v|)−1/2Z(s)‖22).

Note that we have the uniform boundedness

sup
0≤s≤1, n≥1

‖(1 + |v|)−1/2Zn(s)‖2L2 < C,

by (14) and that ‖(1 + |v|)−1/2Z(s)‖22 = ‖(1 + |v|)−1/2Z(0)‖22, by the transport
equation (17).

On the other hand, for the other remainder term in (21), we observe that
∫ 1

0
ds

∫

Scε,1

dx dv(1 − χ1)
2|Zn − Z |2e j
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≤
∫ 1

0
ds

∫

Scε,1

dx dv(1 − χ1)
2
(
|(I − P)(Zn − Z)|2 + |PZn − PZ |2

)
e j

=
∫

Scε,1

dx dv(1 − χ1)
2
(
|(I − P)Zn|2 + |PZn − PZ |2

)
e j , (22)

as (I − P)Z = 0. Note that by the additional exponential decay e j with respect to
|v|, we have

∫

Scε,1

dx dv(1 − χ1)
2|(I − P)Zn|2e j � ‖(I − P)Zn‖σ � 1

n
.

In addition, we define

PZn = an(t, x) + bn(t, x) · (e2, e3, e4) + cn(t, x)e5,

and

PZ = a(t, x) + b(t, x) · (e2, e3, e4) + c(t, x)e5,

for {e j } j=1,...,5 is the orthonormal basis of span{√μ, v
√

μ, |v|2√μ}. Note that an ,
bn , cn , a, b, and c are functions of t and x . Then, we observe that the remainder
term satisfies

∫

Scε,1

dx dv(1 − χ1)
2|PZn − PZ |2e j

�
∫ 1

0
ds

∫

�\�ε

dx
(
|an − a|2 + |bn − b|2 + |cn − c|2

)

∫

|v·nx |< ε
2 or |v|> 1

ε

dv (1 + |v|)l√μ

�
∫

|v·nx |< ε
2 or |v|> 1

ε

dv (1 + |v|)l√μ (23)

for some l ≥ 2 by

∫ 1

0
‖PZn‖2σ ds ≈

∫ 1

0

(
‖an(s, ·)‖22 + ‖bn(s, ·)‖22 + ‖cn(s, ·)‖22

)
ds � 1,

and
∫ 1

0
‖PZ‖2σ ds ≈

∫ 1

0

(
‖a(s, ·)‖22 + ‖b(s, ·)‖22 + ‖c(s, ·)‖22

)
ds � 1,

from the linear independency of e j . Then, if |v| > 1
ε
, then (1 + |v|)l√μ ≤

Cε, for |v| > 1
ε
, if ε is sufficiently smnall. On the other hand, if |v · nx | < ε

2 ,

we have
∫

|v·nx |< ε
2

dv (1 + |v|)l√μ �
∫ ε

2

− ε
2

dv||
∫

R2
dv⊥e−|v⊥|2/8 � ε,



The Landau Equation with the Specular Boundary Condition 615

where v||
def= (nx · v)nx , and v⊥ = v − v|| for |nx · v| ≤ ε

2 . Then the (LHS) of (22)
is bounded from above by

∫ 1

0
ds

∫

Scε,1

dx dv(1 − χ1)
2|Zn − Z |2e j � ε.

0.4. On the non-grazing set Dε
ng

Finally, we are now left with the L2 norm for the non-grazing set Dε
ng from

(20)
∫ 1

0
ds

∫

Scε,2

dx dv (1 − χ1)
2|Zn − Z |2e j .

