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A CLASSIFICATION OF FINITE SIMPLE AMENABLE
Z-STABLE C*-ALGEBRAS, II: C*-ALGEBRAS WITH
RATIONAL GENERALIZED TRACIAL RANK ONE

GUIHUA GONG, HUAXIN LIN AND ZHUANG NIU

Presented by George A. Elliott, FRSC

ABSTRACT. A classification theorem is obtained for a class of unital
simple separable amenable Z-stable C*-algebras which exhausts all possi-
ble values of the Elliott invariant for unital stably finite simple separable
amenable Z-stable C'*-algebras. Moreover, it contains all unital simple sep-
arable amenable C*-algebras which satisfy the UCT and have finite rational
tracial rank.

RiESUME. Dans cet article et le précédent on donne une classification
complete, au moyen de I'invariant d’Elliott, d’une sous-classe de la classe
des C*-algebres simples, moyennables, séparables, & élément unité, absor-
bant ’algebre de Jiang-Su, et satisfaisant au UCT, qui épuise I’ensemble
des valeurs possibles de I'invariant pour cette class. La partie I réalise une
grande partie de ce projet, et la partie II 'acheve.

This is the second part of the paper entitled “A classification of finite simple
amenable Z-stable C*-algebras” (see [21]).
The main theorem of this part is the following isomorphism theorem:

Theorem (see Theorem 29.8). Let A and B be two unital separable simple
amenable Z-stable C*-algebras which satisfy the UCT. Suppose that ¢TR(A ®
Q) <1and gTR(B® Q) < 1. Then A = B if and only if

Ell(A4) = EII(B).

See Section 29 for a brief explanation. We also refer to the first part [21], in
particular, Section 2 of [21], for the notations and definitions.
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22. Construction of Maps In this section, we will introduce some technical
results on the existence of certain maps.

Recall that € is the class of C*-algebras which are 1-dimensional NCCWs (see
3.1 of [21]). Let A be a unital simple C*-algebra. We say A € B, if the following
property holds: Let e > 0, let a € A} \ {0}, and let F C A be a finite subset.
There exist a non-zero projection p € A and a C*-subalgebra C' € € with 1o =p
such that

lzp — pz|| < e for all x € F,
(e22.1) dist(pxp,C) < ¢ for all x € F, and
(e22.2) 1-p<a.

If C' as above can always be chosen in Cp, that is, with K7(C) = {0}, then we
say that A € By.

Recall that we refer to the first part [21], in particular, Section 2 of [21], for
the notations and definitions.

LEMMA 22.1. Let X be a finite CW complex, let C = PM(C(X))P, and let
Ay € By be a unital simple C*-algebra. Assume that A = A1 @ U for a UHF-
algebra U of infinite type. Let a € KK .(C,A)™ (see Definition 2.10 of [21]).
Then there exists a unital monomorphism ¢ : C — A such that [¢] = a. Moreover
we may write o = @l @ @i, where ¢, : C — (1 — p,)A(l — p,) is a unital
monomorphism, ¢l : C — p, Ap, is a unital homomorphism with [o!] = [®] in
KK(C,p,Apy,) for some homomorphism ® with finite dimensional range, and

lim max{7(1 —p,): 7€ T(A)} =0 for all 7 € T(A),

n—oo
where p, € A is a sequence of projections.

Proor. To simplify the matter, we may assume that X is connected. Suppose
that the lemma holds for the case C = M (C(X)) for some integer k > 1.
Consider the case C'= PM;,(C(X))P. Note C@XK = C(X)®X. Let ¢ € M,,(A)
be a projection (for some integer m > 1) such that [¢] = a([1r,(c(x))]). Put
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Ay = gM,,(A)g. Then o € KK (M(C(X)),A2)tt. Let v : M (C(X))
qM,,(A)g be the map given by the lemma for the case that C = My (C(X)).
Note now C' = PMk(C(X))P Let 1,/}, = 1;[}|C Since P < 1Mk(C(X))7 1/1/(10)
Y (P) < q. Moreover, [¢'(1¢)] = [1a]. Since A = A; ® U, there is a unitary
v € Ag such that v*¢'(1g)v = 14. Define ¢ = Adv o1)’. We see that the general
case reduces to the case C = My (C(X)). This case then reduces to the case
C=0C(X).

Since quasitraces of C' and A are traces (see 9.10 of [21]) by Corollary 3.4 of
[3], a(kerpc) C kerpa.

Since K;(C) is finitely generated, i = 0,1, KK(C,A) = KL(C,A). Let a €
KL.(C,A)™ . We may identify o with an element in Homy (K(C), K(A)) by a
result in ([6]).

Write A = limy,00(A1 @ My, 00 nt1), Where rp|rnp1, The1r = myr, and
tnnt1(a) =a® 1y, ,n=1,2,.. Since K.(C) is finitely generated and conse-
quently, K (C) is finitely generated modulo Bockstein A operations, there is an
element oy € KK (C, A1 ® M,., ) such that & = ay X [1,,], where [1,] € KK(A; ®
M., , A) is induced by the inclusion ¢, : 41 ® M,., — A. Increasing n, we may as-
sume that a; (kerpc) C kerpa, g, and further that oy € KK.(C, A; @M, )t
Replacing A; by A; ® M, , we may assume that o = oy x [¢], where a; €
KK.(C,A;)™ and +: Ay — A is the inclusion.

It induces an element &; € KL(C @ U,A® U). Let Ko(U) = D, a dense
subgroup of Q. Note that K;(C ® U) = K;(C) ® D, i = 0,1, by the Kiinneth
formula.

We verify that a1 (Ko(C @ U)4+ \ {0}) € Ko(A® U)4 \ {0}. Consider z =
Z;ll r;, ®d; € K()(C® U)+ \ {0} with z; € Ko(C) and d; € ]D), 1=1,2,...m
There is a projection p € M, (C') for some r > 1 such that [p] = z. Let t € T(C);
then

1

Hv

(€22.3) > t(xi)d; > 0.
=1

It should be noted that, since C = C(X) and X is connected, t(x;) € Z and
t(z;) = t'(x;) for all ¢,¢ € T(C). Since a1([1¢]) = [1a,], T 0 a1(x;) = t(x;) for
any 7 € T(Ay) and ¢t € T(C). By (e22.3),

(e22.4) Zroal x;)d; thzd >0
i=1

for all 7 € T(A;). This shows that &; is strictly positive. For any C*-algebra A’,
in this proof, we will use j4 : A" = A’®U for the homomorphism j4/(a) = a®1y
for all a € A’. Evidently,

(6225) a:&l Ojc :jAloal,

Let 9 := pi'py? - -+ be the supernatural number associated with U (and D),
where each p; is a distinct prime number. If there are infinitely many of them, we
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may also write 0 := Hfil l;, where each [; is an integer. We define m; := lipy,
so that the prime number is not a factor of l;, and m; := l;pg, so that pg, is not
a factor of l; and mymsy---m;_y. Since py, — 00 as i — 00, lim;_, % = 0.
Moreover Hf; m; = 0. If there are only finitely many distinct p;’s, write 0 =
Py ph? ~-p?fpzcl’~~pz?, where n; < oo (1 <@ < f). Let I1 := p}'py? ~~p?f,
my = lipg, = Pkys li = PhyPhy - P, and m; := py pp - py, for @ > 2. Then
0= Hzoil lz = Hfil m; and hml_wo % = OQ.

Write U = limp, 00 (M, ,2,), where 1 = 1, and r, = H?:_ll m; (n > 1),
Tnyl = MpTy and 1,(a) = a® 1y, for a € M, , n = 1,2,... We may assume
that 11 = 1. Let v} = 1, 7, = [[}5'l; (n > 1). Let Uy := limy o0 (M, ,7,),
where 2;,(b) = b® M, for b€ M,,.

Let m, : M,y — M, by ni(a) = a ® 1,1, for a € M,,, respectively. Then
{nn} induces a unital homomorphism 7 : U3y — U which induces an isomorphism
from Ky (Uy) onto Ko(U).

Recall that we assume that X is connected. Fix a base point xg € X. Let Cy :=
Co(X \{z0}). Then C is K K-equivalent to C& Cy and K(C) = K(C) & K(C)).
Let {z,,} be a sequence of points in X \ {z¢} such that {zy,zr11,...,Tpn,...} is
dense in X for each k and each point in {z,} repeated infinitely many times.
Let B = lim,,—,oo (Cy, := M, (C), ), where

wn(f) = dlag(fa f"'afaf(xl)vf(‘rQ)a "'7f(xmn—ln)) for all f € Mrn(c)’
—

In

0,...,0) € M,

;2,.... Note that v, is injective. Set e, = diag(1as, ., , it (O,

t is standard that B has tracial rank zero (see [23] and also, 3.77 and 3.79
of [31]). Moreover, K(B) = K(U) ® K(Co ® Uy) and Ko(B)y+ = {(d,2) : d €
D4,z € Ko(Co®Up)}U{(0,0)}. Note that B is a unital simple AH-algebra with
no dimension growth, with real rank zero, and with a unique tracial state. Also
h =100 : C — B gives [h]|g(c)(2) = 2 ® 1p for z € K(C) and [h]|g(cy)(z) =
x® [1y,] for x € K(Cp). Let g : Co@U; — Co @ U be defined by ng := id¢, @1.
Define k € KL(B, B) by k|gcgv) = idk(cou) and &|kc,u,) = Mo- Note that
k€ KL(B,B)*". Recall K(C®U) = K(CoU)® K (CoxU). One may also view
k as an element in Homy (K(C@U)® K(Co@U,), K(C®U)) = KL(B,C®U).
It has an inverse k! € KL(C ® U, B). We have £~ o [jc] = [h].

Note that 1—1,, o0 (€,) commutes with the image of h for all n > N. Moreover,
(1= oe (en))H(0) (1m0 (€0)) = e (1= )01 () (1—r)) for all c €
C. Therefore the map (1 — 1y, 00 (€n))R(C) (1 — n 0 (en)) has finite dimensional
range.

We also have &; ok € KL.(B,A)*", where (recall) A = A; ® U. We also
note that B has a unique tracial state. Let v : T(A) — T(B) be defined by
(1) = to where tg € T'(B) is the unique tracial state. It follows that &; o x and
~ are compatible. By Corollary 21.11 of [21], there is a unital homomorphism
H : B — A such that [H] = &; o k. Define ¢ : C — A by ¢ = H o h. Then, ¢ is
injective, and, by (e22.5) and [h] = k! o [jc] , we have [p] = a.
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To show the last part, define ¢, = ¥pt1,00(en) € B,n=N+1,N +2, ...
Define p, =1 — H(qn), n = N + 1, N +2,.... One checks that

. .l
(€22.6) nhﬁngo max{7(1 —p,): 7€ T(A)} = nl;rrgo i 0.
Note that for n > N, ¢, commutes with the image of h and the homomorphism
(1 —=¢n)h(1 —g,) : C — (1 —¢,)B(1 — ¢,) has finite dimensional range. Define
90;1 10— (1 - pn)A(l _pn) by QD;L(f) = H(qn)H ° h(f)H(Qn) for f € C. Define
o"(f) = (1 =pn)H oh(f)(1 - pp), which is a point-evaluation map. The lemma
follows. O

We also have the following:

LEMMA 22.2. Let C = Mp(C(T)) and let A be a unital infinite dimensional
simple C*-algebra with stable rank one and with the property (SP). Then the
conclusion of 22.1 also holds for a given a € KK,(C, A)TT.

PROOF. Let p; € C be a minimal rank one projection. Since ka([p1]) =
a([1l¢]) = [14], A contains mutually equivalent and mutually orthogonal projec-
tions ey, s, ..., g such that Zle e; =14. Thus A = My (A’), where A’ = e Ae;.
Since e; Ae; are unital infinite dimensional simple C*-algebras with stable rank
one and with (SP), the general case can be reduced to the case that k = 1. Fix 1 >
d > 0. Choose a non-zero projection p € A such that 7(p) < ¢ for all 7 € T(A).
Note K;(pAp) = K1(A), since A is simple. Let ay : K7(C(T)) — K;(pAp) be
the homomorphism given by . Let z € C(T) be the standard unitary generator.
Let = a1([2]) € K1(pAp). Since pAp has stable rank one, there is a unitary
u € pAp such that [u] = = in K;(pAp) = K;1(A). Define ¢’ : C(T) — pAp
by ¢'(f) = f(u) for all f € C(T). Define ¢” : C(T) — (1 — p)A(1 — p) by
O'(f) = f(1)(A = p) for all f € C(T) (where f(1) is the point evaluation at 1
on the unit circle). Define ¢ = ¢’ ® ¢” : C(T) — A. The map ¢ verifies the
conclusion of lemma follows. O

COROLLARY 22.3. Let X be a connected finite CW complex, let
C = PM,,(C(X))P, where P € M,,(C(X)) is a projection, let A1 € By be a
unital separable simple C*-algebra which satisfies the UCT, and let A = A, ®U,
where U is a UHF-algebra of infinite type. Suppose that o € KK (C, A)™" and
v:T(A) = Ty (C(X)) is a continuous affine map. Then there exists a sequence
of contractive completely positive linear maps h,, : C — A such that

(1) limy oo ||An(ad) — hy(a)hy, (b)|] = 0, for any a,b € C,

(2) for each hy,, the map [hy] is well defined and [h,] = «, and

(3) Tty s msc{ 7 0 B (f) = 3()(f)] - 7 € T(A)} =0 for any f € C.

PrROOF. By Theorem 21.10 of [21], one may assume that A is a unital C*-

algebra as described in Theorem 14.10 of [21]. It follows from Lemma 22.1 that
there is a unital homomorphism h,, : C'— A such that [h,] = a. Moreover,

hy = R, @ b,
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where h/ : C' = p,Ap, is a homomorphism with [h”] = [®'] in KK (C,p,Ap,)
for some point evaluation map ® , where p,, is a projection in A with 7(1 — p,)
converging to 0 uniformly as n — oo. We will modify the map h,, = h!, ® h!’ to
get the homomorphism.

We assert that for any finite subset H C Cs 4, and € > 0, and any sufficiently
large n, there is a unital homomorphism h,, : C' — p,Ap, such that [h,] = [®]
in KK(C, p,Ap,) for a homomorphism ® with finite dimensional range, and

|70 Bn(f) —(1)(f)| < € for all 7€ T(A)

for all f € H. The corollary then follows by replacing the map h;, by the map
h,—of course, we use the fact that lim,,_,, 7(1 — p,) = 0.

Let 31 1 (in place of H;y,1) be the finite subset of Lemma 17.1 of [21] with
respect to H (in place of H), €/8 (in place of o), and C (in place of C). Since
Y(T(A)) C T¢(C(X)), there is 01,1 > 0 such that

Y(1)(h) > 01,1 for all h € Hy; for all 7€ T(A).

Let 3(; 2 C C* (in place of 3 2) be the finite subset of Lemma 17.1 of [21]
with respect to o1 1. Since y(T'(A)) C T¢(C(X)), there is 01,2 > 0 such that

Y(7)(h) > 01,2 for all h € Hy o for all 7€ T(A).

Let M be the constant of Lemma 17.1 of [21] with respect to o1 2. By Lemma
16.12 of [21] (also see the proof of Lemma 16.12 of [21]) for sufficiently large n,
there are a C*-subalgebra D C p,Ap,, C A such that D € Gy, and a continuous
affine map ' : T(D) — T(C) such that

|7/(%T|D)(f) —y(7)(f)| < €/4 for all T € T(A) for all f e H,

where p = 1p, 7(1 — p) < €/(4 + €), and further (see part (2) of Lemma 16.12 of
[21])

(22.7) Y (7)(h) > o1 for all T € T(D) for all h € 3;;, and
(22.8) v (T)(h) > 012 for all 7 € T(D) for all h € H; o.

Since A is simple and not elementary, one may assume that the dimensions of
the irreducible representations of D are at least M. Thus, by Lemma 17.1 of
[21], there is a homomorphism ¢ : C' — D such that [p] = [®] in KK(C, D) for
a point evaluation map ®, and that

ITow(f) =+ (T)(f)| < €/4 for all f e H for all 7€ T(D).
Pick a point 2 € X, and define i : C — p,Ap, by

= f@)(pn—p) @ (f) for all feC.

Then a calculation as in the proof of Theorem 17.3 of [21] shows that the homo-
morphism h!, @ h verifies the assertion. 0



A CLASSIFICATION OF FINITE SIMPLE AMENABLE Z-STABLE C*-ALGEBRAS, IT 457

COROLLARY 22.4. Let C € H (see Definition 14.5 of [21]) and let A; € By be a
unital separable simple C*-algebra which satisfies the UCT and let A = A1 @ U
for some UHF-algebra U of infinite type. Suppose that « € KK (C, A)*+ A
U(C)/CU(C) = U(A)/CU(A) is a continuous homomorphism, and y : T(A) —
T¢(C) is a continuous affine map such that o, A, and v are compatible. Then
there exists a sequence of unital completely positive linear maps h,, : C — A such
that

(1) limy, oo ||An(ab) — hy(a)hy, (b)]] =0 for any a,b € C,
(2) for each h,, the map [hy] is well defined and [h,] = «a,

EB) limy, s 0o max{|7 0 hy (f) = v(7)(f)| : 7€ T(A)} =0 for all f € C, and
4

) limy, o dist(hf (@), A (ﬂ))if 0 for any u € U(C).

PROOF. Let € > 0. Let U be a finite subset of U(C) such that U generates
Jo(K1(C)), where J.(K1(C)) is as in Definition 2.16 of [21]. Let ¢ > 0, § > 0
and G be the constant and finite subset of Lemma 21.5 of [21] with respect to
U, €, and A (in the place of a)). Without loss of generality, one may assume that
d<e

Let F be a finite subset such that ¥ D G. Let H C C be a finite subset
of self-adjoint elements with norm at most one. By Corollary 22.3, there is a
completely positive linear map h' : C' — A such that A’ is F-é-multiplicative, [h']
is well defined and [h'] = «, and

(€22.9) [r(W(f)) =A(D)(Hl <€, TeT(A), feI

By Theorem 21.9 of [21], the C*-algebra A is isomorphic to one of the model
algebras constructed in Theorem 14.10 of [21], and therefore there is an inductive
limit decomposition A = li_r>1r1(Ai7 ©i), where A; and ¢; are as described in Theo-
rem 14.10 of [21]. Without loss of generality, one may assume that h'(C) C A;
for some . Therefore, by Theorem 14.10 of [21], the map ¢; - o A’ has a decom-
position

Pi,00 © h/ = wo 5> 'Qljl
such that g, 11 satisfy (1)—(4) of Lemma 21.5 of [21] with the o and ¢ above.

It then follows from Lemma 21.5 of [21] that there is a homomorphism & :
C — egAeg, where eg = 1)9(1¢), such that

(i) @ is homotopic to a homomorphism with finite dimensional range and

(€22.10) [®].0 = [tho], and
(ii) for each w € U, there is g, € Ug(B) with cel(gw) < € such that
(€22.11) M@)™H® @ Y1) (@) = Gu-

Consider the map h := ® @ ¢;. Then h is F-e-multiplicative. By (e 22.10),
one has

[h] = [tho] ® [1h1] = [I'] = cv.
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By (e22.9) and Condition (4) of Lemma 21.5 of [21], one has, for all f € 3,

[7(h(£)) = ()P < IR (f) = 1) ()] +0 < e+ < 2.

It follows from (e22.11) that, for all u € U,

dist(h(w), \(7)) < e.

Since ¥, H, and € are arbitrary, this proves the corollary. O

COROLLARY 22.5. Let C € H and let Ay € By be a unital separable simple
C*-algebra which satisfies the UCT, and let A = A1 @ U for some UHF-algebra
U of infinite type. Suppose that o € KL, (C,A)™ and X : U(C)/CU(C) —
U(A)/CU(A) is a continuous homomorphism, and v : T(A) — Ty (C) is a con-
tinuous affine map such that a, X, and v are compatible. Then there exists a
unital homomorphism h : C — A such that

1) (A= e,
(2) Toh(f)=~(r)(f) for any f € C, and
(3) hi = A

PROOF. Let us construct a sequence of unital completely positive linear maps
hp : C — A which satisfies (1)—(4) of Corollary 22.4, and moreover, is such
that the sequence {h,(f)} is Cauchy for any f € C. Then the limit map h =
lim,, o0 Ay, is the desired homomorphism.

Let {F,,} be an increasing sequence in the unit ball of C' with its union dense
in the unit ball of C. Define A(a) = min{y(7)(a) : 7 € T(A)}. Since 7 is
continuous and T(A) is compact, the map A is an order preserving map from
C17\ {0} to (0,1). Let G(n),H1(n), Ha(n) C C, U(n) C Us(C), P(n) C K(O),
7 (n), v2(n), and d(n) be the finite subsets and constants of Theorem 12.7 of
[21] with respect to F,, 1/2"+1 and A/2. We may assume that §(n) decreases
to 0if n — oo, P(n) C P(n+1),n=1,2,..., and J,—, P(n) = K(C).

Let G4 C G2 C --- be an increasing sequence of finite subsets of C such
that (J G, is dense in C, and let U; C Uy C --- be an increasing sequence
of finite subsets of U(C) such that |JU, is dense in U(C). One may assume
that G, D G(n)UG(n —1), G, D Hi(n) UK (n 4+ 1) UHa(n) UHa(n — 1), and
U, D Un)UU(n —1).

By Corollary 22.4, there is a G1-0(1)-multiplicative map h} : C'— A such that

(4) the map [h]] is well defined and [h;] = «,

(5) |70 ha(f) = () ()] <min{y (1), 3A(f) : f € H} for any f € Gy, and
(6) dist(h}(w), \(@)) < Y2(1) for any u € U,.

Define hy = h). Assume that hq, ho, ..., h,, : C' — A are constructed such that

(7)  hy is G;-6(¢)-multiplicative, i = 1, ..., n,
(8) the map [h;] is well defined and [h;] = a, i =1,...,n,
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9) 7m0 hi(f) —v()(f)] < min{3y1(i), 5A(f) : f € Hi(i)} for any f € G,
1=1,...,n,
(10) dist(h; (@), \(@)) < $42(i) for any u € U, i = 1,...,n, and
(1) hi-1(9) — halg)]| < 5= for all g € G 1, = 2,3, .., n.
Let us construct hy,11 : C — A such that

(12) hpy1is Gnt1-0(n + 1)-multiplicative,

(13) the map [hy4+1] is well defined and [hy4+1] =

(14) |70 husr(f) = ¥(r)()] < min{ Sy (n+ 1), LA(S) - f € 3, (n + 1)} for any
f € 9n+17

(15) dist(h}_ (@), (@) < 1rya(n+1) for any w € U, i = 1,...,n, and

(16) [1hn(9) = hu+1(9)]| < 5w for all g € F,.

