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Higher Specht Bases for Generalizations
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Abstract. The classical coinvariant ring Rn is defined as the quotient of
a polynomial ring in n variables by the positive-degree Sn-invariants. It
has a known basis that respects the decomposition of Rn into irreducible
Sn-modules, consisting of the higher Specht polynomials due to Ariki,
Terasoma, and Yamada (Hiroshima Math J 27(1):177–188, 1997). We
provide an extension of the higher Specht basis to the generalized coin-
variant rings Rn,k introduced in Haglund et al. (Adv Math 329:851–915,
2018). We also give a conjectured higher Specht basis for the Garsia–
Procesi modules Rµ, and we provide a proof of the conjecture in the case
of two-row partition shapes μ. We then combine these results to give a
higher Specht basis for an infinite subfamily of the modules Rn,k,µ re-
cently defined by Griffin (Trans Amer Math Soc, to appear, 2020), which
are a common generalization of Rn,k and Rµ.
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1. Introduction and Background

The Specht polynomials provide one of the many ways of directly constructing
the irreducible representations of the symmetric group Sn. To define them,
recall that a standard Young tableau on a partition λ of n is a filling of the
Young diagram of λ with the numbers 1, . . . , n that is increasing across rows
and up columns (using the ‘French’ convention for tableaux; see Fig. 1). Given
a standard Young tableau T , the Specht polynomial FT is defined as

FT =
∏

C

∏

i,j∈C,
i<j

(xj − xi),

where the outer product is over all columns of T . For example, if T is the
tableau in Fig. 1, then FT = (x1 − x2)(x1 − x5)(x2 − x5)(x3 − x4)(x6 − x7).
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Figure 1. A standard Young tableau T of partition shape
λ = (3, 3, 1)

Given a fixed partition λ of n, the set of Specht polynomials

{FT : T has shape λ}
spans a subspace of Q[x1, . . . , xn] isomorphic to the irreducible representation
Vλ of Sn (under the usual Sn-action on the variables xi). Moreover, the poly-
nomials FT are linearly independent, forming a basis of this representation.
(See [19] for proofs of these facts along with a general overview of symmetric
group representation theory and symmetric function theory.)

1.1. Higher Specht Polynomials for the Coinvariant Ring

The Specht polynomial construction has been generalized in [1] to higher de-
gree copies of Vλ appearing in polynomial rings. In particular, the Sn-module
structure of the full polynomial ring is easily determined from that of the
coinvariant ring

Rn = Q[x1, . . . , xn]/(e1, . . . , en).

Here e1, . . . , en are the elementary symmetric functions in x1, . . . , xn, defined
by

ed = ed(x1, . . . , xn) =
∑

1≤i1<···<id≤n

xi1 · · · xid
.

It is known that Rn, as an ungraded Sn-module, is isomorphic to the
regular representation. Thus, each irreducible Sn-module Vλ appears dim Vλ

times, which is precisely the number of standard Young tableaux of shape λ.
Hence, a basis of generalized Specht polynomials for Rn should be indexed by
pairs of standard Young tableaux of the same shape.

To this end, in [1] (and more succinctly described in [2]), Ariki, Tera-
soma, and Yamada defined the higher Specht polynomials using the well-
known cocharge1 statistic. We first recall the definition of cocharge for per-
mutations and tableaux here.

Definition 1. Let π = π1 . . . πn be a permutation in Sn. The cocharge word
cw(π) = c1 . . . cn is defined as follows. Label the 1 in π with the subscript 0.
Assuming the letter i in π has been labeled j, assign the letter i + 1 in π the

1In [1], the terminology used is ‘charge’, but we use ‘cocharge’ to be consistent with the
original notation of Lascoux and Schutzenberger [14].
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Figure 2. A standard Young tableau S at left, with its
cocharge labels shown at right

label j if π−1
i < π−1

i+1 and j + 1 if π−1
i > π−1

i+1. Then cw(π) = c1 . . . cn is the
list of labels, read left-to-right.

Definition 2. If S is a standard tableau, then cw(S) is the cocharge word of
the reading word of S, formed by concatenating the rows from top to bottom.

For example, if S is the tableau at left in Fig. 2, the reading word is
7346125 so that the cocharge labeling is

73 31 41 62 10 20 51

and cw(S) = 3112001. We can also represent cw(S) as a tableau by replacing
the entry i in S with its cocharge label, as shown at right in Fig. 2.

Definition 3. For any word w or standard tableau S, we define its cocharge,
written cc(w) or cc(S), respectively, to be the sum of the labels in the cocharge
word.

Now suppose we have two standard tableaux S and T with the same
shape. Define the monomial

xcw(S)
T =

n∏

i=1

x
cw(i)
i ,

where cw(i) is the cocharge label in cw(S) in the same square as i in T . If T
is the tableau in Fig. 1 and S is at left in Fig. 2, then

xcw(S)
T = x0

1x
1
2x

0
3x

1
4x

3
5x

1
6x

2
7 = x2x4x

3
5x6x

2
7.

Finally, define the higher Specht polynomial FS
T to be

FS
T := εT · xcw(S)

T , (1)

where εT ∈ Q[Sn] is the Young idempotent corresponding to T . That is,

εT =
∑

τ∈C(T )

∑

σ∈R(T )

sgn(τ)τσ,

where C(T ) ⊆ Sn is the group of column permutations of T (those that send
every number to another number in its column in T ), and R(T ) ⊆ Sn is the
group generated by row permutations.
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Example 1. Suppose S is an SYT of shape λ with the property that the num-
bers 1, . . . , λ1 are in the bottom row, the numbers λ1 + 1, λ1 + 2, . . . , λ1 + λ2

are in the second, and so on. Then its cocharge indices are i − 1 in the ith
row for all i. In this case, if T is any SYT of shape λ, then we have FS

T = FT ,
where FT is the ordinary Specht polynomial defined above.

If V is a finite-dimensional Sn-module, there are unique multiplicities cλ

such that V ∼= ⊕
λ�n cλVλ. The Frobenius character of V is the symmetric

function Frob(V ) :=
∑

λ cλsλ obtained by replacing each copy of Vλ with
the corresponding Schur function sλ. More generally, if V =

⊕
d≥0 Vd is a

graded Sn-module with each piece Vd finite-dimensional, the graded Frobenius
character of V is grFrob(V ; q) :=

∑
d≥0 Frob(V ) · qd.

Let SYT(n) be the set of all standard Young tableaux with n boxes. In
[1], Ariki, Terasoma, and Yamada proved that the set

Bn := {FS
T : S, T ∈ SYT(n) have the same shape}

descends to a basis for the classical coinvariant algebra Rn. Since FS
T is ob-

tained by the action of the idempotent εT , it follows that the subspace gener-
ated by those elements FS

T with a fixed T is a copy of the irreducible repre-
sentation Vλ where λ = shape(T ) = shape(S) is the partition shape of S and
T . (See [6, page 46].) As an immediate corollary, one obtains the known fact
that the graded Frobenius character of Rn is given by

grFrob(Rn; q) =
∑

S∈SYT(n)

qcc(S)sshape(S) =
∑

S∈SYT(n)

qmaj(S)sshape(S).