In this subsection, we will prove that there is no concentration at the boundary,
so that we can conclude that Zn converges strongly to Z in [0, 1] × �̄ × R

3. The
main strategy in this section is to show that the non-grazing set part χ±Zn can be
controlled by the inner boundary part Zn|γε , which will be further controlled by

the interior compactness. Here the inner boundary is defined as γ ε def= {x : ζ(x) =
−ε4}×R

3. Now we fix (s, x, v) ∈ Dε
ng. Then we define backward/forward in time

characteristic trajectories χ± as

χ+(t, x, v) = 1�\�ε(x − v(t − s))1{|v|≤1/ε, nx−v(t−s)·v>ε}(v), for 0 ≤ t ≤ s,

χ−(t, x, v) = 1�\�ε(x − v(t − s))1{|v|≤1/ε, nx−v(t−s)·v<−ε}(v), for 0 ≤ s ≤ t,

(24)

where �ε
def= {x ∈ � : ζ(x) ≤ −ε4}. Note that χ± solves the transport equation

(∂t + v · ∇x )χ± = 0 with

χ±(s, x, v) = 1�\�ε(x)1{|v|≤1/ε, nx ·v≶±ε}(v),

and that it satisfies the following lemma:

Lemma 2. (Lemma 10 of [4]) χ± satisfies the followings:

(1) For 0 ≤ s − ε2 ≤ t ≤ s, if χ+(t, x, v) �= 0 then nx · v > ε
2 > 0. Moreover,

χ+(s − ε2, x, v) = 0, for ζ(x) ≥ −ε4.

(2) For s ≤ t ≤ s + ε2 ≤ 1, if χ−(t, x, v) �= 0, then nx · v < − ε
2 < 0. Moreover,

χ−(s + ε2, x, v) = 0, for ζ(x) ≥ −ε4.

We now observe that χ±Zn satisfies the following equation

(∂t + v · ∇x )(χ±Zn)

= −χ±L[Zn] + χ±�(gn, Zn).

We claim that
∫

Scε,2

|Zn|2 dx dv � ε,
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if n is sufficiently large. To see this, we first observe the L2 estimate for χ+ part
over [s − ε2, s] × Scε,2 that for the inner boundary γ ε def= {x : ζ(x) = −ε4} × R

3,

‖χ+Zn(s)‖2L2(Scε,2)
+

∫ s

s−ε2
‖χ+Zn(t)‖2γ+ dt −

∫ s

s−ε2
‖χ+Zn(t)‖2γ ε+ dt

= ‖χ+Zn(s − ε2)‖2L2(Scε,2)
+

∫ s

s−ε2
‖χ+Zn(t)‖2γ− dt −

∫ s

s−ε2
‖χ+Zn(t)‖2γ ε− dt

−2
∫ s

s−ε2
(χ+L[Zn], χ+Zn) dt + 2

∫ s

s−ε2
(χ+�(gn, Zn), χ+Zn) dt,

where (·, ·) is the L2 inner product on Scε,2. By Lemma 2, χ+Zn(s− ε2) = 0. Also,
χ+Zn = 0 on γ− and γ ε− by the support condition of χ+. On the other hand, by
(16) and Lemma 6 of [2], we have

∫ s

s−ε2
(χ+L[Zn], χ+Zn) dt =

∫ s

s−ε2
(L[Zn], χ2+Zn) dt

=
∫ s

s−ε2
(L[(1 − χ2+ + χ2+)Zn], χ2+Zn) dt =

∫ s

s−ε2
(L[χ2+Zn], χ2+Zn) dt,

by the support condition of χ+. Thus,
∫ s

s−ε2
(χ+L[Zn], χ+Zn) dt =

∫ s

s−ε2
(L[χ2+Zn], χ2+Zn) dt

≤ C
∫ 1

0
‖(I − P)χ2+Zn‖2σ dt ≤ C

∫ 1

0
‖(I − P)Zn‖2σ dt = C

n
.

Finally, we observe that, by Theorem 2.8 at (2.16) of [6], (7), and (14), we have

∫ s

s−ε2
(χ+�(gn, Zn), χ+Zn) dt =

∫ s

s−ε2
(�(gn, Zn), χ

2+Zn) dt

≤ C‖gn‖∞
∫ s

s−ε2
‖Zn‖σ ‖χ2+Zn‖σ dt ≤ C‖gn‖∞

∫ s

s−ε2
‖Zn‖2σ dt ≤ C

n
.