Then the statement follows.

By Corollary 22.4, there is G(n+-1)-6(n+1)-multiplicative map h;,,, : C — A
such that h;,,; is Gn41-0(n + 1)-multiplicative, the map [h;, ;] is well defined
and [h], ] = o,

(22.12) |70 Ky () = 7(n) ()] < min{gm(n+ 1), 5A(F) - f € Ha(n+ 1))
for any f € 941, and

Aist((411)' (@), A(@)) < 37200+ 1)
for any v € U ¢ =1,...,n. In particular, this implies that

(Mnialle, = [hnlle,,

and for any f € Hy(n) (note that Hy(n) C G,),

[T o hn(f) =Toh, (NI < n(n)/2+ 1 (T)(f) =70y ()
< mm)/24+n+1)/2 <n(n).

Also by (e22.12), for any f € H;(n), one has

(b1 () 2 (D)) = 5A) > SA(P)

By the inductive hypothesis, one also has

T(ha(F) 2 1))~ ZAG) > ZAG) for all f € 3,(n).
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For any u € U(n), one has

ist (W1 () W) < (1) + dist (3(3), Fn(u)
< %’yg(n +1)+ %’yg(n) < 71(n).

Note that both A, and h,, are G(n)-6(n)-multiplicative, and so, by Theorem
12.7 of [21], there is a unitary W € A such that

W™l i1 (9)W = ha(g)|| < 1/27 for all g € F.

Then the map hy41 := AdW oh; ., satisfies the desired conditions, and the
statement is proved. O

LEMMA 22.6. Let C' € Cy. Lete > 0, F C C be any finite subset. Suppose that
B is a unital separable simple C*-algebra in Bg, A = B® U for some UHF-
algebra of infinite type, and o € KK.(C @ C(T), A)™™. Then there is a unital
F-e-multiplicative completely positive linear map ¢ : C ® C(T) — A such that

(€22.13) [¢] = a.

Proor. Denote by ap and «; the induced maps induced by « on Ky-groups
and Kj-groups.

By Theorem 18.2 of [21], there exist an F-e-multiplicative map ¢1 : C ®
C(T) - A® X and a homomorphism @3 : C ® C(T) - A ® X with finite
dimensional range such that

[p1] = a+ [pa] in KK(C, A).

In particular, one has (¢1)«1 = 1. Without loss of generality, one may assume
that both 1 and ¢ map C into M, (A) for some integer 7.

Since M, (A) € By, for any finite subset § C M,.(A) and any ¢’ > 0, there are
G-€¢’-multiplicative maps L; : M,.(4) = (1 — p)M,(A)(1 — p) and Lo : M, (A) —
So C pM,.(A)p for a C*-subalgebra Sy € Gy with 1g, = p such that

(1) |la — Li(a) ® La(a)|| < € for any a € G and
(2) 7((1—p)) <€ for any 7 € T(M,(A)).

Since K7(Sp) = {0}, choosing G sufficiently large and €’ sufficiently small, one
may assume that Lj o ¢ is F-e-multiplicative, and

[L1 o 1]l Kk, (cac(my) = (91)s1 = a1.

Moreover, since the positive cone of Ko(C ®C(T)) is finitely generated, choosing
€ even smaller, one may assume that the map

K= Qg — [Ll o 901]‘K0(C®C('J1‘) : Ko(C & C(T)) — KO(A)
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is positive. Pick a point xg € T, and consider the evaluation map
T:CRC(T)e fgr fg(x) € C.

Then 7, : Ko(C ® C(T)) — Ky(C) is an order isomorphism, since K;(C) = 0.
Choose a projection ¢ € A with [q] = &([1]). Since ¢Aq € By, by Corollary
18.9 of [21], there is a unital homomorphism h : C' — qAq such that

[hlo = komy on Ko(C),
and hence one has
(hom)wo =k, on Ko(C®C(T)).
Put o = (Lioy1) ® (hom): C®C(T) — A. Then it is clear that
wx0 = [L1op1]l ko cocry)Tr = [L1ov1] ko (coo) +ao—[Liogi]| ko (cocm) = @0

and [p]1 = [L1 o ¢1]|k, (cac(r)) = 1.

Since K, (C ® C(T)) is finitely generated and torsion free, one has that [¢] = «
in KK(C ®C(T), A). O

LEMMA 22.7. Let C € Cy. Lete > 0, F C C ® C(T) be a finite subset, o > 0,
and H C (C®C(T))s.q. be a finite subset. Suppose that A is a unital C*-algebra
in Bg, B=A®U for some UHF-algebra U of infinite type, a« € KK .(C ®
C(T),B)*™™, and v : T(B) — Ti(C ® C(T)) is a continuous affine map such
that o and v are compatible. Then there is a unital F-c-multiplicative completely
positive linear map ¢ : C ® C(T) — B such that

(1) [¢] = o and
(2) [rop(h) =(T)(h)| < o for any h € H.

Moreover, if A € By, B € KK.(C,A)™, v : T(A) = Ty(C) is a continuous
affine map which is compatible with 8, and H' C C,,. is a finite subset, then
there is also a unital homomorphism ¢ : C — A such that

(€22.14) [¢] =B and |Top(h) — ' (7)(h)] < o for all fe H .

PrOOF. Since K,(C @ C(T)) is finitely generated and torsion free, by the
UCT, the element o € KK(C ® C(T), A) is determined by the induced maps
ag € Hom(Ky(C ® C(T)),Ky(A)) and oy € Hom(K;(C ® C(T)), K1(A4)). We
may assume that projections in M,.(C' ® C(T)) (for some fixed integer r > 0)
generate Ko(C ® C(T)).

We may also assume that ||| < 1 for all h € 3. Fix a finite generating set
G of Ko(C ® C(T)). Since () € Ti(C ® C(T)) for all 7 € T(B) and 7(B) is
compact, one is able to define A : (C® C(']I‘))i’l \ {0} — (0,1) by

A(h) = %inf{v(T)(h) . 7€ T(B)}.



462 GUIHUA GONG, HUAXIN LIN AND ZHUANG NIU

Fix a finite generating set § of Ko(C ® C(T)). Let H; C C ® C(T), 6 > 0, and
K € N be the finite subset and the constants of Lemma 16.10 of [21] with respect
to F, H, €, 0/4 (in place of o), and A.

Since A € By and U is of infinite type, for any finite subset §’ C B and
any € > 0, there are unital §’-¢/-multiplicative completely positive linear maps
Li:B—-(1—-pB(l—-—p)and Ly : B = D® 1y, C D® Mg C pBp for a
C*-subalgebra D € Cy with 1pgas, = p such that

(3) |la — Li(a) ® La(a)]| < € for any a € §', and
(4) 7((1 = p)) < min{e’,o/4} for any 7 € T(B).

Put S = D ® Mg. Since K;(C ® C(T)) is finite generated, Homy (K(C ®
C(T)), K(C ® C(T))) is determined on a finitely generated subgroup G¥ of
K(C ®C(T)) (see Corollary 2.12 of [6]). Choosing G’ large enough and €' small
enough, one may assume [L1] and [L] are well defined on o(G¥), and

(€22.15) a=[Li]oa+[jo[Ll]oa
where j : S — A is the embedding. Note that since K;(S) = {0}, one has

a1 = [Li] o a|k, (cac(r))-

Define &' = [La] o a|k,(cec(t)), Which is a homomorphism from Ko(C' ® C(T))
to Ko(D ® 1p,.) = Ko(D) (here we identify D ® 157, with D) which maps
[lowom)] to [Ipeiy, |- Let {ei; : 1 <i,j < K} be a system of matrix units
for M. View e; ; € D ® Mg. Then e; ; commutes with the image of Lo. Define
Ly:B— D®eyg by Li(a) = ej1La(a)er s for all a € B.

Put k = [L5] o a|g,(coc(m). Put D' =D ®ey ;.

Choosing G’ larger and €' smaller, if necessary, one has a continuous affine
map 7' : T(D') — T(C ® C(T)) such that, for all 7 € T(A),

B) 1 Gy Tlo)(f) = (1))l < o/4 for any f € K,
(6) ~ (T)( ) > A(h) for any h € H;, and
(7) \’y ( = 1)T|D N(p) — 7(k([p]))| < 6 for all projections p € M,.(C ® C(T)).

Then it follows from Theorem 16.10 of [21] that there is an F-e-multiplicative
contractive completely positive linear map @9 : C ® C(T) — Mg (D) = S such
that

(p2)0 = Kr =+’

and
(1/K)t o @alh) =/ (B)(h)| < 0/4, heH, teT(D).

On the other hand, since (1—p)A(1—p) € By, by Lemma 22.6, there is a unital
F-e-multiplicative completely positive linear map ¢ : C®C(T) — (1—p)A(1—p)
such that

[p1] =[Li]ca in KK(C ® C(T),A).
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Define ¢ = p1 @ jops : CRC(T) = (1—p)A(1—p)®S C A. Then, by (e22.15),
one has

©x0 = (1)x0 + (J 0 92)x0 = ([L1] 0 )|k, (cac(r)) + ([J 0 L2] 0 )|k, (cac(T)) = o

and
©s1 = (91)«1 + (J 0 @2)s1 = ([L1] 0 |k, (coc()) = 01

Hence [¢] = a in KK(C @ C(T)).
For any h € H and any 7 € T(A), one has (note that ||h| < 1 for all h € H,
and 7(1 —p) < d6/4),

|70 @(h) = ~(7)(h)]
< rop(h) —Tojopa(h)|+|Tojopa(h) —(T)(h)|

L)+

< 0/4+|TO]O@2(h)_7l(m

ey o ) =) )

< a/4+|Tojoso2<h>w'(%ﬂsxh»+|v’<%v|s><h>wm(h»
< o/4+o/i+o/4<o,

where we identify 7'(D’) with T'(S) in a standard way for S = D’ ® M. Hence
the map ¢ satisfies the requirements of the lemma.

To see the last part of the lemma holds, we note that, when C' ® C(T) is
replaced by C and A is assumed to be in Bj, the only difference is that we
cannot use 22.6. But then we can appeal to Theorem 18.7 of [21] to obtain ;.
The semiprojectivity of C' allows us actually to obtain a unital homomorphism
(see Corollary 18.9 of [21]). O

COROLLARY 22.8. Let C € Cy. Suppose that A is a unital separable simple
C*-algebra in By, B = A® U for some UHF-algebra of infinite type, o €
KK.(C,B)tt, and~ : T(B) — T(C)) is a continuous affine map. Suppose that
(o, \,7y) is a compatible triple. Then there is a unital homomorphism ¢ : C — B
such that

[pl =a and or = 1.
In particular, ¢ is a monomorphism.

PrOOF. The proof is exactly the same as the argument employed in 22.5 but
using the second part of Lemma 22.7 instead of 22.4. The reason ¢ is a monomor-
phism is because v(7) is faithful for each 7 € T(A). O

LEMMA 22.9. Let C be a unital C*-algebra. Let p € C be a full projection.
Then, for any u € Uy(C), there is a unitary v € pCp such that

T=v®(1—p) inUp(C)/CU(C).
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If, furthermore, C is separable and has stable rank one, then, for any u € U(C),
there is a unitary v € pCp such that

u=v®d(1—-p) wmUC)/CUIC).

Proor. It suffices to prove the first part of the statement. This is essentially
contained in the proof of 4.5 and 4.6 of [22]. As in the proof of 4.5 of [22], for
any b € Cs,., there is ¢ € pCp such that b — ¢ € Cy, where Cj is the closed
subspace of A, ,. consisting of elements of the form x — y, where x = Zzo:l Chen
and y = > 7 | ¢pc (convergence in norm) for some sequence {¢, } in C.
Now let u = []}_, exp(iby) for some by, € Csq., k =1,2,...,n. Then there are
¢k € pCp such that by —cy, € Co, k =1,2,...,n. Put v = p([[_, exp(icg))p. Then
v € Up(pCp) and v + (1 — p) = [1_, exp(ick). By 3.1 of [52], u*(v+ (1 — p)) €
cU(C). O

LEMMA 22.10. Let D be the family of unital separable residually finite dimen-
stonal C*-algebras and let A be a unital simple separable C*-algebra which has
the property (L) (see 9.4 of [21]) and the property (SP). Then A satisfies the
Popa condition: Let e > 0 and let F C A be a finite subset. There exists a finite
dimensional C*-subalgebra F C A with P = 1g such that

(€22.16)  |[Pz]|| <&, PxPe. F and |PaP|| > |z] — e

for all x € F. In particular, if A € By and A has the property (SP), then A
satisfies the Popa condition.

PROOF. We may assume that F C A and 0 < & < 1/2. Without loss of
generality, we may assume that

d = min{||z| : x € F} > 0.

Since A has property (Lop), there are a projection p € A and a C*-subalgebra
D C A with D € D and p = 1p such that

(€22.17) |lpx — xp|| < de/16, pxp €4c/16 D, and |[[prp|| > (1 —</16)]x|

for all z € F (see 9.5 of [21]).

Let ¥ C D be a finite subset such that, for each x € F, there exists ' €
F such that ||pxp — 2’| < de/16. Since D € D, there is a unital surjective
homomorphism 7 : D — D/kerw such that F} := D /kerr is a finite dimensional
C*-algebra and

(22.18) l7(@)] > (1 —¢/16)|2'| for all 2’ € F'.

Let B = (kerm)A(kerm). B is a hereditary C*-subalgebra of A. Let C be the
closure of D + B. Note that 1 = 1p = p. As in the proof of 5.2 of [29], B is an
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ideal of C' and C/B = D /kerm = Fj. The lemma then follows from Lemma 2.1
of [46]. In fact, since pAp has property (SP), by Lemma 2.1 of [46], there are a
projection P € pAp and a monomorphism h : F; — PAP such that

(22.19) h(1p) =P, |Px’ —2'P| <¢e/16 and
(€22.20) |hom(z') — Px'P|| <e-d/16

for all 2/ € . Put F = h(F}). Then, one estimates that, for all z € F,

[Pz — aP| < ||Ppx — Pa'|| + ||[P2’ + 2'P|| + [|2"P — apP|
<e/l6+¢/16+¢/16 < ¢,
PxP =, 16 Px'P €./16 F1, and
|PzP| = ||PpapP|| > || Pz’ P|| — de/16 > |[h o (a')|| — de/8
= |w(@")|| — de/8 = ||| — de/16 — de/8 > ||pzp|| — de/4
2 (1 —¢/16)[lz]| — de/4 = [lz]| —e.

O

LEMMA 22.11. Let C € Cy. Let € > 0, F C C be a finite subset, 1 > o1 > 0,
1>00>0 UC J(K(C®C(T))) c U(C®C(T))/CU(C @ C(T)) be a finite
subset (see Definition 2.16 of [21]) and H C (C ® C(T))s.q. be a finite subset.
Suppose that A is a unital separable simple C*-algebra in By, B = A® U for
some UHF-algebra U of infinite type, o € KK . (C @ C(T), B)*+, A : J.(K1(C®
C(T))) — U(B)/CU(B) is a homomorphism, and v : T(B) — T:(C®C(T)) is a
continuous affine map. Suppose that (o, \,y) is a compatible triple. Then there
is a unital F-e-multiplicative completely positive linear map ¢ : C ® C(T) - B
such that

(1) [¢l =«q, B
(2) dist(¢H(x), \(x)) < o1, for any z € U, and
(3) |Ttop(h) —~(T)(h)| < o2, for any h € H.

PROOF. Note that K(C®C(T)) is finitely generated modulo Bockstein opera-
tions and Ko(C ® C(T))+ is a finitely generated semigroup. Using the inductive
limit B = lim,o0(A ® M, ,tnnt1), one can find, for n large enough, o, €
KK .(C®C(T), AQM,, )+ such that o = v, X [2,] where [1,] € KK(AQM,. , B)
is induced by the inclusion ¢, : A® M, — B. Replacing A by A® M,. , we may
assume that o = ay X [1], where oy € KK (C®C(T), A)tt and1: A - AQU =
B is the inclusion. Note that A : J.(K1(C®C(T))) - U(AQU)/CU(A®U). By
the same argument as above, we know that if the integer n above is large enough,
then there is a map A, : J.(K1(C® C(T))) = U(A® M,,)/CU(A® M,, ) such
that |1} o A, (u) — A\(u)| is arbitrarily small (e.g smaller than o /4) for all u € U.
Replacing A by A®M,. , we may assume A = 2fo); with \; : J.(K;(C®C(T))) —
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U(A)/CU(A) and +* : U(A)/CU(A) — U(B)/CU(B) induced by the inclusion
map. Furthermore, we may assume that \; is compatible with «;.

Without loss of generality, we may assume that ||h|| < 1 for all h € H. Let
Di, @i € My (C) be projections such that {[p1] — [¢1], ---, [Pa] — [ga]} forms a set of
independent generators of Ko(C) (as an abelian group) for some integer k > 1.
Choosing a specific J., one may assume that

U={(1k —pi) +pi®@2)(1k — @) + ¢; ® 2") : 1 <i < d},

where z € C(T) is the identity function on the unit circle. Put u} = (15 —
pi) + 0 ® 2) (1 — @) + ¢ ® z*). Hence, {[u}],...,[u}]} is a set of standard
generators of K;(C ® C(T)) = Ky(C) = Z%. Then ) is a homomorphism from
7% to U(B)/CU(B).

Let 7 : C' = F} = @2:1 M, be the standard evaluation map defined in
Definition 3.1 of [21]. By Proposition 3.5 of [21], the map (7).« induces an
embedding of Ko(C) in Z!, and the map (7. ® id),; induces an embedding of
K(C®C(T)) 2 Z in Ky (@, M, ® C(T)) = Z. Define J.(K,(@'_, My, ®
C(T))) to be the subgroup generated by {e; ® z; ® (1 —e;);¢ = 1,...,1}, where
e; is a rank one projection of M, and z; is the standard unitary generator of
the i-th copy of C(T). Note that the image of J.(K1(C ® C(T))) under =, is
contained in Jc(Kl(G}i:l M,,®C(T))). Writew; =e;®@z;®(1—e;), 1 <j <L

Let U be as in the lemma. We write B = By ® Uy, and By = A ® Uy, with
U = U; ® Uy, and both U; and U, UHF algebras of infinite type. Denote by
11: A= By, 12: By — B,and 1 = 1301, : A — B the inclusion maps. Recall
a=o x 1] € KK(C,B).

Applying Lemma 22.7, one obtains a unital F'-¢’-multiplicative completely
positive linear map ¢ : C' ® C(T) — By such that

(e22.21) [¢] = a1 x[11] and

(€22.22) |70 (h) —v(7)(h)| < min{o1,02}/3

for all h € H, and for all 7 € T(By), where /2 > &’ > 0 and F; D F. (Note that
T(By) =T(A) =T(B), and the map v : T(B) — Tt(C ® C(T)) can be regarded
as a map with domain 7'(Byp)). We may assume that ¢’ is sufficiently small and
is sufficiently large that not only (e22.21) and (e 22.22) make sense but also that
Y* can be defined on U, and induces a homomorphism from J.(K;(C @ C(T)))
to U(By)/CU(By) (see 2.17 of [21]).

Let M be the integer of Corollary 15.3 of [21] for Ko(C) C Z' (in place of
G Czh).

For any £’ > 0 and any finite subset ¥/ C By, since By has the Popa condition
and has the property (SP) (see 22.10), there exist a non-zero projection e € By
and a unital F”’-¢”’-multiplicative completely positive linear map Lo : By —
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F C eBge, where F is a finite dimensional and 1 = e, and a unital F"-¢”-
multiplicative completely positive linear map Lj : Bg — (1 — €)By(1 — e) such
that

(22.23) lb—120Lo(b) ® L1(b)|| < €” for all be F’,
(€22.24) | Lo(b)|| > ||b]|/2 for all b€ F”, and
(€22.25) 7(e) < min{o1/2,09/2} for all 7 € T(By),

where 1 : F' — eBye is the embedding and L1 (b) = (1 — p)b(1 — p) for all b € By.

Since the positive cone of Ko(C'® C(T)) is finitely generated, with sufficiently
small ¢” and sufficiently large 3, one may assume that [Lo o ¢]|x,(cac(r) is
positive. Moreover, one may assume that (Lgo)* and (L; 09)* are well defined
and induce homomorphisms from J.(K;(C @ C(T))) to U(By)/CU(Byp). One
may also assume that [L; o 9] is well defined. Moreover, we may assume that
L; o9 is F-e-multiplicative for i = 0, 1.

There is a projection E. € Us such that E. is a direct sum of M copies of
some non-zero projections E.o € Us. Put F = 1y, — E..

Define ¢ : C ® C(T) - F ® EUsE — eBpe ® EUE by ¢o(c) = Lg o
¥(c) ® E(€ B) for all ¢ € C ® C(T) and define ¢ : C — F ® E.UsE, by
©¥1(c) = Looy(c) ® E, for all ¢ € C. Note that g is also F-e-multiplicative and
o} is also well defined as (Lo o 1)* is. Moreover [}] is well defined. Define

Ly = 10Lj09+¢y:C®C(T) —
((1—6)30(1—6 ®1U2)@(eBOe®EU2 ) (C B).

Denote by
Mo = A= L5 = X\ — b — (1z0L1 0 )" : JL(K1(C & C(T))) — U(B)/CU(B).

Note that Lg factors through the finite dimensional algebra F' and therefore
[Lo] = 0 on K1(Bo). Consequently [¢o]|x, (cac(ry) = 0 and [Ly o 9] = [11] o [o]
on K7(C ® C(T)). Hence, [t20 L1 0¢)] = o on K;. Furthermore, « is compatible
with A. We know that the image of Ag is in Up(B)/CU(B).

Note that, by Lemma 11.5 of [21], the group Up(B)/CU(B) is divisible. It is an
injective abelian group. Therefore there is a homomorphism A : J, (EB 1My, ®
C(T)) — Up(B)/CU(B) such that

(€22.26) Mo (me)t =g — L.