Here maj is the major index (see Definition 6 below). The second equality
follows from the equidistribution of cocharge and major index on standard
tableaux of a given shape (see [13]).

Our goal is to extend this setup to several important generalizations of the
coinvariant ring. To be precise, we define a higher Specht basis of an arbitrary
Sn-module as follows.

Definition 4. Let R be an Sn-module with decomposition

R =
⊕

λ

cλVλ

into irreducible Sn-modules. Then a higher Specht basis of R is a set of ele-
ments B such that there exists a decomposition B =

⋃
λ

⋃cλ

i=1 Bλ,i such that
the elements of Bλi

are a basis of the ith copy of Vλ in the decomposition of
R.

We now describe three important generalizations of the coinvariant ring
in the following subsections, with the goal of constructing a higher Specht basis
for each.
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1.2. The Rings Rn,k

For positive integers k ≤ n, Haglund, Rhoades, and Shimozono [11] defined a
quotient ring

Rn,k := Q[x1, . . . , xn]/In,k, (2)
where In,k ⊆ Q[x1, . . . , xn] is the ideal

In,k := 〈xk
1 , x

k
2 , . . . , x

k
n, en, en−1, . . . , en−k+1〉. (3)

Since the ideal In,k is homogeneous and Sn-stable, the ring Rn,k is a graded Sn-
module. When k = n, we recover the classical coinvariant ring, i.e. Rn,n = Rn.
As an ungraded Sn-module, the ring Rn,k is isomorphic [11] to the permutation
action of Sn on k-block ordered set partitions of {1, 2, . . . , n}.

The Delta Conjecture of Haglund, Remmel, and Wilson [10] depends on
two positive integers k ≤ n and predicts the equality of three formal power
series in an infinite set of variables x = (x1, x2, . . . ) and two additional pa-
rameters q and t:

Δ′
ek−1

en = Risen,k(x; q, t) = Valn,k(x; q, t). (4)

Here Δ′
ek−1

is a Macdonald eigenoperator and Rise and Val are defined in
terms of lattice path combinatorics; see [10] for details.

Although the Delta Conjecture is open in general, it is proven when one
of the parameters q, t is set to zero. Combining the results of [5,10–12,17,23],
we have that Δ′

ek−1
en |t=0 is equal to

Risen,k(x; q, 0) = Risen,k(x; 0, q)
= Valn,k(x; q, 0) = Valn,k(x; 0, q). (5)

If Cn,k(x; q) is the common symmetric function in Eq. (5), we have [11]

grFrob(Rn,k; q) = (revq ◦ ω)Cn,k(x; q), (6)

where revq reverses the coefficient sequences of polynomials in q and ω is the
symmetric function involution which trades en and hn, so that Rn,k gives a
representation-theoretic model for the Delta Conjecture at t = 0.

The rings Rn,k also have a geometric interpretation. For k ≤ n, Pawlowski
and Rhoades [15] introduced the variety

Xn,k := {(�1, . . . , �n) : �i a line in Ck and �1 + · · · + �n = Ck} (7)

of n-tuples of 1-dimensional subspaces of Ck which have full span. They proved
[15] that the rational cohomology of Xn,k is presented by the ring Rn,k.
Rhoades and Wilson [18] gave another interpretation of Rn,k using an ex-
tension of the Vandermonde determinant to superspace.

1.3. The Rings Rµ

The Garsia–Procesi modules Rμ, indexed by partitions μ 	 n, are another
generalization of the coinvariant ring defined by

Rμ = Q[x1, . . . , xn]/Iμ,

where we define Iμ using the notation of Garsia and Procesi [4] as follows. For
a subset S ⊆ {x1, . . . , xn}, define the partial elementary symmetric functions
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er(S) to be the elementary symmetric function of degree r in the restricted
set of variables S. For instance, e2(x1, x4, x5) = x1x4 + x1x5 + x4x5.

Let μ′ be the conjugate partition formed by reflecting μ about the diag-
onal, and define

ct(μ) = μ′
1 + · · · + μ′

t − t (8)

to be the number of squares in the first t columns that lie above the first row.
Then we have2

Iμ = 〈er(S) : cn−|S|(μ) < r ≤ |S|〉. (9)

Note that in the case μ = (1n), we recover the coinvariant ring, that is, R(1n) =
Rn. In general, the graded Frobenius character of Rμ is given by

grFrob(Rμ; q) = H̃μ(x; q),

where H̃μ(x; q) are the classical Hall–Littlewood polynomials. These exhibit a
combinatorial formula in terms of the following notions.

Definition 5. A semistandard Young tableau T of shape λ is a filling of the
Young diagram of λ with positive integers such that the rows are weakly in-
creasing left to right and the columns are strictly increasing bottom to top.
The content of a tableau T (or word w) is the tuple (m1,m2, . . .), where mi is
the number of times i appears in T (or w).

Write SSYT(λ, μ) for the set of all semistandard Young tableaux of shape
λ and content μ. Then it was shown in [14] that

H̃μ(x; q) =
∑

λ

∑

S∈SSYT(λ,μ)

qcc(S)sλ,

where cc is a generalization of the cocharge statistic that we describe in detail
in Sect. 3.

The rings Rμ also have a geometric interpretation in terms of Springer
fibers. Define Bμ to be the subvariety of the full flag variety

Fln = {0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = Cn : dim(Vi) = i for all i}
consisting of the flags fixed by the action of a fixed unipotent element u of
GLn(C) having Jordan blocks of size μ1, μ2, . . . , μ�(μ). The space Bμ is a fiber of
the Springer resolution of the unipotent subvariety of GLn, and its cohomology
ring comes with a graded Sn-module structure whose top degree component is
precisely the irreducible representation Vμ [21]. The work of [3] and [22] shows
that Rμ is isomorphic to the cohomology ring of the Springer fiber Bμ, both
as a graded ring and as a graded Sn-module.

2It is straightforward to verify that the inequality in (9) is equivalent to the one stated in
[4], and we omit the proof for brevity.
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1.4. The Rings Rn,k,µ

In [8], Griffin introduced a common generalization of Rμ and Rn,k. While
Griffin’s notation for these generalized modules is Rn,λ,s, here we change the
variable s to k and λ to μ and interchange their order to instead write Rn,k,μ.
This notation is more compatible with the way we denoted the two known
modules above.

Griffin defines the ideal In,k,μ generated by
– the monomials xk

1 , . . . , x
k
n, and

– the partial elementary symmetric functions er(S) satisfying

cn−|S|(μ) + (n − |μ|) < r ≤ |S|,
where the notation ct(μ) is the same as in Eq. (8).

Then we have

Rn,k,μ = C[x1, . . . , xn]/In,k,μ.

Notice that if |μ| = n and k ≥ �(μ), then Rn,k,μ = Rμ, and if μ = (1k) then
Rn,k,μ = Rn,k.

