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ABSTRACT

Despite —or maybe because of— their astonishing capacity to fit data, neural net-
works are believed to have difficulties extrapolating beyond training data distribu-
tion. This work shows that, for extrapolations based on finite transformation groups,
a model’s inability to extrapolate is unrelated to its capacity. Rather, the shortcom-
ing is inherited from a learning hypothesis: Examples not explicitly observed with
infinitely many training examples have underspecified outcomes in the learner’s
model. In order to endow neural networks with the ability to extrapolate over group
transformations, we introduce a learning framework counterfactually-guided by the
learning hypothesis that any group invariance to (known) transformation groups
is mandatory even without evidence, unless the learner deems it inconsistent with
the training data. Unlike existing invariance-driven methods for (counterfactual)
extrapolations, this framework allows extrapolations from a single environment.
Finally, we introduce sequence and image extrapolation tasks that validate our
framework and showcase the shortcomings of traditional approaches.

1 INTRODUCTION

Neural networks are widely praised for their ability to interpolate the training data. However, in some
applications, they have also been shown to be unable to learn patterns that can provably extrapolate
out-of-distribution (beyond the training data distribution) (Arjovsky et al.||2019} |D’ Amour et al.|
2020; |de Haan et al.l|2019; Geirhos et al.}|2020} McCoy et al.||2019}|Scholkopf}|2019).

Recent counterfactual-based learning frameworks for extrapolation tasks —such as ICM and IRM (Ar+
jovsky et al.||2019|Besserve et al.,|2018||Johansson et al.|[2016}|Louizos et al.||2017}/Peters et al.,
2017} Scholkopf} 2019} |Krueger et al.}|2020) detailed in Section assume the learner is given
data from multiple environmental conditions (say environments E1 and E2) and is expected to learn
patterns that work well over an unseen environment E3. In particular, the key idea behind IRM is
to force the neural network to learn an internal representation of the input data that is invariant to
environmental changes between E1 and E2, and, hence, hopefully also invariant to E3, which may not
be true for nonlinear classifiers (Rosenfeld et al.;[2020). While successful for a class of extrapolation
tasks, these frameworks require multiple environments in the training data. But, are we asking the
impossible? Can humans even perform single-environment extrapolation?

Young children, unlike monkeys and baboons, assume that a conditional stimulus F given another
stimulus D extrapolates to a symmetric relation D given F without ever seeing any such examples (Sid-
man et al.||1982)). E.g., if given D, action F produces a treat, the child assumes that given F, action
D also produces a treat. Young children differ from primates in their ability to use symmetries to
build conceptual relations beyond visual patterns (Sidman and Tailby| 1982} Westphal-Fitch et al.,
2012), allowing extrapolations from intelligent reasoning. However, forcing symmetries against data
evidence is undesirable, since symmetries can provide valuable evidence when they are broken.

Unfortunately, single-environment extrapolations have not been addressed in the literature. The
challenge comes from a learning framework where examples not explicitly observed with infinitely
many independent training examples are underspecified in the learner’s statistical model, which is
shared by both objective (frequentist) and subjective (Bayesian) learner’s frameworks. For instance,
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consider a supervised learning task where the training data contains infinitely many sequences
2™ =(A,B) associated with label ™ = C, but no examples of a sequence =™ =(B,A). If given a
test example 2® =(B,A), the hypothesis considers it to be out of distribution and the prediction
P(Y® =C|X® = (B,A)) is undefined, since P(X™ = (B,A)) = 0. This happens regardless of
a prior over P(X ™). This unseen-is-underspecified learning hypothesis is not guaranteed to push
neural networks to assume symmetric extrapolations without evidence.

Contributions. Since symmetries are intrinsically tied to human single-environment extrapolation
capabilities, this work explores a learning framework that modifies the learner’s hypothesis space
to allow symmetric extrapolation (over known groups) without evidence, while not losing valuable
antisymmetric information if observed to predict the target variable in the training data. Formally, a
symmetry is an invariance to transformations of a group, known as a G-invariance. In Theoremwe
show that the counterfactual invariances needed for symmetry extrapolation —denoted Counterfactual
G-invariances (CG-invariances)— are stronger than traditional G-invariances. Theorem then, intro-
duces a condition in the structural causal model where G-invariances of linear automorphism groups
are safe to use as CG-invariances. With that, Theorem defines a partial order over the appropriate
invariant subspaces that we use to learn the correct G-invariances from a single environment without
evidence, while retaining the ability to be sensitive to antisymmetries shown to be relevant in the
training data. Finally, we introduce sequence and image counterfactual extrapolation tasks with
experiments that validate the theoretical results and showcase the advantages of our approach.

2 RELATED WORK

Counterfactual inference and invariances. Recent efforts have brought counterfactual inference to
machine learning models. Independent causal mechanism (ICM) and Invariant Risk Minimization
(IRM) methods (Arjovsky et al.;|2019||Besserve et al.}| 2018} |Johansson et al.|[2016}|Parascandolo
et al.| [2018;|Scholkopt]|2019), Causal Discovery from Change (CDC) methods (Tian and Pearl}
2001), and representation disentanglement methods (Bengio et al.|| 2020}/ Goudet et al.}|2017) broadly
look for representations, classifiers, or mechanism descriptions, that are invariant across multiple
environments observed in the training data or inferred from the training data (Creager et al.}|2020).
They rely on multiple environment samples in order to reason over new environments. To the
best of our knowledge there is no clear effort for extrapolations from a single environment. The
key similarity between the ICM framework and our framework is the assumption of independently
sampled mechanisms (the transformations) and causes.

Domain adaptation and domain generalization. Domain adaptation and domain generalization
(e.g. (Long et al.|[2017| Muandet et al.,|2013; |Quionero-Candela et al.,|2009{|Rojas-Carulla et al.},
2018; \Shimodaira/[2000; | Zhang et al.}|2015) and others) ask questions about specific —observed or
known— changes in the data distribution rather than counterfactual questions. A key difference is
that counterfactual inference accounts for hypothetical interventions, not known ones.

Forced G-invariances. Forcing a G-invariance may contradict the training data, where the target
variable is actually influenced by the transformation of the input. For instance, handwritten digits are
not invariant to 180 rotations, since digits 6 and 9 would get confused. Data augmentation is a type
of forced G-invariance (Chen et al.||2020; |Lyle et al.|[2020) and hence, will fail to extrapolate. Other
works forcing G-invariances that will also fail include (not an extensive list): [Zaheer et al.|(2017) and
Murphy et al.|(2019afb) for permutation groups over set and graph inputs;|Cohen and Welling|(2016),
Cohen et al.|(2019) for dihedral and spherical transformation groups over images.

Learning invariances from training data. The parallel work of|Benton et al.| (2020) considers
learning image invariances from the training data, however does not consider extrapolation tasks.
Moreover, it does not provide a concrete theoretical proof of invariance, relying on experimental
results over interpolation tasks for validation. Another parallel work (Zhou et al.}2021) uses meta-
learning to learn symmetries that are shared across several tasks (or environments). The works of
van der Wilk et al.|(2018) and|Anselmi et al.|(2019) focus on learning invariances from training data
for better generalization error of the training distribution. However, none of these works consider the
extrapolation task. In contrast, our framework formally considers counterfactual extrapolation, for
which we provide both theoretical and experimental results.
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3 EXTRAPOLATIONS FROM A SINGLE ENVIRONMENT

Geometrically, extrapolation can be thought as rea-
soning beyond a convex hull of a set of training points
(Haftner},|2002; [Hastie et al.|[2012}|Xu et al.||2021).
However, for neural networks —with their arbitrary
representation mappings— this geometric interpre-
tation can be insufficient. Rather, we believe extrap-
olations are better described through counterfactual
reasoning (Neyman/|1923; Rubin||1974; |Pearl||2009}
Scholkopf} 2019). Specifically in our task, we ask:
After seeing training data from environment A, the

learner wants to extrapolate and predict what would Figure 1: Illustration of our structural causal

have been the output if the training environment were  model (SCM), where gray nodes indicate
B. Extrapolations differ from traditional domain observed variables (in training). X and

adaptation due to its counterfactual nature —a what-if X, . are obtained from XM and are
question of an intervention that can only be imagined R
if given offline data (Bareinboim et al., 2020} Pearl . .
: 7 Uz can have different support, resulting in
and Mackenzie,|2018), rather than a known distribu- . s
- different distributions over X and X =
tional change. UzUz

coupled by sharing Up. However, Uz and

Specifically, our framework follows the independent causal mechanism principle (Scholkopf||2019]
Peters et al.||2017): A mechanism describing a variable given its causes is independent of all other
mechanisms describing other variables. For instance, in the causal model Ux — X — Y < Uy,
this implies that the conditional distribution P(Y|X) is not influenced by any change in P(X).

3.1 TRANSFORMATION GROUPS

We focus on extrapolations tied to finite linear automorphism groups acting on the input data. We
start with an example. Consider an input x € X = R3"* representing a vectorized n x n RGB image.
We can define at least three linear automorphism groups: (1) Gyo = {T(k)}ke{OO,QOOJSOO,2700}’
which rotates the image by k degrees, (2) Geolor = {T(® }acs,» Which permutes the RGB channels
of the image, and (3) Gypip = {T(”), T(O)}, which flips the image vertically. More generally, a
linear automorphism group G satisfies six properties: (automorphism) VI' € G, T : X — X;
(identity) I(z) = z, I € G; (is closed under composition) VI, 7' € G, T o T' € G, where
T oT'(z) = T(T'(x)); (associative) VT, T', Tt € G, T o (T" o T') = (T o T") o T; (has inverses)
VI €G,3IT ' € Gst. T 1 oT =1I;and (is linear) T € G is a linear function.

Besides images, sequences & = (1, 2, . . .) are another input of interest, where « € X for some
appropriately defined set X'. Here, the symmetric group (permutation group) S,,, is the set of all
permutations S,, = {mw | 7 : {1,...,n} = {1,...,n} is a bijection} equipped with the composition
operator. Attributed graphs (A, X) € X, where A is tensor of edge properties and X is a matrix of
node attributes, are also of interest for the permutation group S,, .

Subgroups and overgroups. Just as we can compose image transformations to make new image
transformations, we can also compose automorphism groups into larger automorphism groups
(overgroups). For instance, we can compose rotations and image flips to form a linear automorphism
group Girotvitip) = (Grot U Guaip) containing all such compositions, where (-) is the group join operator.
Following standard notation, we say Groc < Grorvfiip) to indicate that G is a subgroup of Girovip}»
or, equivalently, Gyorvaiip) i an overgroup of Go. Henceforth, we use Gy .y = (U™, G;) to
denote the group generated by the groups G1, ..., Gp,.