Let B = [Lo o ¥]|ky(cy: Ko(C) —Ko(F) = Z™. Let Rg > 1 be the integer given
by Corollary 15.3 of [21] for 5 : Ko(C) — Z™ (in place of k : G — Z"; note that
that [E,| is divisible by M implies that every element in 8(Ky(C)) is divisible by
M). There is a unital C*-subalgebra My C E.UsE, such that K > Ry and
such that F.UsE, can be written as My, ® Us. It follows from Corollary 15.3
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of [21] that there is a positive homomorphism f; : Ko(F1) — Ko(F) such that
B1o(me)so = MKB. Let h: Fi — F ® Mk be the unital homomorphism such
that h.o = f1. Put ¢f = home: C — F ® Myk, and then one has (¢])«0 =
MKPpB. Let J: My x — E.UyE,. be the embedding. One verifies that

(€22.27) (17 ® J)xo 0 (¢ )s0 = (1F ® J)xo 0 MK B = Tsp © ()0,

where 1 : F — eBge and 7 : F' ® E.UsE. — eBpe ® E.UsFE, is the unital
embedding.
Choose a unitary y; € (1p ® J o h)(e;)B(ip @ J o h)(e;) such that

:Ijj = S\(U)j), j= 1,2,...,1,

where we recall that w; = e; ® 2; © (1 —¢;) € F1 ®C(T) = ©;M,, ® C(T) is one
of the chosen generator of Ki(M,, ® C(T)). Let 1; be the unit of M,, C F;
then 1; =¢; ®e; @ --- Dej.
—_——

Define j; = diag(77, 550 )€ (1p @ J 0 B)(1;)B(up ® J o h)(1;), 5 = 1,2, ...,L.
Then §; commutes with (1p ® J)(F1).

Define ¢1 : Fy ® C(T) — ((1r @ J) 0 7 ) (1¢)B((1r @ J) 0 ¢} ) (1¢) by
G1(c; @ f) = ((br @ J) 0 Y)(¢) f(5;) for all ¢; € M,, and f € C(T). Define
@1 = P10(me ®ide(ry). Then, by identifying Ko(C ® C(T)) with Ko(C), one has

(€22.28) (©1)x0 = 7x0 © (¢©})s0 and (@) = X.
Define ¢ = g ® ¢1 @ 190L1 0 9. By (€22.22) and (e 22.25),
|70 w(h) —~v(T)(h)|] < 02/3 + 02/3 =205/3 for all h € H.

It is ready to verify that v.o = a|k,cec(r) and ot = \. Thus, since \ is
compatible with «,

(e 2229) Px1 = a|K1(C®C(T)).
Since K,;(C ® C(T)) = Ko(C) is free and finitely generated, one concludes that

[¢] = a.
0

COROLLARY 22.12. Let C € Cy and C; = C ® C(T). Suppose that A is a
unital separable simple C*-algebra in By, B = A® U for some UHF-algebra
U of infinite type, a € KK (Cy,B)**, X : J.(K,1(C)) — U(B)/CU(B) is a
homomorphism, and v : T(B) — T§(Ch)) is a continuous affine map. Suppose
that (a, \,7y) is a compatible triple. Then there is a unital homomorphism ¢ :
Cy — B such that

[p] =, ¢ (k1)) = A and o7 = 1.

In particular, ¢ is a monomorphism.
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PrROOF. The proof is exactly the same as the argument employed in 22.5 using
22.11. O

COROLLARY 22.13. Let C € €y and let C; = C or Cy = C @ C(T). Suppose
that A is a unital separable simple C*-algebra in By, B = AR U for some
UHF-algebra of infinite type, o € KK.(Cy,B)*", and v : T(B) — T¢(C4) is a
continuous affine map. Suppose that (a,7) is compatible. Then there is a unital
homomorphism ¢ : C1 — B such that

[p] = and o = 7.
In particular, ¢ is a monomorphism.

Proor. To apply 22.12, one needs a map A. Note that J.(K1(Cy)) is isomor-
phic to K7 (C1) which is finitely generated. Let I K (B) - U(B)/CU(B) be
the splitting map defined in Definition 2.16 of [21], Define A = Jc(l) ook, (o) ©
| 1.k (Ch))s Where T : U(M2(Cy))/CU(M2(C1)) — K1(Ch) is the quotient map
(note that C has stable rank one and C; = C' ® C(T) has stable rank two). Then
(a, \,y) is compatible. The corollary then follows from the previous one. O

LEMMA 22.14. Let B € By be an amenable C*-algebra which satisfies the UCT,
let A1 € By, let C = B Uy, and let A = A1 ® Us, where Uy and Uy are UHF-
algebras of infinite type. Suppose that k € KL.(C, A)*t, v : T(A) — T(C) is
a continuous affine map and o : U(C)/CU(C) — U(A)/CU(A) is a continuous
homomorphism for which v, «, and k are compatible. Then there exists a unital
monomorphism ¢ : C — A such that

(1) [¢] =K in KL(C, A)™,

(2) or =7 and ¢t = a.

PrOOF. The proof follows the same lines as that of Lemma 8.5 of [40]. By
Theorem 9.11 of [21], every C*-algebra B € B; has weakly unperforated Ky(A).

Then, by Corollary 19.3 of [21], B ® U; € By. By the classification theorem
(Theorem 21.9 and Theorem 14.10 of [21]), one can write

C= h_I)Il(On, Qpn,n+1)

where C, is a direct sum of C*-algebras in €y or in H. Let &, = K o [¢p 00),
ap = Qo gaf%oo, and v, = (¢n,00)7 ©y. Write C,, = C} & C? with C} € H and
C? € €y. By Corollary 22.5 applying to C} and Corollary 22.12 applying to to
C?2, there are unital monomorphisms 1, : C,, — A such that

[¢n] = Kn lﬁfz =y, and (wn)T = Tn-

(Note that K1(C2) = 0, Consequently, (¢n|c2)r = (1c2,c,)r © Yn implies
(wn|C%)i = anlu(c2y/cu(cz)-) In particular, the sequence of monomorphisms
1, satisfies

[wn+1090n,n+1] = [tnl, ¢i+10¢n7n+1 = "/}Ew and ("/)nJrlo‘Pn,nJrl)T = (Yn)r-
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Let F,, C C,, be a finite subset such that @, ,1+1(F,) C Fpp1 and U on,co(Fn)
is dense in C. Applying Theorem 12.7 of [21] with A(h) = inf{y(7)(¢n,cc(h)) :
T e T(A)}, h € CF\ {0}, we have a sequence of unitaries u,, € A such that

Adup i1 0¥nt1 0 Pnnt1 Rrjon Aduy 0tpy,  on F,.

The maps {Aduy, 0, : n =1,2,...} then converge to a unital homomorphism
¢ : C — A which satisfies the lemma. d

REMARK 22.15. In the first few lines of the proof of Lemma 22.14, we recall
that, if B € B, is a unital separable simple C*-algebra with the UCT. Then
C := B®Uj (for any infinite dimensional UHF-algebra U) is an inductive limit
of C*-algebras C,,, where C), is a finite direct sum of C*-algebras in Gy or in H.
This important fact which proved in the first part of this research ([21]) will be
used frequently in the rest of the paper.

THEOREM 22.16. Let X be a finite CW complex and let C = PM,(C(X))P,
where n. > 1 is an integer and P € M, (C(X)) is a projection. Let Ay € By and
let A= A1 QU for a UHF-algebra U of infinite type. Suppose o € KLo(C,A)™™T,
A1 Us(C)/CU(C) — U(A)/CU(A) is a continuous homomorphism, and ~ :
T(A) = T¢(C) is a continuous affine map such that (o, \,y) is compatible. Then
there exists a unital homomorphism h : C — A such that

(€22.30) [h] =, h* =X and hy = 7.

ProOOF. The proof is similar to that of 6.6 of [40]. To simplify the notation,
without loss of generality, let us assume that X is connected. Furthermore,
a standard argument shows that the general case can be reduced to the case
C = C(X). We may assume that U(My(C))/Us(My(C)) = K1(C) for some
integer N (see [48]). Therefore, in this case,

U(Mn(C))/CUMn(C)) = Uso(C)/CU(C).
Write K;(C) = G @ Tor(K1(C)), where Gy is the torsion free part of K;(C).
Fix a point £ € X and let Cyp = Co(X \ {£}). Note that Cj is an ideal of C' and
C/Cy= C. Write
(e 2231) Ko(c) =7- [10] D KO(CO).

Let B € By be a unital separable simple C*-algebra as constructed in Corollary
14.14 of [21] such that

(€22.32) (Ko(B), Ko(B)+, (18], T(B),7p)
= (KO(A>7 K()(A)Jrv [1A]a T(A)7 TA)



A CLASSIFICATION OF FINITE SIMPLE AMENABLE Z-STABLE C*-ALGEBRAS, IT 471
and K1(B) = G1®Tor(K;(A)). Put
(€22.33) A(g) = inf{v(7)(g9) : T € T(A)}.

For each g € Cy \ {0}, since y(7) € T(C), -y is continuous and T'(A) is compact,
A(g) > 0.

Let ¢ > 0, F C C be a finite subset, 1 > oy,00 > 0, H C C,,. be a finite
subset, and U C U(Mp(C))/CU(My(C)) be a finite subset. Without loss of gen-
erality, we may assume that U = Uy UUy, where Ug C Up(Mpy(C))/CU(Mn(C))
and Wy C Jo(K1(C)) C U(Mn(C))/CUMN(C)).

For each u € Uy, write u = H;iul) exp(v/—1a;(u)), where a;(u) € My(C)s.q.-
Write

(e22.34) ai(u) = (a7 (W) yxn, i=1,2,...,n(u).
Write
(k.) (k.3)y (B () _ (o)
Ci,k,j(u) — a’i (’LL) ;_ (a’i ) and di,k,j _ a’i (u)2 (a’z ) )
(3
Put

(€22.35) M = max{]lc||, [cix,; (w)l], |k, ()] - ¢ € H,u € Up}
Choose a non-zero projection e € B such that

min{oy, 09}
7(e) < 16N2(M + 1) max{n(u) : u € Up}

for all 7 € T(B).

Let By = (1 —¢e)B(1 —e).

In what follows we will use the identification (e22.32). Define
ko € Hom(Ky(C), Ko(Bz)) as follows. Define ko(m[lc]) = m[l —e] for m € Z
and Kol g, (co) = QlKy(cy)- Note that Ki(B) = G @ Tor(K1(A)) and that «
induces a map a|ror(x, () : Tor(K1(C)) — Tor(K;(A)). Using the given de-
composition K;(C) = G1 @ Tor(K;(C), we can define k; : K1(C) — Ki(B) by
k1lg, = id and K1|tor(r, (0)) = [0 |Tor(x, (0))-

By the Universal Coefficient Theorem, there is k € KL(C, Bs) which gives
rise to the two homomorphisms kg, k1 above. Note that k € KL.(C, Bs)™T,
since Ko(Cp) = kerpc(Ko(C')). Choose

fH:l =HuU {ci,;w-(u), diﬁk,j(u) RS uo}
Every tracial state 7/ of By has the form 7/(b) = 7(b)/7(1 —e) for all b € By for

some 7 € T(B). Let v/ : T(B2) — T(C) be defined as follows. For 7/ € T'(Bs)
as above, define v/ (7')(f) = ~v(7)(f) for f € C.
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It follows from 22.3 that there exists a sequence of unital completely positive
linear maps h,, : C' — By such that

lim ||h,(ab) — hyp(a)h,(b)|| =0 for all a, b€ C,
n—oo
[hn] =Kk (K.(C)is finitely generated), and
lim max{|7 o h,(c) = (7)(c)| : T € T(Bs2)} =0 for all ce C.
n—oo
Here we may assume that [h,] is well defined for all n and

min{oy, 09} _ 19

(e22.36) |70 hy(c) —~(1)(c)| < avz 0 n=L2.

for all ¢ € 3y and for all 7 € T(By). Choose § € KL(B,A) such that it gives
the identification of (€22.32), and, 0|¢, = a|g, and 0|k, (a)) = idror(k, (4))-
Let ¢ € A be a projection such that [e/] € Ky(A) corresponds to [e] € Ky(B)
under the identification (e22.32). Let 8 = a — 6 o k. Then

(e22.37) B([le)) = €], Bro(co) =0, and Bi,(c) = 0.

Then 8 € KL.(C,e'Ae’). Tt follows from 22.3 that there exists a sequence of
unital completely positive linear maps g, : C — €’ Ae’ such that

(e22.38)  lim [gon(ab) — @o.n(@)p0n()] =0 and [p0,.] = 5

Note that, for each u € U(Mn(C)) with @ € Uy,

3
2
£

(€22.39) De(u) = ) a;(u),

s
Il
_

where ¢(7) = 7(c) for all ¢ € Cs 4. and 7 € T'(C). Since x and A are compatible,
we compute, for @ € Uy,

(€22.40) dist((hn)F (@), N(@)) < 02/8.

Fix a pair of large integers n,m, and define xpm : J.(G1)(C U(C)/CU(C)) —
AR(T(A))/pa(Ko(A)) to be

(e 22'41) )‘|J¢(G1) - (hn)i‘Jc(Gl) - ¢3,77L|JC(G1).

We may may also view J.(G1) as subgroup of J.(K1(B))= J.(K1(Bz)). Write
Jo(K1(B)) = Jo(G1)®J.(Tor(K1(B2))) and define xy, m, to be zero on Tor(K;(B2)),
we obtain a homomorphism Xy m @ Je(K1(B2)) — Aff(T(A))/pa(Ko(A)). It
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follows from Lemma 22.14 that there is a unital homomorphism ¢ : By —
(1 —¢')A(1 — ¢€') such that

(e 22.42) [d)] = 0, 1/)T = idT(A) and
(€22.43) 1/)1|JC(K1(BQ)) = Xn,m\Jc(Kl(Bz)) +Jco 9|K1(B2),
where we identify K;(Bz) with K;(B). By (e22.42),

id.

(e22.44) VN arrer (B2 /pms R B =

Define L(c) = po,m(c) @Y ohy,(c) for all ¢ € C. It follows, on choosing sufficiently
large m and n, that L is e-F-multiplicative,

(€22.45) [L] = «,
(€22.46) max{|T o (f) —~v(7)(f)|: 7€ T(A)} <oy for all feH, and
(€22.47) dist(L* (@), M(@)) < os.

This implies that that there is a sequence of contractive completely positive
linear maps v, : C' — A such that

(22.48)  lim [[¢hn(ab) — ¥ (@)t ()| = O for all a,b€ C,
(€22.49) [thy] = a,
(22.50) lim max{|7 o ¥ (c) = (7)(e)| : T € T(A1)} =0
for all c € Cs4., and
(e22.51) nlirgodist(¢§(a),A(a)) =0 for all u € U(My(C))/CU(Mpy(C)).

Finally, applying Theorem 12.7 of [21], as in the proof of 22.5, using A /2 above,
we obtain a unital homomorphism h : C'— A such that

(€22.52) [h] = a, hy ==, and hf =\,
as desired. 0O

THEOREM 22.17. Let C € €y and let G = Ko(C). Write G = ZF with ZF
generated by

{z1 = [p1] = @], 22 = [p2] — [a2], s 2 = [pr] — [ak]},

where p;, q; € M,,(C) (for some integer n > 1) are projections, i =1, ..., k.

Let A be a simple C*-algebra in By, and let B = AQU for a UHF algebra U of
infinite type. Suppose that ¢ : C — B is a monomorphism. Then, for any finite
subsets F C C and P C K(C), anye >0 and o > 0, and any homomorphism

T:Z* - Uy(B)/CU(B),

there is a unitary w € B such that
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(1) llle(f),wlll <e, for any f € F,
(2) Bott(p,w)|p =0, and

(3) dist({(Ln — @(pi)) + ¢ (P1)0)(Ln — @(a:)) + (a:)0")), T (1)) < o, for any

1 <i<k, wherew = diag(w, ..., w).

Proor. Write B = limy_yo0(A ® M, ,tnnt1). Using the fact that C is
semiprojective (see [9]), one can construct a sequence of homomorphisms ¢,, :
C — A® M, such that 1, o p,(c) = ¢(c) for all ¢ € C. Without loss of gener-
ality, we may assume ¢ = 20 ¢ for a homomorphism ¢; : C — A (replacing A
by A® M, ), where 1: A —- A® U = B is the standard inclusion.

We may assume that ||f|| <1 for any f € F.

For any non-zero positive element i € C' with norm at most 1, define

A(h) = inf{r(p(h)); T € T(B)}.

Since B is simple, one has that A(h) € (0,1).

Let H; c CL\{0},5C C,6>0,PC K(C), Hy C Cs.q., and 71 > 0 be the
finite subsets and constants of Theorem 12.7 of [21] with respect to C, F, €/2,
and A/2 (since K1(C) = {0}, one does not need U and ~2).

Note that B = A ® U. Pick a unitary z € U with sp(u) = T and consider the
homomorphism ¢’ : C @ C(T) - B = A® U defined by

a® fre1(a)® f(z).
(Recall that ¢(a) = ¢1(a) ® 1y.) Set

v= () : T(B) = T;(C ® C(T)).

Also define
a:=[¢] € KK(C®C(T),B).

Note that K;(C ® C(T)) = Ko(C) = ZF. Identifying J.(K;(C @ C(T))) with
7k, define a map A : J.(K{(U(C @ C(T)))) — Up(B)/CU(B) by A\a) = T'(a) for
any a € Z*.

Set

U= {1y —pi+pi2) (1 —gi +q2" ) : i=1,...k} C J(U(C ®C(T))),
where 2’ is the standard generator of C(T), and set
d =min{A(h)/4: h e H;}.

Applying Lemma 22.11, one obtains a F-¢/4-multiplicative map ® : C® C(T) —
B such that

(€22.53) [®] = a, dist(®F(x), \(x)) <o for all 2 € U, and
(€22.54) |To®(h®1)—v(r)(h®1)| < min{v, 6} for all h € Hy UHo.
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Let 1 denote the restriction of ® to C' ® 1. Then one has

[Y]l> = [¢]l-
By (e22.54), one has that, for any h € Hy,
T(W(h) > y(1)(h) = =T(¢'(h®@ 1)) — 6 = 7(p(h)) — 6 > A(h)/2,
and it is also clear that
T(p(h)) > A(h)/2 for all h € H;.

Moreover, for any h € H,, one has

[T otp(h) =T op(h)

To®(h®@1)—7T0¢ (h®1)
= |to0®@h®1l)—v(1)(h®1)| <.
Therefore, by Theorem 12.7 of [21], there is a unitary W € B such that
(IWSP(HW — (Nl < /2 for all feT.

Then the element
w=W*d(1x\W

is the desired unitary. O

THEOREM 22.18. Let C' be a unital C*-algebra which is a finite direct sum of
C*-algebras in Cy and C*-algebras of the form PM,(C(X))P, where X is a finite
CW complez and P is a projection, and let G = Ko(C). Write G = Z* @ Tor(G)
with a basis for ZF the set

{z1 = [p1] — [@1], 22 = [p2] — [g2], s 2 = [pr] — lak]},

where p;, q; € M,,(C) (for some integer n > 1) are projections, i =1, ..., k.

Let A be a simple C*-algebra in the class By, and let B= A QU for a UHF
algebra U of infinite type. Suppose that ¢ : C — B is a monomorphism. Then,
for any finite subsets F C C and P C K(C), any € > 0 and o > 0, and any
homomorphism

I 2% — Uy(Mn(B))/CU(M,(B)),

there is a unitary w € B such that

(1) |lle(f),w]ll <e, for any f € F,

(2) Bott(p,w)|p =0, and

(3) dist((((1n — (p)) + () D) (In — @(g:)) + @(g))5)), T(2:))) < o, for any
1<i<k, wherew = diag(w, ..., w).

PROOF. By Theorem 22.17, it suffices to prove the case that C = PM,,(C(X))P,
where X is a finite CW complex, n > 1 is an integer, and P € M, (C(X)) is a
projection. The proof follows the same lines as that of Theorem 22.17 but using
Lemma 22.16 instead of Lemma 22.11. U
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23. A Pair of Almost Commuting Unitaries

LEMMA 23.1. Let C' € C. There exists a constant Mo > 0 satisfying the follow-
ing condition: For any e > 0, any x € Ko(C), and any n > Mc /e, if

(e23.1) loc(z)(T)] < e for all T € T(C ® M,),

then there are mutually inequivalent and mutually orthogonal minimal projec-
tions p1, P2, ...y Pk, and q1,G2, ..., qk, 0 C @ M, and positive integers l1,la, ..., li,,
mi, ma, ..., My, such that

k)l k2
(e23.2) x = [Z lipi] — [Z m;q;] and
i=1 j=1
k] k2
(e23.3) T(Zlipi) <4e and T(Z m;q;) < 4e
i=1 j=1

forallT € T(C ® M,).

PROOF. Let C' = C(Fy, Fo, ¢1, ¢2) and Fy = @._, M,(;). By Theorem 3.15 of
[21], there are only finitely many mutually inequivalent minimal projections in
C ® XK. We can choose N(C) > 0 such that this set of mutually inequivalent
projections is sitting in My c)(C), orthogonally. Then every projection in C®X
is equivalent to a finite direct sum of projections from this set of finitely many
mutually inequivalent minimal projections (some of them may repeat in the
direct sum). We also assume that, as in Definition 3.1 of [21], C' is minimal. Let

Mo = N(C) +2(r(1) - 7(2) --- (1))

Suppose that n > Mg /e. With the canonical embedding of K(C') into Ko (F}) =2
7, write

(e23.4) z=| .| ez
z]

By (e23.1), for any irreducible representation 7 of C' and any tracial state ¢ on
My (7(C)),

(€23.5) [t om(x)] < e.
It follows that

(€23.6) |zs|/r(s)n <e, s=1,2,...,1.
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Let
(€23.7) T = max{|zs|/r(s) : 1 < s <1}
Define
r(1) r(1)
r(2) r(2

(e23.8) y=x+T| . and z =T

It is clear that z € Ko(C)4 (see Proposition 3.5 of [21]). It follows that y €
Ko(C). One also computes that y € Ko(C). It follows that there are projections
p, ¢ € Mp(C) for some integer L > 1 such that [p] = y and [¢] = z. Moreover,
x = [p] — [¢]. One also computes that
(e23.9) 7(q) <T/n<e for all 7€ T(C®M,).
One also has
(€23.10) T(p) < 2 for all 7 € T(C @ M,).

There are two sets of mutually inequivalent and mutually orthogonal minimal

projections {p1,p2, ..., pk, } and {q1, g2, ..., gk, } in C® M,, (since n > N(C)) such
that

k1 k2
(€23.11) [Pl =Y lLilp] and [q] =) m;g].
i=1 j=1
Therefore
k1 ko
(€23.12) v =2 lilpil = 3 mila].