In [8], Griffin gives several combinatorial formulas for the graded Frobe-
nius series of Rn,k,μ. The most relevant of these to our purposes is an expansion
in terms of Hall–Littlewood polynomials. In the following, we write

Hλ(x; q) := qn(λ)H̃(x; q−1) = revq(H̃(x; q))

to denote the ‘charge’ Hall–Littlewood polynomials, where n(λ) =
∑

i

(
λ′

i
2

)
for

any partition λ. With this notation, we have

grFrob(Rn,k,μ; q) = revq

⎛

⎜⎜⎜⎜⎜⎝

∑

λ⊇μ
�(λ)≤k
|λ|=n

qn(λ,μ)
∏

i≥0

(
λ′

i − μ′
i+1

λ′
i − λ′

i+1

)

q

Hλ(x; q)

⎞

⎟⎟⎟⎟⎟⎠
, (10)

where n(λ, μ) =
∑

i

(
λ′

i−μ′
i

2

)
and where the notation

(
a
b

)
q
denotes the q-binomial

coefficient
∏b−1

i=0
1−qa−i

1−qb−i . The notation λ ⊇ μ indicates that the Young diagram
of μ is contained inside that of λ.

The modules Rn,k,μ have a geometric interpretation as well, in the limit
as k → ∞. The Eisenbud–Saltman rank variety On,μ is the subvariety of gln
defined by

On,μ = {X ∈ gln : dim ker Xd ≥ μ′
1 + · · · + μ′

d, d = 1, . . . , n}.

In the case that |μ| = n, this coincides with the closure of the variety Oμ of
nilpotent matrices with Jordan block type μ. Setting Rn,μ to be the limiting
module of Rn,k,μ as k → ∞, Griffin shows that Rn,μ is the coordinate ring of
the scheme theoretic intersection

On,μ′ ∩ t,

where t is the Cartan subalgebra of diagonal matrices in gln. This is a strict
generalization of the analogous result for Rμ and Oμ, which was an essential
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step in de Concini and Procesi’s work [3] on the connections to the Springer
fibers.

1.5. Main Results

Our main results are as follows.

Theorem 1. Let k ≤ n be positive integers. Consider the set of polynomials

Bn,k := {FS
T · ei1

1 ei2
2 · · · ein−k

n−k },

where T, S ∈ SYT(n) have the same shape and (i1, i2, . . . , in−k) is a tuple of
n − k nonnegative integers whose sum is < k − des(S). The set Bn,k descends
to a higher Specht basis for Rn,k.

More details on the notation above, as well as the proof, can be found in
Sect. 2. For now, note that since Sn acts trivially on any elementary symmetric
polynomial, Theorem 1 immediately implies [11, Cor. 6.13]:

grFrob(Rn,k; q) =
∑

S∈SYT(n)

qmaj(S)

(
n − des(S) − 1

n − k

)

q

sshape(S).

For Rμ, we use a generalization of the cocharge statistic to define semis-
tandard higher Specht polynomials FS

T , where S is a semistandard tableau with
content μ and T is a standard Young tableau of the same shape as S. (See
Sect. 3.) The polynomial FS

T is homogeneous of degree cc(S).

Conjecture 1. Let μ 	 n. Consider the set of semistandard higher Specht poly-
nomials

Bμ = {FS
T }

for which S has content μ and T ∈ SYT(n) has the same shape as S. Then
Bμ descends to a higher Specht basis of Rμ.

Numerically, the conjectured basis matches what we would expect based
on the graded Frobenius character of Rμ (as computed in [14]), which is given
by

grFrob(Rμ; q) =
∑

λ

∑

S∈SSYT(λ,μ)

qcc(S)sλ.

Our main progress towards proving this conjecture is the following.

Theorem 2. Conjecture 1 holds when μ = (k, n − k) has two rows.

Finally, we combine these two results to give a higher Specht basis for an
infinite family of the modules Rn,k,μ as follows.

Theorem 3. Suppose μ is the one-row partition (n − 1). Consider the set of
polynomials

Bn,k,(n−1) = {FS
T · ei

1},

where FS
T ∈ B(n−1,1) is a semistandard higher Specht polynomial for the shape

(n − 1, 1), and i < k − des(S). Then Bn,k,(n−1) descends to a higher Specht
basis of Rn,k,(n−1).
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We can see numerically that the basis of Theorem 3 matches what we
would expect from the graded Frobenius character. In particular, setting μ =
(n − 1) in Eq. (10), the summation has two terms, with λ = (n) and λ =
(n − 1, 1). In both cases, we have n(λ, μ) = 0, and the only nontrivial q-
binomial coefficient occurs at i = 0 with λ = (n − 1, 1). Hence,

grFrob(Rn,k,(n−1); q) = revq

⎡

⎣H(n)(x; q) +

(
k − 1

k − 2

)

q

H(n−1,1)(x; q)

⎤

⎦

= revq

[
H(n)(x; q) + (1 + q + · · · + qk−2)H(n−1,1)(x; q)

]

= qk−1
[
H(n)(x; q−1) + (1 + q−1 + q−2 + · · ·

+q2−k)H(n−1,1)(x; q−1)
]

= qk−1H̃(n)(x; q) + (1 + q + q2 + · · · + qk−2)H̃(n−1,1)(x; q),

where the third equality above follows from the fact that H(n)(x; q) has degree
0 in q and H(n−1,1) has degree 1, so that the entire polynomial has degree
k − 1. Finally, note that H̃(n)(x; q) and H̃(n−1,1)(x; q) are the Frobenius series
of the Garsia–Procesi modules R(n) and R(n−1,1), respectively. It follows from
Theorem 2 that the basis Bn,k,(n−1) of Theorem 3 gives the correct number of
irreducible Sn representations in each degree.

It is our hope that these methods can be generalized to construct a higher
Specht basis for Rn,k,μ of the form {FS

T ·ei1
1 · · · ein−|μ|

n−|μ| }, where the polynomials
FS

T are semistandard higher Specht polynomials for various partitions λ 	 n
such that λ ⊃ μ, and where there is an appropriate bound on the exponents
ij . As it is, one current limitation is that for any partition μ with |μ| < n and
μ �= (n− 1), there exists a partition λ of n containing μ that has at least three
rows. This exceeds the two-row condition of Theorem 2.

1.6. Outline

The remainder of the paper is organized as follows. In Sect. 2, we prove The-
orem 1. In Sect. 3, we prove Theorem 2 and provide additional evidence and
work towards Conjecture 1. Finally, we prove Theorem 3 in Sect. 4.

2. Higher Specht Bases for Rn,k

We will obtain our new basis for Rn,k by multiplying the higher Specht poly-
nomials FS

T (for standard tableaux T and S of the same shape) by appropriate
elementary symmetric polynomials. Before stating our basis, we recall some
notions from commutative algebra.

A sequence of polynomials f1, f2, . . . , fr in the ring Q[x1, . . . , xn] is a
regular sequence if for all 1 ≤ j ≤ r, the endomorphism

Q[x1, . . . , xn]/(f1, . . . , fj−1)
×fj−−→ Q[x1, . . . , xn]/(f1, . . . , fj−1)
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on the quotient ring Q[x1, . . . , xn]/(f1, . . . , fj−1) induced by multiplication by
fj is injective. The longest possible length of a regular sequence f1, . . . , fr in
Q[x1, . . . , xn] is r = n. The elementary symmetric polynomials e1, e2, . . . , en

constitute one such length n regular sequence.
Let f1, . . . , fn be any length n regular sequence in Q[x1, . . . xn] such that

the fj are homogeneous. Then the quotient Q[x1, . . . , xn]/(f1, . . . , fn) is graded
and if B is a family of homogeneous polynomials which descends to a Q-basis
of Q[x1, . . . , xn]/(f1, . . . , fn), then the infinite set of polynomials

{
g · f i1

1 f i2
2 · · · f in

n : g ∈ B}

is a basis of the full polynomial ring Q[x1, . . . , xn]. To describe our basis of
Rn,k, we need one more definition.