3.2 THE CAUSAL MECHANISM AND AN ECONOMICAL DATA GENERATION PROCESS

We assume that a fundamentally economical process created the training data, where the focus was
on sampling diverse environments in a way that mattered to the task. For instance, image datasets
will contain mostly upright pictures, rather than images over all possible orientations, but we will
assume the dataset curators strive for a somewhat diverse set of subjects for each label (e.g., a good
representation of different types of subjects and environmental conditions). Hence, the absence of
variation over image orientations in the dataset can be counted as evidence against its effect on the
image labels.
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We describe the data generation with the help of a structural causal model (SCM) (Pearl}|2009| Defi-
nition 7.1.1) illustrated in Figure Consider a supervised task over inputs X and their corresponding
outputs Y, which are random variables defined over a suitable space. The hidden random variable

X0 .= g(U,), (1

where g : U — X is a measurable map (deterministic function) that describes the input X in some
unknown canonical form, where U, is a random variable (e.g., U, ~ Uniform(0, 1)). Next, we
define how X M9 is modified by transformations into the observed input X.

Transformation of X®9 into X. Consider a collection of finite linear automorphism groups
Giy.o s Gm. LetZ C{1,...,m} beasubsetand D C {1,...,m}\Z be a subset of its complement.
We will later define the target variable to be dependent only on the groups indexed by D. Consider
independent and identically distributed random variables Up and Uz that select transformations in
the respective overgroups Gp = (U;epG;) and Gz = (U;czG;). We note in passing that we allow
Gp NGz # {Tidentiry } even though Gp N Gz = {Tigeniity } Makes the counterfactual task easier. The
observed input is defined as

X = Typ y, o X9, )

where Ty, v, is a transformation in Gpuz indexed by two independent hidden environment back-
ground random variables Up, Uz. The reader can roughly interpret Up and Uz as the random seeds
of a random number generator that gives ordered sequences of transformations from Gp and G re-
spectively. If these ordered sequences are, say, Tg), c Tl(ja) and TI(I), e TI(b), then Ty, v, is the
transformation obtained after interleaving the two sequences of transformations and composing them
in order: Ty, v, = Tl(l) o Tg) o TI(Q) o.... Note that TI(Z) or Tg ) could be identity transformations.
Appendix shows that this indexing is surjective, i.e., it can index every transformation in Gpz.

Target variable. The output Y associated with X is given by
Y = h(X™ Up, Uy), 3)
where h is a deterministic function and Uy is an independent random variable.

A distribution over the set of background random variables U,; = {U,, Uy, Up, Uz} along with
Equations and induces a joint distribution P(Y, X). If the support of Uz is a singleton set
{c} for some constant ¢, then (Y, X) are said to be sampled using an economical data generation
process. In other words, the training data can contain just one value for the variable Uz since the
outputs Y do not depend on Uz. For instance, if Gz is the rotation group, and the image label Y’
does not depend on image rotation, then the observed images can be all upright since the sampling is
economical. This is not a required condition for our method to work, however.

Extrapolation as counterfactual reasoning. We can now ask “what would have happened to Y if
we had given specific values of Uz to the data generation process in Equations (2) and (3) rather than
sampling from P(Uz)”. For instance, would the class of an image change if we had flipped the image
along the vertical axis? Would we re-classify outlier events if we changed the order of events in a
stationary time series? These are counterfactual queries over environment background variables Uz.

We now describe the counterfactual variable in our task via variable coupling (Pitman}| 1976; Propp
and Wilson}|1996)), which we believe gives a standard-statistics-friendly description of counterfactual
SCMs (Shpitser and Pearl}|2007). The coupling of two independent variables D; and Dy is a proof
technique that creates a random vector (DI, D;), such that D; and D;r have the same marginal distri-
butions, ¢ = 1, 2, but makes DJ{ and D; structurally dependent. For instance, consider independent
6-sided and 12-sided dice, denoted D¢ and D- respectively. Let DI = (U + €;) mod 6 + 1 and
D} = (U + €;) mod 12 + 1, where U is a 12-sided die roll and €;, €5 € {0, 1} are two independent
coin flips. Then, the tuple (DI, D;) has coupled the variables D and D5 via the common random
variable U.

Definition 1 (Counterfactual coupling (CFC)). The counterfactual coupling of the observed data
(Y, X) is a vector (Y, X, X, g ), where Y = W(X" Up,Uy), X = Ty, v, o X", and

Xy, o, =Tu, 0, o X i) for appropriately defined Uy, Up, Uy, Uz, Uz. The subscript Uz + Uz

denotes the counterfactual variable to X when (71 replaces Uz in the data generation process. For a
constant u, Xy, ., gives the same definition as the twin network method of|Balke and Pearl|(1994).
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The support of Uz in Deﬁnition can be very different from that of Uz, potentially inducing a

different distribution over X, .~ than X even if the variables X, ~ and X are structurally
7+Uz Uz<+Uz

dependent via Up. Armed with Deﬁnition we are now ready to describe our task.

3.3 EXTRAPOLATION MODEL

We start by defining counterfactual G-invariant (CG-invariant) representations.
Definition 2 (CG-invariant representations). Let the vector (X, X Use Uy ) denote the counterfactual

coupling of the random variable X given in Definition 0r any Uz. A representation function
T: X > RY d>1, is deemed CG-invariant if

X)) =T(Xy, g,) )

where the equality implies that T(Xy, ) = T'(Xv, ), Yu € supp(Uz),Yu' € supp(Uz) and
supp(A) is the support of random variable A.

Extrapolated model from training to test data. Let (Y, X®™) ~ P(Y, X) and (Y, X®) ~
P(Y, X Us <_(71), for some appropriately defined Uz ~ P(Uz), be the random variables describing
the training and test data, respectively. We do not have access to test data at training time. Let
Thwe : X =2 RE d > 1,bea representation of the input data. Consider a function gy : RY —
ImP(Y = y|X™) —where Im P(-) is the image of P(-)— (e.g., e could be a feedforward
network with softmax output) and

VXD 2LV IX® with VX ~ guue(Tiue (X)), (5)

where £ means the random variables have the same distribution. Then, if Tyye (X) = Tiue (X Uy e51),

then we have that, by our definition of X @ and X, guue © Cirue extrapolates:

VIX© LY X© with VX ~ gie(Tiue (X)), (6)
Alas, learning 'y is the real challenge: (i) We do not know Z (and, hence, we do not k~now the group
Gz which is related to the CG-invariance); (ii) this would also require knowing P(Uz), which we
don’t. Without an observed X Upe Uy the statistical assumption that examples not explicitly observed

with infinitely large training data have underspecified outcomes in the learner’s statistical model
does not push the model towards learning I';,.. We must change this assumption.

4 CG-INVARIANCES FOR EXTRAPOLATION

In this section we introduce our learning framework, which seeks to use the training data to approx-
imate I'yye and gyye of Equation @ Our framework regularizes neural network weights towards
representations that are invariant to groups that negligibly impact training data accuracy. We over-
come some key challenges: (a) Theorem below shows that CG-invariances (Deﬁnition are
stronger than G-invariances. After that, Theoremdeﬁnes conditions under which G-invariances
suffice as CG-invariances, and (b) We derive an optimization objective where all G-invariances are
mandatory, except the ones deemed inconsistent with the training data, replacing the traditional
unseen-is-underspecified learning hypothesis.

Our first question is whether CG-invariances are just G-invariances. Theorem shows they are not.
Theorem 1 (CG-invariance is stronger than G-invariance). Let the vector (X, X Uy Uy ) denote
the counterfactual coupling of the observed variable X given in Deﬁnition For a representation
T: X >R% d>1, let
G-inv: VI7 € Gz, I'(X) =T(Tr 0 X),
CG-inv: T'(X) =T(X,__5.),

denote the conditions on U for Gz-invariance and CG-invariance respectively. Then, CG-inv —> G-
inv, but G-inv == CG-inv.

The proof in Appendixconstructs a task over images and a representation I that is Gz-invariant
but is not CG-invariant (for appropriately chosen Gz and Gp). The following condition ensures that a
Gz-invariance is also a CG-invariance.
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Theorem 2. If G7 is a normal subgroup of Gpyuz, then CG-inv <= G-inv.

A subgroup H of a group G is called normal (denoted H J G) if forallh € H and g € G,
ghg™! € H. Proof in the Appendixutilizes the fact that if Gz < Gpuz, then any T € Gpyz can
be written as T' = T o T for some 17 € Gz, Tp € Gp. Throughout the rest of the paper, we will
assume that Gz is a normal subgroup of Gp_z in the SCM Equation .

4.1 CONSTRUCTING SUBSPACES OF VEC(X) PARTIALLY ORDERED BY INVARIANCE STRENGTH

As discussed before, we do not know Gz. In this subsection, we build neural network weights that
are invariant to Gy for different subsets M C {1,...,m}. A detailed step-by-step example of this
construction for 3 x 3 images is shown in Appendix We start by restating the Reynolds operator,
which has been extensively used in the literature of G-invariant representations without attribution:

Lemma 1 (Reynolds operator (Mumford et al.|(1994), Definition 1.5)). Let G be a (finite) linear
automorphism group over vec(X). Then,

_ 1
T=— T 7
Gl 2 @

TeG

is a G-invariant linear automorphism, i.e., VT; € G and Vx € vec(X), it must be that T(Tx) = T.

. = . Lo R, . = . .
Since T' is a projection operator (i.e., I = T), all the eigenvalues of 7" are either 0 or 1. Using
this fact, we now describe G-invariant neurons using the left eigenspace of T" corresponding to the
eigenvalue 1.

Lemma 2. If W denotes the left eigenspace corresponding to the eigenvalue 1 of the Reynolds
operator T for the group G, then Vb € R, the linear transformation ~(xz;w,b) = wlz + b is
invariant to all transformations T € G, i.e., v(Tx; w,b) = vy(x; w,b), if and only if w € W.

The above property of the Reynolds operator can be leveraged to build neural networks that adhere to
particular group symmetries, as done by Yarotsky (2018) and|van der Pol et al.|(2020). If we knew
Gz, restricting the parameters of each neuron to the left 1-eigenspace of the Reynolds operator of Gz
would give us a way to build a Gz-invariant neural network.

Alas, we do not know Z, and consequently we do not know Gz. Instead, we want to construct bases for
the complete space vec(X') such that they are partially ordered by their invariance strength: From most
invariant bases to least. In other words, we construct bases for subspaces By for M C {1,...,m}
such that any weight vector w € 3, is (a) invariant to the groups G; for i € M, and (b) not invariant
to any group G; for j € {1,...,m}\ M. Later, we will use this partial order to define a regularization
term for our method. Theorem shows how these bases can be constructed inductively, where we
start with the most invariant subspace (when M = {1,...,m}) and judiciously work our way over
increasingly less invariant subspaces. A reader more interested in the algorithm can first refer to the
pseudocode in Appendix@] or the example in Appendix(Step 2).

