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Abstract. Superspace is an algebra (), with n commuting generators xi,...,x, and
n anticommuting generators 6y,...,6,. We present an extension J,; of the Vander-
monde determinant to (), which depends on positive integers k < n. We use super-
space Vandermondes to build representations of the symmetric group S,. In particu-
lar, we construct a doubly graded S,-module V,; whose bigraded Frobenius image
grFrob(V,,x; q,t) conjecturally equals the symmetric function A; e, appearing in the
Haglund-Remmel-Wilson Delta Conjecture. We prove the specialization of our con-
jecture at t = 0. We use a differentiation action of (), on itself to build bigraded
quotients W,, ;. of (), which extend the Delta Conjecture coinvariant rings R,  defined
by Haglund-Rhoades-Shimozono and studied geometrically by Pawlowski-Rhoades.
Despite the fact that the Hilbert polynomials of the R, are not palindromic, we show
that W, ; exhibits a superspace version of Poincaré Duality.
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1 Introduction

The symmetric group S, acts on the polynomial ring Qlx, ..., x,]| by subscript permu-
tation. Polynomials in the invariant subring

Q[x1, ..., xu)° == {f €Qxy,...,xs] : w.f = fforallw € S,} (1.1)

are called symmetric polynomials. The Q-algebra Q[xy,...,x,|°" is generated by the n
elementary symmetric polynomials eq, ey, ..., ej.

Let Qlx, .. .,xn]i” be the space of symmetric polynomials with vanishing constant
term. The invariant ideal I, C Q[x1,...,xy] is given by

Ip = (Qx1,..., xa]5") = (e, €2, .., e0), (1.2)
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and the coinvariant ring is the corresponding quotient

Ry :=Qlx1,...,xn]/ L. (1.3)

The quotient R, is simultaneously a graded ring and a graded S,-module. The module
R; is among the most important in algebraic combinatorics, with representation theory
tied to permutation combinatorics and a geometric realization as the cohomology of the
flag variety [1, 3].

The symmetric group S, acts diagonally on the polynomial ring Q[x1, ..., Xu, Y1, - - -, Yn]
in 2n variables, viz. w.x; = X (;y and w.y; := Y,(;) forallw € S, and 1 < i < n. Garsia
and Haiman [4] initiated the study of the the diagonal coinvariant ring DR,, defined by
modding out by those S;-invariants with vanishing constant term:

DRy :=Qlx1, .-, Xn, Y1, .-, Y] /(Q[x1, ..., Xn, y1, - - .,yn]i”>. (1.4)

Considering x-degree and y-degree separately, the ring DR, is a doubly graded S;-
module which specializes to R, when the y-variables are set to zero.

Haiman proved [8] that as ungraded S,-modules we have DR, = Q[Park,] ® sign
where Park; is the permutation action of S, on size n parking functions and sign is
the 1-dimensional sign representation of S,. Haiman also proved more refined results
on the bigraded S,-module structure of DR;; to state these we recall some facts about
S,-modules.

The irreducible representations of S, over Q are indexed by partitions of n; if A = n
is a partition, let S* be the corresponding S,-irreducible. If V is any finite-dimensional
Sp-module, there exist unique multiplicities cy > 0so that V = @, ¢ 1S*. Let A denote
the ring of symmetric functions over the ground field Q(g, t) in the infinite variable set
x = (x1,x7,...). The Frobenius image of V is the symmetric function Frob(V) € A given
by Frob(V) := Y\, cAsy, where s, is the Schur function.

In this extended abstract we will consider (multi)graded S,;-modules. If V = @, V;
is a graded S,-module with each graded piece V; finite-dimensional, the graded Frobenius
image of V is grFrob(V;q) := Y;>0q' - Frob(V;). Even more generally, if V = D0 Vi,
or V.= k>0 Vi is a doubly or triply graded S,-module, we have the associated
bigraded and trigraded Frobenius images

grFrob(V;q,t) := ) _ qitj-Frob(Vi,]-) or grFrob(V;q,t,z) = )_ qitjzk~Frob(Vi/]~,k),
,j>0 i,j,k>0

respectively.