Altogether, we have

‖χ+Zn(s)‖2L2 +
∫ s

s−ε2
‖χ+Zn(t)‖2γ+ dt −

∫ s

s−ε2
‖χ+Zn(t)‖2γ ε+ dt ≤ C

n
. (25)

Here, we note that by definition

χ+Zn(s, x, v) = 1�\�ε(x)1{|v|≤1/ε, nx ·v>ε}(v)Zn(s, x, v).

Similarly, we obtain for the part χ−Zn

‖χ−Zn(s)‖2L2 +
∫ s+ε2

s
‖χ−Zn(t)‖2γ− dt −

∫ s+ε2

s
‖χ−Zn(t)‖2γ ε− dt ≤ C

n
. (26)
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Altogether, we have

‖Zn(s)‖2L2(Scε,2)
≤

∫ s

s−ε2
‖χ+Zn(t)‖2γ ε+ dt +

∫ s+ε2

s
‖χ−Zn(t)‖2γ ε− dt + C

n
. (27)

Now we will prove that the right-hand side of (27) can be arbitrarily small by
showing that the right-hand side can further be bounded via the interior compactness
inside Sε. In order to control the trace norm on the non-grazing set, we are going
to derive a trace theorem for the Landau equation to 1{|v|≤ 1

ε
}(Zn − Z) over the

domain S̄ε. We first consider the estimate for t ∈ (s − ε2, s). Recall that χ+ from
(24) indeed satisfies

∂tχ+ + v · ∇xχ+ = 0,

χ+(s − ε2, x, v) = 0 for dist(x, ∂�ε) ≤ ε,
(28)

where �ε
def= {x ∈ � : ζ(x) = −ε4}. We choose a smooth cutoff function χb =

χε
b (x) near ∂�ε such that χb ≡ 1 if dist(x, ∂�ε) ≤ ε4

4 , χb ≡ 0 if dist(x, ∂�ε) ≥
ε4, and the growth is up to |∇xχb| � ε−3/2. We also choose a smooth cutoff
function χ2 = χ2(v) such that χ2 = 1 for |v| ≤ 1

ε
and = 0 for |v| ≥ 4

ε
and

|χ+χ2| + |∇v(χ+χ2)| + |∇2
v (χ+χ2)| � μ

( |v|
4

)

. (29)

Note that χ2(v) has a larger support than 1|v|≤ 1
ε
. We then take χ̄ = χ2χbχ+, such

that χ̄ (s − ε2, x, v) = 0 for dist(x, ∂�ε) ≤ ε and

(∂t + v · ∇x )χ̄ = χ+χ2v · ∇xχb.

Now consider the following rearranged Equation (9) for this argument:

∂t Zn + v · ∇x Zn = ∇v · (σGn∇vZn) + agn · ∇vZn + K̄gn Zn,

where Gn = μ + √
μgn . Then, note that χ̄ Zn satisfies the equation

(∂t + v · ∇x )(χ̄ Zn) = χ2χ+Znv · ∇xχb + ∇v · (σGn∇v(χ̄ Zn))

−σGn Zn�vχ̄ − 2σGn∇vZn · ∇vχ̄ − Zn∇v(σGn ) · ∇vχ̄

+χ̄agn · ∇vZn + K̄gn (χ̄ Zn). (30)

We multiply χ̄ Zn and integrate on (s − ε2, s) × Sε to obtain that

1

2

(
‖χ̄ Zn(s)‖2L2(Sε)

− ‖χ̄ Zn(s − ε2)‖2L2(Sε)

)
+

∫ s

s−ε2
dt‖χ̄ Zn‖2γ ε

= −
∫ s

s−ε2
dt

∫∫

Sε

dx dv σGn |∇v(χ̄ Zn)|2

+
∫ s

s−ε2
dt

∫∫

Sε

dx dv

[

χ̄ Zn

(

χ2χ+Znv · ∇xχb

−σGn Zn�vχ̄ − 2σGn∇vZn · ∇vχ̄ − Zn∇v(σGn ) · ∇vχ̄
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+χ̄agn · ∇vZn + K̄gn (χ̄ Zn)