Theorem 3 (G-invariant subspace bases can be partially ordered by invariance strength). Let WW; C
vec(X) be the left eigenspace corresponding to the eigenvalue 1 of the Reynolds operator T; for

group G;, t = 1,...,m. We construct the invariant subspace partitions
Bu= () Wi: Bu=orths,, (By), VM€ p({l,....m})\0, (8)
ieM

where @ is the power set, Boy = @ -y By, ortha, (Az) removes from the subspace As its
orthogonal projection onto the subspace Ay, and &P is the direct sum operator. Then, the linear
transformation y(z; w,b) = wlz+b, b € R, Vw € By \ {0}, is Gas-invariant but not G;-invariant
Vie{l,...,m}\ M.

The proof in Appendixshows that 3, contains all the vectors w that are invariant to Gy but
could also contain vectors that are invariant to some overgroup of G;. Thus, each step of our
inductive method performs a Gram-Schmidt orthogonalization in order to satisfy condition (b) above:
we need to remove from 5, all weight vectors that are invariant to more groups in addition to those
indexed by M (i.e., supersets of M). In addition, if needed, we obtain the basis for the rest of the
space through By = orths., (vec(X')), the orthogonal complement of By.
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Note that if w € By, then w is never Gy-invariant for H 2 N as we remove all such w from By .
Hence, the partial order of nested subsets in p({1,...,m}) induces a partial order of invariance
strengths in the bases of the input domain vec(X) (see Figure for an example). We define level of
invariance (or invariance strength) of a subspace 3y, as the size of M (i.e., | M|).

Practical aspects. Our algorithm should output dy = dim(vec(X)) basis vectors covering the entire
space (i.e., our new neuron, described later in Equation , still has dy + 1 parameters as the
original one). Thus we stop the algorithm in Theorem once d x basis vectors are found. Moreover,
the algorithm needs to run only once for groups G, . .., G,,, and the results can be reused for other
neural architectures. While the worst-case runtime of finding the bases could be exponential in m, it
is unclear whether this exponential runtime can actually happen in practice (all of our experimental
runtimes take less than one minute in commodity machines).

4.2 LEARNING CG-INVARIANT REPRESENTATIONS WITHOUT KNOWLEDGE OF G7.

We are now ready to learn a CG-invariant representation using neural networks I'" and g. Let
G1,...,Gn be known linear automorphism groups. Under the assumption of Theorem@ we just
need I to be Gz-invariant, with Gz = (U;ezG;), but Z C {1,...,m} is unknown to us. We achieve
the correct Gz-invariance by redefining the neuron weights of I" using the subspaces of Theorem
and proposing a regularized objective that pushes I" towards the strongest overgroup G-invariance
that does not significantly hurt the training data, where significantly is controlled by a regularization
strength A > 0.

More formally, let I' : vec(X) x RidxxH w RH _y Rd [ > 1,d > 1, be a neural network layer with
H neurons, parameterized by free parameters € R4 > and b € R¥. The H neurons are arranged
in an appropriate architecture as described in Section but reader can imagine a feedforward layer
for now. Let g : R¢ — ImP (Y| X) be a link function. The training data D@ = { (4, 2"} | is
assumed to be sampled according to the SCM data generation process in Equations (1) to , with
the hidden Gz satisfying the conditions in Theorem

Let By, € R¥*X4M be a matrix whose columns are the orthogonal basis of subspace By # {0}
(from Theorem with dimension dj;. Any vector w € Bj, can be expressed as a linear combination
of these basis columns. The coefficients of the linear combination form our learnable parameters.

These neuron weights €2 have a correspondence to the nonzero subspace bases By, , Bar,, - - -, By
WM, WMy H

Q= : ,  where B < dy, ©)]
WMp,1 0 WMp,H

and wyy, ;, € R4 ¥1 represents the learnable parameters for the subspace By, and the h-th neuron.
The h-thneuronin T, h € {1,..., H}, has the form

B
F(h) (:12) = U(dﬁT (Z BMini,h> + bh>, (10)

i=1

o(+) is a nonpolynomial activation function, and b, € R is a bias parameter. Our optimization
objective is then

Q.0 Wg = arg min Z L (y"™, g(T'(z";Q,b); Wy)) + AR(Q) (11)
va7W9 (y((r),m((r))ep(!r)

where £ : Y x ImP(Y|X) — R>¢ is a nonnegative loss function, and A > 0 is a regularization
strength. The regularization penalty R(€?) is given by,

R =[{M;:|Mi| >1,1<i< B} + > 1|wn,.[3 >0}, (12)
@[ M;|=l
1<i<B

|3 >0}, 1<i<B}.

Intuition behind the penalty in Equation : A subspace By, is said to be used in the computation
of neuron h (Equation ) if the corresponding parameter wyy, 5, is nonzero. Then, let B, be the
least invariant subspace used by any neuron (i.e., | My is the lowest among all used subspaces) and
|M};| = I. The first term in the penalty counts the number of subspaces 5, (used or unused) that

where | = min{|M;| - 1{||waz, .
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are invariant to more groups than By, (i.e., |[M;| > |My|). This term ensures that the optimization
tries to use subspaces that are higher in the partial order with invariance to more groups. The second
term in the penalty counts the number of subspaces B), that have the same level of invariance
as By, (i.e., |M;| = | Mg]), and also have the corresponding coefficients wyy, j, nonzero (i.e., the
subspace By, is used). The larger the second term, farther away the optimization is from increasing
the least level of invariance from [ to [ + 1. We present a differentiable approximation of the penalty
in Appendix [Flalong with an example computation of Equation in Figure([|

Limitations of Equation : Recall that we stop the algorithm in Theoremonce the basis for
vec(X) is found. In such cases, there could be parameters 2’ and Q" that assign positive weights
corresponding to the same subspace bases, but with €2’ invariant to more groups than £2”. The penalty
in Equation however cannot distinguish between these two sets of weights as they use the same
subspaces and thus, R(€2') = R(€¥’). We provide an example in the case of sequence inputs in
Appendixand leave the solution as future work.

Selecting regularization strength \: We use a held-out training set to find the best validation accuracy
achieved by any value of A. Then, among all the values of A that achieve validation accuracy within
5% of the best validation accuracy, we choose the largest A (i.e., we opt for maximum invariance
without significantly affecting validation performance).

5 CG-INVARIANT NEURAL ARCHITECTURES

For image tasks: We can apply the CG-regularization of Equations (10) and in the convolu-
tional layers of a CNN architecture like VGG (Simonyan and Zisserman||2014). Mostly, the VGG
architecture remains the same with the exception that the convolutional filters are obtained using the
subspaces from Theorem for the given groups. Once the filter is obtained as a linear combination
of the bases, it is convolved with the image or the feature maps. This will ensure that the model is
CG-invariant to the transformations of smaller patches in the image. A sum-pooling layer over the
entire channel is applied after all the convolutional layers to ensure that the model can be CG-invariant
to the transformations on the whole image. See Appendix for an example architecture.

For sequence and array tasks (sets, graph & tensor tasks), the architecture is more direct: One can
simply apply a feedforward network with as many hidden layers as needed. Each neuron of the first
layer is as given by Equation , ensuring that the first layer can be CG-invariant to the given groups
if needed. Other layers can have regular neurons since stacking dense layers after a CG-invariant
layer does not undo the CG-invariance. See Appendix|E.2|for an example architecture.

6 EMPIRICAL RESULTS

We now provide empirical results of 12 different tasks to showcase the properties and advantages of
our framework Due to space limitations, our results are only briefly summarized here, with most of
the details described in Appendix Appendix also shows a task where CG-invariance is stronger
than G-invariance, showing the practical relevance of Theorem([T]

Validation of our learning framework (CGreg): In 12 different image and sequence tasks, we
confirmed that our CG-regularization of Equation is able to selectively learn to be invariant to
the largest overgroup that doesn’t contradict the training data, all of this without any evidence in the
data supporting the invariance. The results are summarized in Table which also shows that both
standard neural networks and forced G-invariant networks do not extrapolate to new environments
whenZ # Qand Z C {1,...,m}, respectively.

X®id) and Transformation groups: X ™% is the canonically ordered input (e.g., upright images,
sorted sequences). Our task considers m linear automorphism groups G, . . ., G,,. We generate Gz
from a subset Z C {1,...,m} of the groups, i.e., Gz = (G;cz). We construct Gp using a subset of
{1,...,m} \ Z, while ensuring that Gz < Gpyz in order to fulfill the conditions in Theorem

For image tasks, X (hid) j5 an upright MNIST image and the m = 3 groups are Grot, Geolors Gvertical-flip-
For sequence tasks, we sample X ™% as a sequence of n sorted integers from a fixed vocabulary and
consider m = (Z) permutation groups for all the pair-wise permutations: G1.2,G23,G1.3,- -, Gn—1,n,
where G; ; 1= {Tidemity, T;, j} and T; ; swaps positions ¢ and j in the sequence.

"Public code available at: https://github.com/PurdueMINDS/NN_CGInvariance
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Table 1: Extrapolation accuracy (4 95% confidence interval, bold means p < 0.05 significant)

Image transformation groups {Grot, Guertical-flips Geolor } Sequences {G12,...,Gn-1n}
Task: Predict digit & which transformations of G was applied to image Tasks depend on Z (see Appendix
MNIST {3,4} images MNIST all images Sequence Tasks
T VGG +G-inv +CGreg VGG +G-inv +CGreg A Transformer ~ Best FF+G-inv FF+CGreg
0 96.06+0.63  15.96+2.17 94.49+01.49  89.35+0.52 15.64+1.55 90.89+0.93 | () 100.00-£0.00 23.38+1.88  95.70+03.05
color 15.06+£6.70  50.05+2.17 94.16+£06.43  4514+1.36 47.61+£0.45 88.69+2.11 | {(7,i42k)}ik 0.85+0.37 0.97+0.60  71.85+26.61
rot,vflip 54.8740.90 32.05+1.16 95.78+07.11  25.9140.95 44.41+£328 62.68+6.02 | {(i,j)};>i>2 12.15+16.05 10.68+1.49  42.08+18.99

rot.col vflip  49.52+2.37 97.19+1.02 94.89+07.49  11.27+0.34 68.46+2.83 64.994+2.76 | {(i,j)};>i>1 20.26432.08 100.00£0.00  100.00+00.00

Training data: The training data is sampled via the SCM equations using an economical data
generation process. We decompose the transformation 7y, r7,, into a transformation Ty, € Gp
followed by another transformation Ty |, € Gz to obtain X = Ty, |y, © To, 0 X™P. This
decomposition is made possible from our assumption that Gz is a normal subgroup of Gp7 (Theo-
rem . Under the assumption of economic sampling of the training data, in all our experiments we
simply set T UL 1Up = Tidentity € Gz, whereas 177, is randomly sampled from Gp. Finally, following

Equation , the label Y is a combination of the original label of X "% and the transformation Ty,

Example (Table row: rot,vilip): For image tasks, if Gz = Grop, vertical-fip a0d Gp = Geolor, then
the training data consists of upright and unflipped images (as Ty7 v, = Tidenity) With different
permutations of the color channels (random transformations 777, € Geolor are chosen). The task is to
predict the original label of the image (i.e., the digit) and the transformation 7’5 (i.e., the color).