Haiman proved [8] that grFrob(DRy; q,t) = Ve,, where e, is the degree n elementary
symmetric function and V is the Bergeron-Garsia nabla operator. Therefore, describing
the bigraded S,-isomorphism type of DR, is equivalent to finding the Schur expansion
of Ve, but there is not even a conjecture in this direction. The monomial expansion of
Ve, is given by the Shuffle Theorem [2].
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The Delta Conjecture is a conjectural extension of the Shuffle Theorem due to Haglund,
Remmel, and Wilson [6]. It depends on two positive integers k < n and reads

A, en = Rise, r(x;q,t) = Val, x(x; 4, t). (1.5)

e-1 1

Here A, | is a certain symmetric function operator and Rise and Val are formal power
series defined using the combinatorics of lattice paths; see [6] for details. When k = n,
the Delta Conjecture reduces to the Shuffle Theorem.

The Delta Conjecture is open as of this writing, but combining the work of [5, 7, 11,
14] it is known at g = 0. More precisely, we have

A, . en |i—o= Rise, x(x;9,0) = Rise, x(x;0,9) = Val, x(x;4,0) = Val, x(x;0,9).  (1.6)

€x—1

In this paper we define a doubly graded S,-module V, ; for any positive integers
k < n and conjecture that grFrob(V, s;q,t) = A,  en (see Conjecture 1). That is, we
conjecture that V,,; is a module for the Delta Conjecture. We prove this conjecture at
t = 0. In order to describe V,, ;, we introduce new combinatorial objects called superspace
Vandermondes.

Superspace of rank n is the unital associative Q-algebra (), generated by 2n symbols
X1,...,%Xn,01,...,0, subject to the relations

x,-xj = x]-xi xif)j = iji 910] = —9]'61'

forall1 <i,j < n.t Setting the 0-variables to zero recovers the classical polynomial
ring Q[xy,...,x,]. By considering x-degree and 60-degree separately, (), is a doubly
graded algebra. The ring (), carries a diagonal action of S, given by w.x; := x,(;) and
w.0; =0y forwe Spand1 <i <n.

Defintion 1. Let k < n be positive integers. The superspace Vandermonde 6, x is the follow-
ing element of )y,
Ok i= sn.(acll‘*lx’z‘*1 e xﬁ:}cﬂxﬁjﬂ coexb 1x00102--6,_4). (1.7)

Here g, := Y e, sign(w) - w € QIS,] is the antisymmetrizing element in the symmetric group
algebra.

For example, when n = 3 and k = 2 we have

53/2 = 83.(X1X291) = x1x207 — x1x00> — x1x3601 + x1x303 + Xpx367 — x2x305.

IThe ‘super’ in superspace comes from supersymmetry in physics: the x-variables index bosons and
the 6-variables index fermions. Extending coefficients to the reals, ), is the ring of polynomial-valued
differential forms on Euclidean n-space — this is why we write ().
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The superpolynomial J,, x is always a nonzero element of (),, thanks to the f-variables.
When k = n, the superspace Vandermonde &, ; reduces to the classical Vandermonde
determinant e,.(x} *xj 2. xl x0).

The 6, x are seeds we use to grow modules. By starting with é,  and closing under
various differential operators and linearity we will construct:

e A singly graded subspace V,,x of (), which satisfies grfFrob(V, x;q) = A, en |t=0
(see Section 2).

e A doubly graded extension V,, ; of V, ; with grFrob(V, ;;q,t) conjecturally given
by A, e, (see Section 2).

€k—1

e A doubly graded S;,-stable quotient W, ; of (), which extends V, ; and exhibits a
number of symmetries including a superspace variant of Poincaré Duality (see Sec-
tion 4). W, , extends the cohomology of the space of spanning line configurations
studied by Pawlowski and Rhoades [10].

This paper is not the first to propose connections between the Delta Conjecture and
superspace. The Fields Institute Combinatorics Group in general, and Mike Zabrocki
in particular, conjectured [15] that representation-theoretic models for the Delta Conjec-
ture can be obtained by looking at coinvariant-type quotients defined using superspace
), and an extension (), [y1, . .., Yx] of superspace involving n new commuting variables
Yi,...,Yn. We discuss the connection between our work and their conjectures in Sec-
tion 3. In a nutshell, we are able to prove that our proposed Delta model V,, ; is valid at
t = 0, but the corresponding case of their conjecture remains open.

2 The S,-modules V,,y and V, ; and the Delta Conjecture

For 1 <i < n, the partial derivative operator d/0x; acts naturally on the polynomial ring
Q[x1, ..., xu]. Superspace admits the tensor product decomposition

Oy, :Q[xl,...,xn]®/\{91,...,9n} (2.1)

where A{6y,...,0,} is the exterior algebra on the generators 6y,...,0,. The operator
d/0x; therefore acts on (), by acting on the first tensor factor.