Definition 6. A descent of a standard Young tableau S is an entry i which
occurs in a lower row than i+1 (written in French notation). The major index
of S, written maj(S), is the sum of the descents of S, and we write des(S) for
the number of descents.

For instance, if S is the tableau at left in Fig. 1, then maj(S) = 1 + 3 +
4 + 6 = 14 and des(S) = 4.

We now restate Theorem 1 here for the reader’s convenience.

Theorem 1. Let k ≤ n be positive integers. Consider the set

Bn,k := {FS
T · ei1

1 ei2
2 · · · ein−k

n−k }
consisting of all polynomials of the form FS

T · ei1
1 ei2

2 · · · ein−k

n−k , where S, T ∈
SYT(n) have the same shape and (i1, i2, . . . , in−k) is a tuple of n − k nonneg-
ative integers whose sum is < k − des(S). The set Bn,k descends to a higher
Specht basis for Rn,k.

We first prove an enumerative lemma which will help us in the proof of
Theorem 1.

Lemma 1. Let n and k be positive integers. There are exactly kn tuples of the
form (S, T, i1, . . . , in), where S and T are standard Young tableaux of the same
shape with n boxes and i1, . . . , in are nonnegative integers with i1 + · · · + in <
k − des(S).

Proof. The Robinson–Schensted–Knuth correspondence gives a bijection be-
tween words w ∈ {1, 2, . . . , k}n and pairs (R, T ) of Young tableaux with n
boxes having the same shape, such that R is semistandard with entries in
{1, 2, . . . , k} and T is standard.

Since there are kn words w ∈ {1, 2, . . . , k}n, it suffices to give a bijection
between the tuples (S, T, i1, . . . , in) in question and the pairs (R, T ) described
above. Given a standard Young tableau S, define the destandardization of S,
denoted S′ as follows. If d1 < d2 < · · · < dn are the descents of S, replace
1, . . . , d1 with 1, replace d1 + 1, . . . , d2 with 2, etc. See Fig. 3 for an example.

Note that S′ is semistandard by the definition of a descent, and S can
be uniquely reconstructed from S′. Notice also that the largest entry of S′ is
des(S) + 1.
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Figure 3. A standard Young tableau S (at left) and its de-
standardization S′ (middle). The tableau R defined from S′

in the proof of Lemma 1 arising from the tuple (i1, . . . , i8) =
(0, 1, 0, 0, 2, 0, 1, 0) is shown at right

Now let i1, . . . , in be such that i1+· · ·+in < k−des(S). Let a1 ≤ · · · ≤ an

be the entries of S′ in order (breaking ties by the corresponding ordering in
S). Then define R by increasing each of the numbers a1, . . . , an by i1, then
increasing a2, . . . , an by i2, then increasing a3, . . . , an by i3, and so on. Because
i1+ · · ·+in < k−des(S), the result R has largest entry at most k. This process
is reversible, and so the proof is complete.

We now prove Theorem 1.

Proof of Theorem 1. It will be convenient to consider a broader family of quo-
tients Rn,k,s = Q[x1, . . . , xn]/In,k,s defined for s ≤ k ≤ n. Here

In,k,s := 〈xk
1 , x

k
2 , . . . , x

k
n, en, en−1, . . . , en−s+1〉. (11)

In particular, we have In,k,k = In,k and Rn,k,k = Rn,k. We allow s to be zero,
in which case, no es appear in our ideal at all. However, we assume that n, k
are positive.

Consider the following extended set

Bn,k,s := {FS
T · ei1

1 ei2
2 · · · ein−s

n−s } (12)

consisting of all polynomials FS
T · ei1

1 ei2
2 · · · ein−s

n−s for which S, T ∈ SYT(n) have
the same shape and (i1, i2, . . . , in−s) is a list of n − s nonnegative integers
whose sum is < k − des(S).

We claim that Bn,k,s descends to a basis for Rn,k,s for all n, k, s. This is
stronger than the statement of the Theorem. When n = k = s, the quotient
Rn,n,n is the classical coinvariant algebra and the fact that Bn,n,n descends to
a basis for Rn is precisely the result of [1].

To begin, the proof of [11, Lem. 6.9] gives a short exact sequence

0 → Rn,k−1,s → Rn,k,s → Rn,k,s+1 → 0, (13)

where the first map is induced by multiplication by en−s and the second map
is the canonical projection. (In fact, the [11, Lem. 6.9] is only proven in the
case where s > 0; the case s = 0 has the same proof after observing that
dim(Rn,k,0) = kn, so that the dimensions of the rings on either end add up to
the dimension of the ring in the middle in this case.)
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By exactness, if B descends to a basis for Rn,k−1,s and if C descends to a
basis for Rn,k,s+1, the disjoint union

{en−s · f ∈ B} � {g : g ∈ C} (14)

descends to a basis for Rn,k,s. Using this property and the fact that

{en−s · f ∈ Bn,k−1,s} � {g : g ∈ Bn,k,s+1} = Bn,k,s, (15)

we are inductively reduced to proving the result when s = 0. That is, it remains
to show that Bn,k,0 descends to a basis for Rn,k,0.

By definition, we have

Bn,k,0 = {FS
T · ei1

1 ei2
2 · · · ein

n }, (16)

where S, T ∈ SYT(n) have the same shape and (i1, . . . , in) is a sequence of
nonnegative integers whose sum is < k − des(S). By the definition of the
cocharge word cw(S), the largest possible exponent appearing in the mono-
mial xcw(S)

T or the polynomial FS
T = εT · xcw(S)

T is des(S). Since elementary
symmetric polynomials are sums of square-free monomials, we see that the
largest possible exponent appearing in a polynomial in Bn,k,0 is k − 1. Since

Rn,k,0 = Q[x1, . . . , xn]/〈xk
1 , . . . , x

k
n〉 (17)

and |Bn,k,0| = kn = dim(Rn,k,0), (where the first equality uses Lemma 1)
we conclude that Bn,k,0 descends to a basis for Rn,k,0 if and only if Bn,k,0 is
linearly independent in the full polynomial ring Q[x1, . . . , xn].

We finish the proof by showing that Bn,k,0 is linearly independent in
Q[x1, . . . , xn]. To do this, we apply the main result of [1] that the set

Bn = {FS
T : S, T ∈ SYT(n)have the same shape}

descends to a basis for the coinvariant ring Rn. Since the ideal defining Rn is
cut out by the regular sequence e1, . . . , en, we know that the set

{FS
T · ei1

1 · · · ein
n : S, T ∈ SYT(n) have the same shape andi1, . . . , in ≥ 0}

(18)
is a basis of the full polynomial ring Q[x1, . . . , xn]. Since it is a subset of this
basis, the set Bn,k,0 is linearly independent in Q[x1, . . . , xn], as desired.