Extrapolation task: The extrapolated test data consists of samples from the coupled random variable

Xuyety = To,up X (hid) (Deﬁnition. As before, we decompose Ty ;= Tﬁ%l vy © Ty With
Ty, € Gp and T, p € Gz. However, T
T

Ty, are sampled randomly from Gz and Gp respectively. The task is the same as in the training data.

ere is no economic sampling for the test data: T, Un and
T

Example (Table row: rot,vflip): For image tasks, if Gz = Groy, vertical-fiip and Gp = Geolor, then the
extrapolation test data consists of images randomly rotated, flipped and color permuted, while the
task is the same: predict the digit and its color.

Results: Standard neural networks such as CNNs (e.g., VGG (Simonyan and Zisserman, |2014))
(for images) and GRUs/Transformers (Cho et al.}|2014| Vaswani et al.,|2017) (for sequences) fail
whenever the extrapolation task requires some invariance (Z # (), but excel at the interpolation task
(Z = (). Adding forced Gpyz-invariances via G-CNNs (Cohen and Welling}|2016) (for images)
and permutation-invariant models (Lee et al.}2019; Murphy et al.||2019a}|Zaheer et al.,|2017) (for
sequences) clearly fails when D # () but succeeds when D = (). Our CG-regularized neural network
representations, on the other hand, achieve high extrapolation accuracy across all tasks for all choices
of ZC{l,...,m}and D C {1,...,m} \ Z. These results plainly show that our approach is able
to selectively learn to be invariant only to the appropriate groups. Furthermore, this Gz-invariance
is achieved without any evidence in the training data, thanks to our novel learning paradigm that
considers all G-invariances mandatory unless contradicted by the training data.

7 CONCLUSION

This work studied the task of learning representations that can extrapolate beyond the training
data distribution (environment), even when presented with a single training environment. We
considered the case of (counterfactual) extrapolation from linear automorphism groups and described
a framework where all G-invariances (and CG-invariances via Theorem are mandatory, except
the ones deemed inconsistent with the training data (i.e., rather than learning G-invariances, we
unlearn them). Our framework reframes the standard statistical learning hypothesis that unseen-data
means underspecified-models with a learning hypothesis that forces models to have all (known)
G-invariances (symmetries) that do not contradict the data, with our empirical results supporting the
proposed approach. Finally, this learning paradigm offers a promising novel research direction for
neural network extrapolations.
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Supplementary Material of “Neural Networks for Learning
Counterfactual G-Invariances from Single Environments”

A THE PRACTICAL IMPORTANCE OF THEOREM[1]

Training data: X(©bs) =T o x(hid) y =T(©) Test data: XN = T(O) o T(+h) o x(hid) y = T(6)
T T(90) TO) o T+20) T(90) ¢ T(+20)

: : =~
F 1= + F

PR G * L N T o P R
0 o

0=

Figure 2: An example task where CG-invariance is stronger than G-invariance. The task is to predict
the orientation of the image while being CG-invariant to horizontal translations.

There are real tasks where CG-invariance is stronger than G-invariance. We consider a task with
60 x 60 image shown in Figureand two transformation groups: the rotation group G, and the
cyclic horizontal-translation group Gp_yranslae = Zgo- Each transformation T(9°) € Gy rotates the
image along its center by 6°, whereas every transformation 7(t") € Gy yansiaie translates the image
horizontally by h pixels while wrapping around the edges. Let Gz = Giox and Gp = Gh_granslate-
The training data consists of images X = T®") o X®id) for al T(°°) € G, whereas the test data
consists of images X, 5 = T%) o T(+20) o X 0id) for a1] T(O°) € G, The task is to predict
the orientation of the image, i.e., degrees of rotation. It is easy to see that the label requires CG-
invariance to Gp_yranslaee DUt Sensitivity to Go. We train a strictly Gp_qransiae-invariant model on this
dataset; whereas the model is able to achieve a 100% accuracy on training, it does poorly with 75%
on test dataset, showing that it is not enough to be Gz-invariant to achieve CG-invariance.

B PROOFS

B.1 GENERATING ANY T' € Gpyz USING NOISES Uz AND Up

The structural causal model for X in Equation (2) requires that any 7' € Gp_z can be indexed by
the hidden background variables Uz and Up. We first interpret Up (or Uz) as the random seed of
a random number generator that gives an ordered sequence of transformations of Gp (or Gz). We
assume that these background noise variables can generate any sequence of transformations from
within their respective groups. Let Tg), e ,Tgl) and Tél), e ,TI(b) be those ordered sequences
respectively generated by Up and Uz. Then we can obtain a transformation in Gpz by interleaving

these two sequences (in order): Ty, v, = T 1(1) o Tl(jl) o TI(Q) o.... Note that Uz and Up can always
sample the identity transformation from the respective groups in the corresponding sequences, i.e.,

Tg) or Tg ) can be identity.

Now, it is a known result in group theory that any 7' € (Gp UGz) issuchthat T =Ty o Th o T50.. .,
where T} is in either Gz or Gp. Then, if T} € Gp, we can write Ty = T3 o T with T, =
Tidenity € Gz and Tg) = T1 € Gp. Continuing in a similar fashion, we can find two sequences
of transformations, one from Gz and the other from Gp, such that interleaving and composing the

resultant sequence of transformations gives us any transformation from Gpz. This property of the
noises to appropriately index any 7' € Gpz will be used in the proof of Theorems and
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B.2 PROOF OF THEOREMS[I]AND[2]

Theorem 1 (CG-invariance is stronger than G-invariance). Let the vector (X, X Uy Uy ) denote

the counterfactual coupling of the observed variable X given in Deﬁnition For a representation
T: X >R%Ed>1, let

G-inv: VI7 € Gz, I'(X) =T(Tr 0 X),
CG-inv: T'(X) =T(X,__5.),

denote the conditions on U for Gz-invariance and CG-invariance respectively. Then, CG-inv —> G-
inv, but G-inv == CG-inv.

Label: Upright Label: Flat
- (00°)
+ f T +
& U & —
2n+1 2n+1
1 e S 700) o )
Label: Upright <~ Label: Flat
E n E e
& U &
2n+1 2n+1

Figure 3: Counterexample to show that Gz-invariance does not imply CG-invariance. Given images
of a rod (shown in brown), we wish to predict the orientation of the rod, i.e., whether the rod is
upright or flat. In this example, we have Gp = Gt and Gz = Gh_yransiate @S any horizontal translation
does not affect the orientation of the rod. I' : X — R sums the pixel values across the green shaded
region, and is clearly G-invariant to horizontal translations. However, I is not CG-invariant.

Proof. First, we will show that CG-invariance =—> G-invariance, i.e., for any CG-invariant repre-
sentation ' : X — R?, we will show that I is also G-invariant to G7.

Consider any u € supp(Uz) and say the input was generated as X, « v = Tup.vyu © X M. In
other words, Uz took the value « in the structural causal equation for generating the observed input

(Equation ). We will prove G-invariance for this input Xy, ,,, i.e., F(TIT o Xt eu) =T (Xvyeu)
for any TIJr € gr.

Recall that Tt7,, v, Was generated by interleaving two separate sequences of transformations
obtained via the background variables Up and Uz respectively (Appendix . In other words,
we can write Ty, vyeu = Tél) o 7(31) o I(Z) o...0T®, where TI(Z') € Gy and Tg) € Gp
and T*) depends upon which of the respective sequences before interleaving is longer. Then,
T o Typ vyeu =T o T o TS o T o .. o T, Further, if we write 74" = T3 o T\, then
we have TIT o Typ Ureu = T%(l) o Tl()l) o TI(Q) o0...0TH™),

Now we can find a u such that Uz < u generates the sequence of transformations Tgl), TI(Q)7 -

Interleaving this sequence with the sequence generated by Up, we get Ty, v, «w = Té(l) ) Tg) o

Tf) o...0T™. Denote Xt, 7 = Tup.vyeno X™. Since T is CG-invariant, we have from
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Definition[2] that
F(XUIH’U‘) = F XUI<—U)

TUD UI<—u o X(hld))

0 Tup Uzeu © XMY) (from construction of )

(
I
0(1}
D(7

o XUz(—’LL) .
Since this holds for all u € supp(Uz), we have that I'(X) = F(TIJr o X).

Next, we will show G-invariance =~ CG-invariance by constructing a counterexample. Let X 9 ¢
R +1)x(2n+1) be the (2n + 1) x (2n + 1) grayscale image of an upright rod as shown in Figure
Consider two groups that act on this image: the rotation group G, = {T(’f)} ke{0°,90°,180°,270} and

the cyclic horizontal-translation group Gy gansiate = {TH“) Yuez, - Let Gp = Gror and Gz = Gh_yranslate
and the label of the image Y deterministically given by the orientation of the rod: upright (Y = 0) or
flat (Y = 1). The top row of Flgure.deplcts the data in training which is transformed by Gy _qansiate
only via the identity 79 (i.e., no translation).

Now consider a representation T' : R2*+1)x(2n+1) _ R such that [(X) = 327"{" X,, ; finds the
sum of the middle row of the image. Note that (a) I is able to distinguish between the labels for the
training data, and (b) I" is Gy yranslae-invariant.
We can define the random variables U7 and [71 such that X = T(90°) o xhid) apq X Upe Uy =
T(90%) o T(+5) ° X®d)_ Then, as shown in Figure Xy, 5,) = [(T(0%) o T(+5) o X hid)) £
(T o X®id) thus showing that T' is not CG-invariant.

O

Theorem 2. [If G7 is a normal subgroup of Gpyz, then CG-inv <= G-inv.

Proof. The proof that CG-invariance = G-invariance (from Theorem still holds here. We only
need to prove the converse: G-invariance = CG-invariance when Gz is a normal subgroup of
Gpuz. We begin with a representation I that is Gz-invariant and consider the simpler case when
Up generates a transformation sequence of length 1 (from Gp). In other words, X is obtained by:

X = Tél) oTpo Tf) o X4 for arbitrary transformations Tp € Gp and TI(I), TI(Q) € gr.