O

LEMMA 23.2. Let C € C. There is an integer Mo > 0 satisfying the following
condition: For any € > 0 and for any x € Ko(C) with

[7(pc ()| < /24w

for all T € T(C ® M,,), where n > 2M¢cm /e, there exists a pair of unitaries u
and v € C ® M,, such that

(€23.13) luv —vul| < e and T(botty(u, v)) = 7(x).
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PrROOF. We may assume that C' is minimal. Applying Lemma 23.1, we obtain
mutually orthogonal and mutually inequivalent minimal projections pi, pa, ..., Dk, ,
q1,92, -y Gk, € C ® M, such that

k1 ko
> Llpd = > mylg) ==,
i=1 j=1
where lq,1a, ..., lk,, m1, M2, ..., my, are positive integers. Moreover,
k‘l k2
(€23.14) Zlﬂ'(pi) < ¢g/6mr and ijT(qj) <eg/bm
i=1 j=1
for all 7 € T(C ® M,,). Choose N < n such that N = [27/¢] + 1. By (e23.14),
k}l k72
(€23.15) ZNliT(pi) + ZijT(Qj) < 1/2 for all 7€ T(C ® M,).
i=1 j=1

It follows that there are mutually orthogonal projections d; f, d;-’ ECRM,, k=
1,2,...,.N,i=1,2,....,k1, and j = 1,2, ..., kg such that

(e 2316) [di,k] = li[pz} and [d;,k] = mj[qj],

i=1,2,..k,j=12 . kand k=12, N Let D; = 5, dix and D} =
Z,ivzl d;-’k, i=1,2,...,kiand j = 1,2,..., ko. There are partial isometries s; p, 3;',19 €
C ® M,, such that

(623.17) S;kdi7k$i7k - di7k+1, (s;,k)*d;,ks;,k - d;,k+1’ k == 1,27 ...,N - ].,

* / * 7/ !/ U
(623.18) Si’Ndi,Nsi,N == di’17 and (Sj,N) dj,st,N - dj,l’

i=1,2,..,k and j = 1,2, ..., ka. Thus, we obtain unitaries u; € D;(C ® M,)D;
and u; = D’(C' ® M,,) D} such that

(e 2319) ufdiykui = di,k-‘,—la ufdi7Nui = di71,
()" dj s = dj gy, and (w))"d) yuj = g,
1=1,2,...,k1, 7 =1,2,...,ks. Define
N

N
v = Z eV =1@kT/N) g, - and v = Z eﬁ(%”/md;,k.
k=1 k=1
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We compute that
(€23.20) lwsv; — vzulH <e and [[ujv; — vjui]l <e,

(e23.21)

T(log viugviu;) = l;7(pi), and

271'\/—1

7(log vjul; (v})* (u})*) = m;7(gs),

(€23.22)

forreT(C®M,),i=1,2,...,k; and j = 1,2, ..., ky. Now define
k}l k‘z kl k‘g
(€23.23) u=> u;+ Y uj+(lecgm, — Y Di— Y Dj) and
i=1 j=1 i=1 j=1
k2
(e23.24) U—sz—f—z + (Lo, —ZD > D).
j=1

We then compute that

k1
7(botty(u,v)) = Z%;\/IT(IOg(UiUW:uf))
—Z%F (log v (o))" (u))")

k1 ko
= D lr(pi) = y_my7(qy) = 7(x)
i=1 j=1

for all 7 € T(C ® M,,).
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O

LEMMA 23.3. Let e > 0. There exists o > 0 satisfying the following condition:
Let A = A1 Q@ U, where U is a UHF-algebra of infinite type and Ay € By, let
u € U(A) be a unitary with sp(u) = T, and let © € Ko(A) with |7(pa(x))] < o
for allT € T(A) andy € K1(A). Then there exists a unitary v € U(A) such that

(€23.25) luv —vul| < e, bottq(u,v) =z, and [v] =y.

PROOF. Let ¢g : C(T) — A be the unital monomorphism defined by ¢o(f) =
f(u) for all f € C(T). Let Ao : C’(T)i’l {0} — (0,1) be defined by Ag(f) =

inf{7(po(f)) : 7 € T(A)}. Let € > 0 be given. Choose 0 < &1 < ¢ such that

botty(21,22) = botty (2], 25)

for any two pairs of unitaries z1, 22 and 21, 24 satisfying the conditions ||z; —z1|| <

€1, ||z2 — 25]| < e1, ||z122 — zo21|| < &1 and ||z125 — 2521 ]| < e1.
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Let H; € C(T)% \ {0} be a finite subset, y1 > 0, y2 > 0, and Hy C C(T)s.q.
be a finite subset as provided by Corollary 12.9 of [21] (for 1/4 and Ag/2). We
may assume that 3y C C(T)2.

Let

8, = min{y; /16, 2/16, min{ Ao (f) : f € H,}/4}.

Let o = min{d,/16, (01/16)(e1/327)}.

Let e € 1® U C A be a non-zero projection such that 7(e) < o for all
7 € T(A). Let B = eAe (then B 2 A ® U’ for some UHF-algebra U’). It
follows from Corollary 18.10 of [21] that there is a unital simple C*-algebra
C' = limy, 00 (Ch, ¥p), where C,, € Gy and C = C’ ® U such that

(Eo(C), Ko(C)+, [1c], T(C),ro) = (pa(Ko(A)), (pa(Ko(A)))+; pa(le]), T(eAe), 7 a).

Moreover, we may assume that all 1, are unital.

Now suppose that z € Ky(A) with |7(pa(z))| < o for all 7 € T(A) and
suppose that y € K;i(A). Let z = pa(x)e Ko(C). We identify z with the el-
ement in Ky(C) in the identification above. We claim that, there is ng > 1
such that there is 2’ € Ko(Cp, ® U) such that z = (¢ .00)x0(2")€ Ko(C) and
t(pc,,ev)(@')| <o forallt € T(Cp, @ U).

Otherwise, there is an increasing sequence ny, x € Ko(C,, ® U) such that

(€23.26) (Yny.00)+0(21) = 2 € Ko(C) and [t(pc,, ev)(@r)| = 0

for some t, € T(Cp, @U), k=1,2,.... Let L : C — C,, ® U be such that
im0 La(e) — ¢l = 0

for all ¢ € Yy, 00(Cpn, ®U), k=1,2,.... It follows that any limit point of ¢ o Ly
is a tracial state of C. Let ¢y be one such limit. Then, by (e23.26),

to(pc(2)) = 0.

This proves the claim.

Write U = limy, 00 (My(m), tm ), Where 2, © My () — My(mq1) is a unital
embedding. Repeating the argument above, we obtain mg > 1 and 3y’ € K((C,,,®
M,(mg)) = Ko(Chny) such that (1m,,00)«0(y') = 2" and [t(pc,, (y'))] < o for all
t € T(Cpy @ My (my))- Let Mc,, be the constant given by Lemma 23.2. Choose
r(m1) > max{48Mc, /o,7(mo)} and let Y = (2nq,m, )+0(y’). Then, we compute
that

t(pc,, (") < o for all t € T(Cpy @ My(m,))-

It follows from 23.2 that there exists a pair of unitaries u},v] € Cp, @ M,
such that

(m1)

(€23.27) |lujv] — viuy|| < e1/4 and botty(u},v]) =y".
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Put w1 = 4y, 00 (1)) and v1 = 4, ,00(v]). Then (e23.27) implies that
(23.28) lurvy — viug| < e1/4 and botty (ug,v1) = '

Let hg : Cpy @ U — Mz(eAe) be a homomorphism as given by Corollary 18.10
of [21] such that

(e 2329) PA O (ho)*o = (¢ng,oo)*0~
Then the projection €’ = ho(lc, eu) satisfies pa(e’) = pa(e). Replacing e by

e/, we can assume hg is a unital homomorphism from C,, ® U to eAe. It follows
that

(€23.30) pa((ho)so(z’) —x) =0.
Let ug = ho(u1) and vy = ho(vy). We have
(€23.31) pa(botty (ug, va) — ) = 0.

Choose another non-zero projection e; € A such that eje = ee; = 0 and 7(e1) <
01/16 for all 7 € T(A). It follows from 22.1 that there is a unital homomorphism
H : C(T?) — e; Aeq such that

(e 2332) H*()(b) =T — bOttl(U27 ’02),

where b is the Bott element in Ko(C(T?)). (In fact, we can also apply 22.16
here.) Thus we obtain a pair of unitaries us, v3 € e; Ae; such that

(e 2333) uU3v3 = V3us and bOttl(u;g, Ug) =T — bOttl(Ug, 1)2).

Let eg,e3 € (1 —e—e1)A(1 — e — e1) be a pair of non-zero mutually orthogonal
projections such that 7(e3) < §1/32 and 7(e3) < 61/32 for all 7 € T(A). Thus
T(e+e1+ez+ez) < 301/16 for all 7 € T(A). Then, together with Theorem 17.3
of [21], (applied to X = T), we obtain a unitary us € (1 —e—e; —e2 —e3)A(1 —

e —e1 — eg — e3) such that

(e23.34) 7(f(ua)) = 7(f(u))]| < d1/4

forall f € HoUXH; and for all 7 € T(A). Let w = ugtug+us+(1—e—eg—ea—e3).
It follows from Theorem 3.10 of [22] that there exists us € U(e2Aez) such that

(€23.35) U5 = aw* € U(A)/CU(A).

Since A is simple and has stable rank one, there exists a unitary v4 € e3Aes such
that [v4] =y — [v2 + v3 + (e2+e3)] € K1(A). Now define

Ug = U + U3z + Ug + us + €3 and vﬁzvg+v3+(1—e—el—62—63)+62+v4.
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Then

(€23.36) ||ugvs — veugl| < €1/2, botti(us,vs) =, and [vg] = y.

Moreover,
(€23.37) 7(f(ug)) > A(f)/2 for all f e H;,
(€23.38) |7(f(u)) = 7(f(us))| <11 and ug = a.

By Corollary 12.7 of [21] and by (¢23.35) (¢23.37) and (e 23.38) that there exists
a unitary W € A such that

(€23.39) IW*ugW — ul| < e1/2.
Now let v = W*vgW. We compute that
(€23.40) |jluv —vul| < e, botti(u,v) = botty(us,vs) =, and [v] =y.

g

COROLLARY 23.4. Lete >0, C = @F  C' = @ My (C(T)). Let Py C
Ko(C) and Py C K1(C) be finite sets generating Ko(C) and K1(C). There ezists
o > 0 satisfying the following condition: Let A = A1 @ U be as in Lemma 23.3,
let v : C — A be an embedding, and let « € KL(A® C(T), A) be such that

[7(pala(B(w))))] < omin{r'((1c:))/m(i), 1<i<k, 7" €T(A)},

for allw € Py and 7 € T(A). Then there exists a unitary v € t(1¢)Au(le) such
that

Bott(,v)|p,up, = a0 Blp,up, -

PROOF.  Let e}, € C" = M,,(;,(C(T)) be the rank one projection of the upper
left corner of C* and u® € K;(C?) be the standard generator given by ze?; +(1¢, —
et1), where z € C(T) is the identity function from T to T C C. Without loss of
generality, we may assume that Py = {[e};],1 <i <k} and Py = {u?,1 <i < k}.
Let ¢ be as in Lemma 23.3. For each i € {1,2,--- ,k}, applying Lemma 23.3
to 1(el;)Au(el;) (in place of A), i(zei;) € u(ei;)Au(el;) (in place of u) with
r = a(B(u?)), y = a(B([et;])), one obtains a unitary vi; € u(ei;)A(el;) in
place of v. Identifying ¢(1ci)Au(1ci) = (u(ely)Au(€ly)) ® My (C), we define
v" = v}} ® 1,,,(5). Finally, choose v =v' ®v? @ - ®v* € 1(1¢)Au(1¢) to finish
the proof. O
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24. More Existence Theorems for Bott Elements Using Lemma 23.3,
22.1, Corollary 21.11 of [21], Lemma 18.11 of [21], and Theorem 12.11 of [21],
we can show the following result:

LEMMA 24.1. Let A = Ay ® Uy, where Ay is as in Theorem 14.10 of [21] and
B = B; ® Uy, where By € By and Uy, Us are two UHF-algebras of infinite type.
For any € > 0, any finite subset F C A, and any finite subset P C K(A), there
exist § > 0 and a finite subset Q C K1(A) satisfying the following condition: Let
a unital homomorphism ¢ : A — B and o € KL(A® C(T), B) be such that

(e24.1) |ropp(a(B(x)))] < for all x € Q and for all T € T(B).
Then there exists a unitary uw € B such that

(€24.2) le(x), ul]] < e for all x € F and
(e24.3) Bott(p,u)lp = a(B)|p.

PrOOF. Let g1 > 0 and let 1 C A be a finite subset satisfying the following
condition: If
L,L':A®C(T)— B

are two unital F|-e;-multiplicative completely positive linear maps such that
(e24.4) IL(f) = L'(f)|| <& for all feF],

where
3jll = {a‘@g:a 63Tl and g€ {sz*vlc('ﬂ‘)}}v

then

(e24.5) [L]lp) = [L']lp)-

Let Bl,n = Mm(l,n) (C(T)) 69]\Im(ln) (C(T)) D '@Mm(kl(l),n) (C(T))a BQ,n =
PM,, )(C(X,))P, where X,, is a finite disjoint union of copies of 52, T, and
T3y, (for various k > 1). Let Bs, be a finite direct sum of C*-algebras in C
(with trivial K; and kerpp, , = {0}—see Proposition 3.5 of [21]), n = 1,2,....
Put C, = By ,®B2,®B3 ., n = 1,2, .... We may write that A = lim,,_,(Cl,, 2,,)
as in Theorem 14.10 of [21]. with the maps 2, injective (applying Theorem 14.10
of [21] to 4;),

(e24.6) kerpa C (n,00)s0(kerpc, ), and
(e24.7) ILm sup{7(1p,, ®1B,,): T €T(B)} =0.

Let e2 = min{e;/4,¢/4} and let Fo = F; U F.
Let P11 C K(Bip,), P21 C K(Bay,) and P31 C K(Bs,,,) be finite subsets
such that
P C [tny,00)(P1,1) B[ty ,00] (P2,1) B[tny ,00]) (P3,1)
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for some ny; > 1. To simplify the notation, without lose of generality, we may
assume P C [1n; 00)(P1,1) U [tn1,00)(P2,1) U [tny,00))(P3,1). Let Q" be a finite set
of generators of K1(C,,) and let Q = [1,,, ](Q’). Since K;(B1.,,), i = 0,1, are
finitely generated free abelian groups, without loss of generality, we may assume
that P11 C Ko(B1,n,) U K1(B1,n,) and generates Ko(Bi,n,) ® K1(B1n,)-

Without loss of generality, we may assume that F3 UF C 15, oo(Ch,). Let
F11 C Biny, F21 C Bap,, and F31 C B3y, be finite subsets such that

(624.8) leUS"Cznl,oo(%,lu%,lu%,l).

Let e1 = tn;,00(1By,, ), €2 = ny,00(1B,,, ), and e3 = 1 — €1 — ea. Note that
Bin, = & Bi

i ., where s5(np) is an integer depending on ny and Bj , =

1,TL1
M,y (in,)(C(T)). We may write e; = @fgl)ei with e! = an,oo(l%ml)~ Let
Ay : (Ban,) %"\ {0} — (0,1) be defined by

Aq(h) = (1/2) inf{7(@(1n, 0o (h)) : 7 € T(B)} for all h € (Ba,,)L\ {0}.

Let Ay : BYE \ {0} — (0,1) be defined by

3,n1
Ag(ﬁ) = (1/2) inf{7(p(tn,,0c0(h)) : T € T(B)} for all h e (Bgvnl)}‘_ \ {0}.

Note that Bs ., has the form C of Theorem 12.7 of [21]. So we will apply
Theorem 12.7 of [21]. Let Hyy C (B3, )+ \ {0} (in place of 1), 721 > 0 (in
place of 71), d2,1 > 0 (in place of §), G2,1 C Ba,y, (in place of §), Pa o C K(Bay,)
(in place of P), and Ha o C (Ban, )s.q. (in place of Ha) be the constants and finite
subsets provided by Theorem 12.7 of [21] for £2/16, F2 1, and A; (we do not need
the set U in Theorem 12.7 of [21] since K (Ba,y, ) is torsion or zero; see Corollary
12.8 of [21]).

Recall that B; ,, = @f(:ril) Bi

1,711

with B!

1,ny — m(i,n1)(O(T))7 and e; =
P el with b = zmm(lﬁgm1 ). Now let o > 0 be as provided by Corollary
23.4 (see 23.3 also) for Py 1 and e2/4 (in place of €). Let § = o-inf{r(e})/m(i,ny) :
1 <i<s(ni), e T(A)}. It follows from 23.4 that if |7 o pp(a(B(x)))| < ¢ for

all T € [tn,,00])(P1,1) then there is a unitary v; € e; Be; such that

(e24.9) Bott (4 © %y 00, V1) |21, = @0 B0 [1n; ool (211)-

Note that K (Bs,p,) is a finite group. Therefore,

(€24.10) a(B([tny,00)) (K1(Ban,)) C kerpp.

Define 1 € KK(Ban, ® C(T),A) by f<61|5(32,n.1) = [p 0 tny,00]B,,,] and

K1la(K(Ban,)) = Qla(K(Ba,,))- Since in, o is injective, by (e24.10),
K1 € KK@(BZTH (9 C(T),BQB€2)++.
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Let
= min{'yg71/2,min{A1(iL) cheHyr}-inf{r(es) : 7€ T(A)}.

Define 7o : T(egAea) — Ty (B2,n, ®C(T)) by 70(7)(f @ Lor)) = T 0 ¢ 0 %0y 00(f)
for all f € By, and y0(1®g) = [, g(t)dt for all g € C(T). It follows from 22.16,
applied to the space X,,, x T, that there is a unital monomorphism ® : By ,,, ®
C(T) — eaAeq such that [®] = k1 and &7 = vo. Put Ly = ®[p, , (identifying
By, with By, ® 1o(my) and vy = ®(1 ® z), where z € C(T) is the identity
function on the unit circle. Then L, is a unital monomorphism from Bj ., to
es Aey. We also have the following facts:

(e24.11)  [Lo] = [@ o tny 0], [I[L2(f), v3]l =0,
(e 2412) BOtt(L27 U/2)|932‘2 = a(ﬁ([znlyoo]))|?2,27 and
(e24.13) |70 La(f) —To@oin, «o(f)]=0 for all fe€ Ho1UHoo

and for all 7 € T'(egAes). It follows from (e24.13) that

(€24.14) T(L2(f)) > A1(f) - 7(e2) for all f € Hoy and 7€ T(A).

By Theorem 12.7 of [21] (see also Corollary 12.8 of [21]), there exists a unitary
w € egAeg such that

(€24.15) |Adw o La(f) — ¢ 0 tny 00 (f)]] < e2/16 for all f e Fy;.
Define vy = w*vhw. Then, for all f € Fy 1,
(e24.16) ¥ © 2ny .00 (f), v2]|| < €2/8 and

BOtt(@ O lny,00; U2)|3’2,1 = a(ﬁ([ln27oo]))|:P2,l.

Note that Bs ,,, has the form C' of Theorem 12.7 of [21]. Let Hz 1 C (Bsp, )L\
{0} (in place of H1), v3,1 > 0 (in place of 71), 03,1 > 0 (in place of 6), 31 C B3z n,
(in place of §), P32 C K(Bs,,) (in place of P), and Hz o C (B3, )s.a. (note
that K3(Bs,,,) = {0}) be constants and finite subsets as provided by Theorem
12.7 of [21] for €2/16, F3 1, and Ay (see also Corollary 12.8 of [21]).

Let

o1 = (y3,1/2) min{r(es) : 7 € T(A)} - min{A(f) : f € Ha ).
Note that kerpp,, = {0} and K1(B3,) = {0} (see Proposition 3.5 of [21])

Therefore, kerpp, | wco(r) = kerpp,,, = {0}. Define ry € KK (B3, @ C(T), A)
as follows:

K2l (B ny) = [0 tny,00)| By, a0 K2|g(x(Bs ., ) = (B(tny,00) K (Bs 0, )-
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Thus k2 € KK.(Bs,, ® C(T),e3Aes)*T. It follows from 22.7 that there is
a unital G31-min{es/16, 03 1/2}-multiplicative completely positive linear map
L3 : B3, — egAes and a unitary vj € egAes such that

(24.17) [Ls] = [¢], |I[Ls(f), v§]|| < e2/16 for all f € G341,
(e24.18) Bott(Ls, v3)|p,, = K2lg(p,,), and
(€24.19) |70 Ls(f) —To@otn «(f)] <op for all feHsiUHso

and for all 7 € T'(e3Aes). It follows from (e24.19) that

(e24.20) T(Ls(f)) = A1(f)7(es)

forall f € Hz; and for all 7€ T(A). It follows from Theorem 12.7 of [21], and
its corollary (see part (2) of Corollary 12.8 of [21]), that there exists a unitary
wy € ezAes such that

(€24.21) |Adwy o La(f) — ¢ 0 tpy .00 (f)]| < €2/16 for all f e Fz;.
Define vz = wjviw;. Then
(e24.22) Il © tny 00 (f), vs]]| < €2/8 and

Bott(¢ 0 15, ,00s V3)|py, = Bott(Ls, v3)|p, ;.
Let v = v1 + v3 + v3. Then
(e24.23) lle(f), v]|| <e for all fedF.
Moreover, we compute that

(e24.24) Bott(p, v)lp = alg).

We have actually proved the following result:

LEMMA 24.2. Let A = A; ® Uy, where Ay is as in Theorem 14.10 of [21] and
B = By ® Uy, where By € By is a unital simple C*-algebra and where Uy, Uy
are two UHF-algebras of infinite type. Write A = limy, o0 (Chp,ytn) as described
in Theorem 14.10 of [21]. For any e > 0, any finite subset F C A, and any finite
subset P C K(A), there exists an integer n > 1 such that P C [i, 00](K(Ch))
and there is a finite subset Q C K;(C,) which generates K1(Cy) and there
exists & > 0 satisfying the following condition: Let ¢ : A — B be a unital
homomorphism and let « € KK(C,, ® C(T), B) such that

|70 pp(a(B(x)))] <& for all x € Q and for all 7 € T(B).
Then there exists a unitary uw € B such that

llo(z), ul|] <e for all x € F and Bott(p o [tn,00], u) = a(B).
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PrROOF. Note that, in the proof of Lemma 24.1, K;(B;1) is finitely generated,
i=0,1, and j = 1,2,3. Then KK(Bj1,A) = KL(B,1,B) (for any unital C*-
algebra B), j = 1,2. Moreover (see [6]), there exists an integer Ny > 1 such
that elements in Homa (K (B;,1), K(B)) are determined by their restrictions to
K;(Bj1) and K;(Bj1,Z/mZ), m = 2,3, ..., Ng. In particular, we may assume,
in the proof of 24.1, that P, 1 generates K;(B;1) @ @z‘;Q K;(Bj1,Z/mZ), j =
1,2,3. O

REMARK 24.3. Note that, in the statement above, if an integer n works, any
integer m > n also works. In the terminology of Definition 3.6 of [44], the
statement above also implies that B has properties (B1) and (B2) associated
with C.