3. Higher Specht Bases for Rµ

We now give a conjectured generalization of the higher Specht basis to the
Garsia–Procesi modules Rμ, and prove it in the case that μ has at most two
rows. We first recall the generalization of cocharge, defined in [14], to words
whose content (Definition 5) is a partition. Throughout this section, we assume
w is a word with partition content μ.

For an entry wj of w and a positive integer k, define the cyclically previous
k before wj , denoted cprev(k,wj), to be the rightmost k cyclically to the left
of wj in w. That is, it is the rightmost k to the left of wj if such a k exists, or
the rightmost k in w otherwise.
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Definition 7. Let wi1 = 1 be the rightmost 1 in w, and recursively define
i2, . . . , i�(μ) by

wij+1 = cprev(j + 1, wij
).

We call the subword w(1) consisting of the entries wij
the first standard sub-

word of w.

Definition 8. The standard subword decomposition of w is obtained by setting
w(1) to be the first standard subword of w, and recursively defining w(i), for i >
1, to be the first standard subword of the entries of w not in w(1), . . . , w(i−1).

Definition 9. The cocharge of w is

cc(w) =
∑

i

cc(w(i)),

where w(1), w(2), . . . , w(μ1) is its standard subword decomposition. The cocharge
word cw(w) is defined as the labeling on w given by labeling the letters of w(i)

with its cocharge word cw(w(i)) for each i.
For a semistandard Young tableau S having reading word w, we define

cc(S) = cc(w).

For a square s in the diagram of S, we write cwS(s) for the cocharge word
label of the corresponding letter of w.

Example 2. The semistandard Young tableau

S =

4
2 2 3 3 4
1 1 1 2 3

has reading word w = 42233411123. If we label the first standard subword w(1)

(shown in boldface below) with its cocharge labeling as subscripts, we get

422133421110231.

Then we label w(2) to obtain:

4221213314211010231.

We finally label w(3) to obtain

4221213131421010102031.

It follows that cw(w) = 2111200001 and cc(S) = cc(w) = 8.

We can now define the conjectured basis for Rμ.

Definition 10. Let (S, T ) be a pair of Young tableaux of the same shape λ 	 n
where S is semistandard and has content μ and T has content (1n) (but is not
necessarily standard). Then we define

xS
T =

∏

s∈D(λ)

x
cwS(s)
T (s) ,
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where D(λ) is the set of squares in the diagram of λ. Finally, define the semi-
standard higher Specht polynomial

FS
T = εT · xS

T .

Recall that SSYT(λ, μ) is the set of all semistandard Young tableaux of
shape λ and content μ. We also write SYT(λ) = SSYT(λ, (1n)) for the set
of standard Young tableaux of shape λ. Then we can restate Conjecture 1 as
follows.

Conjecture 2. (Conjecture 1 restated) The set of polynomials

Bμ =

{
FS

T : (S, T ) ∈
⋃

λ�n

SSYT(λ, μ) × SYT(λ)

}

is a basis of Rμ.

3.1. Semistandard Higher Specht Modules in Q[xn ]
As a step towards proving Conjecture 1, we consider the modules generated by
the semistandard higher Specht polynomials as submodules of the full polyno-
mial ring Q[xn], before descending to the quotient Rμ. In particular, we show
that these give copies of the ordinary polynomial Specht modules in higher
degrees.

Definition 11. Write Tab(λ) to denote the set of all (not necessarily standard)
tableaux of shape λ and of content (1n). In other words, Tab(λ) is the set of all
n! ways of filling the boxes of λ with the numbers 1, 2, 3, . . . , n in any manner.

Note that if λ 	 n then Sn naturally acts on Tab(λ) by permuting entries
in a tableau.

Definition 12. For a fixed S ∈ SSYT(λ, μ), define

V S := span{FS
T : T ∈ Tab(λ)}

to be the span of the higher Specht polynomials associated with S, considered
as a subspace of R = C[x1, . . . , xn], where n = |λ|. Similarly, define V S to be
its image in the quotient Rμ.

We first show that V S is an irreducible Sn-module isomorphic to the stan-
dard Specht module V λ. We begin with several technical lemmas. Throughout,
we fix a choice of semistandard Young tableau S ∈ SSYT(λ, μ).

Proposition 1. Let ω ∈ Sn and T ∈ Tab(λ). Then

ωFS
T = FS

ωT .

Proof. First note that if τ ∈ C(T ) then τ ′ := ωτω−1 ∈ C(ωT ), and similarly,
if σ ∈ R(T ) then σ′ := ωσω−1 ∈ R(ωT ). Notice also that ωxS

T = xS
ωT . We,

therefore, have

ωFS
T = ωεTxS

T =
∑

τ∈C(T )

∑

σ∈R(T )

sgn(τ)ωτσxS
T
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=
∑

τ∈C(T )

∑

σ∈R(T )

sgn(ωτω−1)(ωτω−1)(ωσω−1)ωxS
T

=
∑

τ ′∈C(ωT )

∑

σ′∈R(ωT )

sgn(τ ′)τ ′σ′xS
ωT

= FS
ωT

as desired.

Corollary 1. The space V S is a cyclic Sn-submodule of R.

We now show that, assuming the polynomials FS
T are independent for T

standard, the submodule V S is a copy of the irreducible Sn-module V λ. We
recall (see, for instance [16]) the Garnir relations that govern the Sn-module
structure of V λ with respect to the standard Specht basis.

Definition 13. Let T ∈ Tab(λ). Let a and b, with a < b, be the indices of two
distinct columns of T , and let t ≤ λ′

b be a row index of one of the entries
of column b. Then we write Sa,b

t to be the subgroup of Sn consisting of all
permutations of the set of elements of T residing either in column a weakly
above t, or in column b weakly below t.

The Garnir element Ga,b
t is the partial antisymmetrizer

Ga,b
t :=

∑

ω∈Sa,b
t

sgn(ω)ω.

Proposition 2. The element FS
T , for any T ∈ Tab(λ), satisfies the Garnir

relation Ga,b
t (FS

T ) = 0.

To prove this proposition, we first show that the analog of Lemma 3.3 in
[16] holds here. To state it, we introduce the Young (anti)symmetrizers α and
β defined as follows. For any subgroup U ⊆ Sn, define

α(U) =
∑

τ∈U

sgn(τ)τ and β(U) =
∑

σ∈U

σ.

In this notation, the Young symmetrizer εT can be written as

εT = α(C(T ))β(R(T )).

Lemma 2. Let U be any subgroup of Sn and let C = C(T ), where T ∈ Tab(λ).
Suppose there is an involution σ �→ σ′ on UC such that for each σ ∈ UC,
there exists ρσ ∈ R(T ) for which ρ2σ = 1, sgn(ρσ) = −1, and σ′ = σρσ. Then

α(U)FS
T = 0.