Then for any ﬁz, we have that XUIHUZ = fél) olpo TI(Q) o X tid) with TI(I), TI(Q) € Gz. Note that

ffz only affects the transformations from Gz. The condition for CG-invariance with respect to G
requires that

requirement: I'(X) =T(T4" o Tp o TV o X®) = D(T1" 0 Tp 0 T2V 0 X4) = T(X . 77.).
(13)
Since Gz is a normal subgroup of Gpuz and Gp < Gpuz, we have
VTp € Gp, VT € Gz, TpoTroTy' € Gy,
or equivalently,
VTp € Gp, VT € Gz, IT7, s.t.,
TpoTroTy' =14
[ TDoTI:TéoTD (14)
(A special case is when the groups Gp and Gz commute, as then T'p o Ty = Tz o Tp.)
Then,
I(X) =T(TM 0 Tp o T o X i)
=T (Tp o T o XOi) (T is invariant to G7)
= T(T% o Tp o X D) (there exists such a T € G7)
= I(Tp o X19) (T is invariant to G7)
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Similarly, we can prove for the coupled variable that T'(X, 5 ) = I‘(T}l) oTpo fI(Q) o Xhid)) —
['(Tp o X)), thus satisfying the requirement of CG-invariance in Equation .

Extension to the case when Up generates transformation sequences of length greater than one is
trivial. Any transformation Ty, v, = Tz(l) o Tg) o TI(Z) --- 0 T™ can be written in the form
T} o Tg) o T7(32) o --- by repeatedly applying the normal subgroup property in Equation . Then
Ty, ,us © X(hid)) = F(TIT o Tl(jl) o Tg) 0---0 X(hid)) = F(Tg) o Tl()2) 0---0 X(hid)) as ['is Gz-
invariant. Using a similar argument, we can show for the coupled variable that (T}, 7 o X™¥) =
N(TY o T o - o X4d) thus proving that I is CG-invariant, i.e., [(X) = (X, . 7,) O
B.3 PROOFS OF LEMMA[I} LEMMA 2] AND THEOREM 3]

Lemma 1 (Reynolds operator (Mumford et al.|(1994), Definition 1.5)). Let G be a (finite) linear
automorphism group over vec(X). Then,

— 1
T=__ Z T @)
is a G-invariant linear automorphism, i.e., YTy € G and VY € vec(X), it must be that T(TTa:) =Tex.

Proof. Consider an arbitrary transformation 7} € G. Then

where we define G = {To Ty VT € G }. Now, in order to prove To Ty = T, we only need to show
that G; = G. Since groups are closed under compositions, we have VI’ € G, T' o T} € G, and thus
G; C G. Finally, since T} is a bijection and 1, o T} = Ty, o T} only if Ty, = Ty, for any T,,, T}, € G, it
must be that |G;| = |G|. Hence, G; = G.

O

Lemma 2. If W denotes the left eigenspace corresponding to the eigenvalue 1 of the Reynolds
operator T for the group G, then Vb € R, the linear transformation (xz;w,b) = wlz + b is
invariant to all transformations T € G, i.e., v(Tx; w,b) = v(x; w,b), if and only if w € W.

Proof. Sufficiency: Let {w} }fgl be the set of left eigenvectors of T with eigenvalue 1 and constitute
the orthogonal basis for W. Consider any non-zero w’ € W, then

dW dw
(W) =Y aiw] = ow/T (15)
1=1 =1

for some coefficients {c; }&,, where we used the fact that w! T = w! ,1 < i < dy . For any
@ € vec(X) and any T' € G we have,

= Z a;w! T(Tx) +b (using Equation (15))
i=1
dw

= Z c;w! Tz +b (from Lemmal[T)
i=1

=(z;w',b)
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Necessity: Given a non-zero w € W and b € R, let y(T'z; w,b) = vy(z; w,b) for all x € vec(X)
and all T € G. Then,

wlTe =wlz, Vea,VT
— w!T=w", VI
= w’ Z T = |g|wT (summing over all T’ € G)
Teg

= w!T =w".

Hence proved that w7 is a left eigenvector of T with eigenvalue 1.
O

Theorem 3 (G-invariant subspace bases can be partially ordered by invariance strength). Let WW; C
vec(X) be the left eigenspace corresponding to the eigenvalue 1 of the Reynolds operator T'; for

group G;, 1 =1,...,m. We construct the invariant subspace partitions
EM: m W; ; BMZOFIhBQM(gM), VME@({l,...,m})\@, (8)
ieM

where @ is the power set, Boy = @ -y By, ortha, (Az) removes from the subspace As its

orthogonal projection onto the subspace A1, and @ is the direct sum operator. Then, the linear
transformation y(z; w,b) = wlz+b, b € R, Vw € By \ {0}, is Grs-invariant but not G;-invariant
Vie{l,...,m}\ M.

Proof. Throughout this proof, we will slightly abuse notation by calling a w € vec(X') as G-invariant
for some group G, where we mean the transformation (-; w, b), b € R is G-invariant.

Consider the subspace B; M= Nou B, where P is the direct sum operator. Essentially, BQ M
is the direct sum of all the subspaces corresponding to the strict supersets of M. Using induction on
the size of M, we first show that By = @y, B The statement trivially holds for B, omy-
Then the induction hypothesis is: for all sets M such that [M| > k, we have Boy = @y, Buy.
We prove that the statement holds for any set M with | M| = k as follows,

Bow = €P By

N2OM

@ ByeBow)
NDOM
IN|=TM]|+1
- D (orthBQN (By) @ B N) (Definition of By)
NDOM
IN|=TM|+1
= @ (gN &) B;N) (For vector subspaces V and W, orthy (V) @ W =V & W)
NDOM
|N|=[M|+1

= @ (5 N D g; N) (Inductive hypothesis holds for sets N as |N| > k)

NDOM
IN|=[M|+1

- @ b

NOM

This proves our claim that BQM = @NDM By = @NDM EN.

Now we are ready to prove the theorem. We begin by showing that any nonzero w € vec(X) is
Gy-invariant where Gy = (U;epnG;) iff w € By, Since w € By, < w e W;, Vi € M,
we have from Lemma|2|that any w € B, is G;-invariant for all ¢« € M. Then it is easy to see that
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Full basis:
9 eigenvectors [

Full basis:
9 eigenvectors |

R channel G channel B channel R channel G channel B channel

(a) Wot (b) Weol

Figure 4: (a) 1-eigenspace of the Reynolds operator for the rotation group. The eigenspace has
nine basis vectors v € R?7 (stacked). We are representing these eigenvectors in R3*3*? instead
to emphasize that these are rotation-invariant. (b) 1-eigenspace of the Reynolds operator for the
color-permutation group. The eigenspace again has nine basis vectors v € R2” but we represent them
in R3*3%3 to emphasize that these are invariant to permutations of color channels.

any nonzero w is Gs-invariant iff it is G;-invariant for all ¢ € M. It is possible to have B M = {0}
implying that there is no nonzero w € vec(X’) that is Gs-invariant.

Next note that for all N D M, we have B N C B, M (using the definition ~of B M~). Then, their direct
sum is the smallest subspace containing all such By and thus, P ~ou By € By From our claim

earlier, this implies that B5n = Do gN - gM. Finally, we have By, = orthg_ ,, (gM) - EM
for all M. Thus, we have proved that any nonzero w € B, also lies in B v and hence is invariant to

Gum.

In the sequel, we will prove that any w € By is not G;-invariant for any j € {1,...,m} \ M. Let
P D M. Then it is clear that BQM = @ - By 2 Bp, which implies from the first part of our
proof that any w € vec(X') that is Gp-invariant lies inside B ;. The orthogonalization step ensures

that By; L By and thus, By L Bp and By, N Bp = {0}. Hence there is no nonzero w € By
such that w is Gp-invariant. This applies for all supersets P 2 M.

Finally, we consider supersets of M of the form P’ = M U {j} forj € {1,...,m} \ M. Ifa
nonzero w € By is invariant to G;, then it will hold that w is invariant to Gp, P’ O M, resulting
in a contradiction. Hence, we have that if By; # {0}, any w € By \ {0} is Gas-invariant but not
Gj-invariant for any j € {1,...,m} \ M.

O

C EXAMPLE CONSTRUCTION OF CG-INVARIANT NEURONS

In this section, we will present a detailed example of the construction of CG-invariant neurons.
Consider a 3 x 3 image with 3 channels, thus X = R3*3%3, Then, a convolutional filter w € X =
R3*3%3 multiplies elementwise with the image « € X.

Consider m = 2 groups Gyo and Geol, the former rotates the image patch by 90-degree multiples and
the latter permutes the color channels of the image. Our goal is to enforce invariance to rotation and
color channel unless contradicted by training data. Note that vec(X) = R?7,

Step 1: Construct 1-eigenspace of Reynolds operator for each group. Since we only consider
linear automorphism groups, each transformation 7" in the group can be written as T'(z) = Tz,
where T is a matrix of size R27*27 and x € vec(X) = R?". Given a group, we can directly use
Lemma to construct the Reynolds operator by averaging over all the linear transformations (or
corresponding matrices) in the group. Then, we can use standard methods in linear algebra to find the
1-eigenspace of the Reynolds operator (i.e., find the eigenvectors with corresponding eigenvalues
equal to 1).

Let Wit and W, be the 1-eigenspaces of the Reynolds operator of the groups G, and G, re-
spectively. Figure|4|shows these eigenspaces with the eigenvectors arranged in R3*3*3 instead of
R27. The figure shows that the eigenvectors in W;,, are invariant to rotations of 90-degree multiples
whereas the eigenvectors in W, have the same values across the RGB channels, and thus are invariant
to permutation of these channels. Lemma proves this invariance-property for the 1-eigenspaces of
the Reynolds operator of any finite linear automorphism group.
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6 basis vectors

M = {rot, col}

3 basis vectors

G channel B channel

M = {col}

6 basis vectors /l

R channel G channel B channel

R channel G channel B channel

\

M=0

9

12 basis vectors

R channel G channel B channel

Figure 5: The subspaces By for all M C {rot,col}. For instance, Blrot,col} ON the top has 3
basis vectors (represented in R3*3%3) and each of these vectors are both rotation-invariant and
channel-permutation invariant. On the other hand, By, (of dimension 6) is rotation invariant but
strictly not channel-permutation invariant. Finally, the vectors in Sy are neither rotation-invariant
nor channel-permutation invariant. All the basis vectors together cover the entire space R?7 (i.e.,
dim(B{me]}) + dim(B{rot}) + dim(B{col}) +dim(By) =346+ 6+ 12 = 27).