COROLLARY 24.4. Let B € By, let Ay € By, let C = B® Uy, and let A =
Ay ® Uy, where Uy and Uy are UHF-algebras of infinite type. Suppose that B
satisfies the UCT and suppose that k € KK (C,A)*T, ~v: T(A) — T(C) is a
continuous affine map, and « : U(C)/CU(C) — U(A)/CU(A) is a continuous
homomorphism for which v, a, and k are compatible. Then, there exists a unital
monomorphism h : C — A such that

(1) [h] =k in KK.(C,A)TT,
(2) hr =~ and h* = a.

PrROOF.  The proof follows the same lines as that of Theorem 8.6 of [40], fol-
lowing the proof of Theorem 3.17 of [44]. Denote by & € K L(C, A) the image of
k. It follows from Lemma 22.14 that there is a unital monomorphism ¢ : C — A
such that

lpl=F, ¢t=a, and (p)r=1.
Note that it follows from the UCT that (as an element of KK (C, A))

K — [p] € Pext (K, (C), Kvi1(A)).

By Lemmas 24.2 (see also Remark 22.15) and 23.3, the C*-algebra A has Prop-
erty (B1) and Property (B2) associated with C in the sense of [44]. Since A
contains a unital copy of Us, it is infinite dimensional, simple and antiliminal.
It follows from a result in [1] that A contains an element b with sp(b) = [0, 1].
Moreover, A is approximately divisible. It follows from Theorem 3.17 of [44]
that there is a unital monomorphism 1y : A — A which is approximately inner
and such that

[Yoog] =[] =K —[e] in KK(C,A).
Then the map
h:=1vpo¢p

satisfies the requirements of the corollary. O
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LEMMA 24.5. Let A = Ay ® Uy, where Ay is as in Theorem 14.10 of [21] and
B = B; ® Uy, where By € By is a unital simple C*-algebra and where Uy, Us
are two UHF-algebras of infinite type. Let A = lim,, 00 (Ch,1p) be as described
in Theorem 14.10 of [21], For any € > 0, any o > 0, any finite subset F C A,
any finite subset P C K(A), and any projections p1,pa, ..., Dk, q1,92, -, qx € A
such that {x1,xa,...,xr} generates a free abelian subgroup G of Ko(A), where
x; = [pi] = [@), ¢ = 1,2,....,k, there exists an integer n > 1 such that P C
[tn,00] (B (C)) and there is a finite subset Q C K1(C,,) which generates K1(C),)
and there exists § > 0 satisfying the following condition: Let ¢ : A — B be a
unital homomorphism, let I' : G — Uy(B)/CU(B) be a homomorphism and let
a € KK(C, ® C(T), B) such that

70 pp((B(x)))| < 6 for all x € Q and for all 7 € T(B).
Then there exists a unitary u € B such that
(), ull| < e for all x € F, Bott(p o [tn,00],u) = a(B),
and
dist({((1 = @(p)) + o(Pi)u) (1 = ¢(a:)) + ¢(g:)u*)), T(zi)) < 0,i=1,2,... k.

ProoF. This follows from Lemma 24.2 and Theorem 22.18. In fact, for any
0 < &1 < &/2 and finite subset F; D F, by 24.2, there exists an integer n > 1,
a finite subset Q C K;(C,,), and § > 0 as described above, and a unitary u; €
Uo(B), such that

Ile(z), wi]|| < e for all € Fy

and
Bott (4 0 tn,00, u1) = a(B)].

Choosing a smaller ¢; and a larger J, if necessary, we may assume that the
class

(T =(p) + @(pi)ua) (1 = ¢(a:)) + ¢(gi)ui)) € Uo(B)/CU(B)
is well defined for all 1 < ¢ < k. Define a map I'y : G — Uy(B)/CU(B) by

Dizi) = (L= o@i) + e(p)ur)(1 — (@) + o(g)ui)), i=1,2,...k

Choosing a large enough n, without loss of generality, we may assume that
there are projections pj, p5, ..., Pk, ¢1, 42, ---, @), € Cyp, such that v, o (p;) = p; and
tn,oo(q)) = i, i = 1,2, ..., k. Moreover, we may assume that F1 C 1), 50(Ch).

Let Ty : G — Up(B)/CU(B) be defined by T'a(x;) = T'yi(z:)* T(xy), i =
1,2,..., k. It follows by Theorem 22.18 that is a unitary v € Uy(B) such that

(e24.25) e(x), v]|| <e/2 for all x € F,
(€24.26) Bott(y 0 2,00,v) =0, and

dist(((1 = ¢ (pi)) + 0 (P)0)((1 = #(q:) + ¢(g:)v*)), Ta(wi)) < o,
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1=1,2,..., k. Define u = uyv,

(e24.27) X; = ((1—(pi) + o(pi)ur)(1 — »(qi)) + ¢(g:)u7)), and
(€24.28) Y = (((1 —(p:i)) + w(pi)v)((1 — @) + (gi)v*)),

i=1,2,...,k. We then compute that

(e24.29) lle(z), u]|| <e1+¢e/2<e for all z € F,
Bott( 0 2,00, 1) = Bott( 0 2 00, u1) = (B), and
dist((((1 = @(pi)) + o (p)u) (1 = ¢(g:)) + (g)u*)), T'(x:))
< dist(X;Y5, Ty () Y:) 4 dist(Cy (24) Y3, T(4))

= dist(X;, Ty (2;)) + dist (Y7, Ta(2)) < o,

fori=1,2,.., k. O

25. Another Basic Homotopy Lemma

LEMMA 25.1.  Let A be a unital C*-algebra and let U be an infinite dimensional
UHF-algebra. Then there is a unitary w € U such that for any unitary u € A,
one has

(€25.1) T(f(u®w)):T(f(lA(X)w)):/dem, FEC(T), reT(AU),

where m is normalized Lebesgue measure on T. Furthermore, for any a € A and
TeT(A®U), T(a®w!) =0 if j #0.

PROOF. Denote by 7y the unique trace of U. Then any trace 7 € T(A®U) is
a product trace, i.e.,

T(a®@b)=1(a®1)®@1(b), ac AbeU.

Pick a unitary w € U such that the spectral measure of w is Lebesgue measure
(a Haar unitary). Such a unitary always exists. (It can be constructed directly;
or, one can consider a strictly ergodic Cantor system (2, o) such that Ko(C(Q) X,
Z) = Ko(U). One then notes that the canonical unitary in C(2) %, Z is a Haar
unitary. Embedding C(Q2) x, Z into U, one obtains a Haar unitary in U.) Then
one has, for each n € Z,

(w") = 1, ifn=0,
o\ = 0, otherwise.

Hence, for any 7 € T(A ® U), one has, for each n € Z,

—_

, ifn=0,

T(w@w)") =7@W" @w") =7(u" @ )7y (w") = { 0, otherwise;
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and therefore,

T(Plu®@w)) =7(P(l®w)) = /TP(z)dm

for any polynomial P. Similarly, 7(P(u®w)*) = [, P(Z)dm for any polynomial
P. Since polynomials in z and z~! are dense in C(T), one has

(fu®w) = (f(1©w)) = / fdm, feC(T),

as desired. O

LEMMA 25.2. Let A be a unital separable amenable C*-algebra and let L :
A ® C(T) = B be a unital completely positive linear map, where B is another
unital amenable C*-algebra. Suppose that C' is a unital C*-algebra and u € C is
a unitary. Then, there is a unique pair of unital completely positive linear maps

®y,05: A® C(T) - B® C such that
Pilagicm =10 Llagion (i =0,1) and ®1(a® ) =Lla® ) @u and
Py(a®2’) = Lla® lom)) ® v
for any a € A and any integer j, where 1 : B — B® C' is the standard inclusion.
Furthermore, if 6 > 0 and § C A® C(T) is a finite subset, there are §; > 0

and finite set G1 C A ® C(T) (which do not depend on L) such that if L is
G1-01-multiplicative, then ®; is G-0-multiplicative.

PrROOF. Considering the map L' : A® C(T) - Bby L'(a® f) = L(a® f(1))
for all a € A and f € C(T), where f(1) is the evaluation of f at 1 (a point on
the unit circle), we see that it suffices to prove the statement for ®; only.
Denote by Cp the unital C*-subalgebra of C' generated by u. Then the tensor
product map
L ®idg, A®C(T)®C@ — B® Cy

is unital and completely positive (see, for example, Theorem 3.5.3 of [4]). Define
the homomorphism ¢ : C(T) — C(T) ® Cy by

Y(z) =z @ u.
By Theorem 3.5.3 of [4] again, the tensor product map
ida®y: A C(T) > A C(T) ® Cy
is unital and completely positive. Then, the map
&= (L®ide,) o (ids @)

satisfies the requirement of the first part of the lemma.
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Let us consider the second part of the lemma. Let 6 > 0 and § C A® C(T)
be a finite subset. Without loss of generality, we may assume that elements in
G have the form > | ... a; ®z". Let N =max{n: Y _ ., a;®z" € G}, let
81 =06/2N? and let §; D {a; ® 2z : —n <i<n: Y n<icn @i ® 2t e G}

Then

(Y woh) Y hed)

—n<i<n —n<i<n
= > Blab;@2)
,J
= Z L(aibj X ZH_j) X ’U/H—j
)
s (Y La®Z)eu)( Y L) eu)
—n<i<n —n<in
= O > a0 Y b,
—n<i<n —n<i<n

> cicnai®z> .o b @zt € G. It follows that @ is G-d-multiplicative.

Let P(T) ={>_;_, ciz',c; € C} denote the algebra of Laurent polynomials.
Uniqueness of ® follows from the fact that A®QC(T) is the closure of the algebraic
tensor product A ®q4 P(T). O

The following corollary follows immediately from 25.2 and 25.1.

COROLLARY 25.3. Let C be a unital C*-algebra and let U be an infinite di-
mensional UHF-algebra. For any § > 0 and any finite subset § C C ® C(T),
there exist 61 > 0 and a finite subset G4 C C @ C(T) satisfying the following
condition: For any 1 > o1, 02 > 0, any finite subset Hy; C C(T)4 \ {0}, any
finite subset Hy C (CRC(T))s.a., and any unital G1-61-multiplicative completely
positive linear map L : C ® C(T) — A, where A is another unital C*-algebra,
there exists a unitary w € U satisfying the following conditions:

(€25.2) |T(L1(f)) — T(L2(f))| < o1 for all f € Hy, 7€ T(B), and

(€25.3) T(g(lg @ w)) > 02(/ gdm) for all g € Hy, 7 € T(B),

where B=A®U and m is normalized Lebesgue measure on T, and L1,Ly : C®
C(T) - A®U are §-0-multiplicative contractive completely positive linear maps
as given by Lemma 25.2 (as @1, ®2) such that Li(c® 1omy) = L(c® 1gm) ® 1y
(i=1,2), Li(c®2)) = Llc®2))@w, and La(c® 27) = L(c® lg(r)) @ w? for
all ¢ € C and all integers j.

PrROOF. Fix a § > 0 and a finite subset G. Let 6; > 0 and §1 C C ® C(T) be
as given by Lemma 25.2 for A (in place of B).
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Let 0 < 01,02 < 1, Hy, and Hs be as given in the statement. There are a
finite subset ¥ C C and an integer N > 0 such that, for any h € Hs,

N
(25.4) |h — Z an; ® 2| < 01/2,
j=—N

where ap; € Fo U{0}. Set H5 = {Zij\;_N ap; @27 :h € Ha}.

Now assume that L is as stated for §; and §; mentioned above.

Choose w € U as in Lemma 25.1. Let Ly,Ls : C ® C(T) - A® U be as
described in the corollary. In other words, let Ly : C @ C(T) — A ® U be the
map as ®; given by Lemma 25.2 (with C in place of A, A in place of B, U in
place of C, and w € U in place u € U), and let Ly : C @ C(T) - A® U be
defined by La(c® f) = L(c® 1¢(m)) ® f(w) for all c € C and f € C(T) (as 5 in
Lemma 25.2). By the choice of §; and é;, L; and Lo are §-6-multiplicative (as
in 25.2).

By Lemma 25.1 (and by Lemma 25.2), for h € H,

N N
7'( Z Ll(ahﬂ- [ 21)) = Z T(L(ah’i (024] Zi) ® wi)
i=—N i=—N
= 7(L(ano @ loem)) = 7(La(ano @ lor)))
N

(Y L{an: @ 1em) @ w') = 7(La(h)).
i=—N

7(L1(h))

Thus, combining (e25.4), inequality (e25.2) holds. By (e25.1), (e25.3) also
holds.
t

LEMMA 25.4. Let A = A; ® Uy, where Ay € By and satisfies the UCT and
Uy is a UHF-algebra of infinite type. For any 1 > ¢ > 0 and any finite sub-
set F C A, there exist 6 > 0, ¢ > 0, a finite subset § C A, a finite sub-
set {p1,D2y s Dy q1, G2, -+, Qi } Of projections of A such that {[p1] — [q1], [p2] —
[q2], .-, [pk] — [ar]} generates a free abelian subgroup G, of Ko(A), and a finite
subset P C K(A), satisfying the following condition:

Let B = B1 ® Uy, where By is in By and satisfies the UCT and Uy is a UHF-
algebra of infinite type. Suppose that ¢ : A — B is a unital homomorphism.

If u € U(B) is a unitary such that

e25.5
e25.6

( )
( )
(€25.7)  dist((((1 = @(pi)) + @(pi)u)(1 — ¢(a:)) + ¢(g)u)),1) < o, and
( )

e25.8) dist(u,1) < o,

lle(z), ull| <6 for all x € G,
Bott(tp, u)|3’ = O,
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then there exists a continuous path of unitaries {u(t) : t € [0,1]} C U(B) such
that

(€25.9) w(0) =u, u(l)=1p,

(€25.10)  dist(u(t), CU(B)) < e for all t €10,1],

(€25.11)  Jl[p(a), u@®)]|| <& for all a € F and for all t € [0,1], and
(€25.12)  length({u(t)}) < 27 +e¢.

Proor. It is enough to prove the statement under the assumption that u €
CU(B).

Recall that every C*-algebra in By has stable rank one (see Theorem 9.7 of
[21]). Define

A(f) = (1/2)/fdm for all f e C(T)L\ {0},

where m is normalized Lebesgue measure on the unit circle T. Let As = AQC(T).
Let F1 = {x® f: 2 € F, f =1,z 2"}. We may assume that F is a subset of
the unit ball of A. Let 1 > d; > 0 (in place of §), §3 C As (in place of G),
1/4 > 01 > 0, 1/4 > 09 > 0, P C K(AQ), j‘fl C C(T)}"_ \ {0}, 9{2 C (AQ)S.QV,
and U C U(M2(Az))/CU(M2(A)) be the constants and finite subsets provided
by Theorem 12.11 part (b) of [21] for £/4 (in place of €), F; (in place of F), A,
and Az (in place of A).
We may assume Hy C A, . that

Gi={a®f:a€Ge and f=1,z2,2"},

where G5 C A is a finite subset, and P — P1UB(P2), where Py, Py C K(A) are
finite subsets. Define P = Py U Ps.

We may assume that (267, j’, 91) is a K L-triple for As, (261,%P1,G2) is a K L-
triple for A, and 14, ® H; C Hos.

We may choose o1 and o such that

(e25.13) max{oy, 09} < (1/4)inf{A(f) : f € H;}.

Let 62 (in place of 01) and a finite subset G3 (in place of G1) be as provided by
25.3 for A (in place of C), §;/4 (in place of §), and Gy (in place of §). Choosing
smaller 02, without loss of generality, we may assume that G5 = {a ® f : g €
G, and f = 1,z,2*} for a large finite subset G5 D Go. We may assume that
0o < 071.

We may further assume that

(€25.14) U=U; U{l®z}UUs,
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where U; = {a®1 : a € Uy C U(A)}, U] is a finite subset, and Uy C
U(A2)/CU(Az) is a finite subset whose elements represent a finite subset of
B(Ko(A)). So we may assume that Uz € J.(B(Ko(A))). As in Remark 12.12 of
[21], we may assume that the subgroup of J.(B8(Ko(A))) generated by Us is free
abelian. Let U5 be a finite subset of unitaries such that {Z : x € U5} = Ua. We
may also assume that the unitaries in U5, have the form

(€25.15) (1—pi)+pi®2)((1—qg)+q®z"), i=1,2,..,k.

We may further assume that p; ® z,q; ® z € G1, i = 1,2, ..., k. Choose d3 > 0
and a finite subset §j C A (and write G4 :=={9® f: 9 € G4, f =1,2,2*}) such
that, for any two unital G4-d3-multiplicative completely positive linear maps
Uy, Uy : A® C(T) — C (any unital C*-algebra C), any G)-ds-multiplicative
contractive completely positive linear map ¥y : A — C and unitary V € C
(1<i<k), if
(25.16) || ¥o(g) — V1(g®@1)|| < &3 for all g € G,

(€25.17)  ||¥1(2) — V|| < 83, and ||[¥1(g) — Ua(g)|| < 05 for all g € Gy,
then

e25.18
e25.19

( ) (1= Wo(pi) + Po(pi)V)(1 = Wo(q:) + Yo(g:) V™))

( ) Ny /210 (W1(((1—=pi) +pi @ 2)((1 — i) + ¢ @ 27))),
(€25.20) (U (2)) — (Ta(x))| < 09/2'° for all 2 € U, and
(€25.21)  Wi((1—pi) +pi®@2)((1 - @) + ¢ ®2"))

( )

€25.22 Ngy/210 U1((1—=pi) +pi @ 2)V1((1 — q;) + ¢ ® 27),

and, furthermore, for dgl) = pi, dl@ = gq;, there are projections Jgj) € C and
unitaries Efj ) e a_lgj )CJEJ ) such that

(25.23) Wi((1—d) +d @ 2) ~gy (1—d) + 27,

(62524) CZEJ) %;TQQ \Ill(dg'])), Zl(l) %20% \Ill(pz (321)7 and 21»(2) %20% \I’l(qz X Z*>,
where 1 < ¢ < k, 7 = 1,2. Choose 0 > 0 so it is smaller than
min{oy/16,£/16,02/16,82/16,05/16}.

Choose 05 > 0 and a finite subset G5 C A satisfying the following condition:

there is a unital G4-0/8-multiplicative completely positive linear map L : A ®
C(T) — B’ such that

(€25.25) [[L(a®1)—¢'(a)|| <o/8 for all a € §) and |[L(1® z) — /|| < o/8
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for any unital homomorphism ¢’ : A — B’ and any unitary v’ € B’ such that

[ (g)u" — 'y’ (g)]| < d5 for all g€ Gs.

Let § = min{d5/4,0} and § = G5 U G} U G5.

Now suppose that ¢ : A — B is a unital homomorphism and u € CU(B)
satisfies the assumptions (e25.5) to (e25.7) for the above mentioned 4, o, G, P,
pi, and g;. Choose an isomorphism s : Us ® Us — Us. Note that s o+ (since it is
unital) is approximately unitarily equivalent to the identity map on Us, where
1: Uy = Uy ®Us is defined by «(a) = a®1 (for all a € Us). To simplify notation,
let us assume that ¢(A) C B® 1 C B ® Us. Suppose that v € U(B) ® 1y, is
a unitary which satisfies the assumption of the lemma. As mentioned at the
beginning, we may assume that u € CU(B) ® 1y,. Without loss of generality,

we may further assume that u = [[j2, ¢;d;cid}, where ¢;,d; € U(B) @ 1p,,

1§j§m1.Let.’fg={cj,dj:1§j§m1}.
Let L: A® C(T) — B be a unital G4-02/8-multiplicative completely positive
linear map such that

(€25.26) ||L(1®z)—ul <o/8 and ||L{a® 1) —p(a)]| < o/8
for all a € §}. Since Bott(p,u)|p = 0, we may also assume that
(€25.27) [L]lp, = [#llp, and [Ll|g(p,) = 0.

Since B is in By, there is a projection p € B and a unital C*-subalgebra
C € €y with 1¢ = p satisfying the following condition:

(e25.28) | L(g) — (1~ p)L(g)(1 — p) + La(@)]]| < 0?/32(ms + 1) for all g € S
(€25.29) and ||(1 —p)z — z(1 —p)|| < 0?/32(m1 + 1) for all = € Fy,

where Ly : AQC(T) — C'is a unital §4-min{d2/8,c/8}-multiplicative completely
positive linear map,

(€25.30) 7(1 —p) < min{oy/16,02/16} for all 7 € T(B),
and, using (€25.7), (€25.8), (€25.26), and (e25.18) to (e25.22) we have that

(€25.31) dist(L}(x),1) < 02/4 for all z € {1® 2} UU, and
(€25.32) dist(Ly(x), p(2') ® 1o(m)) < 02/4 for all z € Uy,

where 2’ ® 1oty =  and Lo (a) = (1—-p)L(a)(1—p)+Li(a) for alla € AQC(T).
Note that we also have

(€25.33)  [Lo|allp, = [¢llp, and [¢(g) — La(g @ V)] < 0/2



496 GUIHUA GONG, HUAXIN LIN AND ZHUANG NIU

for all g € ). By (€25.29) and the choice of Fs, there are a unitary vy € CU(C)
and a unitary
voo € CU((1 — p)B(1 — p)) such that

(€25.34) IL1(1 ® z) — vol| < min{d2/2,e/8} and
(€25.35) (1 =p)L(1® 2)(1 —p) —vool|| < min{d2/2,e/8}.

By the choice of d and G3, applying Corollary 25.3, we obtain a unitary
w € U(Uy) for example) such that

(€25.36) [t(L5(9))) — t(Li(9))] < 01/128, g € H, and

1

(e25.37) Holp®w) 2 55— 75

/gdm for all g € H;
T

for all t € T(pBp ® Us), where L, L5 : A® C(T) — pBp ® Uy is the unital
G1-01 /4-multiplicative completely positive linear map defined by

(€25.38) Li(a®1)=Li(a®1)® 1y, Li(a® ) =Li(a®1)®uw’,
(€25.39) Li(a® 1) = Li(a®1) @1y, and Li(a® 27) = Li(a ® 27) ® (w)’

for all @ € A and all integers j as given by Lemma 25.2.