Proof. We have α(U)α(C) = |U∩C|α(UC) (see Lemma 3.2 in [16]). Therefore,

α(U)FS
T = α(U)εTxS

T

= α(U)α(C)β(R)xS
T

= |U ∩ C|α(UC)β(R)xS
T ,
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where R = R(T ) is the group of row permutations. Due to the involution σ �→
σ′, which has no fixed points because sgn(ρσ) = −1 for each ρσ, we have that
the terms in α(UC) can be partitioned into pairs of terms sgn(σ)σ+sgn(σ′)σ′.
We claim that each of these two-term sums kills β(R)xS

T . Indeed, we have

(sgn(σ)σ + sgn(σ′)σ′)β(R)xS
T = (sgn(σ)σ + sgn(σ)sgn(ρσ)σρσ)β(R)xS

T

= (sgn(σ)σ − sgn(σ)σρσ)β(R)xS
T

= (sgn(σ)σβ(R) − sgn(σ)σρσβ(R))xS
T

= (sgn(σ)σβ(R) − sgn(σ)σβ(R))xS
T

= 0,

where the last computation follows because ρσ ∈ R and therefore ρσ permutes
the terms of β(R). It follows that α(U)FS

T = 0, as desired.

The above lemma is the exact analog to Lemma 3.3 in [16]. Using this
lemma, the proof of Proposition 2 now exactly follows that of Theorem 3.1 in
[16] for the ordinary Specht polynomials, since the remaining steps of Peel’s
proof only depend on the operators α(U) and not on the specific polynomials
they are applied to. We, therefore, omit the rest of the details and refer to [16].

It now follows that the elements FS
T , for T a standard tableau of shape

shape(S), span the space V S . Finally, we show the polynomials FS
T for T ∈

SYT(n) are linearly independent in C[x1, . . . , xn]. In fact, their images are
independent in the coinvariant ring Rn.

To prove this, we use the last letter order � on standard Young tableaux
defined in [1]. In particular, for any two standard tableaux T1, T2 of the same
shape, let m(T1, T2) be the largest letter that is not in the same square in T1

as in T2. Then we say T1 � T2 if m(T1, T2) is in row � in T1 and row k in T2

with � < k.

Example 3. The last letter order on the shape (2, 4) puts the standard tableaux
in the following order from least to greatest:

2 4
1 3 5 6 ,

3 4
1 2 5 6 ,

2 5
1 3 4 6 ,

3 5
1 2 4 6 ,

4 5
1 2 3 6 ,

2 6
1 3 4 5 ,

3 6
1 2 4 5 ,

4 6
1 2 3 5 ,

5 6
1 2 3 4 .

We also require the following elementary linear algebra fact, whose proof
we omit.

Lemma 3. Let V and W be vector spaces over a field k of characteristic 0, with
a nondegenerate bilinear form 〈, 〉 : V × W → k. Let v = {v1, . . . , vr} ⊆ V and
w = {w1, . . . , wr} ⊆ W , and suppose 〈vi, wj〉 = 0 whenever i < j and further
that 〈vi, wi〉 �= 0 for all i. Then v and w are both independent sets of vectors
in V and W , respectively.

Proposition 3. For a fixed S ∈ SSYT(λ), the polynomials FS
T , for T ∈

SSYT(λ, (1n)), are independent in the coinvariant ring Rn.
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Proof. We make use of the bilinear form and ordering on tableaux defined in
[1]. In particular, for f, g ∈ Rn define

〈f, g〉 =
1
Δ

∑

σ∈Sn

sgn(σ)σ(f̃ g̃) |x1=x2=···=xn=0

where f̃ and g̃ are lifts of f and g in C[x1, . . . , xn] and Δ =
∏

i<j(xi − xj) is
the Vandermonde determinant.

Define GS
T = εT ′xT−1−S

T , where T ′ is the transpose of the standard Young
tableau T , and T −1−S denotes the tableau formed by reducing all entries of T
by 1 and then subtracting, element-wise, the entries in S. Thus, in particular,
xT−1−S

T · xS
T = x0

1x
1
2x

2
3 · · · xn−1

n .

Then by an identical computation as in [1] (in the last paragraph of the
proof of Proposition 1 part (2)), we have that

〈FS
T1

, GS
T2

〉
is nonzero if T1 = T2, since the only surviving term in the computation is
the product x0

1x
1
2x

2
3 · · · xn−1

n , whose antisymmetrization is the Vandermonde
determinant Δ itself. Moreover, as in the proof of Proposition 2 of [1], we see
that 〈FS

T1
, GS

T2
〉 is equal to 0 if T1 > T2 in the last letter order, as in this

case εT1εT2 = 0 as operators (see [1]), and so it does not matter that we are
applying the operators to different monomials than in [1].

Thus, we have an upper triangular transition matrix between the F and
G polynomials, and so the polynomials FS

T for T ∈ Tab(λ) are independent in
Rn.

Corollary 2. The space V S is a copy of the irreducible Sn-module V λ.

3.2. Independence in Rµ for Two-Row Shapes

We now show that, for two-row shapes μ, the set of semistandard higher Specht
polynomials for Rμ is independent in Rμ, by induction on the size of μ. Our
main tool is a recursion developed by Garsia and Procesi [4]. We recall their
notation as follows.

Definition 14. Let μ = (μ1, . . . , μr) be a partition and let i ≤ r. Then μ(i) is
the partition whose parts are μ1, . . . , μi−1, μi − 1, μi+1, . . . , μr (not necessarily
in nonincreasing order).

Example 4. If μ = (3, 3, 2), then μ(1) = μ(2) = (3, 2, 2), and μ(3) = (3, 3, 1).

Garsia and Procesi [4] show that

Rμ =
μ′
1⊕

i=1

xi−1
n Rμ/xi

nRμ

as vector spaces. Moreover, considered as Sn−1-modules, we have

Rμ(i) ∼= xi−1
n Rμ/xi

nRμ
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via the map p �→ xi−1
n p. It follows that there is an Sn−1-module decomposition

Rμ =
μ′
1⊕

i=1

Rμ(i) .

We, therefore, can conclude the following.

Lemma 4. Let μ 	 n and suppose C(μ(i)) is a basis of Rμ(i) for each i =
1, 2, . . . , μ′

1. Then
⋃

xi−1
n C(μ(i)) is a basis of Rμ.

With this in mind, we outline the following general strategy for proving
that Bμ is a basis for Rμ. We assume for induction that Bλ is a basis for Rλ

for all smaller shapes λ contained in μ. Then we define Cμ =
⋃

i xi−1
n Bμ(i) ,

which is a basis of Rμ by the induction hypothesis and Lemma 4. Finally, if
we can show that the transition matrix between Bμ and Cμ is invertible, then
the induction is complete.

We can further simplify this process by noting that we can restrict to
basis elements of a given degree.

Definition 15. For any set of homogeneous polynomials B, we write B(d) to
denote the subset of degree d polynomials in B.

Note that it suffices to show that the transition matrix between B(d)
μ and

C(d)
μ is invertible for every d, since both sets consist of homogeneous polyno-

mials and Rμ is degree graded. We will implement this inductive approach
for two-row shapes below, by showing that the transition matrix is in fact
lower triangular in this case. We begin by illustrating this phenomenon with
an example.

Example 5. Consider the case μ = (3, 3) and d = 2. Figure 4 shows the
transition matrix from B(2)

μ to C(2)
μ . Here, the elements of B(2)

μ are written
in last letter order down the left hand side of the table. The elements of
C(2)

μ = B(2)
(3,2) ∪ x6B(1)

(3,2) are written across the top, with the elements from

B(2)
(3,2) coming before those of x6B(1)

(3,2), with ties broken in last letter order. If
a coefficient is 0 we leave that entry blank.