)]

, (31)

by the integration by parts. Note that χ̄ Zn = 0 on γ ε− by the support condition of
χ+. By (28) and the support condition of χb, we also have χ̄ Zn(s − ε2) = 0. Thus,
we have

1

2
‖χ̄ Zn(s)‖2L2(Sε)

+
∫ s

s−ε2
dt‖χ̄ Zn‖2γ ε+ +

∫ s

s−ε2
dt

∫∫

Sε

dx dv σGn |∇v(χ̄ Zn)|2

=
∫ s

s−ε2
dt

∫∫

Sε

dx dv

[

χ̄ Zn

(

χ2χ+Znv · ∇xχb − σGn Zn�vχ̄

−2σGn∇vZn · ∇vχ̄ − Zn∇v(σGn ) · ∇vχ̄ + χ̄agn · ∇vZn + K̄gn (χ̄ Zn)

)]

.

(32)

We estimate the upper bound of each term of the right-hand side. We first observe
that

∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv χ̄ Znχ2χ+Znv · ∇xχb

∣
∣
∣
∣

�
∫ s

s−ε2
dt

∫∫

Sε

dx dv μ

( |v|
4

)

|Zn|2|∇xχb|

� ε−3/2
∫ s

s−ε2
dt ‖(1 + |v|)−1/2Zn‖2L2(Sε)

,

by the assumption of χb. Also, by (11), Lemma 3 and Lemma 6 of [2], we have
∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv χ̄ Zn K̄gn (χ̄ Zn)

∣
∣
∣
∣

≤
∫ s

s−ε2
dt (η‖χ̄ Zn‖σ + Cη‖χ̄ Zn‖L2(Sε)

)‖(χ̄ Zn)‖σ

≤
∫ s

s−ε2
dt (η′‖Zn‖2σ + Cη′ ‖(1 + |v|)−1/2Zn‖2L2(Sε)

) (33)

for a sufficiently small η′ by Young’s inequality. We also note that by Lemma 3 of
[2], we have σ i jviv j = λ1|v|2, where λ1 ≈ (1 + |v|)−3. Therefore,

∫∫

Sε

dx dv |σ i jviv j (χ̄ Zn)
2| ≤

∫∫

Sε

dx dv
(χ̄ Zn)

2

1 + |v| .

Here, note that by Lemma 3 of [2] and Lemma 2.4 of [6], if n is sufficiently large
so that ‖gn‖L∞ � 1, then

σ i j∂i (χ̄ Zn)∂ j (χ̄ Zn) ≈ σ
i j
Gn

∂i (χ̄ Zn)∂ j (χ̄ Zn),

where Gn = μ + √
μgn . Then, by (29), Lemma 2.4 of [6] and Lemma 3 of [2], we

have
∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv (χ̄ Zn)σGn Zn�vχ̄

∣
∣
∣
∣ �

∫ s

s−ε2
dt



The Landau Equation with the Specular Boundary Condition 619

∫∫

ζ<−ε4 and |v|≤ 4
ε

dx dv μ

( |v|
4

) |Zn|2
1 + |v|

�
∫ s

s−ε2
dt ‖(1 + |v|)−1/2Zn‖2L2(Sε)

.

Similarly, we have
∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv 2(χ̄ Zn)σGn∇vZn · ∇vχ̄

∣
∣
∣
∣

�
∫ s

s−ε2
dt

∫∫

ζ<−ε4 and |v|≤ 4
ε

dx dv μ

( |v|
4

)

σGn |Zn||∇vZn|

� η

∫ s

s−ε2
dt

∫∫

Sε

dx dv σGn |∇vZn|2

+Cη

∫ s

s−ε2
dt

∫∫

Sε

dx dv μ

( |v|
2

)