Our first new S,-module is defined as follows. Starting with the superspace Vander-
monde &, x, we close under the operators d/9xy,...,0d/9dx, and linearity.

Defintion 2. Let k < n be positive integers. The vector space V,, i is the smallest Q-linear
subspace of (), which

e contains the superspace Vandermonde 6, i, and
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o is closed under the n partial derivatives d/0x1,...,0/0xy.

The subspace V,  C (), is closed under the action of S;. Furthermore, V, ; a doubly
graded subspace of (),,. If we ignore the 0-grading (which is constant of degree n — k)
and focus on the x-grading, we see that V,  is a singly-graded S,-module.

To describe the Schur expansion of grFrob(V, k;q), we need some notation. Let T
be a standard Young tableau with n boxes. A number 1 < i < n —1 is a descent of T
if i appears in a row above i + 1. The descent number des(T) is the number of descents
and the major index maj(T) is the sum of the descents in T. We write shape(T) F n
for the partition of n obtained by erasing the numbers in T. We also use the standard
g-numbers, g-factorials, and g-binomials:

- b [l = =] (1] Y] =

g i= 14 g4+ [a)ty = [laln — 1o - - - [1], H,' T @2
Theorem 1. Let k < n be positive integers. The graded Frobenius image of V), i is given by
either of the expressions

maj ") —(n—k)-des des(T
ngrOb(Vn,k; q) = Z q j(T)+(",")—(n—k)-des(T) |: ) _( k)} Sshape(T) (2.3)
TeSYT(n) q

= A,,_en li=0 (2.4)
where the sum is over all standard Young tableaux T with n boxes.

Equation (1.6) allows us to replace the A, ey |i=o in Theorem 1 with any of the
symmetric functions Rise,, x(x; ¢, 0), Rise, x(x; 0, 9), Val, x(x; ,0), or Val,, x(x;0,¢). Thanks
to Theorem 1, it is easy to describe the ungraded S,-isomorphism type of V, .

Corollary 1. Let k < n be positive integers and consider the permutation action of S, on the
family OP,,x of k-block ordered set partitions (B, By, ..., By) of {1,2,...,n}. As ungraded
S,,-modules we have

Vi = Q[OP, 4] @ sign (2.5)

where sign is the 1-dimensional sign representation of Sy.

The (signless) Stirling number of the second kind Stir(n, k) counts (unordered) k-block
set partitions of {1,2,...,n}. Corollary 1 implies dim V,,; = k! - Stir(n, k). The graded
dimension of V,  is given by a suitable g-analog of this formula.

Recall that the Hilbert series of a graded vector space V = @, V; is the formal power
series Hilb(V;q) := Y504’ - dim V;. The g-Stirling number Stiry(n, k) is defined by the
recursion

Stir,(n, k) = Stirg(n — 1,k — 1) + [k]4 - Stiry(n — 1,k) (2.6)

together with the initial conditions Stir,(0,0) = 1 and Stir,(0,k) = 0 for any k > 0.
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Corollary 2. The Hilbert series of V,, is Hilb(V,, x;q) = [k]!4 - Stiry(n, k).

In order to describe our proposed model for the Delta Conjecture, we need more
variables. Let yy,...,y, be n new commuting variables and consider the extension
Oulyi, ..., yn] of superspace defined formally by the tensor product

Qulyr, - yn] = Qlx1, ..., x| @Qy1, -, Yn] @ A{b1,...,0}. (2.7)

This is a triply graded S,-module with action w.x; := Xy, W-Yi = Yy (i), W-0;i 1= Oy(py.-
This ring admits an action of partial derivatives d/dx; and d/dy; in both the x-variables
and y-variables.

Defintion 3. For k < n, let V,, ; be the smallest Q-linear subspace of Q[y1, ..., Yn| which
e contains the superspace Vandermonde 5, i (in the x-variables and 0-variables alone),
e is closed under the polarization operator Y, ys(9/9xs)/ for each j > 1, and
e is closed under the 2n partial derivatives d/0x1,...,0/0x,,0/9yy,...,0/0yy,.

The S,-module V,, i is concentrated in 0-degree n — k. By considering x-degree and
y-degree, the space V,,  attains the structure of a doubly graded S,,-module.