Let LY : A® C(T) — B® U, be defined by L{(a®27) = (1 —p)L(a® 27)(1 —
p) @ w? for all @ € A and for all j € Z as described in Lemma 25.2 which is
G1-61 /4-multiplicative completely positive linear map.

Define L3 : AQC(T) — B®Us, by Ls(c) = Li(c) + LY (c) for all c € A C(T).
Thus Lz(a ® 27) = La(a ® 27) @ w? for all @ € A and integer j € Z. Define
®: ARC(T) - BUs by P(a® 1) = p(a) C B® 1y, for all a € A and
P(1® f) =14 f(w) for all f € C(T) and for some A € T.

One then checks that, for all t € T(B ® Us),

(e 25.40) [t(Ls(9)) — H®(9))| < o1, g € Ha, and

1
(e25.41) tg(l@w)) > i/gdm for all g € H;.
T

Note that CU(Uz) = U(Uz) (see Theorem 4.1 of [22]). It is also known (by
working in matrices, for example) that there is a continuous path of unitaries
in CU(Us) connecting 1y, to w with length no more than 7 4 €/256. Therefore
one obtains a continuous path of unitaries {v(t) : t € [1/4,1/2]} C CU(Uz) such
that

v(1/4) = 1y,, v(1/2) =w, and
(€25.42) length({v(t) : t € [1/4,1/2]}) < 7 + £/256.
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Note that ¢(a)®(1 ® z) = (1 ® z)p(a) for all a € A. So, in particular, ® is a
unital homomorphism and

(€25.43) [@llpeay =0

Define a unital completely positive linear map L; : As — C([2,3], B ® Us) by
Li(f®1)=Lo(f®1) and Li(a® 27) = La(a® 27) @ (v((t — 2)/4 4+ 1/4))

for all @ € A and integers j and ¢ € [2,3]. Note that Li(1 ® 2) ®min(s,/2,¢/8)

(vo D voo) ®v((t—2)/4+1/4)), and, since v(s) € CU(Us), Li(1®2) Emin(s,/2,¢/8)

CU(B ® Us) for all ¢ € [2,3]. Note also that, L; is §1-61 /4-multiplicative. Note
that at t =2, Ly = Lo and at t = 3, Ly = Lg. It follows that

(€25.44) [Ls]lp, = [Le]lp, = [¢lle,, [Ls]lge,) =0, and
(€25.45) Lﬁ(m) = Lg(x) for all € U;.

If v=(e®z)+ (1 — e) for some projection e € A, then

(€25.46) L3(v) = La(e ® 2) @ w + La((1 — €)).

Since w € CU(Uz), one computes from (e 25.22) that that, with z = ((1 —p;) +
pi®2)((1—q;) +q®z"),

(L3(2)) ~yyor0 (27 @w+ (1= 5)) (20 @w+ (1 - )

=Y+ 1-p))Pow+(1-p)@1g)E? + (1-a)(@ow+(1-g))

==Y+ 1 -p)ED + (1 - @) = (La(@)),

where ﬁi,(ji,éi(l) 2? are as above (see the lines following (e25.22)), with ¥,

(et}

replaced by L. It follows that

(€25.47) dist(L%(2),1) < 02/2 for all z € {T® 2} UlUs.

Note that, since w € CU(Us) and ¢(q) € B ® 1y,,
Pqz+(1-q)®1)=p(qg) @w+¢(l —q) € CU(B®Us)

for any projection g € A. It follows that

(€25.48) d(z) € CU(B @ Uy) for all z € {T® 2z} UUs.

Therefore (see also (e 25.43))

(€25.49) [Ls]lp = [®]|p and dist(®*(z), LE(x)) < oy for all z € U.
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It follows from (e25.41) that

(e25.50) T(D(f)) > A(f), feHi, 1eT(BUs),

and it follows from (e 25.40) that

(e25.51) |7(®(f)) — 7(Ls(f))| < o1, f€Ho TET(BRUs).
Applying Theorem 12.11 of [21], we obtain a unitary w; € B ® U, such that
(€25.52) lwi®(f)wr — L3(f)|| < e/4 for all f e F.

Since w € Us, there is a continuous path of unitaries {w(t) : t € [3/4,1]} C
CU(Us) (recall that CU(Us) = Uy(Us)) such that

w(3/4) =w, w(l) =1y, and
(e25.53) length({w(t) : t € [3/4,1]}) < 7+ £/256.
Note that
(e25.54) P(a®@l)wt) =w(t)P(a® 1) for all a € A and t € [3/4,1].

It follows from (e25.52) that there exists a continuous path of unitaries {u(t) :
t €[1/2,3/4]} C B ® Uy such that (see (€25.34), (€25.35), and (e 25.38))

(€25.55) w(1/2) = (voo + (v0)) ® w, u(3/4) = wiP(1l ® z)w;y, and
(€25.56) [lu(t) —u(1/2)|| < e/4 for all t € [1/2,3/4].

It follows from (e25.26), (e25.34), and (e25.35) that there exists a continuous
path of unitaries {u(t) : ¢ € [0,1/4]} C B such that

(€25.57) u(0) = u, u(1l/4) = voo + vo, and

(€25.58) lu(t) — u|| < e/4 for all ¢ € [0,1/4].

Also, define u(t) = (voo ® vo) @ v(t) for all t € [1/4,1/2]. It follows that
(€25.59) |lp(g)u(t) —u(t)e(g)|| <e/44 6 < 5e/16 for all g € G.

Then define

(€25.60)u(t) = wi(p @ w(t) + (1 —p) ® 1y, )w; for all ¢ € [3/4,1].

Then {u(t) : t € [0,1]} C B ® Uz is a continuous path of unitaries such that
u(0) = uw and u(1l) = 1. Moreover, by (e25.58), (€25.59), (e25.55), (e25.56),
(€25.52), (€25.60), (25.26), (e25.42), and (e25.53),

le(Hut) —u)p(f)]| <e for all f€F and length({u(t)}) < 27 +e.
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REMARK 25.5. Note, in the statement of Theorem 25.4, if [14] € P (as an
element of Ky(A)), by 2.14 of [21], condition (e 25.6) implies [u] = 0 in Ky(B).
In other words, by making [14] € P, (¢25.6) implies [u] = 0.

One also notices that if, for some i, p; = 14 and ¢; = 0, then (e25.7) implies
(e25.8). In fact, (€25.8) is redundant. To see this, let A be a unital simple
separable amenable C*-algebra with stable rank one. Let Gy C Ky(A) be a
finitely generated subgroup containing [14]. Let G, = pa(Gg). Then pa([14]) # 0
and G, is a finitely generated free abelian group. Then we may write Gy =
Go Nkerpa @ G.., where pa(G)) = G, and G, = G,. Note that Gy Nkerpy is
a finitely generated group. We may therefore write Go Nkerps = Goo ® Go1,
where Ggg is a torsion group and Gg; is free abelian. Note that Go; ® G.. is
free abelian. Therefore Gy = Tor(Gy) @ F, where F is a finitely generated free
abelian subgroup. Note that there is an integer m > 1 such that m[l14] € F.
Let z € C(T) be the standard unitary generator. Consider A ® C(T). Then
B(Go) C B(Ko(A)) is a subgroup of K;(A ® C(T)). Moreover, 3([14]) may be
identified with [1 ® z].

If we choose Uz in the proof of 25.4 to generate B(F), then m[l4] is in the
subgroup generated by {[p;] — [¢;] : 1 < i < k} (see the last paragraph). Thus,
for any o1 > 0, we may assume that

(e25.61) dist(@™, 1) < oy

provided that (e25.7) holds for a sufficiently small 0. Recall that B has stable
rank one (see Theorem 9.7 of [21]) and u € Up(B) (see the beginning of this
remark). We may write u = exp(ih)v for some h € B,, and v € CU(B).
Recall, in this case, Uy(B)/CU(B) = Aff(T(B))/pp(Ko(B)), where pp(Ko(B))
is a closed vector subspace of Aff(T(B)) (see the proof of Lemma 11.5 of [21]).
The image of v in Aff(T(B))/pp(Ko(B)) is the same as m times the image of
7 in Aff(T(B))/pp(Ko(B)). It follows from (e25.61) that

(€25.62) dist(u, 1) < o7.
This implies that (with sufficiently small ) the condition (e25.8) is redundant
and therefore can be omitted.

26. Stable Results

LEMMA 26.1. Let C be a unital amenable separable C*-algebra which is resid-
wally finite dimensional and satisfies the UCT. For any € > 0, any finite subset
F C C, any finite subset P C K(C), any unital homomorphism h : C — A,
where A is any unital C*-algebra, and any x € Homp (K (SC), K(A)), there ex-
ists an integer N > 1, a unital homomorphism hy : C — My (C) C My (A), and
a unitary u € U(Mn+1(A)) such that

(€26.1)||H(c), u]|| <& for all c€e F and Bott(H, u)|p = ko By,
where H(c) = diag(h(c), ho(c)) for all c € C.
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PROOF. Define S = {z,1¢(r)}, where z is the identity function on the unit
circle. Define 2 € Homy (K(C @ C(T)), K(A)) as follows:

(e26.2) | (c) = [h] and zl|gx(cy) = k.

Fix a finite subset Py C B(K(C)). Choose €1 > 0 and a finite subset F3 C C
satisfying the following condition:

(€26.3) (L2, = [L"|,

for any pair of (¥ ® S)-e;-multiplicative contractive completely positive linear
maps L', L” : C ® C(T) — B (for any unital C*-algebra B), whenever

(e26.4) L'~ ,L" onF®S8S.

Let a positive number € > 0, a finite subset F and a finite subset P C K(C)
be given. We may assume, without loss of generality, that

(e26.5) Bott(H', u')|p» = Bott(H', u")|p

whenever ||u’ — u”|| < e for any unital homomorphism H' from C. Put g5 =
min{e/2,e1/2} and Fo = FU F; (choosing P; = B(P) above).

Let § > 0, a finite subset § C C, and a finite subset Py C K(C) (in place
of P) be as provided by Lemma 4.17 of [21] for e5/2 (in place of €) and F
(in place of F). We may assume that F5 and G are in the unit ball of C' and
J < min{1/2,e2/16}. Fix another finite subset Py C K(C) and define P53 =
Po U B(P2) (as a subset of K(C ® C(T))). We may assume that P; C B(P2).

It follows from Theorem 18.2 of [21] that there are integers k1, ko, ..., ky, and
K1, a homomorphism &} : C ® C(T) — @;”:1 My, (C) — Mg (A), and a unital
(S ® S)-6/2-multiplicative completely positive linear map L' : C ® C(T) —
Mg 4+1(A) such that

(€26.6) (L9, = (2 + [h1])]2,-

Write by = @1, H}, where H} = ¢pj omj, mj : A® C(T) — My, (C) is a finite
dimensional representation and 9; : My, (C) — Mg (A) is a homomorphism. Let
e; be a minimal projection of My, (C) and q; = ;(e;) € Mk (A), and Q; =
de(lej ((C)) S MK(A) Set P = 1MK(A) —qj, 7=1,2,...,m. Then Mij(C) can
be identified with My, (Mg (A)) = My, ((¢;®p;) Mk (A)(q;®p;)) (since g;+p; =
Lark(a)) in such a way that Q;(Mg(A))Q; is identified with My, (q; Mk (A)q;).
Define ¢} : My, (C) — My, (C - 1p1,.(a)) C My, (A) by sending e; to p;. Define
HY : C®C(T) — My,;x(A) by H}(c) = 9 om;(c) @) om; (conjugating a
unitary). Note we require H} maps into the scalar matrices of My, (A). Let
H = 692":1%‘ :C®C(T) = My, (pjMk(A)p;) C M(Zj k) K (A) (conjugating a
suitable unitary). Let Ny = (3_7°, k;) K. Define hy = hy © H' and L = L' ® H'.
Then hy maps C ® C(T) into My, (C-14) C My, (A4).
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In other words, there are an integer N7 > 1, a unital homomorphism A : C'®
C(T) — Mn,(C) C My, (A), and a unital (§® S)-0/2-multiplicative completely
positive linear map L : C ® C(T) — Mpy,+1(A) such that

(€26.7) [L]lps = (z + [a])]2;-

We may assume that there is a unitary vg € My, +1(A) such that
(€26.8) IL(1® z) —voll < e2/2.

Define Hy : C' — My, +1(A) by
(€26.9) Hi(c) =h(c) @ hi(c®1) for all ce C.
Define L; : C — My, +1(A) by Li(c) = L(c® 1) for all ¢ € C. Note that
(€26.10) [Lallpy = [Hi]l,-

It follows from Lemma 4.17 of [21] that there exists an integer Ny > 1, a unital
homomorphism hy : C' — My, (n,+1)(C)C My, (n,+1)(A4), and a unitary W €
M(N2+1)(1+N1)(A) such that

(€26.11) W*(L1(c) @ ha(c))W =4 Hi(c) @ ha(c) for all c € F,.

Put N = Ny(N; +1)+ N;. Now define hg : C — My(C) and H : C — Myy1(A)
by

(€26.12)  ho(c) = h1(c® 1) @ ha(c) and H(c) = h(c) ® ho(c)

for all ¢ € C. Define u = W*(vo @ 1ay, y, 1))W- Then, by (e26.11), and as L,
is (§ ® S)-6/2- multiplicative, we have

I[H (c), u]l| < [I(H(c) = AdW o (L1(c) @ ha(c)))ull
HIAAW o (Ly(e) @ ha(e)), ulll + [u(H (c) — AdW o (Ly(c) @ ha(c)
<efd+0/2+¢e/d<e for all ¢ € Fs.

Define Ly : C — Mn41(A) by La(c) = Li(c) ® ha(c) for all ¢ € C. Then, we
compute that

Bott(H, u)|y

= Bott(AdW o Lo, u)|p = Bott(La, vo © Ly, y, 11)|»
Bott(L1, vo)|» + Bott(ha, 1ary, (v, )|
[L]lpep) +0 = (z + [h])|a) = Kl»-



502 GUIHUA GONG, HUAXIN LIN AND ZHUANG NIU

THEOREM 26.2. Let C be a unital amenable separable C*-algebra which is resid-
ually finite dimensional and satisfies the UCT. For any € > 0 and any finite sub-
set F C C, there are § > 0, a finite subset § C C, and a finite subset P C K(C)
satisfying the following condition:

Suppose that A is a unital C*-algebra, suppose that h : C — A is a unital
homomorphism and suppose that u € U(A) is a unitary such that

(€26.13)  |[[h(a),u]]| <& for all a € § and Bott(h,u)|p = 0.

Then there exist an integer N > 1, a unital homomorphism Hy : C @ C(T) —
Mn(C) (C My(A)) (with finite dimensional range), and a continuous path of
unitaries {U(t) : t € [0,1]} in Mn4+1(A) such that

U)=', Ul)= Ly i(ay, and I[P (a),U®)]|| <& for all a € F,

where
v = diag(u, Ho(1 ® 2))

and ' (f) = h(f) ® Ho(f ® 1) for f € C, and z € C(T) is the identity function
on the unit circle.
Moreover,

(e26.14) Length({U(t)}) < m+e¢.

PROOF. Let e >0 and F C C be given. We may assume that F is in the unit
ball of C.

Let 6 > 0, 1 € C ® C(T), and P; C K(C ® C(T)) be as provided by
Lemma 4.17 of [21] for ¢/4 and F ® S. We may assume that §;1 = G} ® S,
where G is in the unit ball of C' and S = {l¢(m),2} C C(T). Moreover, we
may assume that Py = Py U P3, where Py C K(C) and P35 C B(K(C)). Let
P = Py U pHP3) C K(C). Furthermore, we may assume that any d;-Gi-
multiplicative contractive completely positive linear map L’ from C ® C(T) to
a unital C*-algebra gives rise to a well defined map [L']|p,.

Let d; > 0 and a finite subset G C C be as provided by 2.8 of [38] for d§;/2
and §] above.

Let § = min{d2/2,01/2,¢/2} and § = F U Ga.

Suppose that h and u satisfy the assumption with §, § and P as above. Thus,
by 2.8 of [38], there is a d;/2-G1-multiplicative contractive completely positive
linear map L : C ® C(T) — A such that

(26.15) |L(f ®1) = h(f)|| < 61/2 for all fe€ G| and
(e26.16) IL(1® 2) — ul| < &1/2.

Define y € Homy (K (C ® C(T)), K(A)) as follows:

Yoy = [Mlx(c) and ylgu(c) = 0.
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It follows from Bott(h,u)|» = 0 that [L]|gpy = 0.
Then

(€26.17) [L]|p, = yl», -
Define H : C @ C(T) — A by
H(c®g)="h(c)-g(1)-1a

for all ¢ € C and g € C(T), where T refers to the unit circle (and 1 € T).
It follows that

(e26.18) (H]|lp, = ylp, = [L]|»,-

It follows from Lemma 4.17 of [21] that there are an integer N > 1, a unital
homomorphism Hy : C @ C(T) — My (C) (C My(A)) with finite dimensional
range, and a unitary W € U(M14+n5(A)) such that

(€26.19) W*(H(c) ®© Ho(c))W ~./4 L(c) ® Ho(c) for all c€ T® S.

Since Hy has finite dimensional range and since Hy(1 ® z) is in the center of
range(Hy) C My (C), it is easy to construct a continuous path {V'(¢) : ¢t € [0, 1]}
in a finite dimensional C*-subalgebra of My (C) such that

(e 2620) V/(O) S Ho(]. ® Z), V/(l) S ]-MN(A) and
(€26.21) Ho(c@1)V'(t) = V'(t)Ho(c® 1)

for all ¢ € C and t € [0,1]. Moreover, we may ensure that
(€26.22) Length({V'(t)}) < 7.
Now define U(1/4 + 3t/4) = W*diag(1,V'(t))W for t € [0, 1] and
v =u® Ho(la®2z) and h/(c) = h(c) ® Ho(c® 1)
for ¢ € C for t € [0,1]. Then, by (e26.19),
(€26.23) |lu' —U(1/4)|| <e/4 and ||[U(t), W' (a)]]| < /4

for all @ € F and ¢t € [1/4,1]. The desired conclusion follows by connecting
U(1/4) with u' with a short path as follows: There is a self-adjoint element
a € My14n(A) with |la]] < em/8 such that

(€26.24) exp(ia) = u'U(1/4)*

Then the path of unitaries U(t) = exp(i(1 — 4t)a)U(1/4) for t € [0,1/4) satisfies
the requirements. O
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LEMMA 26.3. Let C be a unital separable C*-algebra whose irreducible represen-
tations have bounded dimension and let B be a unital C*-algebra with T(B) # &.
Suppose that p1, ws : C' — B are two unital monomorphisms such that

[p1] = [p2] in KK(C,B),

Let 0 : K(C) = K(M,, ,,) be the splitting map defined in Equation (e 2.46) in
Definition 2.21 of [21].

For any 1/2 > € > 0, any finite subset F C C and any finite subset P C K(C),
there are integers Ny > 1, a unital €/2-F-multiplicative completely positive lin-
ear map L : C — Myyn, (Mg, p,), @ unital homomorphism hg : C' — My, (C)
(later, My, (C) can be regarded as unital subalgebra of My, (B) and also of
Mn, (Mg, »,)), and a continuous path of unitaries {V(t) : t € [0,1 —d]} in
Mitn, (B) for some 1/2 > d > 0, such that [L]|p is well defined, V(0) =
Ity on, (B)s

(€26.25) [Lll» = (04 [ho))]»,

(26.26) moL =, AdV(t)o(p1 @ ho) on F
for allt € (0,1 —d],

(€26.27) moL =, AdV(1—d)o(p1@ho) on F
forallt e (1—d,1), and

(€26.28) molL =, wya®hy on F,

where my 1 My, », — B is the point evaluation at t € (0,1).

PROOF. Let e >0 and let F C C be a finite subset. Let 6; > 0, a finite subset
G1 C C, and a finite subset P C K(C) be as provided by 26.2 for /4 and F
above. In particular, we assume that §; < dp (see Definition 2.14 of [21]). By
Lemma 2.15 of [40], we may further assume that ¢; is sufficiently small that

3
(€26.29) Bott(®, U UzUs)|p = Y Bott(®, Uyl
i=1

whenever ||[®(a), Uj]|| < 61 for all a € G1, i=1,2,3.

Let &1 = min{d1/2,¢/16} and F; = F U G;. We may assume that F; is in
the unit ball of C. We may also assume that [L']|p is well defined for any e;-
Fi-multiplicative contractive completely positive linear map L’ from C to any
unital C*-algebra.

Let 6o > 0, § C C, and P; C K(C) be a constant and finite subsets as
provided by Lemma 4.17 of [21] for £1/2 and F;. We may assume that dy < £1/2,
G D F1, and Py D P. We also assume that G is in the unit ball of C.
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It follows from Theorem 18.2 of [21] that there exist an integer K; > 1, a
unital homomorphism h{ : C — Mg, (C) (see also lines around (e26.7)), and

a d3/2-G-multiplicative contractive completely positive linear map L; : C —
Mg, +1(My, o,) such that

(€26.30) [Lalp, = (0 + [hoD)lo, -
Note that [mg] 0 8 = [¢1] and [m1] 0 @ = [p2] and, for each t € (0, 1),

(€26.31) [me] 00 = [ip1] = [p2].

By Lemma 4.17 of [21], we obtain an integer Ky, a unitary V € U(Mi4 i, +x,((C))),
and a unital homomorphism h : C — Mk, (C) such that

€26.32 AdVo(meoLi ®h) ~., /o id®h) ®h) on Ty,
1/ 0

where 7, : M, ,, — C is the canonical projection.

(Here and below, we will identify a homomorphism mapping to My (C) with a
homomorphism to My (A) for any unital C* algebra A, without introducing new
notation.)

Write Voo = ¢1(V) and Vjjy = ¢2(V). The assumption that [p1] = [p2] implies
that [Voo] = [Viyo] in K1(B). By adding another homomorphism to h in (e 26.32),
replacing Ko by 2Ky, and replacing V' by V @1, , if necessary, we may assume
that Voo and Vi, are in the same connected component of U(Miyk, +x,(B)).
(Note that [Voo] = [Viol-)

One obtains a continuous path of unitaries {Z(t) : ¢t € [0,1]} in M14x,+x,(B)
such that

(€26.33) Z(0) = Voo and Z(1) = V.

It follows that Z € M1+K1+KO (MW17W2

using a new hy,, we may assume that

). By replacing Ly by ad Z o (L1 & h) and

(62634) o o Ly Ry /2 P1 D h6 and 71 0 Ly Rei/2 P2 D h6 on Fi.