Step 2: Construct B, for all M C {rot,col}. Now, given Wi, and W1, we will construct basis
for the subspaces B for all M C {rot, col} using Theorem

1. Set M = {rot,col}.

g{rot,col} = Wiot N Weol
B{rot,col} = B{rot,col} . (because BQ{rot,col} = {O})

The intersection of subspaces Wiot N W0 can be computed using standard methods in
linear algebra. The subspace By o1y With 3 basis vectors is visualized in the topmost
level of Figure As before the basis vectors of the subspace are represented in R3*3%3,
It is clear that the basis vectors are invariant to both rotation and permutation of the
channels. This property will hold for any linear combination of the basis vectors, i.e., for
any w € B{rol,col}‘

2. Set M = {rot}.

g{rot} = Wit
B{rot} = OrthB;{m[} (B{rot})
= OrthB{ro[,col} (g{rot}) (because BQ{rot} = B{rot,col})

The subspace g{mt} consists of all vectors that are invariant to rotation but also includes
vectors that are invariant to both rotation and channel-permutation. Thus, we need to remove

from g{rot} the projection of g{rot} on Byrot,col} -
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The subspace By,oy with 6 basis vectors is visualized in middle level of Figure[5] It is clear
that the basis vectors are invariant to rotation but not invariant to channel-permutations.
Again, this property holds for any linear combination of the basis vectors.

3. Set M = {col}.
g{col} - Wcol
B{col} = Ortth{col} (B{COI})
= orthg,,,, .., (Bcol}) (because B (coly = Birot,col})

The subspace By, is obtained in a similar fashion. Bi.y has 6 basis vectors and is
visualized in middle level of Figure(5| It is clear that the basis vectors are invariant to
channel-permutations but not invariant to rotation. This property holds for any linear
combination of the basis vectors.

4. Set M = ).
By = orthp, (vec(X))

where B5p = Birot,col} D Biroty @ Bicoly- The subspace By represents the rest of the space
that is neither rotation-invariant nor channel-permutation-invariant. This subspace has
12 basis vectors and is visualized in the bottommost level of Figure[3]

Finally, we have B = 4 subspaces (enumerated above) with a total of 27 basis vectors covering the
entire space vec(X) = R?".

Step 3: Neuron construction. For each subspace By, M C {rot,col}, we denote Bj, as the
corresponding matrix with columns as the basis vectors of the subspace Bys. As described above any
linear combination of the basis vectors of B, are invariant to all groups indexed by M and nothing
more (€.g., By} consists of vectors invariant to rotation but not invariant to channel-permutation).

In the following, we consider a single neuron and drop the subscript i from wyy,j, (Where h repre-
sented the h-th neuron in Equation ). Recall that wy; € R are the learnable parameters of
the neuron corresponding to each basis vector of the subspace By, and dyy is the dimension of the
subspace Bys. Then, W cory € R3 represents the coefficients in the linear combination of the basis
vectors in By cory- The linear combination is given by the matrix-vector product B o col} W{rot,col}

Similarly, wo) € RS, Wicol} € RS, wy € R'? represent the coefficients of the basis vectors in the
columns of By}, Bycory and By respectively.

Then, a CG-invariant neuron is given by,

INz)=xzTw+b,

where

W = Bro1,col} Wirot,col} T BirotWiroty + Beol}Wico} + Bopwo ,
and Wirorcol}» W{rot}> Wicol}» Wp» b € R are the only learnable parameters. The total number of
parameters is 28, same as that of the standard neuron with input € R27.

Now, if for example the optimization finds W rer,coy 7 0, Wity = 0, Wicory = 0 and wy = 0, then
the neuron I'(-) is invariant to both rotation and channel-permutation.
Our regularization in Equation @ forces the optimization to find maximum invariance as long as

training performance is unaffected. A more comprehensive example of the computation of the penalty
is given in Appendix [F

D PSEUDOCODE FOR THEOREM/[3]

We present the algorithm for Theoremlln Algorlthml 1| The loops in the algorithm iterate over the
different subsets M C {1,...,m} in descending order of their sizes. The worst-case complexity of
the algorithm is exponentlal in m (to iterate over all subsets). However, since the algorithm stops after
finding all the basis for the space vec(X), it is unclear if the worst-case runtime occurs in practice.
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64x28x28  64X26x26 128x26x26 128x24x24 128x1

Image: 3x28x28  ___.____. 50x1
Output: 10x1

B FE FWF—JFF"TFFFF

Convolution  Max-Pool Convolution  Max-Pool s um-pool

(3x3) (2x2) (24x24)

Grot» Grertical-flip

(3x3) (2x2)
Grot» Goalor s Grertical-flip

Figure 6: An example architecture of CG-invariant CNN architecture.

Moreover, the algorithm only needs to run once for a given collection of groups and the results can
be reused in all experiments.

Algorithm 1: Procedure to construct basis for the subspaces Bas of Theorem

Input: Left 1-eigenspaces of the Reynolds operator Wy, W, ..., W,, for groups
G1,Ga, ..., Gy, respectively.
Result: Basis for nonzero subspaces Bas, , Bas,, - - -, Byrg, With B < dy and
Mi - {1,77’)’1}
// Initialization
[+~ m;
C+0;
k<« 1; // A counter for the subspaces.
while [ > 0 do
/* | will denote the size of subsets M C{l,...,m}, denoting

the level of invariance. */
P+ {M:|M|=1, MC{l,...,m}};
for M in P; do
if M # () then
‘ By < Niep Wi 5 /* Intersection of l-eigenspaces. =/
else
‘ B < vec(X) ; /x Used to find the subspace By. =/
end

// Direct sum of subspaces of supersets of M.
Bom = @non By s

Bar < orths,,, (Bum) s

if By # 0 then

M, < M ; /* Record current subspace to return x/
k+k+1;
end
C+~Co®By;
if dim(C) = dim(vec(X)) then
\ break while ; /+ Found basis for the entire space. «/
end
end
l+1-1
end
B+ k-1; /+ Number of subspaces. */
return Bys, , By, - -+, By

E ARCHITECTURES

E.1 IMAGES
An example CG-invariant CNN architecture is depicted in Figure|6| Majority of the CNN architecture

remains the same with the exception that the filters are obtained using the bases of the subspaces
obtained in Theorem@for the given set of groups. Figure @shows example subspaces along with
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Figure 7: An example architecture of CG-invariant feedforward network.

their basis vectors when the groups are just G, and Golor, and the kernel size is 3 x 3 applied over
an input with 3 channels. One can similarly obtain these subspaces for other groups, different kernel
sizes and different number of input channels. Then, the filter is obtained as a linear combination of
these basis vectors, where the coefficients form the learnable parameters. The G-invariance of the
filter then depends upon which of these coefficients are nonzero. Once the filter is obtained, it is
convolved with the image or the feature maps. This will ensure that the model can be CG-invariant to
transformations of smaller patches in the image if needed.

Max-pooling layers function in the standard way. After all the convolutional and max-pooling layers,
we use a sum-pooling layer over the entire channel to ensure that the model can be invariant to the
transformations (e.g., rotations) on the whole image if needed. Finally, any number of dense layers
can be added after the sum-pooling layer.

In our experiments, we use the three groups Gior, Geolor aNd Gyertical-fiip tO construct the subspaces for
the filters of the first convolutional layer, but remove G in the further layers as we do not wish to
be invariant to channel permutation after the first layer.

E.2 SEQUENCES

A CGe-invariant architecture for sequences is depicted in Figure Consider a sequence X =
[€1,...,2,] € RP*™ of length n and groups Gy, .. ., G, as before. In the following discussion, we
will assume that the groups are permutation groups over the sequence elements. However, one could
also consider other groups over X.

First, each element of the sequence is passed through a shared feedforward network ¢ that returns
a representation Z € RP' *7, Then, Theoremﬁnds the bases for By, M C {1,...,m} until
all the p’n basis vectors are found covering the space RP' %" The weight vectors for the h-th
neuron of the CG-invariant layer is obtained as a linear combination of these basis vectors via the
learnable parameters (2 (Equation ). Finally, any number of dense layers can be stacked after the
CG-invariant layer for the final output.

F REGULARIZATION

F.1 EXAMPLE

Figure shows an example computation of the penalty in Equation . The example considers
an image task with m = 3 groups: Gior, Geol, Guntip-  Each cell in the figure shows one subset
M C {rot,col, vilip}. The subsets are arranged according to their levels of invariance, i.e., by
the size of |M|. For example, the topmost cell {rot, col, vflip} denotes the subspace with all the
invariances whereas the bottommost cell () denotes the subspace with no invariance.

The colors indicate the state of the parameters €2 at a single point in the optimization. The cells are
colored green or red depending on whether the subspace is used or unused respectively, i.e., whether
the parameters corresponding to the subspace are nonzero or not. The least invariant subspaces used

23



Published as a conference paper at ICLR 2021

LEVEL 3

LEVEL 2

LEVEL1

LEVEL o

Figure 8: (Best viewed in color) Describing the computation of the penalty. The cells denote different
subsets M C {rot, col, vflip}. Red colored cells denote that the parameters corresponding to these
subspaces are zero (i.e., the subspaces are unused) and the green colored cells denote otherwise (i.e.,
the subspaces are used). In this example, the least invariant subspaces used are in Level 1. The
penalty counts all the subspaces (used or unused) that are in higher levels (i.e., with [M]| > 1) and
adds it to the number of subspaces of the same level that are used.

at this point are in Level 1 (i.e., invariant to a single group). The penalty counts (a) all subspaces
with higher levels of invariance irrespective of whether the subspace is used or not, and (b) counts
all the used subspaces with the same level of invariance. The former penalizes the use of subspaces
lower in the partial order and ensures that subspaces with higher levels of invariance are used. The
latter approximates the effort to reach a higher level of invariance.

F.2 DIFFERENTIABLE APPROXIMATION
Recall that the regularization penalty R(£2) in Equation is given by,
RQ) = fi(Q) == |{M;: [M;| >1, 1<i< B} + > 1{|wn,.

i M; | =l
1<i<B

3>0}, (16)

where | = min{|M;| - 1{||was, |3 > 0}, 1 <i< B}.

R(Q) is clearly discrete but can be approximated by a differentiable formula. First, we replace the

indicator function 1{z > 0} in Equation with the approximation 1{z > 0} = 7z/(rz + 1),
where 7 > 1 is a temperature hyperparameter.

Then, in order to obtain R(Q2) = f;(£2) for the minimum [ defined in Equation , we use the
following recursion: R(2) = R,,(€2), and
Ri(2)=(1-06(R) Ri—1(2) + i )B(Q) 1=1,....,m,

with the base case Ry(2) = 0, and 5;(2) = i{ZNiJNi\:l, 1<icp lwn, 3 > 0} Bi(Q) is
approximately one if at least one neuron h has nonzero wy, j, parameters for some N; C {1,...,m}
of size [ (i.e., with [ groups). Then the recursion finds f;(2) with [ defined as the size of the least
invariant subspace used.