σGn |Zn|2

� η

∫ s

s−ε2
dt

∫∫

Sε

dx dv σGn |∇vZn|2

+Cη

∫ s

s−ε2
dt

∫∫

Sε

dx dv μ

( |v|
2

) |Zn|2
1 + |v|

� η

∫ s

s−ε2
dt

∫∫

Sε

dx dv σGn |∇vZn|2

+Cη

∫ s

s−ε2
dt ‖(1 + |v|)−1/2Zn‖2L2(Sε)

for any small η > 0, by Young’s inequality. In addition, we have
∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv (χ̄ Zn)Zn∇vσGn · ∇vχ̄

∣
∣
∣
∣

�
∫ s

s−ε2
dt

∫∫

ζ<−ε4 and |v|≤ 4
ε

dx dv μ

( |v|
4

) |(χ̄ Zn)||Zn|
(1 + |v|)2

�
∫ s

s−ε2
dt ‖(1 + |v|)−1/2Zn‖2L2(Sε)

.

Also, by (29) and the definition of agn from (10), we observe that
∣
∣
∣
∣

∫ s

s−ε2
dt

∫∫

Sε

dx dv (χ̄ Zn)χ̄agn · ∇vZn

∣
∣
∣
∣

�
∫ s

s−ε2
dt

∫∫

Sε

dx dv |Zn||∇vZn|
(
|φi j ∗ (viμ

1/2gn)| + |φi j ∗ (μ1/2∂ j gn)|
)

�
∫ s

s−ε2
dt

∫∫

Sε

dx dv |Zn||∇vZn|
(
2|φi j ∗ (μ1/4gn)| + |∂ jφ

i j ∗ (μ1/2gn)|
)

� ‖gn‖L∞
∫ s

s−ε2
dt

∫∫

ζ<−ε4 and |v|≤ 4
ε

dx dv μ

( |v|
4

) |Zn||∇vZn|
(1 + |v|)
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� η

∫ s

s−ε2
dt ‖Zn‖2σ + Cη

n2

∫ s

s−ε2
dt ‖(1 + |v|)−1/2Zn‖2L2(Sε)

for a sufficiently small η > 0, by Young’s inequality.
Altogether, we have

∫ s

s−ε2
‖χ+Zn(t)‖2γ ε+ dt � (Cη + ε−3/2)

∫ s

s−ε2

∥
∥
∥(1 + |v|)−1/2Zn

∥
∥
∥
2

L2(Sε)
dt + η

∫ s

s−ε2
dt ‖Zn‖2σ

� (Cη + ε−3/2)

∫ s

s−ε2

∥
∥
∥(1 + |v|)−1/2Z

∥
∥
∥
2

L2(Sε)
dt

+ (Cη + ε−3/2)

∫ s

s−ε2

∥
∥
∥(1 + |v|)−1/2(Zn − Z)

∥
∥
∥
2

L2(Sε)
dt

+ η

∫ s

s−ε2
dt ‖Zn‖2σ

for any smallη > 0.We repeat the sameargument for the part
∫ s+ε2

s ‖χ−Zn(t)‖2γ ε−
dt

of (27) using χ−, instead of χ+. Note that, by the interior compactness, we have
for a fixed ε > 0

lim
n→∞

∫ s

s−ε2

∥
∥
∥(1 + |v|)−1/2(Zn − Z)

∥
∥
∥
2

L2(Sε)
dt = 0.

Then, by (27), we have for a small η ∼ √
ε such that Cη � ε−3/2 and for a

sufficiently large n > 0,

‖Zn(s)‖2L2(Scε,2)
� (Cη + ε−3/2)

∫ s+ε2

s−ε2

∥
∥
∥(1 + |v|)−1/2Z

∥
∥
∥
2

L2(Sε)
dt

+ (Cη + ε−3/2)

∫ s+ε2

s−ε2

∥
∥
∥(1 + |v|)−1/2(Zn − Z)

∥
∥
∥
2

L2(Sε)
dt

+η

∫ s+ε2

s−ε2
dt ‖Zn‖2σ + C

n

� 2(Cη + ε−3/2)ε2 sup
t∈[0,1]

∥
∥
∥(1 + |v|)−1/2Z(t)

∥
∥
∥
2

L2(Sε)