Define A : C — Mi4k, +k,(C) by A(c) = diag(c, hjy(c)), where we also identify
M, +k, (C) with the scalar matrices in Mg, 4k, (C). In particular, since ¢; is
unital, ¢; @ idpr, ., is the identity on Mk, +k,(C), i = 1,2. Consequently,
(i ®idny, 4k, ) © ho = hg. Therefore, one may write

pi(c) @ ho(c) = (i ®idnry, ;1) © Ale) for all c € C.

There is a partition 0 =ty < t; < --- < t, = 1 such that

(€26.35) Ty, 0 Ly ~s,/8 Ty o L1 on G
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forall t; <t < t;y1,7=1,2,...,n — 1. Applying Lemma 4.17 of [21] again, we
obtain an integer K5 > 1, a unital homomorphism hg : C — Mk, (C), and a
unitary V, € M1y k,+k,+k,(B) such that

(e 2636) Ad Vvtl o ((pl D hé D hoo) %51/2 (ﬂ-ti o L1 D hoo) on 351.
Note that, by (e26.35), (¢26.36), and (e26.34),

H[Sﬁl D h6 D hoo(a), ‘/th*

tit1

)| < d2/4+¢€;1 for all a € Fy.

Define n_; = 0 and

k
Nk = Z Bott(<p1 D h6 ©® hOO; Vvtl Vi

ti+1)|(}>, k=0,1,....n—1.
i=0
Now we will construct, for each ¢, a unital homomorphism F; : C — M, (C) C
M, (B) and a unitary Wi € My g 4 i, 45,45, g,(B) such that

(62637) ||[Hi(a), WZ]H < 52/4 for all a € F; and BOtt(Hi, Wz) = Ni—1,

where H; = @1 ® hyy ® hoo ® P, F;, i =1,2,...,n — 1.

Let Wo = 1my, ki, 4k, 1t follows from Lemma 26.1 that there are an
integer J; > 1, a unital homomorphism F; : C — M, (C), and a unitary
Wy € U(M1+KO+K1+K2+J1 (B)) such that

(62638) |HH1(CL), W1]|| < 52/4 for all a € F; and BOtt(Hl,Wl) = To,

where Hy = @1 @ hjy ® hoo ® F.

Assume that we have constructed the required F; and W; for i =0,1,....k <
n — 1. It follows from Lemma 26.1 that there are an integer Jx41 > 1, a unital
homomorphism Fyy1: C — My, ., (C), and a unitary

Wk+1 € U(M

14+ Ko+ K1+ K2+ 35 T (B))

such that

(€26.39) [Hi+1(a), Wit1]]] < 62/4 for all a € F;
and Bott(Hgy1, Wry1) = me

where Hj11 = 1 ® hy ® hoo ® @fill F;. This finished the construction of F;, W;
and H; fori=0,1,....n— 1.
Now define FOO = hoo@@?:_ol E and define Kg = 1+K0+K1 +K2+Z:L:_11 Jl
Define
vy, = diag(Wkdiag(Vtk,idlMEk i Y lv o )

i—1Ji Yickt1 i
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k=1,2,..,n—1and vy, = 1p . Then

1+ Ko+ K1+ Ko +57 7

Ad vy, o (1 ® hi ® Foo) Rsy4e, T, © (L1 ® Foo) on Fy,

[lp1 ® ho ® Fool(a), vi, vz, ]|l < 02/2+2¢1 for all a € Ty, and

Bott(¢1 @ hy & Foo, vy, vy)

= Bott (1, W)) + Bott(py, Vi, (V7)) + Bott (e, (W/1)")

=11 + Bott (e}, Vi, Vi, ) —mi =0,
where ¢ = p1BhyBFyo, W, = diag(W;, 1MZ”*‘ ]_) and V/ = diag(V3,, 11\/127171 B
i=0,1,2,..,n—2. S -

It follows by Lemma 26.2 that there are an integer N7 > 1, a unital homo-

morphism F] : C — Mpy, (C), and a continuous path of unitaries {w;(t) : ¢ €
[ti—1,t:]} in Mg, (B) such that

(e 2640) wi(ti_l) = v;_l(v,{)*,wi(ti) = 1, and
(€26.41) {1 @ hg & Foo @ Fy(a), wi(t)]|| < /4 for all a € F,
where v; = diag(vi, lnmy, (B)), i = 1,2,...,n — 1. Define V(t) = w;(t)v; for
t € [ti—1,ti],i=1,2,...,n—1. Then V(t) € C([0, tn-1], MK,+n, (B)). Moreover,
(€26.42) AdV(t) o (1 @ hi @ Foo @ Fy)
e ﬂ'tOLl @FQQEBF(; on F.

Define hg = hyy ® Foo ® F}, L = L1 @ Fyo + F§, and d = 1 — ¢,,_1. Then, by

(€26.42), (€26.26) and (e26.27) hold. From (e26.34), it follows that (e26.28)

also holds.
O

27. Asymptotic Unitary Equivalence

LEMMA 27.1. Let C7 and Ay be two unital separable simple C*-algebras in B,
let Uy and Uy be two UHF-algebras of infinite type and consider the C*-algebras
C=C1U; and A = A; ® Uy. Suppose that ¢1,p2 : C — A are two unital
monomorphisms. Suppose also that

(e27.1) [p1] = [p2] in KL(C,A),
(€27.2) (1) = (p2)7 and ¢} = ).

Then o1 and o are approzimately unitarily equivalent.

PrROOF. This follows immediately from Theorem 12.11 part (a) of [21]. Note
that both A and C are in B;. O

),
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LEMMA 27.2. Let B be a unital C*-algebra and let uy,us,...,u, C U(B) be
unitaries. Suppose that v1,va, ..., v, C U(B) are also unitaries such that [v;] C
G, j=1,....,m, where G is the subgroup of K1(B) generated by [u1], [uz], ..., [tun].
There exist § > 0 and a finite subset F C B satisfying the following condition:
For any unital C*-algebra A and any unital monomorphisms p1,2 : B — A, if
Towy =Tops for all T € T(A) and if there is a unitary w € U(B) such that

(€27.3) [[w*p1(b)w — wa(b)]| < 6 for all b e F,

then there exists a group homomorphism o : G — Aff(T(A)) such that

ea0)  gorloslpa(u)utpa(u) = aw)(r) and
(e27.5) %T(log(apz(vj)w*wl(v;)w) = a([y])(7),

forany Tt € T(A), k=1,2,...n and j =1,2,...,m.

PROOF. The proof is essentially contained in the proofs of 6.1, 6.2, and 6.3 of
[36]. Note that there is a typo in Lemma 6.2 and Lemma 6.3 in [36]: “T(a(a)) =
a” should be “7(a(a)) = 7(a)”. Here the condition 7o ¢ = 70y plays the role
of condition 7(a(a)) = 7(a) there.

O

LEMMA 27.3. Let Cy be a unital simple C*-algebra as in Theorem 14 .10 of
[21], let Ay be a unital separable simple C*-algebra in Bg, and let Uy and Us be
UHF-algebras of infinite type. Let C = Cy @ Uy and A = A1 ® Us. Suppose that
v1,p2 : C — A are unital monomorphisms. Suppose also that

(€27.6) [p1] = [pa] in KL(C, A),
(e27.7) o1 = 08, (p1)r = (p2)7, and
(e27.8) Ry (K1(Mg, 4,))Cpa(Ko(A)).

Then, for any increasing sequence of finite subsets {F,} of C whose union is
dense in C, any increasing sequence of finite subsets P, of K1(C) with|J,_, P, =
K1(C), and any decreasing sequence of positive numbers {8, } with Y - | 6, <
00, there exists a sequence of unitaries {u,} in U(A) such that

(€27.9) Aduy, 01 &5, w2 on F, and
(€27.10) pa(botty(p2, uluyi1)(z)) =0 for all x € P, (C K1(C))

and for all sufficiently large n.

Proor. Note that A = A ® U,. Therefore, as Us is of infinite type, there is a
unital homomorphism s: A ® Us — A such that s o1 is approximately unitarily
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equivalent to the identity map on A, where 2 : A - A ® U; is defined by a —
a® 1y, for all a € A. Therefore, we may assume that ¢1(C), p2(C) C A® 1y,.
By Lemma 27.1, there exists a sequence of unitaries {v,} C A such that

(e27.11) nhﬁrr;o Adwv, o pi(c) = pa(c) for all ce C.

We may assume that the set F,, are in the unit ball of C, with dense union.
For the next four paragraphs of the proof, fix n =1,2, ....

Put €/, = min{1/2"*1 §,,/2}. Let C,, C C be a unital C*-subalgebra (in place
of Cy,) such that K;(C),) is finitely generated (i = 0,1), and let Q,, be a finite
set of generators of K;(C,), let 8, > 0 (in place of §) be as in Lemma 24.2 for
C' (in place of A), e/, (in place of €), F,, (in place of F), and [2,](Q,—1) (in place

of P), where 1, : C,, — C' is the embedding. Note that we assume that
(e 2712) [Zn+1](Qn+1) D :Pn+1 U [Zn](Qn)

Write K1(Cr) = Gp,5 @ Tor(K:1(C,)), where G,, ¢ is a finitely generated free
abelian group. Let 21,22, 2f(n),n» De independent generators of G, ; and
Zin> 22,5 - Zi(ny,n D€ gemerators of Tor(K1(Cr)). We may assume that

! / /
Qn = {21, 22,15 s ZF (n)sn> 21> Z2m> -9 zt(n),n}.

Choose 1/2 > &, > 0 so that botti(h',u’)|x,(c,) is a well defined group
homomorphism, bott; (h',u)|g, is well defined, and (botty (', u')|x,(c,))l0, =
botty (h',u’)|q, for any unital homomorphism 7' : C — A and any unitary
u’ € A for which

(27.13) I[A (c),u]|| < el for all c€ G,

for some finite subset G/, C C' which contains F,.

Let wlm,wgm,...,wf(n),n,w’l,n,wém,...,wg(n)’n € C be unitaries (note that,
by Theorem 9.7 of [21], C has stable rank one) such that [w;,] = (21)1(2in)
and [w},] = (1)a(2],), i = 1,2,..,f(n), j = 1,2,..,t(n), and n = 1,2,....
Since we may choose larger G/, without loss of generality, we may assume that
Wi n € 9;1

Let §{ =1/2 and, for n > 2, let §// > 0 (in place of §) and G/ (in place of F)
be as in Lemma 27.2 associated with wi ,, w2, s W (n)my W1 1, Wh 15 -y wé(n)m
(in place of uy,usg, ..., uy) and

/ / /
{wl,n—ly W2,n—15 s Wen-1)n—15 W1 n—1sWa n—15 -+ wt(n—l),n—l}

(in place of v1,v9, ..., Um)-
Now consider all n = 1,2, .... Put e, = min{e]//2,¢/,/2,4,,,0///2} and G,, =
G, US"”. By (e27.11), we may assume that

(e27.14) Advyopr =, pa on G,, n=1,2,....
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Thus, botty (w2 0 1, viv,41) is well defined. Since Aff(T'(A)) is torsion free,

(e27.15) T(bottl(gp2 o1, U:;Un-l-l”Tor(Kl(C’n))) =0.

From (e 27.14), we have

(27.16) 2wy Ad v (o1 (w5,0)") = 1] < 0,
for all n = 1,2, .... Define

1 *
(e27.17) hjm = = log(p2(wjn)Ad v, (1 (wjn)")),

2me
for j = 1,2,...,f(n), n = 1,2,.... Then, for any 7 € T(A), |7(h;n)] < en <
8, 7=12,..,f(n),n=1,2,... Since Aff(T'(A)) is torsion free, and the classes

[w} ,,] are torsion, it follows from Lemma 27.2 that

(27.18) d% log (2 (w),, ) Ad vn (91 (w},)))) = 0,

Jj=1,2,..,t(n) and n = 1,2,.... By the assumption that R, o, (Ki(My, »,))
Cpa(Ko(A)), by Exel’s formula (see [24]), and by Lemma 3.5 of [37], we conclude
that

Ry (1) = T(Rjn) € Ry op (K1(Mipy ) Cpa(Ko(A)).
Now define o, : K1(Cp) — pa(Ko(A)) by

—

@ (2jn)(T) = hjn(T) = 7(hjm), J=1,2,.... f(n)

and
(27.19) o, (25,) =0, 7=1,2,..,t(n),
n =1,2,.... Since o, (K1(C),)) is free abelian, it follows that there is a homo-

morphism o' : K1(C,,) = Ko(A) such that
(€27.20) (paoaM(zjn))(7) =7(hjn), j=1,2,...f(n), T € T(A),
and

(e27.21) al () =0, j=1,2,...tn).
Define ol : Ky(Cp) — Ki1(A) by oY = 0. By the UCT, there is k, €
KL(SC,, A) such that r,|k,(c,) = o) i =0,

. 0,1, where SC,, is the suspension
of C,, (here, we identify K;(C},) with K;11(SC,)).
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By the UCT again, there is a,, € KL(C,, ® C(T), A) such that o, 08|k (c,) =

kn. In particular, oy o Bk, (c,) = ag). It follows from Lemma 24.2 that there

exists a unitary U,, € Up(A) such that

(e27.22) Ilp2(c), Un]|l <& for all ¢ € F,, and
(€27.23) pa(botti(pa, Un)(2jn)) = —pa o al(zjn),

i=1,2,..., f(n). We also have
©27.24)  pa(botty(pa, Un)(h)) =0, § = 1,2, t(n),

as the elements z; , are torsion. By the Exel trace formula (see [24]), (e27.20),
and (e27.23), we have

(€27.25) T(hjn) = —pa(botti(pz,Un)(2jn)(T)

1 * *
= _T(%IOg(Un(pQ(wj,n)Un@Q(wj,n)))

forall 7 € T(A), j=1,2,..., f(n). Define u,, = v,U,, n =1,2,.... By 6.1 of [36],
(€27.25), and (e27.23), we compute that

(02726) 75 108(palusn) Adun (o1 ()

1 *, % *
= T(%log(UnSOQ(wjyn)Unvn(pl(wj,n)vn)))

1 * * * *
= 7(5 108(Un@2(w)in)Upn2(w) ) p2(wjn)vne1(w) n)vn)))

= (o log(Ungpa(ty ) U0 (w]0))))

21

(5 og(pa (w0501 (05, Jon)
= pa(botty (2, Un)(2jn))(7) + 7(hjn) = 0

forall € T(A), j=1,2,...,f(n) and n = 1,2, .... By (€27.18) and (e27.24),

(e27.27) (e Tog (2w ) Adun (21 (],,)*)))) =0,

i=12,..,t(n)and n=1,2,.... Let

1 * *

©2128) b = o log(unga(n i (w],)
1

©2720) B = T los(ea(u i e, )i 0,). and
1 * *

(62730) b;'l,n+1 = log(un+1902(wjyn)un+1901(wj,n))v

211
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i=1,2,..,f(n) and n = 1,2,.... We have, by (e27.26),

1
23 ) = o gl (15,))
1
= 7(5—log(wz(wjn)uppr(w),)un)) = 0
forall 7 € T(A), j =1,2,..., f(n), and n = 1,2, .... Note that 7(b;4+1) = 0 for
allTeT(A),j=1,2,. ,f(n—l— 1). It follows from Lemma 27.2 and (e 27.12) that

T(b] py1) =0 for all 7€ T(A), j=1,2,...,f(n), n=1,2,..

Note that
Uy €205, nylt = e2mibin . 2’”b7"+1, i=12,.. f(n).
Hence, using 6.1 of [36], we compute that
(€27.32)  7(V},) =7(bjn) = 7(b] 1) =0 for all 7€ T(A).
By the Exel formula (see [24]) and (e27.32),
pa(Dotts (o, 1)) (,) (7)

1 * * *
= (5 108wt 4102 (0 ) 22 (,))

(5 10822 050 102 (05, W 10n)) = O
for all 7 € T(A) and j = 1,2, ..., f(n). Thus,

(€27.33) pa(botti(wa, tntni1)(w;n))(T) =0 for all 7€ T(A),
i=12 .., f(n),and n =1,2,.... We also have

(€27.34)  pa(botty(wa, uptni1)(w],,))(T) =0 for all 7€ T(A),
i=12,...,f(n),and n =1,2,.... By 27.2, we have that

(e27.35) pa(botty (@2, uptny1)(2)) =0 for all z € Py,

n=12,...

O

REMARK 27.4. Let C be a unital separable amenable C*-algebra satisfying
the UCT with finitely generated K;(C) (i = 0,1), let A be a unital separable

C*-algebra and let 1,9 : C — A be two unital homomorphisms.

In what
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follows, we will continue to use 1 and @5 for the induced homomorphisms from
M, (C) to My (A). Suppose that v € U(A) and

lv*p1(a)v — pa(a)|| <e <1/8, a€{z1,22,..., 2} UF

for a finite subset ¥ C M (C) and some z1, 22, ..., 2, € U(Mg(C)) such that
[21], [#2], .-, [2n] generate K7(C). Define W;(t) € U(M2(C([0,1], My(A)))) as
follows

W;(t) = (T,VT; ) diag(e1(z)), 1ar, )T VT,

where

. cos(5t) —sin(5t
V =diag(v,1p,) and Tp = ( singgt; Cos((gzt)) > .

Note that W;(0) = diag(v*e1(z;)v,1) and W;(1) = diag(v1(z;),1). Con-
necting W;(0) with diag(y2(2),1) by a continuous path, we obtain a continuous
path of unitaries Z;(t) such that Z;(0) = diag(y2(z;),1), Z(1/4) = W(0) and
Z;(1) = diag(y1(z4),1) and || Z;(t) — Z;(1/4)|| < 1/8 for t € [0,1/4). Thus
Zj € Myp(My, p,). With sufficiently small € > 0, since K;(C) is finitely gener-
ated, the map

Ki1(C) 3 [5] = [Z;] € Ki(My,p,), §=1,2,..,m,

induces a homomorphism.
Set

1 . Yk .
(€27.36) hj = gdlag(log(apg(zj) Vi1(z)V),1), j=12,..,n.
We may specifically use
Z;(t) = diag(p2(2;), 1) exp(idth;), t€[0,1/4].

Still use ¢; and @9 for the induced homomorphisms from My (C @ C’) to
Mi(A ® C"), where C’ is a commutative C*-algebra C’ with finitely gener-
ated K;(C") (i = 0,1). Fix a finite set of unitaries z1,...,z, € My (C @ C)
which generates K;(C @ C’). We also obtain a homomorphism K;(C ® C') —
K1 (Mg, ., ® C') provided that ¢ is small.

Let ¥ C C be a finite subset and € > 0. Suppose that there is a unitary
v € U(A) such that

advop; =, p2 onJ.

Let U'(t) = T;VT,;*. Define

M) ding(in (o), U (),

te(1/4,1]

(e27.37)  L(c)(t) = (U'(
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and
L(c)(t) = 4tL(c)(1/4) + (1 — 4¢t)diag(p2(c), 1), t€]0,1/4].

Note that L maps C into My(My, ,,). Thus, since K;(C) (i = 0,1) is finitely
generated, by Corollary 2.11 of [6], there is N7 > 0 such that any element of
Homy (K (C), K(A)) is determined by its restriction to K;(A,Z/nZ), i = 0,1,
n=20,1,..., N;. Hence, if ¢ is sufficiently small and JF is sufficiently large, there

1S

(€27.38) Yor 00,0 € Homp (K (C), K(My, ,))
such that
(€27.39) L]lp = Ye1,02,0]2

for any given finite subset P C K(C).
One computes that

/1 (G0 gt = o)), 7 e T()
0 14

Therefore, if Ry, o, © Yoy 00,0 (K1(C)) = 0, then
(e27.40) T(h;) =0, TeT(A).

On the other hand, for any given n > 0 and a finite set {z1,22,...,2,} of
generators of K1(C), by (e27.36),

(e27.41) |T(hi)| <n, Te€T(A),

provided that ¢ is sufficiently small and F is sufficiently large.

Now, assume that @1 = @o. Then, with sufficiently large F and sufficiently
small e, the element Bott(¢1,v) : K(C) — K(SA) is well defined.

We have the following splitting short exact sequence:

7 K

0 SA My, o — C — 0 .

Define 6 : C — M., ,, by 6(b) = ¢1(b) as a constant element in M, ,,. Then
6 may be identified with a splitting map and K(M,, ,,) may be written as
K(SA)SK(C).

Let P: K(My, ,,) = K(C)® K(SA) — K(SA) be the standard projection
map. One can verify that for any two elements z,y € K(C) if Bott(py,v)(z) =
Bott(¢1,v)(y), then P o vy, o 0(2) = P oY 0,0(y). So we will also use
I'(Bott(p1,v)) to denote the map P o vy, 0 € Homy (K (C), K(SA)).
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By shifting the index, we see I'(Bott(¢1, v))|» maps P to K(A). One may
identify P with id, — [0] o [r]. Note that

Y191

me.00 =id¢g and 7.0 L =id¢.
So

(c27.42) T(Bott(¢1,0)l7 = Ypr.01.0l — -

Furthermore, it is shown in 10.6 of [37] that I'(Bott(¢1,v)) = 0 if and only if
Bott(¢1,v) = 0.

Note that since the K-theory of C is finitely generated, by Corollary 2.11
of [6], one has that any element of Homp (K(C), K(A)) is determined by its
restriction to K;(A,Z/nZ),i=0,1,n=0,1,..., N;. Fix separable commutative
C*-algebras Cy = C, C1, ..., Cn,, CNy41, -, Can,+1 With

K()(Cn) :Z/’I’LZ and Kl(Cn) :{0}, n:O,l,...,Nl,

and Cn,4+; = SC;_1,1=1,2,..., N; + 1. For each C ® C’, where C’ is one of the

Co, C1, ..., Con, +1, fix a finite set of unitaries z%n), zén), . z,(c?i) of My, (C%’) C

MNz(C’@CN”) (for some Ny > 1) which generates K;(C®C),),n =0,1,...,2N;+1.
Let C! = My, (Cy), i = 0,1, .., 2Ny + 1.

Let 1/4 > e >0and 1/4 > n > 0. Choose 0 < ¢ < £/2 sufficiently small and
a finite set F C A sufficiently large such that if

upru s s on F
for some unitary u € A, then, for each C,,,
(e 2743) u*gblu "&15/2 @2 on ?())n,

where J ,, is a finite subset which contains {z%n), zé"), - ZI(C?’I?L)}’ n=20,1,...,2N1+
1. We also assume that J is sufficiently small and F is sufficiently large so that
(€27.38), (€27.39), (€27.41), (e27.42) hold.