F.3 LIMITATION OF R(f2)

As explained in Section@ there could be overgroups (out of the total 2" groups considered) with
different levels of invariance, but penalized similarly by Equation . This scenario arises only in
cases when Theorem|3|does not construct subspace basis for all the 2™ overgroups, i.e., the basis for
vec(X') is found prior to that. In this section, we provide such an example scenario with sequence
inputs and the transposition groups considered in Section@
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=, 7 N >
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Figure 9: (Best viewed in color) The subspaces By for different M C {(¢, j) }1<i<;j<n indexing
the m = (’;) transposition groups G; ; over sequences of length n = 5 and dimension d = 1. Each
of the subspaces B); is of dimension 1. For each basis vector shown above, elements sharing the
same color have the same value. At the topmost level, we have the subspace with most invariance,
i.e., invariant to the full permutation group S,,. Following many levels with empty subspaces, we
have subspaces By, for M, = {(i,7) [ 4,7 € [n]\ {p},i < j}, where [n] = {1,...,n}. In other
words, the subspace By, is invariant to all transpositions except those that move index p. Note
that we have covered the entire space R™ with these n independent subspaces of dimension 1.

Let X € X = R” be a 1-dimensional sequence of length n. The transposition groups are
{Gi jhi<i<j<n, Where G; ; = {Tidentity, T3,;} and T; ; swaps positions ¢ and j in the sequence.
Given these m = (g) groups, we can use Lemmas and and Theorem to find the invariant
subspaces B) for subsets M C {(4,5) | 1 <14 < j < n} indexing the transposition groups. The
basis vectors for these subspaces constructed for sequence length n = 5 are visualized in Figure@

There are n 1-dimensional subspaces. Let the vectors byg, b\ (1} - .. b\ (,,_1} denote these n basis
vectors. The notation \ A means that the vector has the same value for all positions k € {1,...,n}\ A
(cf. Figure@). Let n = 5 and note that any weight vector w € R® can be written as,

w = aib\g + azb\ (1} + azby 23 + asby (33 + asby (4 - a7

where a € R5.

Let o' = (1,0,1,0,1)7. From a quick read of Figure|9} we see that the weight w’ obtained by
substituting o’ in Equation is such that w} = w} = Wl and w) = w}. For any input € R, the
neuron o (w’ Ty + b) is invariant to any permutation of x, x3 and x5, and, transposition of 5 and
x4. The penalty R(w’) = 3 as there are 2 subspaces used at the lowest level and there is 1 subspace
above the lowest level (see Equation ).

Now let &’ = (1,0,1,0,1.5)”. The weight w” obtained by substituting o’ in Equation is such
that wi = w4 = w! but wf # w/. For input ¢ € R5, the neuron o(w”?x + b) is invariant to any
permutation of Y, x¥ and x¥, but sensitive to the transposition of x5 and x4. The penalty R(w") = 3

as the same subspaces are used as before.

In the first case, with all the parameters being equal (especially oy = %), w’ lies in a smaller (more
invariant) subspace of span(b\g, b\ (21, b\ 143). In the second case, since a5 # o, the same does
not hold for w”. The penalty R(-), which only counts the subspaces used (in this case, byg, b\ 12}
and by 14}), is unable to distinguish between these two weight vectors w’ and w”, one clearly more
invariant than the other.
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In this specific case with transposition groups over sequences, one could add another penalty term that
regularizes the parameters «; to share the same value (e.g., entropy regularization of the parameters).
We leave further investigation into the general scenario with other groups for future work.

G DATASETS AND EMPIRICAL RESULTS

G.1 IMAGES

Datasets. We consider the standard MNIST dataset and its subset MNIST-34 that contains only the
digits 3 & 4 alone. We chose to experiment on the MNIST-34 dataset since it does not have digits that
can be confused with a rotation transformation (e.g., 6 and 9) or are invariant to some rotations (e.g.,
0, 1 and 8), thus avoiding any confounding factors while testing our hypothesis. We also experiment
on the full MNIST dataset to depict the scenario when the data does contain these contradictions.
First, we modify all the images in the dataset to have three RGB color channels and color each digit
red initially, i.e., all active pixels in the digit are set to (255, 0, 0). We sample X ™% from this dataset
with the target digit as its original label.

Groups. We consider m = 3 linear automorphism groups on images: the rotation group Gy =
{1 (©%), (90%) p(180°) 'P(270°)1 that rotates the entire image by multiples of 90°, the channel-
permutation group Geolor = {T* }aes, that permutes the three RGB channels of the image, and the
vertical flip group Gyertical-fiip = {T©) 7™} that vertically flips the image.

Tasks. For both MNIST and MNIST-34 datasets, we consider 4 classification tasks where each
task represents the case when the target Y is invariant to a different subset of {Grot, Gvertical-fiips Geolor }»
i.e., invariant to all three groups, to two, to one, invariant to none (and sensitive to the remaining
groups). We consider the following subsets Z: i) {rot, color, vertical-flip}, ii) {rot, vertical-flip},
iii) {color}, iv) (), and generate Gz = (U;czG;) as the join of the respective groups. Setting
D = {rot, color, vertical-flip} \ Z, we generate Gp = (UjepG;) from the join of groups in the
complement set (our choices ensure that Gz < Gp7, thus satisfying the conditions of Theorem.

Training data: XM is the canonically ordered (standard) image in the MNIST datasets. Recall
that the training data is sampled via an economical data generation process. Thus the training data
consists only of images under transformations that have an effect on the label, i.e., transformations
from Gp.

Recall from Equation (2) that the observed input is obtained as X = Ty, 7, o X ™%, a transformation
of the canonical input X Gid) - Since Gz < Gp (by construction), we have that any Ty, y, =
TUglUD o Ty, i.e., the transformation can be decomposed into one transformation from Gp followed
by another transformation from Gz. U% | Up in the subscript indicates that the transformation
Ty; up € Yz also depends on Up. Under the assumption of economic sampling of training data, in
all our experiments we sample a single value for TU}IUD € Gz: we simply use TU’I\UD = Tidentity
(one could consider any other transformation in Gz as well).

In conclusion, we obtain the observed image X in the training data by applying a random transfor-
mation from Gp to X®9 and then applying a constant transformation (e.g., Tigentity) from Gz to the
result. The task is to predict the original label of the image (i.e., the digit) and the transformation 77,
that was applied to obtain X (recall from Equation (3 that Y" is a function of both X" and Up).

For instance, if Gz = Gro, vertical-ip a0d Gp = Geolor, then the training data consists of upright and
unflipped images (as Ty u,, is chosen to be identity transformation) with different permutations
of the color channels (since random transformations are sampled from Gp) resulting in digits with
different colors. Then, the task is to predict the digit and its color.

Extrapolation task: The extrapolated test data consists of samples from the coupled random variable
X, i, (Definition|I). Unlike the training data that was economically sampled (i.e., with a single

transformation from G7), the extrapolated test data is obtained via the full range of transformations

in Gz. Recall from Definition |1fthat X, 5 = T5 ., o X (hid) " As before, we decompose
T, vp = TﬁiIUD o Ty, . However, there is no economic sampling for the test data: T~’I\Uv and

Ty, are sampled randomly from Gz and Gp respectively.
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Table 2: (MNIST-34.) Validation and Extrapolation test accuracies (%) with 95% confidence intervals
for different CG-regularization strength A in Equation . A is chosen only based on the validation
accuracy: maximum A with validation accuracy within 5% of the best validation accuracy (bold
values indicate the performance of this choice of \).

T C {rot, color, vflip}
rot,color,vilip rot,vflip color 0
Model A Val. acc (%)  Test acc (%) Val. acc (%)  Test acc (%) Val. acc (%) Testacc (%) Val. acc (%) Test acc (%)
VGG +CG-reg 0.0 9994 (0.17) 49.51(2.36) 99.83(0.09) 43.57(3.69) 97.15(0.27) 15.71(5.46) 95.65(0.39) 96.30 (0.68)
0.1 99.92(0.09) 78.72(25.75) 99.86(0.21) 73.98(16.33) 96.48 (0.77) 9627 (1.01) 94.95(0.54) 95.56 (0.61)
1.0 99.71(0.22) 85.42(29.66) 99.77(0.25) 75.64(20.52) 96.12(1.26) 96.20 (1.11) 94.01 (1.51) 94.42(1.38)
2.0 99.55(0.33) 94.88(0.84) 99.56(0.66) 82.59(28.92) 9523(0.99) 95.61(1.75) 94.05(1.50) 94.49 (1.49)
10.0 99.00 (1.18) 94.89(7.49) 98.43(2.00) 95.78(7.11) 93.34(8.42) 94.16(6.43) 88.42(19.36) 88.68 (20.13)

Table 3: (MNIST.) Validation and Extrapolation test accuracies (%) with 95% confidence intervals
for different CG-regularization strength A in Equation . A is chosen only based on the validation
accuracy: maximum A with validation accuracy within 5% of the best validation accuracy (bold
values indicate the performance of this choice of \).

Z C {rot, color, vilip}
rot,color,vflip rot,vlip color 0
Model A Val. acc (%)  Test acc (%) Val. acc (%)  Test acc (%) Val. acc (%) Testacc (%) Val. acc (%) Testacc (%)

VGG +CG-reg 0.0 99.17(0.17) 11.93(1.87) 98.80(0.14) 2581(0.92) 91.50(0.35) 4.19(2.12) 91.80(0.60) 91.60(0.32)
0.1  98.62(0.05) 29.48(0.98) 98.34(0.17) 30.12(4.05) 90.11(0.58) 87.23(3.68) 88.30(1.21) 88.48(1.17)
1.0 98.49(0.24) 4423 (15.45) 98.29(0.21) 40.13(4.83) 90.24(0.46) 90.23(0.99) 88.76(1.28) 88.65 ( 1.30)
20 9845(0.13) 55.24(2.29) 98.34(0.34) 47.14(15.17) 89.98(0.24) 89.71(0.89) 89.50(1.35) 89.45(1.43)
10.0  97.76 (0.74) 64.99 (2.76) 95.21(6.55) 62.68 (6.02) 88.80 (2.11) 88.69 (2.11) 90.54 (1.04) 90.89 (0.43)

In conclusion, we obtain the observed image X in the test data by applying a random transformation
from Gp to XMY and then applying a random transformation from Gz to the result. The task
is the same as in the training data: to predict the original label of the image (i.e., the digit) and
the transformation 7, that was applied to obtain X. Note that the label does not depend on the
transformation T@IUD € Gz that was applied.

Once again, if Gz = Giot, vertical-flip a0d Gp = Geolor, then the extrapolated test data consists of images
randomly rotated, flipped and channel permuted, while the task is the same: predict the digit and
its color.