+ (Cη + ε−3/2)ε2 + η

∫ s+ε2

s−ε2
dt ‖Zn‖2σ + C

n
� C ′√ε,

by (14) where C ′ > 0 depends on a0, c0, c1, c2, b0, b1, and w̄ of Lemma 1. There-
fore, for any small ε > 0, we have

‖Zn(s)‖2L2(Scε,2)
� C ′√ε, (34)

for large n.
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0.5. Strong convergence and the non-zero PZ

By (19)–(21), (14), (22), and (34), we obtain

∫ 1

0
ds

∫

�

dx |〈Zn, e j 〉 − 〈Z , e j 〉|2 → 0,

where e j are an orthonormal basis for span{√μ, v
√

μ, |v|2√μ}. Since e j (v) is
smooth and the 0th and the 1st derivatives are exponentially decaying for large |v|,
we obtain that

∑

1≤ j≤5

∫ 1

0
ds‖〈Zn, e j 〉e j − 〈Z , e j 〉e j‖2σ → 0.

Finally, note that

Zn =
∑

1≤ j≤5

〈Zn, e j 〉e j + (I − P)Zn,

and we have (16). Therefore, we obtain the strong convergence of Zn to Z in
∫ 1
0 ds‖ · ‖2σ , and we have

∫ 1

0
ds ‖PZ‖2σ = 1.

Also, recall that the specular reflection condition for Zn is Zn(t, x, v) = Zn(t, x,
Rx (v)). By taking n → ∞, we can observe that Z satisfies the same condition for
|v · nx | ≥ ε/2. By continuity of Z , we obtain Z(t, x, v) = Z(t, x, Rx (v)).

0.6. Z is indeed zero

On the other hand, we show below that PZ is indeed zero, which will lead us to
a contradiction. The proof will be done via the use of the specular boundary condi-
tions, (17), and the conservation laws (3) and (4). Recall that, by the conservation
laws (3), we first obtain

∫

Z
√

μ =
∫

Z |v|2√μ = 0.

On the other hand, Lemma 1 implies that, for any s ∈ [0, 1], we obtain the conser-
vation laws in the form of

∫ ((c0
2

|x |2 − b0 · x + a0
)

+
(
c0t2

2
+ c1s + c2

)

|v|2
) √

μ = 0, (35)

and
∫ ((c0

2
|x |2 − b0 · x + a0

)
|v|2 +

(
c0t2

2
+ c1s + c2

)

|v|4
)√

μ = 0. (36)
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This implies c0 = c1 = 0.Also, by the specular reflection condition that Z(s, x, v) =
Z(s, x, Rx (v)), we have for any x ∈ ∂� that

b · nx = 0 or (w̄ × x + b0s + b1) · nx = 0.

First of all, the coefficient b0 of the time-variable s is zero, which gives

b · nx = 0 or (w̄ × x + b1) · nx = 0. (37)

If w̄ = 0, then b1 · nx = 0 on ∂�. Then we can choose a point x ′ ∈ ∂� such that
b1 ‖ nx ′ via taking the minimizer of minζ(x) b1 · x . Then this gives b1 · nx ′ = 0 and
b1 = 0. If w̄ �= 0, then we decompose b1 as

b1 = β1
w̄

|w̄| + β2η,

where |η| = 1 and η ⊥ w̄. Then

η =
(

w̄

|w̄| × η

)

× w̄

|w̄| .

Therefore, we get

b1 = β1
w̄

|w̄| + β2

(
w̄

|w̄| × η

)

× w̄

|w̄| = β1
w̄

|w̄| − x0 × w̄,

where x0 = −β2

(
w̄
|w̄| × η

)
1

|w̄| . Therefore, by (37) we have

β1
w̄

|w̄|nx + ((x − x0) × w̄) · nx = 0.