Conjecture 1. Let k < n be positive integers. The doubly graded Frobenius image of V,,  is
given by
grFrob(V,, ;q,t) = A, e (2.8)

eg—1 M-

Conjecture 1 is true at t = 0 by Theorem 1. Conjecture 1 is true when k = n by
the work of Haiman [8]. Conjecture 1 has been checked on computer for n < 4 (and at
n = 5 on the level of bigraded Hilbert series). Since every increase n — n + 1 adds two
new commuting variables and one new anticommuting variable, studying Conjecture 1
involves considerable computational challenges as n grows.

3 The Fields and Zabrocki Conjectures

In this section we describe alternative conjectural representation-theoretic models for
the Delta Conjecture arising from quotients of (), and O,[y1,...,ys|. Recall that the
symmetric group S, acts diagonally on superspace (),. Solomon proved [12] that the
ring (Qn)sﬂ C Q) of Sy-invariants is a free Q[xy, .. ., xn]S” -module on the generating set
{dej, ---dej, : 1 <1 <--- <ir <n} whered: =} ,0; (d/0x;) is the total derivative
operator.

Let <(Qn)i”> C )y, be the two-sided ideal of (), generated by S,-invariants with van-
ishing constant term. By considering x-degree and #-degree, the quotient 0,/ ((Q,)3")
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is a doubly graded S,-module. We view this quotient as a ‘superspace coinvariant ring’.
The following conjecture about its doubly graded Frobenius image was made by the
Combinatorics Group at the Fields Institute.

Fields Conjecture. (see [15]) Let n be a positive integer. The doubly graded Frobenius image of
O/ (Q)3) is given by

n

grFrob(Q/(Qn)Y);q,2) = Y 2" 5 Al e |1—o, (3.1)
k=1

where q tracks x-degree and z tracks 6-degree.

If the Fields Conjecture is true, the bigraded Hilbert series of ),/ ((Qn)i”> would be
given by

Hilb(Q / (O Zz” k. [kt - Stirg(n, k) (3.2)

where g tracks x-degree and z tracks G-degree. The Fields Combinatorics Group proved
(personal communication) the inequality

n
Hilb(Q/ (Qn));q,2) > Y 2" 7% [K]l, - Stirg (1, k) (3.3)
k=1
where f(g,z) > g(g,z) means that the difference f(g,z) — g(g,z) is a polynomial in g, z
with nonnegative coefficients.
Recall that the alternating subspace of an S,-module V is given by

{veV :wv=sign(w) vforallw € S,}.

Let A, be the alternating subspace of O,/ ((Q,)5"). The alternant space A, is a doubly
graded vector space. The Fields Conjecture would imply that

Hilb(Ay; q,z) Zz” kg {Z:,ﬂ . (3.4)
q

Equation (3.4) has been verified by Swanson and Wallach [13], giving further evidence
for the Fields Conjecture.

If the Fields Conjecture is true, we would have an isomorphism of ungraded S;-
modules Q,/ <(Qn)i”> = @1 (Q[OP, k] ®sign). At present, it is unknown whether
either of these S;,-modules injects into the other.

The symmetric functions appearing in the Fields Conjecture and Theorem 1 are
closely related. We propose the following ‘bridge conjecture” whose truth would yield
the Fields Conjecture. Let ¢ be the composite linear map

P Va1 @@ Vi = Q= O/ (Q)7) (3.5)
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obtained by including the direct sum V1 @ - - - @ V}, , into superspace and then project-
ing onto the superspace coinvariant ring.

Conjecture 2. The linear map ¢ is bijective.

Mike Zabrocki studied the triply diagonal action of S, on the ring Q,[y1, ..., yn] and
the associated space Oy [y1, .. .,yn]i" of Sy-invariants with vanishing constant term. He
checked the following conjecture by computer for n < 6.

Zabrocki Conjecture. ([15]) Let n be a positive integer. We have

n

grFrob(Qulya, - -, yu) / (Y1, -, vl 4,8, 2) Z -k A, e (3.6)

where q tracks x-degree, t tracks y-degree, and z tracks 0-degree.

The Zabrocki Conjecture is related to Conjecture 1 in the same way as the Fields
Conjecture is related to Theorem 1. Since Theorem 1 is proven whereas the Fields Con-
jecture remains open, superspace Vandermondes might prove an easier road to Delta
Conjecture modules than quotient rings.