In order to evaluate the models, we use 5-fold cross-validation procedure as follows. We divide the
training and test datasets that are pre-split in MNIST and MNIST-34 datasets into 5 folds each. We
use the above procedure to transform the training data and the test data. Then in each iteration ¢ of the
cross-validation procedure, we leave out i-th fold of the transformed training data and -th fold of the
extrapolated test data. Further, we use 20% of the training data as validation data for hyperparameter
tuning and early stopping.

Baselines and Architecture. For all methods, we use a VGG architecture (Simonyan and Zisser
man}|2014) with 8 convolutional layers each having 128 channels except the first layer which has
64 channels. All convolutional layers have a receptive field of size 3 x 3, stride 1 and padding 1.
A max-pooling layer is added after every two convolutional layers. Two feedforward layers at the
end give the final output. We compare our approach with the standard CNNs and Group-equivariant
CNNs (G-CNNs) (Cohen and Welling}|2016) with the p4m group. We modified G-CNN such that it
has invariances to all the 3 groups strictly enforced via a) coset-pooling (Cohen and Welling}2016)
after each layer and b) adding together the 3 input RGB channels. For our approach, we replace the
standard convolutional layer in the VGG architecture by CG-invariant layers with bases constructed
from Grot, Geolor aNd Giertical-ip- An example architecture with only 2 convolutional layers is shown in
Figure[6]

We optimize all models using SGD with momentum with learning rate in {1072, 1073,107%} and a
batch size of 64. We use early stopping on validation loss to select the best model. Further, we use
validation loss to select the best set of hyperparameters for each model. We choose the maximum
value of \ with validation accuracy within a 5% threshold of the maximum validation accuracy
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Table 4: Sequence tasks. The first column defines the target Y for a given sequence (X;)1°,. The
second column denotes Gz, the group of transformations to which Y is invariant. Recall that G is
constructed as the join of a subset of (120) transposition groups.

Target Y Gz 9o

Vit = Y10y X ({Gijh<icj<n) {1d}

Visk = 32100 Xi ({Gije<i<ji<n) {1d}

Yiasks = Zle(Xgi — X2i1) ({Gi,it2r hi<i<itor<n) {1d}

Yases = 30,0, [Tj—y 1(X; > 20)  {1d} {Gijh<icj<n)

obtained from any value of A. Tables[2|and show the effect of regularization strength on the
performance of the model. We observe that A = 10 performs considerably well across all tasks.

G.2 SEQUENCES

Datasets. For sequence tasks, we generate X M9 = (X;)10 as a sequence of n = 10 canonically
ordered integers uniformly sampled with replacement from a fixed vocabulary set {1,...,99}. The

canonical ordering is fixed for a given set of integers sampled: the corresponding sequence X ™% is
always either in an increasing order or a decreasing order.

Groups. We consider m = (g) permutation groups for all the pair-wise permutations:
G1,2,623,G1,3,---,Gn—1,n, Where G; ; = {Tigenity, T3,;} and T; ; swaps positions ¢ and j in
the sequence. For Z C {(1,2),(2,3),(1,3),...,(n — 1,n)}, Gz is defined as before as the join
(Ug,j)ez Gij)- We choose 4 different subsets Z of the given m groups indicated by the second
column of Table For our choices of Z # (), we set D = () to ensure that Gz < Gpyz,ie., Grisa
normal subgroup of Gpuz.

Tasks. The label for the sequence X ™9 is obtained by applying an arithmetic function to X ™9 that
is invariant to the chosen group Gz. The arithmetic functions are given in the first column of Table
Yiask.1 18 invariant to any permutation of the input elements X;, 1 < i < n. Y5 1S invariant to any
permutation of input elements X; with indices « > 1 but sensitive to permutations that move X;.
Yiask-3 1S invariant to permutations that move elements at even indices to even indices and elements
at odd indices to odd indices respectively. Finally, Y4 1S sensitive to all permutations (i.e., no
invariance).

Training data: Recall that X ™% is in a sorted order. Since the training data is sampled economically, it
consists only of sequences under transformations that have an effect on the label, i.e., transformations
from Gp. The observed input is obtained as X = Ty, yp, 0 X (hid) "3 transformation of the sorted
input XM Since Gz < Gp (by construction), we have that any Ty, v, = Tus1up © Tups
i.e., the transformation can be decomposed into one transformation from Gp followed by another
transformation from G7. U% | Up in the subscript indicates that the transformation TU’I\UD € Gz also
depends on Up. Under the assumption of economic sampling of training data, in all our experiments
we sample a single value for TU’I\UD € Gr: we simply use TUglUD = Tidentity-

In conclusion, we obtain the observed sequence X in the training data by applying a random
transformation 7y, € Gp to X (hid) and then applying a constant transformation (e.g., Tigentity) from
Gz to the result. The target Y is computed by applying the arithmetic function corresponding to the
task (see Table to Ty, o XM (recall from Equation (3) that Y is a function of both X "9 and
Up).

Extrapolation task: The extrapolated test data consists of samples from the coupled random variable
X, i, (Definition|I). Unlike the training data that was economically sampled (i.e., with a single
transformation from G7), the extrapolated test data is obtained via the full range of transformations

in Gz. Recall from Definition |1fthat X, 5 = T5 ., o X (hid) " As before, we decompose
T, vp = TﬁiIUD o Ty, . However, there is no economic sampling for the test data: T~’I\Uv and

Ty, are sampled randomly from Gz and Gp respectively.
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Table 5: (Sequence tasks) Extrapolation test accuracies (%) with 95% confidence intervals for all
the models (bold means p < 0.05 significant). The standard sequence models cannot extrapolate
when Z # () whereas the forced G-invariant models cannot unlearn the invariances and fail when
TCA{1,...,m}.

Gr

{Gish<ici<n)  ({Giglecicicn)  ({Giitarti<icivoecn) {1d}
Model
DeepSets (Zaheer et al.}2017) 100.00 ( 0.00) 2.36 (2.37) 0.97 (0.60) 16.12 (8.21)
Janossy pooling (Murphy et al./2018) 96.64 ( 3.13) 9.55(1.61) 0.78 (0.52) 21.22 (2.94)
Set Transformer (Lee et al.|[2019) 99.57 (0.33) 10.68 ( 1.49) 0.75(0.28)  23.38 (1.88)
Transformer (Vaswani et al.}|2017) 20.26 (32.08) 12.15 (16.05) 0.85(0.37) 100.00 ( 0.00)
GRU (Cho et al.]2014) 0.48 (0.48) 0.47 (0.38) 0.90 (0.77)  99.41 (1.58)
FF + CG-reg. (ours) 100.00 ( 0.00) 42.08 (18.99) 71.85 (26.61)  95.70 ( 3.05)

Table 6: (Sequence Tasks) Validation and Extrapolation test accuracies (%) with 95% confidence
intervals for different CG-regularization strength A in Equation . ) is chosen only based on the
validation accuracy: maximum A with validation accuracy within 5% of the best validation accuracy
(bold values indicate the performance of this choice of \).

G1
{Gijti<ici<n) ({Gij}o<ici<n) {Giivar hi<icitor<n) {1d}
Model A Val. acc (%) Test acc (%) Val. acc (%) Test acc (%) Val. acc (%) Test acc (%) Val. acc (%) Test acc (%)

FF+CG-reg. 0.0 80.80(84.15)  54.34(87.19) 100.00 (0.00) 80.36 (74.04)  99.95(0.10) 2278 (14.52) 99.92(0.27) 99.86 ( 0.15)
0.1 80.83(84.04) 59.18 (91.12) 100.00 (0.00) 65.13(80.43)  99.99 (0.05) 60.66 (49.83) 99.95(0.10)  99.98 ( 0.05)

1.0 80.72(84.48) 80.03(87.52)  99.04(4.22) 61.81(66.24) 100.00(0.00) 68.34(36.98) 99.81 (0.55) 99.76 ( 0.65)

20 8256(72.85)  63.16(99.44) 100.00 (0.00) 77.97 (48.87)  99.99 (0.05) 69.20 (31.40) 99.46 (0.53)  99.37 (0.53)

100 80.97 (74.10) 62.83 (100.17)  98.14 (2.71) 42.08 (18.99) 100.00 (0.00) 71.85(26.61) 95.56 (3.34)  95.70 ( 3.05)

100.0  100.00 (0.00) 100.00 (0.00) 15.65(3.63)  2.29(0.96) 93.42(14.90) 27.64(24.85) 65.92(10.38) 6542 (10.30)

In conclusion, we obtain the observed sequence X in the test data by applying a random transformation
Tu, € Gp to XM and then applying a random transformation from Gz to the result. The target Y is
computed in a similar fashion as in the training data by applying the appropriate arithmetic function
to Ty, o X ™9, Note that Y is invariant to Gr.

Example: Consider the the first row of Table with Z = {(, j) }1<i<j<n. 1.€., it contains all the
m = (g‘) groups. Then, the group Gz is simply the full permutation group over n elements. The
target is defined as the sum of elements (which is fully permutation-invariant). The sequences in
the training data are always sorted (because of the economic sampling of training data), whereas the
sequences in test data have arbitrarily different permutations (by sampling random transformations
from G7). The task is simply to compute the sum of the elements of the sequence.

Sizes of the training data and the extrapolated test data are fixed at 8000 and 2000 respectively. We
repeat all the experiments for 5 different random seeds.

Baselines and Architecture. We compare our approach with a) standard sequence models, specifi-
cally Transformers (Vaswani et al.;|2017) and GRUs (Cho et al.;|2014)), and b) forced permutation-
invariant set models, specifically DeepSets (Zaheer et al.||2017), SetTransformer (Lee et al.|[2019)
and Janossy Pooling (Murphy et al.|[2018). An example of the proposed CG-invariant feedforward
architecture is depicted in Figure

We optimize all models using Adam (Kingma and Baj |2014) with an initial learning rate in
{1072,1073,10~*} and a batch size of 128. We use validation loss for early-stopping and to
select the best hyperparameters for all models. Once again, we choose the best value for the CG-
regularization strength A by choosing the maximum value of A with validation accuracy within 5% of
the maximum validation accuracy obtained from any A. Table E]shows the effect of regularization
strength on the performance of the model. We observe that although A = 10 performs comparably
to the rest in validation accuracy and is chosen consistently, it does not achieve the best possible
extrapolation accuracy.
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Table[5]shows the complete set of results for all the models. The table clearly shows the issue with
standard sequence models (cannot extrapolate when Z # ()) and the issue with forced G-invariant
models (fail when Z C {1,...,m}). In Table[4|of the main text, we show the results for the best
model out of all the permutation-invariant models in the column Best FF+G-inv.
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