Now note that we can choose a point x ′ ∈ ∂� such that w̄ ‖ nx ′ . Then we deduce
w̄ × (nx ′ × (x ′ − x0) = 0 and obtain β1 = 0. Therefore, we obtain

Z = w̄ × (x − x0) · v
√

μ

and w̄ × (x − x0) · nx = 0. If � is not rotationally symmetric, then no nonzero
w̄ and x0 exist, which provides Z = 0 from the former case that w̄ = 0. If � is
indeed rotationally symmetric and there are nonzero w̄ and x0 such that

Z = w̄ × (x − x0) · v
√

μ and w̄ × (x − x0) · nx = 0.

Now we use the conservation of total angular momentum (4) that
∫

�×R3
((x − x0) × w̄) · Zv

√
μ dx dv = 0,

which is equivalent to saying that
∫

�×R3
(w̄ × (x − x0) · v)2μ dx dv = 0.



The Landau Equation with the Specular Boundary Condition 623

Therefore, w̄ × (x − x0) · v = 0. Thus we conclude that Z = 0 and this leads to a
contradiction. ��

This finishes the proof for the positivity on a fixed time interval [0, 1]. In the
next section, we prove the main L2 decay theorem in the interval [0, t].

We are now ready to prove our main theorem on the L2 decay estimates for the
solutions f to (1).

Theorem 3. (Theorem 13 of [5]) Let f be the weak solution of (1) with initial-
boundary value conditions (2), which satisfies the conservation laws (3), and (4)
if � has a rotational symmetry. Suppose that ‖ f0‖∞,ϑ+m < ε and ‖g‖∞,m < ε

for some small ε > 0 and m > 3
2 . For any ϑ ∈ 2−1

N ∪ {0}, there exist C and
ε = ε(ϑ) > 0 such that

sup
0≤s<∞

Eϑ( f (s)) ≤ C22ϑEϑ( f0), (38)

and

‖ f (t)‖2,ϑ ≤ Cϑ,k

(
E

ϑ+ k
2
(0)

)1/2
(

1 + t

k

)−k/2

(39)

for any t > 0 and k ∈ N, where Eϑ( f (t)) is defined as (5).

Proof. Define

T = sup
t

(

t : sup
0≤s≤t

Eϑ( f (s)) ≤ 1

)

> 0 (40)

for some ϑ ≥ 0. For 0 ≤ t ≤ T, let 0 ≤ N ≤ t ≤ N + 1, for some non-negative

integer N . We split [0, t] =
(
∪N−1

j=0 [ j, j + 1]
)

∪[N , t]. On each interval [ j, j +1]
for j = 0, 1, . . . , N − 1, we define f j (s, x, v)

def= f (s + j, x, v). Then clearly
f j (s, x, v) is a weak solution of (1)–(4) on the time interval s ∈ [0, 1] with the
new initial condition f j (0, x, v) = f ( j, x, v). Note that since we only consider
t ∈ [0, T ] for T from (40), Eϑ( f j (0)) is uniformly bounded from above. We take
the L2 energy estimate over 0 ≤ s ≤ N to obtain

‖ f (N )‖22 +
∫ N

0
ds (L f, f ) = ‖ f (0)‖22 +

∫ N

0
ds (�(g, f ), f ),

by the specular reflection boundary condition. Equivalently, we have

‖ f (N )‖22 +
N−1∑

j=0

∫ 1

0
ds

(
L f j , f j

)
= ‖ f (0)‖22 +

∫ N

0
ds (�(g, f ), f ).

Then we use Proposition 1 and obtain

‖ f (N )‖22 +
N−1∑

j=0

δε, j

∫ 1

0
ds ‖ f j‖2σ ≤ ‖ f (0)‖22 +

∫ N

0
ds (�(g, f ), f ).
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Thus,

‖ f (N )‖22 + min{ j=0,...,N−1} δε, j

∫ N

0
ds ‖ f ‖2σ ≤ ‖ f (0)‖22 +

∫ N

0
ds (�(g, f ), f ).(41)

By Theorem 2.8 of [6], we obtain the energy inequality over [0, N ]

‖ f (N )‖22 + min{ j=0,...,N−1} δε, j

∫ N

0
ds ‖ f (s)‖2σ ≤ ‖ f (0)‖22

+C0

∫ N

0
ds ‖g(s)‖∞‖ f (s)‖2σ . (42)