4 The ring W, and Super Poincaré Duality

So far we have built S;,-modules V, , and V,, ; by starting with the superspace Van-
dermonde ¢, ; and closing under partial derivatives in the commuting variables x;, y;
(and potentially polarization operators). The modules V, ; and V,, ; have the defect of
not being closed under multiplication and not admitting a natural ring structure. In
this section we build a new bigraded S,-module W, ; from 4, x. The module W, \ is
naturally a bigraded quotient of (),. The module W, ; turns out to extend both V,
and the cohomology ring H* (X, ; Q) of a variety X,  of line configurations studied by
Pawlowski and Rhoades. In order to define W,, ;, we need operators d/90; on (), which
differentiate with respect to anticommuting variables.

For1 < i < n,letd/df; : O, — Q, be the Q[xy,...,x,]-module endomorphism
characterized by

“19. ...0. ...0. ifi —i
3/39i:9;‘1---9jr»—>{(()_1)5 0j,--- 0,0, li]s?é—l | (4.1)
ifitj,..
s—1

where 1 < ji,...,j, < n are distinct indices and =~ means omission. The sign (—1) is

necessary to ensure that d/96; is well-defined.

Defintion 4. For positive integers k < n, let W, ;. be the smallest linear subspace of (), which
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e contains the superspace Vandermonde 5, k., and
o is closed under the 2n operators d/0x1,...,0/0x,,0/061,...,0/06,,.

The vector space W, is a bigraded S,,-module. We use an action of superspace on
itself to show that W,  is naturally a bigraded quotient of (),.
The operators d/90; and d/0dx; on (), satisfy the relations

(9/96;)(3/6;) = —(3/36;)(3/26;)

for all 1 <i,j < n. These are the defining relations of (), so for any superpolynomial
f = f(x1,...,%n,01,...,0,) we have an unambiguous operator df on (), obtained by
replacing each x; in f with d/dx; and each 0; in f by 0/00;. This gives rise to an action
® : Oy x Qy = Oy of superspace on itself by the rule

fog=09f(g). (4.2)

Proposition 1. Let ann(d, ) := {f € Q : f ® . = 0} be the annihilator in ), of the
superspace Vandermonde 6, . Then ann(9,, ) is a two-sided ideal in Q) which is S,-stable and
bigraded. The canonical composition

Wn’k % Qn — Qn /al’ll’l(énlk) (4.3)
is an isomorphism of bigraded S,-modules.

Thanks to Proposition 1, there is a natural multiplication operation on W, j, so that
the anticommuting differentiation operators d/0d6; give rise to a ring structure which V,, ;
and V,, ; lack.

What do the bigraded S,-modules W, look like? We display grFrob(Wy,;q,z) in
matrix format, with rows labeling 6-degree and columns labeling x-degree.

S4 S4 + 531 S4 + 531 + 522 $31
grFrob(Wap;q,z) = | s31 2s31 +522+ 5211 S31 + S22 + 25211 S211 (4.4)
$211 S22 + S211 + S1111 $211 + S1111 $1111

The matrices grFrob(W, x;q,z) enjoy the following properties. Let U, = S(=11) be the
(n — 1)-dimensional reflection representation of S,.

Theorem 2. There hold the following facts about the bigraded S,-module W, .
1. (Special k) We have W, ,, = R;, (coinvariant ring) and W,, 1 = AU, (exterior algebra).

2. (Bottom x-degree) The x-degree O piece of W, . is isomorphic to @}Zé‘ NU,.
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3. (Top x-degree) The top x-degree of W,  is (’2‘) + (n —k) - (k —1); this piece of W, . is
isomorphic to @?;Ok NU, ® sign.

4. (Top 0-degree) The top (= n — k) 0-degree piece of W,, . is isomorphic to V,, .

5. (Bottom 6-degree) Let I, C Qlxy,...,x,] be L := (x’l‘,...,xﬁ,en,en,l,...,en,kH)

and let
Rn,k = Q[xl, ey xn] /In,k- (45)

The 0-degree O piece of W,  is isomorphic to R, k.

The quotient rings R,, x displayed in Item 5 of Theorem 2 were introduced by Haglund,
Rhoades, and Shimozono [7]. They proved that

grFrob(R, x;q) = (revg o w)A,,  en |i=o, (4.6)

where w is the symmetric function involution which trades s) and s,/ and rev, reverses
the coefficient sequences of polynomials in 4. The ring R, was the first model for a
coinvariant ring attached to the Delta Conjecture.