Here,

S =
2 2
1 1 1 2 , S′ =

2 2
1 1 1 , S′′ =

2
1 1 1 2 .

We will show in the proof of Theorem 2 that, if the largest number n is in the
bottom row of T , then FS

T = cFS′
T ′ for some constant c, where T ′ is formed by

removing the largest entry n from T . On the other hand, if the largest number
n is in the top row of T , then we will show that

FS
T = αxnFS′′

T ′ + β

bn−d∑

j=bd+1

FS′
T ′

j
,

where α = d
n−2d+1 + d and β = n−d

n−2d+1 , and where T ′
j is the tableau formed

by removing j from the bottom row of T ′ and inserting it in the top row. Here
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Figure 4. The transition matrix that expresses the elements
of B(2)

(3,3) (the row labels) in terms of those of C(2)
(3,3) = B(2)

(3,2) ∪
x6B(1)

(3,2) (the column labels)

n = 6 and d = 2, so α = 8/3 and β = 4/3. Thus, for instance,

FS
2 6
1 3 4 5

=
8
3
x6F

S′′
2
1 3 4 5

+
4
3
FS′

2 4
1 3 5

+
4
3
FS′

2 5
1 3 4

.

Indeed, subtracting the right-hand side from the left-hand side of the above
equation yields the polynomial

−8
3
(x2 − x1)(x3 + x4 + x5 + x6) = −8

3
(e2(x2, x3, x4, x5, x6)

− e2(x1, x3, x4, x5, x6))
∈ Iμ.

We similarly have

FS
4 6
1 3 4 5

=
8
3
x6F

S′′
4
1 2 3 5

+
4
3
FS′

4 3
1 2 5

+
4
3
FS′

4 5
1 2 3

.

The second summand is not a basis element, but we can straighten it using the
Garnir relations to express it in terms of FS′

T ′ elements where T ′ is standard,
to obtain the second to last row of the matrix above.

The following lemma will be used repeatedly in the proof of Theorem 2.
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Lemma 5. Suppose μ is a two-row shape and S has content μ. Then S has at
most two rows, say of lengths d and n−d. If T is the tableau of the same shape
as S with entries t1, . . . , td in the top row and b1, . . . , bn−d in the bottom, we
have

FS
T = d!(n − d)!

d∏

i=1

(xti
− xbi

). (19)

Proof. The tableau S looks like

2 2 2
1 1 1 1 1 1 2 2 2 ,

where there are μ1 1’s, μ2 2’s, and exactly d of the 2’s are in the top row.
Thus, the cocharge indices are all 0 in the first row and 1 in the second. The
equation follows.

We now prove Theorem 2, which we restate here for the reader’s conve-
nience.

Theorem 2. If μ = (n − k, k) for some k ≥ 0, the set

Bμ = {FS
T : (S, T ) ∈

⋃

λ�n

SSYT(λ, μ) × SYT(λ)}

descends to a higher Specht basis of Rμ. In other words, Conjecture 1 holds for
one- and two-row shapes.

Proof. The base case, n = 1, holds trivially for the unique partition μ = (1).
Let μ = (n − k, k) and assume for induction that the claim holds for all

smaller two-row (or one-row) shapes fitting inside μ. In particular, it holds for
μ(1) and μ(2). Then by Lemma 4, the set

Cμ := Bμ(1) ∪ xnBμ(2)

is a basis for Rμ.
Let t = |Bμ| = |Cμ| =

(
n
μ

)
. We will show there are total orderings b1, . . . , bt

and c1, . . . , ct on Bμ and Cμ, respectively, for which

bi =
∑

j≤i

αi,jcj

for some constants αi,j with αi,i �= 0. Since the transition matrix [αi,j ] is lower
triangular with a nonzero diagonal, it will follow that Bμ is a basis of Rμ.

To define these orderings, first note that the sets Bμ and Cμ both consist
of homogeneous polynomials, and Rμ is graded by degree. We, therefore, can
define bi < bj if deg(bi) < deg(bj) and similarly ci < cj if deg(ci) < deg(cj).
With respect to this partial ordering, we have αi,j = 0 if i < j. Thus, it
suffices to choose a fixed degree d and consider just the basis elements bi and
ci of degree d, and choose an appropriate total ordering on the corresponding
subsets B(d)

μ and C(d)
μ to show that the corresponding sub-matrix M (d) is lower

triangular.
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Since the cocharge of a tableau with only 1’s and 2’s is equal to the size of
the top row, the elements in B(d)

μ are precisely those of the form FS
T , where S

is the unique tableau of shape λ = (n − d, d) and content μ, and T ∈ SYT(λ).
Since S is fixed, we define our ordering based on T . In particular, we define
FS

T1
< FS

T2
if and only if T1 � T2 in the last letter order. (See the row ordering

of the matrix M (d) in Fig. 4 for an example.)
To order the elements of C(d)

μ , let S′ be the unique tableau of content μ(1)

and shape λ(1) = (n − d − 1, d) (where if n − d = d then S′ is undefined), and
let S′′ be the unique tableau of content μ(2) and shape λ(2) = (n − d, d − 1).
Then we have

C(d)
μ = B(d)

μ(1) ∪ xnB(d−1)

μ(2)

= {FS′
T ′ } ∪ {xnFS′′

T ′′ },

where in the first set above T ′ ∈ SYT(λ(1)) and in the second, T ′′ ∈ SYT(λ(2)).
We enforce that the elements FS′

T ′ come before those of the form xnFS′′
T ′′ in our

ordering, and then we break ties by the last letter order on the subscripts T ′

and T ′′ respectively. (See the column ordering of the matrix M (d) in Fig. 4.)
Now, consider the set B0 of elements FS

T ∈ B(d)
μ for which n is in the

bottom row of T (so necessarily d �= n − d). Note that B0 forms an initial
sequence of the total ordering on B(d)

μ . Removing n from the bottom row of
such a tableau T forms a standard tableau T ′ of shape λ(1) = (n − d − 1, d).
We claim that

FS
T = cFS′

T ′

for some constant c. Indeed, let t1, . . . , td be the entries in the top row of T ,
and let b1, . . . , bd be the first d entries in the bottom row; then by Eq. (19),
both polynomials are nonzero constant multiples of

(xt1 − xb1)(xt2 − xb2) · · · (xtk
− xbk

).

Thus, the sets B0 and B(d)

μ(1) , which are both initial sequences of their respective
orderings, are scalar multiples of one another, and so the transition matrix
M (d) is block lower triangular, of the form

(
cI 0
X Y

)
.

It remains to show that Y is lower triangular with nonzero diagonal entries.
We in fact will show that Y = αI for some constant α as well.

Indeed, let B1 be the set of elements of B(d)
μ of the form FS

T where n is
in the top row of T . Let T be such a tableau, with top row having entries
t1, . . . , td = n and bottom row having entries b1, . . . , bn−d. Define T ′′ to be
the tableau formed by deleting n from T , and define the tableau T ′

j for j ∈
{bd+1, . . . , bn−d} to be the tableau formed by deleting j from the bottom row of
T ′′ and placing it at the end of the top row. Note that T ′

j may not be standard.
However, since the Garnir relations are satisfied, FS′

T ′
j

is a linear combination



72 M. Gillespie, B. Rhoades

of the polynomials FS′
T ′ , where T ′′ is standard, which come before elements of

the form xnFS′′
T ′′ in the ordering on C(d)

μ .
We will show that

FS
T = αxnFS′′

T ′′ + β

bn−d∑

j=bd+1

FS′
T ′

j
(20)

for some nonzero constants α and β. In light of the Garnir relations and the
ordering, it will follow that Y = αI as claimed.