This completes the derivation of the energy inequality for the base case ϑ = 0 in
the interval [0, N ]. For ϑ ≥ 0, we multiply (1 + |v|)2ϑ(v) f (t, x, v) and take the
L2 energy estimate over 0 ≤ s ≤ N to obtain

‖ f (N )‖22,ϑ +
∫ N

0
ds

(
(1 + |v|)2ϑ L f, f

)

= ‖ f (0)‖22,ϑ +
∫ N

0
ds ((1 + |v|)2ϑ�(g, f ), f ),

by the specular reflection boundary condition. By Lemma 2.7 and Theorem 2.8 of
[6], we have for some Cϑ > 0

‖ f (N )‖22,ϑ +
∫ N

0
ds

(
1

2
‖ f (s)‖2σ,ϑ − Cϑ‖ f (s)‖2σ

)

≤ ‖ f (0)‖22,ϑ

+Cϑ

∫ N

0
ds ‖g(s)‖∞‖ f (s)‖2σ,ϑ . (43)

This completes the derivation of the energy inequality for ϑ ≥ 0 in the interval
[0, N ]. Therefore, by the ingredients (42) for the base case ϑ = 0 and (43) for a
general ϑ ≥ 0, we obtain (4.36) of [6] by the same proof via the induction on ϑ

for η ≡ 0, s = 0 and t = N . Then by the same proof of Theorem 1.2 of [6], we
obtain (38) and (39) in the time interval s ∈ [0, N ]; for any ϑ ∈ 2−1

N ∪ {0} and
k ∈ N, there exist C and ε = ε(ϑ) > 0 such that

sup
0≤s≤N

Eϑ( f (s)) ≤ C22ϑEϑ( f0),

and

‖ f (N )‖2,ϑ ≤ Cϑ,k

(
E

ϑ+ k
2
(0)

)1/2
(

1 + N

k

)−k/2

.

Nowwe consider the local interval [N , t]where we have 0 ≤ t−N ≤ 1 and t ≤ T .
We recall that if ‖g‖∞,m ≤ ε for a sufficiently small ε, we have

‖(1 + |v|)ϑ f (t)‖2L2 +
∫ t

N
‖ f (s)‖2σ,ϑ ds ≤ Cet−N‖(1 + |v|)ϑ f (N )‖2L2 , (44)
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by (14) for l = ϑ on [N , t]. Note that (44) holds for a solution to (1) under (6) and
(2)–(4) by the local L2 energy inequality and the Grönwall inequality as in (14)
and we do not need the additional assumption (8) for (14). Then we observe that

Eϑ( f (t)) ≤ Cet−NEϑ( f (N )) ≤ C ′et−N22ϑEϑ( f0) ≤ C ′e22ϑEϑ( f0)

for some C ′ > 0 and

‖ f (t)‖2,ϑ ≤ Cet−N‖ f (N )‖2,ϑ ≤ Cet−NCϑ,k

(
E

ϑ+ k
2
(0)

)1/2
(

1 + N

k

)−k/2

≤ CeCϑ,k

(
E

ϑ+ k
2
(0)

)1/2
2k/2

(

1 + t

k

)−k/2

,

since

(

1 + N

k

)−k/2

≤ 2k/2
(

1 + t

k

)−k/2

for N ≤ t ≤ N + 1 and k ≥ 1. Therefore, we obtain (38) and (39) for the time
interval [0, t] for any 0 ≤ t ≤ T where T is defined as (40).

We finally choose initially

Eϑ( f0) ≤ ε0 ≤ 1

2C22ϑ
,

and we define

T2 = sup
t

(

t : sup
0≤s≤t

Eϑ( f (s)) ≤ 1

2

)

> 0.

Since 0 ≤ t ≤ T2 ≤ T , we have, from (38), that

sup
0≤s≤T

Eϑ( f (s)) ≤ C22ϑEϑ( f0) ≤ 1

2
.

Thus, we deduce that T2 = ∞ from the continuity of Eϑ , and the theorem follows.
��
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