The rings R, have a geometric interpretation. A line in the k-dimensional complex
vector space Ck is a 1-dimensional linear subspace. Pawlowski and Rhoades defined [10]
the variety X, ; of spanning configurations of 7 lines in C*:

Xpp:=1{(1,...,0,) : t; CCFalineand ¢; + - - - + £, = CF}. (4.7)

The space X, x and its cohomology ring H*(X,, s; Q) admit S,-actions by line permu-
tation. Pawlowski and Rhoades presented [10] the cohomology H* (X, x; Q) as

H.(Xn,k;Q) = Q[xl,. . .,xn]/In,k = Rn,k- (48)

We may therefore interpret the 6-degree 0 piece of W, ; as the cohomology of X, .

The ‘twist’ (rev, o w) involved in Equation (4.6) can be visualized in the matrix repre-
senting grFrob(Wy »;¢,z) in (4.4). Namely, the top row can be obtained from the bottom
row by reversal together with applying the operator w. The reader may notice that the
middle row of grFrob(Wy,;q,z) is invariant under reversal followed by w. This obser-
vation generalizes as follows.

Theorem 3. The matrix representing grFrob(W,, y;q,z) is invariant under 180° rotation fol-
lowed by the application of w to each entry.

Recall that a sequence of numbers (ag, a1, ...,a4) is palindromic if a; = ayz_; for all i
and unimodal if a9 < a7 < --- < a, > a,4q > --- > ay for some r. A famous example
of a polynomial in Q[g] with a palindromic and unimodal coefficient sequence is the
g-factorial [n]l; = (1+g)(1+q+4*)---(1+g+---+4¢"1). While these facts about
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[n]!, follow from showing that if f(g) and g(q) have palindromic unimodal coefficient
sequences, so does f(q) - g(q), there is a deeper derivation coming from geometry.

A finite-dimensional graded Q-algebra A = @?:0 A; is a Poincaré Duality Algebra if
Ays = Q is 1-dimensional and if for all 0 < i < dthe map A; ® Ay_; -+ Ay = Qisa
perfect pairing. This forces dim A; = dim A;_;.

Let F/, be the variety of complete flags in C". Borel proved [1] that the cohomology
of F{, has presentation H*(F{,;Q) = R, given by the coinvariant ring. Since F/, is a
compact complex manifold, the ring H*(F¢,;Q) is a Poincaré Duality Algebra and the
palindromicity of its Hilbert polynomial [n]!; follows.

The complex variety X, ; is smooth, but usually not compact. Indeed, the cohomol-
ogy ring H*(X,x;Q) = R, does not usually have a palindromic Hilbert series, e.g.
Hilb(R32;9) = 1+ 3q + 2¢%. However, the extension W, 2 R, exhibits a superspace
version of Poincaré Duality.

Let A = EB?:O @]e.zo Aj; be a finite-dimensional bigraded Q-algebra. We say that A is
a Super Poincaré Duality Algebra if Ay, = Qand A;; ® Ay, j — Aqg, is a perfect pairing
forall0 <i<dand0<j<e.

Theorem 4. The bigraded algebra W, i is a Super Poincaré Duality Algebra.

Does Theorem 4 have geometric meaning? Is there a ‘superspace version” of coho-
mology which yields W, when applied to X, ?

The unimodality of [n]!; also has geometric meaning. A Poincaré Duality Algebra
A= @?:0 A; satisfies the Hard Lefschetz Property if there exists an element ¢ € A; (called

a Lefschetz element) such that for any i < d/2 the map A; ﬂ Ay_; of multiplication
by (972 is bijective.

Since F/, is a compact complex manifold and H*(F/,; Q) = Ry, the ring R, satisfies
the Hard Lefschetz Property. Maneo, Numata, and Wachi proved [9] that a linear form
¢ = c1x1 + - -+ cnxy is a Lefschetz element if and only if ¢y, ..., ¢, € Q are distinct.

As a closing example, we display the bigraded Hilbert series Hilb(W45,;4,2) as a
matrix where rows index 0-degree and columns index x-degree.

1 4 6 3
Hilb(Wy0;9,2) = [3 11 11 3 (4.9)
36 4 1

Either Theorem 3 or Theorem 4 imply that the matrix Hilb(W,, 4; g, z) is always invariant
under 180° rotation.

Conjecture 3. Each row and column in the matrix representing Hilb(W,, x; g, z) is unimodal.

Conjecture 3 would be best proven by showing that W, ; satisfies an as-yet-undefined
‘Super Hard Lefschetz Property’.
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