To show (20), set

α =
d

n − 2d + 1
+ d

and

β =
n − d

n − 2d + 1
.

Then we have, using (19) repeatedly,

FS
T − αxnFS′′

T ′′ − β

bn−d∑

j=bd+1

FS′
T ′

j
= d!(n − d)!

d∏

i=1

(xti − xbi
)

− αxn(d − 1)!(n − d)!

d−1∏

i=1

(xti − xbi
)

− β

bn−d∑

j=bd+1

d!(n − d − 1)!(xj − xbd
)

d−1∏

i=1

(xti − xbi
).

We wish to show that the right-hand side is equal to 0 in Rμ. Thus, we
may divide the right-hand side by (d−1)!(n−d−1)!, and as a shorthand define
P =

∏d−1
i=1 (xti

− xbi
), so that we wish to show that the simpler expression

P ·
⎛

⎝d(n − d)(xn − xbd
) − α(n − d)xn − dβ

bn−d∑

j=bd+1

(xj − xbd
)

⎞

⎠

is 0 in Rμ, that is, it lies in the ideal Iμ. In the parenthetical above, substituting
α and β in for the expressions, it is easily verified that the coefficients of xn,
xbd

, and each xj for j = bd+1, . . . , bn−d are all equal to −d(n−d)/(n−2d+1).
Thus, the entire expression is a constant multiple of

P · (xbd
+ xbd+1 · · · + xbn−d

+ xn). (21)

Finally, we show that this expression is in Iμ. Note that ed(X) ∈ Iμ for
any set X of n − d + 1 variables by the definition of the Tanisaki generators
(Eq. (9)) and the fact that μ has two rows, the second of which is at least d.
Thus
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ed({xr1 , . . . , xrd−1} ∪ {xbd
, xbd+1 , . . . , xbn−d

, xn}) ∈ Iμ

for any choice of subscripts in which ri is either equal to ti or bi for each
i = 1, . . . , d − 1. We assign this partial elementary symmetric function a sign
of −1 if there are an odd number of ri subscripts equal to bi, and a sign of 1
otherwise. Summing these signed functions yields the expression (21).

3.3. Beyond Two-Row Shapes

In this section, we provide computer evidence that our inductive approach
above may be able to be extended to all partition shapes.

First, Conjecture 1 has been verified using Sage [20] for all partition
shapes μ of size at most 7. We have also verified it for the three-row shape
(3, 3, 2) of size 8, which is often the smallest shape in which conjectures related
to cocharge start to break down (see, for instance, [7], in which a property of
cocharge is proven combinatorially for all shapes of the form (a, b, 1k), but the
method does not extend to any other three row shapes).

Second, while the transition matrix expressing B(d)
μ in terms of C(d)

μ is not
always lower triangular for partition shapes μ having more than two rows, it
is very nearly so, in the following sense.

Definition 16. We say an n × n matrix M is almost lower triangular if there
is an upper triangular n × n matrix A for which MA is lower triangular with
nonzero diagonal entries.

Clearly every invertible lower triangular matrix is almost lower triangular,
and every almost lower triangular matrix is invertible. Computer evidence
indicates that there always exist orderings on the sets B(d)

μ and C(d)
μ such that

the transition matrix between them in Rμ is almost lower triangular.
For example, the transition matrix for μ = (3, 1, 1) and d = 2 is

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

−1/2 0 0 1/2 0 1 0 0 0
0 −1/2 0 0 1/2 0 1 0 0
0 0 −1/2 −1/2 1/2 0 0 1 0

1/4 1/4 1/4 0 0 1/4 1/4 1/4 −5/4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which is almost lower triangular. Indeed, multiplying M on the right by the
upper triangular matrix
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A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

yields a lower triangular matrix with nonzero diagonal entries.

4. A Higher Specht Basis for Rn,k,(n−1)

We now combine the methods of the previous two sections to prove Theorem 3,
which we restate here for the reader’s convenience.

Theorem 3. Consider the set of polynomials

Bn,k,(n−1) = {FS
T · ei

1},

where FS
T ∈ B(n−1,1) is a semistandard higher Specht polynomial for the shape

(n − 1, 1), and i < k − des(S). Then Bn,k,(n−1) descends to a higher Specht
basis for Rn,k,(n−1).

Proof. Since Sn acts trivially on the elementary symmetric function e1, if
Bn,k,(n−1) is a basis then it is indeed a higher Specht basis. In particular, the
polynomials FS

T · ei
1 for a fixed i and for a fixed tableau S of shape λ span a

copy of the irreducible representation V λ of Sn.
To show that Bn,k,(n−1) is a basis, we make use of a short exact sequence

for the modules Rn,k,μ that is analogous to the sequence (13) for Rn,k,s used
in Sect. 2. Griffin shows [8, Lem. 4.12] that there is a short exact sequence of
Sn-modules

0 → Rn,k,μ → Rn,k+1,μ → Rn,k+1,μ+(1) → 0

for any k < n and μ for which Rn,k,μ is defined. Here the notation μ + (1)
indicates that we simply add one part of size 1 to the partition μ. In the
sequence above, the first nontrivial map is multiplication by en−|μ| and the
second is given by setting en−|μ| = 0.

Setting μ = (n − 1), we have the exact sequences

0 → Rn,k,(n−1) → Rn,k+1,(n−1) → Rn,k+1,(n−1,1) → 0

for any k ≥ 1.
We now prove the claim by induction on k. For the base case k = 1, note

that we have Rn,1,(n−1) = C[x1, . . . , xn]/In,1,(n−1), where the ideal In,1,(n−1)

includes all the variables x1, . . . , xn as generators, since k = 1. Hence we
simply have Rn,1,(n−1)

∼= C, generated by the single basis element 1. The set
Bn,1,(n−1) consists of all polynomials FS

T · ei
1 for which S has content (n− 1, 1)
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and i < 1 − des(S), which forces des(S) = 0 and i = 0. The only such tableau
S is

S = 1 1 1 1 · · · 1 1 2

which forces

T = 1 2 3 · · · n ,

and these give rise to the unique basis element FS
T = 1.

For the induction step, let k ≥ 2 and assume the claim holds for all
smaller k. Note that since (n − 1, 1) is a partition of n, the right-hand mod-
ule Rn,k+1,(n−1,1) of the exact sequence is simply the Garsia–Procesi module
R(n−1,1) for any k ≥ 1. Hence, by Theorem 2, a higher Specht basis for this
module is given by B(n−1,1).

By the induction hypothesis, the left-hand term of the exact sequence
has Bn,k,(n−1) as a basis. It follows that the middle term Rn,2,(n−1) has basis
e1Bn,k,(n−1) ∪ B(n−1,1). By the definition of the bases, this is simply equal to
B(n,k+1,(n−1)), and the proof is complete.
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