Suppose that there are unitaries uy,us € A such that
ujpru; N5/ P2 on F,
i =1,2. Then, as in (e27.43), for each C,,,
(e27.44) u; p1u; Re g P2 on Fop,

where J ,, is a finite subset which contains {zf"), zé"), ey z,(c?n)}, n=0,1,...,2N1+
1.Let L : C — My, ., and Yo, 0,0, € Homy (K(C), K(M,, ,,)) be the element

defined by the pair (¢1,u;) (i =1,2) as above. B
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On the other hand, one also has that
ugupruiuy A5 p; on F.

Note that 7. o (L1 — Lg) = 0.

Fixn € {0,1,...,2N;+1}. Consider z € {zgn), zén), ceey zl(c?i)} and @; = u;®1 57,

i =1,2. We also write ¢; for p; ®id5 .
Define T'(t) = To(4—1/a) for t € [1/4,3/4] and T, = T, for t € [3/4,1]. Let
Wi(t) = T, ( (1) )Tt t € [1/4,1], and W;(t) = diag(1,1) for t € [0,1/4],

U
0
i = 0,1. Note that
(e27.45) ||diag(uy@(z)uiu5p(2)* g, 1) — diag(1,1)|| < e < 1/8.

There is a continuous path d(z)(t) (for t € [0,1/4]) such that d(z)(0) = diag(1,1)
and d(z)(1/4) = diag(a;@(2)utsp(z)*a, 1) and

(e27.46) ld(2)(t) — diag(1,1)]] < e for all t € [0,1/4].
Define, for t € [1/4,1],

d2)(t) = (Wi(t)diag(¢(z), Wi(t)") (Wa(t)diag(p(2)", 1)Wa(t)")

Tk @1(2)* 0 2 112 0 Tk
m( )R )T

On [3/4,1], define d(z)(t) = diag(1,1). Define U(t) = diag(Wa(¢)*, Wa(t)) for
t € (1/4,3/4), On [0, 1/4], there is a continuous path U(t) of unitaries in My(A®
C}) with U(0) = diag(1,1,1,1) and U(1/4) = diag(W2(0)*, W>(0)). On [3/4, 1],
there is a continuous path U(t) of unitaries in My(A ® C}) with U(3/4) =
diag(W2(3/4)*, W5(3/4)) and U(1) = diag(1,1,1,1).

For n = 0 (so z is represented by unitaries in My, (C)), we may also assume
that (see (e27.41)),

(€27.47) |7(h:)| <n for all 7€ T(A),

where

h. = ding(log(@a ()" 51 (2)iir, 1).
Note that d(z)(0) = d(z)(1) =1 and
(€ 27'48) [d(z)} = Vo1, 02,u1 (2) — Vo1,02,uz (z)7

where Yg, o, .u;, @ = 1,2, are the maps defined above (see (e27.37)).
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One has, on [1/4,3/4],

(€27.49) U(t)*diag(d(2)(t), 1, 1)U ()

Il
£
o
o
/N
~
7N
§1
(an) =)
iy
—= O
"
H*z
N
ASY!
vy
o~
N
S—
—= O
"
=
7N
=3}
=
o =
N *
—= O
"

on [0,1/4], and on [3/4,1],
(€27.50)  ||U(¢)"diag(d(2)(t),1,1)U(¢t) — diag(1,1,1,1)] < e.

Moreofver, U(0)*diag(d(z)(0),1,1)U(0) = U*(1)diag(d(z)(1),1,1)U(1) = diag(1,1,1,1).
Therefore

(e27.51) [d(2)] = [U*d(2)U] in K1(SA® Ch,).

Since the short exact sequence 0 — SA® Cp, — SA® C,, — SA — 0 splits, we
conclude that

(€27.52) [d(2)] = [U*d(2)U] in K1(SA® C.).

On the other hand, the class I'(Bott(y1, u1u3))(2) is represented by the path

r(t) =T < 7120@’{ (1) )Tt*< 851(52) (1) )Tt ( ﬂl()@ (1) )Tt* < @1%2)* (1) )
for all t € [1/4,3/4], and
(€27.53) |Ir(t) — diag(1,1)]] <e for all t €[0,1/4] U [3/4,1].
Hence (see (€27.49)), by (e27.48) and (e 27.52),

(e 27'54) F(BOtt((ph ulu;)) = Yo1,02,u1 — Veo1,02,uz -
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THEOREM 27.5. Let Ci be a unital simple C*-algebra as in Theorem 14.10 of
[21], let Ay be a unital separable simple C*-algebra in By, let C = C, @ Uy and
let A= A1 ® U, where Uy and Uy are UHF-algebras of infinite type. Suppose
that w1, w2 : C — A are two unital monomorphisms. Then ¢ and ps are
asymptotically unitarily equivalent if and only if

(e27.55) [p1] = [p2] in KK(C,A),
(e27.56) ot =9t (p1)r = (p2)r, and Ry, 4, =0.

Proor. We will prove the “if ” part only. The “only if” part follows from 4.3
of [40]. Note C'= Cy ® Uy can be also regarded as a C*-algebra as in Theorem
14.10 of [21]. Let C = lim, 00 (Ch, 2, ) be as in Theorem 14.10 of [21], where each
tn ¢ Cp = Chyq is an injective homomorphism. Let F,, C C be an increasing
sequence of finite subsets of C' such that UZO:l F,, is dense in C. Put

Mo, oo ={(f,¢) € C([0,1], A)&C : f(0) = ¢1(c) and [(1) = pa(c)}.

Since C satisfies the UCT, the assumption that [p1] = [p2] in KK (C, A) implies
that the following exact sequence splits:

(€27.57) 0— K(SA) = K(My, »,) =5 K(C) =0

for some # € Hom(K(C), K(A)), where 7, : M, ,, — C is the projection to
C' defined in Definition 2.20 of [21]. Furthermore, since 7o ¢; = 7 o g for all

T € T(A), and Ry, ,, =0, we may also assume that
(e27.58) Ry, »,(0(x)) =0 for all z € K,(C).
By [6], we have

(e27.59) lim (K(Cy). [1n]) = K(C).

n—00

Since K;(C,,) is finitely generated, there exists K(n) > 1 such that
(€27.60) Homp (Fic () K (Ch), Frn)K(A)) = Homy (K (Cy), K(A))

(see also [6] for the notation F, there).

Let 6/, > 0 (in place of d), o], > 0 (in place of o), G/, C C (in place of §),
{pll,nvp/zna "'vp/[(n),ny qll,na q/2,na ceey q/I(n),n} (in place of {pl,p% -y Pky 41,42, -, qk})v
P! K(C) (in place of P) corresponding to 1/2"*2 (in place of ), and F,, (in
place of ¥F) be as provided by Lemma 25.4 (see also Remark 25.5). Note that,
by the choice as in 25.4, we may assume that G/, ,,, the subgroup generated by
{pin] —1gi,) : 1 <i < I(n)} is free abelian.

Without loss of generality, we may assume that G, C t;,,00(5n) and P, C
[tn,00](Pr) for some finite subset G, C C,, and for some finite subset P, C
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K(C,), and we may assume that pgm = n,co(Pin) and ¢, = 1n,00(gin) for
some projections p; n,¢in € Cp, i = 1,2,...,1(n). We may also assume that the
subgroup G, . generated by {[p;n] — [gin] : 1 < i < I(n)} is free abelian and

Din,qin € Gn, n=1,2, ,I(n)
We may assume that P,, contains a set of generators of Fy () K (Cy), F, C

!, and &/, < 1/2"F3. We may also assume that Bott(h/,u)|p, is well defined
whenever ||[M/(a), ]| < 6], for all a € ], and for any unital homomorphism 5’
from C,, and unitary v’ in the target algebra. Note that Bott(h', u’)

Bott(h' v’). We may further assume that

(e27.61) Bott(h, u)|p, = Bott(h',u)|p,

provided that h =5 h' on G;,. We may also assume that ¢, is smaller than /16
for the ¢ defined in 2.15 of [40] for C,, (in place of A) and P,, (in place of P).
Let k(n) > n (in place of n), ;,, > 0 (in place of ), and Q) C K1(Clny) be
as provided by Lemma 24.5 for (5;(7%)/4 (in place of €), 1,00 (Gk(n)) (in place of
F), Pi(ny (in place of P), {pin,Gin,: 1 =1,2,...,k(n)} (in place of {p;,q; : i =

2,..,k}), and ak (n) /16 (in place of o). We may assume that Q) generates
the group Ki(Cjn)). Since P generates Fr () K (Cl(nt1)), we may assume that

Q, C :Pk(n)
Since K;(C,) (i = 0,1) is finitely generated, by (e27.60), we may further
assume that [14,(,),00] 18 injective on [1, )| (K (Cr)), n = 1,2, ... Passing to a

subsequence, we may also assume that k(n) = n+1. Let §,, = mln{nn, ol 0l /2}.
By Lemma 27.3, there are unitaries v, € U(A) such that

(e27.62) Ad v, 091 &5, /4 P2 0N 1y so(Gng1),
(€27.63) pa(botty (2, v vn41))(x) =0

for all € (t5,00)+1 (K1(Crt1)), and
(€27.64)  ||[p2(c); vivnt1]ll < Ont1/2 for all a € 1y 00(Gnt1)

(Recall that K;(Cj41) is finitely generated). Note that, by (e27.61), we may
also assume that

(€27.65) Bott(p1, vnt1vp)lp, i) = Bott(vno1vn, vivni1)lp, )
= BOtt((pg, vflvnﬂ})hznm](?n).

In particular,
(€27.66)  botty (v} p10n, Vivst1)(x) = botty (@2, viva+1)(2)

for all & € (15,00) 1 (K1(Chry1))-
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Applying 10.4 and 10.5 of [37] (see also Remark 27.4), we may assume that
the pair (@1, p2) and v, define an element

T = Yorl, @110, vn € Hom (K(Cn1), K(My, 4,))

and [m.] oy, = [idc,,,]| (see Remark 27.4 for the definition of 7, ). Moreover, we
may assume (see (e27.47)) that

(e27.67) |7 (log(p2 © Zn,m(zj)ﬁn@l o Zn,w(zj)ﬁn)” < n+1,

J=1,2,...,7(n), where {21, 22, ..., 2p(n) } C U(My(Cy41)), and this set generates
k

K1(Cp41), and where 0,, = diag(vn, vp, ..., vn). We may assume that z; € Q,, C
Pr, i =1,2,....7(n).
Let Hy = [1741](K(Cry1)) € K(Cry2). Since Un:1[@n+1,00](5(0n)) = K(C)

and 7] o v, = [id¢,.,], we conclude that

(e 27.68) K(My, 4,) = K(SA) + | Yns1(Hn).
n=1

Thus, passing to a subsequence, we may further assume that
(e 2769) ’Yn-i—l(Hn) - K(SA) + ’7n+2(Hn+1)7 n= 17 27

Identifying H,, with v,,1(H}), let us write j,, : K(SA)®H,, — K(SA)®Hp+1

for the inclusion in (e27.69). By (e27.68), the inductive limit is K (M, ). From

the definition of v, we note that v, — V5,11 © [tp+1] maps K(Cy41) into K(SA).
By Remark 27.4 (see (e27.54)), the map

I'(Bott (1, Un”:+1))|Hn = (Ynt+1 — Ynt2 © [tng2])|H,

(see 27.4 for the definition of I'(Bott(,))) is then a homomorphism &, : H, —
K(SA). Put ¢, = vn+1|m, - Then

(€27.70) Jn(,y) = (@ 4 &n(y), lint2](y))

for all (x,y) € K(SA) @ H,,. Thus we obtain the following diagram:

0— K(SA) — K(SA)® H, — H, =0
” H \/én ‘l/[ln+2,oo] ‘l”[7f71+2,oo]

0— K(SA) — K(SA)® Hpq — Hyi -0
[ | o &nr1Hints 00 Honts,oo]

By the assumption that R
position:

01,02 = 0, the map 6 also gives the following decom-

(e27.71) kerR,, ,, = kerps @ K1(C).
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Define 0,, = 0 o [14+2,00] and &, = (, — 6,,. Note that
(€27.72) 0, = Ont1 0 [tnt2].
We also have that
(€27.73) Cn = Cat1 © [tnga] = &n.
Since [me] © (¢ — 6n)|m, =0, Ky, maps H, into K(SA). It follows that
(€27.74) Ky, — g1 © [tnt2] = Cn —On — 1 © [tnt2] + Ont1 © [int2)

= Cn— Cat10 [tnga] = &n.

6n+1

It follows from Lemma 26.3 that there are an integer N7 > 1, a unital
tn+1(9n+1)-multiplicative completely positive linear map Ly, : tp,00(Cny1) —
Mi1n,(My, 4,), a unital homomorphism hg : %y41,00(Cnt1) = My, (C), and
a continuous path of unitaries {V,(t) : ¢ € [0,3/4]} in My+n,(A) such that
[L””?;H is well defined, V;,(0) = 1as, y, (4)s

[Ly 0 tn00]l2, = (0 0 [tnt1,00] + [ho © t41,00]) |,
4 0 Ly 0 tnt1,00 N5, /4 Ad Vi () 0 (01 0 tnt1,00) @ (ho © tt1,00))
On % 41,00(Gny1) for all ¢ € (0,3/4],
Tt 0 Ly 0 tnt1,00 A5, 41 74 Ad Vi (3/4) 0 (91 0 1t 1,00) D (ho © 1t1,00))
On %5 41,00(Gn+1) for all ¢ € (3/4,1), and
710 Lip 0 %n41,00 X5,1 /4 P2 © tnt1,00 D N0 O tnt1 00

ON p41,00(9n+1), where m : My, ,, — A is the point evaluation at t € (0, 1).
Note that R, ,,(0(x)) = 0 for all € 25,41,00(K1(Cnt1)). As in (e27.40) (see
also 10.4 of [37]),

(€27.75) 7(log((p2(x) @ ho(z)"Va(3/4)" (¢1(x) & ho(x))Va(3/4))) = 0
for © = 2,41,00(y), where y is in a set of generators of K;(Cy41), and for all
TeT(A).
Define W) = diag(vp4+1,1) € M1y N, (A). Then
(€27.76) Fn := Bott((¢1 ® ho) © tnt1.00, Wi (Vi(3/4)%)
defines a homomorphism in Homp (K(Cp41), K(SA)). By (e27.67)

(€27.77) |7 (log((p2 @ ho) 0 tn+1,00(25)" (W)™ (01 @ o) © 141,00 (25) W)
< 5n+17
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j=1,2,...,r(n). One computes (see (e27.42)) that

(€27.78) ['(Bott(¢1 0 141,00 B ho, W,V (3/4)%)

Pn

= (Ynt1 = Olwn]l2,-
Put V,, = V,,(3/4). Let
(€27.79) bj,, = zim 1og (V¥ (01 @ ho)tnt1,00(2) Vi (02 ® ho) 0 tnt1,00(25)"),
(€27.80) b);,, = % log((¢1 ® o) © tnt1.00(25) Vi (W) * (01 & ho)

Ot 1,00(2) Wi Vi),
and
2781) B, = 5 Toa((p2 ® ho)tnsre () (WA)* (91 & ho)
Oln+1,00(2) W),

i=1,2,...,r(n). By (€27.75) and (e27.77),
(27.82) 7(bjn) =0 and [7(0],)| < 0nt1
for all 7 € T(A). Note that
(e27.83) f/,fe%ibév” v, = e2mibjn o2mib
Then, by 6.1 of [36] and by (e 27.82),
(e27.84) 7(b;,) = T(bjn)—7(],)="7(b],) and |7(V},)| < dnt1

for all 7 € T(A). It follows from this, (e27.76), and (??) that

(€27.85) lpa(Rn(2))(T)] < Ong1, J=1,2,...,

for all 7 € T(A). It follows from 24.5 that there is a unitary w] € U(A) such
that

(e27.86) [p1(a), w,]|| < 6;,11/4 for all a € tp41,00(Gnt1) and
(€27.87) Bott (1 © 241,00, W),) = —Fn © [tn41]-

By (e27.61),

(€27.88) Bott (2 0 tn11,00, VWi vn)|p, = —Fn © [tnt1]|p, -
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It follows from (e 27.42) (see also 10.6 of [37]) and (e 27.78) that
(e27.89) I'(Bott(¢1 © 141,00, W),)) = —FKn O [tnt1] and
(€27.90) L(Bott(¢1 0 tni2,00:Why1)) = —FKnt1 © [tnga).

We also have

(€27.91) T'(Bott(¢1 0 tnt1,005 UnVpy1))H, = Cn = Cnt1 © [tng2] = &

But, by (e27.74) and (e27.75),
(€27.92) (=kn +&n + Fnt1 0 [tny2]) = 0.

By 10.6 of [37] (see also Remark 27.4), T'(Bott(.,.)) = 0 if and only if Bott(.,.) =
0. Thus, by (e27.88), (e27.89), and (e27.91),
(27.93) —Bott (@1 © tn41,00, Wy,) + Bott(©1 © 1y 41,00, Un¥ii1)

+Bott (1 0 2n11,00, W) q) = 0.

Put w, = v (w),)v, and u, = vywr, n = 1,2, .... Then, by (e27.62) and (e 27.86),
(e27.94) Adup, 091 =g 2 g2 for all @ € 141 00(Gnt1)-
From (e 27.65), (¢27.61), and (e27.93), we compute that

(€27.95) Bott (2 © 41,00, Uy tin 41)
= Bott(¢2 0 141,00 WnjUn41Wh 1)
= Bott(p2 0 tn+1,00, Wn) + Bott(p2 0 111,00, V) Unt1)
+Bott (2 © 141,00, Wy 1)
= Bott(¢1 0 tnt1,00, wh,) + Bott(¢1 0 2541,005 Unt105)
+Bott (1 © 241,00, (W4 1))
= —[-Bott(¢1 0 tnt1,00, wp,) + Bott (1 0 tn41,00, Un¥yr41)
+Bott(p1 0 211 00, w;+1)] =0.
Let z; = [Pin] — [gin], 1 <i < I(n). Note that we assume that G, , is a free
abelian group generated by {x;, : 1 <i < I(n)}. Without loss of generality, we

may assume that these generators are independent. Define, for each n > 1, a
homomorphism A, : G, , — U(A)/CU(A) by

(€27.96) An(zin) = (((1 = €in) + einun)((1 =€ ,) + € ,uz)),
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where €; , = 20 1n11,00(Pin), €5 = P20%11,00(Cin), t = 1,2,..., I(n). In what
follows, we will construct unitaries si, So, ..., Sp, ... in A such that

(€27.97) [[¢2 0 tnt1,00(f)s S]] < 05,41 /4 for all f e Gpyq,
(€27.98) Bott(p2 © tnt1,00, Sn)|p, =0, and
(e27.99)

dist((((1 = ein) + €insn) (1 — € ,) + €] ,55)), An(=2in)) < 07,/16.

Let s; = 1, and assume that s, s3,..., s, are already constructed. Let us
construct s,4+1. Note that by (e27.95), the K class of the unitary wfu, 1 is
trivial. In particular, the K class of s,u u,41 is trivial. Since A factors through
G, n> applying Theorem 24.5 to @2 © tn 12,00, One obtains a unitary s,y1 € A
such that

(27.100) {2 © tnt2,00(f)s Snt1]l] < (5;L+1/4 for all f € G40,
(e27.101) Bott(p2 0 tnt2.00, Snt1)|p, =0, and
(€27.102)

dist((((1 = €int1) + i85 (1= € 1) + € pp15n+1))s Ans1 (= Ziing))

<ol /16,

1=1,2,...,I(n+1). Then s1, 89, ..., S,+1 satisfy (e 27.97), (¢ 27.98), and (e 27.100).
Put u,, = u,s’. Then by (e27.94) and (e27.97), one has

(e27.103) aduy, o p1 s w2 for all a € 1,41,00(Gny1)-
By (e27.95) and (e27.98), one has
(e27.104) Bott(¢2 © tnt1,00, (Un) Unt1)|p, = 0.

Note that

(1 —ein)+ eimun+15:+1><(1 - e;,n—&-l) + 6;’,n+15n+1u;+1>

= C1C2C3C4 = C1€4C2C3,

where

c1 = ((1 = eint1) + €int1Unt1), 2= (I = €int1) + Cint15n41),

c3 = ((1— €;,n+1) + eg,n+13n+1>a cg = ((1— 62,n+1) + eg,n+1“2+1>-
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Therefore, by (e27.102) and (e 27.96), one has

dist((((1 = €5,n41) + €ina1ttnr1) (1= €] 1) + €] pprtinrt ))), 1)
< 041 /16 + dist(A(=2 n41) AM@i 1), 1) = 07,41 /16,

i =1,2,...,1(n). Therefore, by Lemma 25.4 (and Remark 25.5), there exists a
continuous and piecewise smooth path of unitaries {z,(t) : t € [0,1]} of A such
that

(e27.105) 2,(0) =1, 2,(1) = (@) *Upy1 and
(e27.106) I[p2(a), 2o (O] < 1/2"2 for all a € F, and t € [0,1].

Define
u(t+n—1) =upzne1(t) t € (0,1].

Note that u(n) = @, 11 for all integers n and {u(t) : t € [0,00)} is a continuous
path of unitaries in A. One estimates that, by (e 27.94) and (e27.106),

Adu(t+n—1)op Rsr, Ad zp11(t) 0 o Rip/ontz P2 on Fn
for all ¢t € (0,1). It then follows that
(€27.107) tlim u* (t)e1(a)u(t) = pa(a) for all a € C.
o0

28. Rotation Maps and Strong Asymptotic Equivalence

LEMMA 28.1. Let A be a unital separable simple C*-algebra of stable rank one.
Suppose that w € CU(A). Then, for any continuous and piecewise smooth path
{u(t) : t €[0,1]} c U(A) with u(0) = u and u(l) =14,

Da({u(t)}) € pa(Ko(A)) (recall Definition 2.16 of [21] for Dy).
(e28.1)

Proor. It follows from Corollary 11.11 of [21] that the map
J :u— diag(u,1,...,1) from U(A) to U(M,(A)) induces an isomorphism from
U(A)/CU(A) to U(M,(A))/CU(M,(A)). Then the conclusion follows from 3.1
and 3.2 of [52]. O

LEMMA 28.2. Let A be a unital separable simple C*-algebra of stable rank one.
Suppose that B is a unital separable C*-algebra and suppose that ¢, ¢ : B — A
are two unital monomorphisms such that

(28.2) (Wl = [¥] in KK(B,4),
(e28.3) or = and ¢f = Pt
Then

(€28.4) Ry € Hom(K1(B), pa(Ko(A))).
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PROOF. Let z € K;1(B) be represented by a unitary u € U(M,,(B)) for some
integer m. Then, by (e28.3),

(p ®@idar,, ) (w) (¥ ®idag, ) (w)" € CU(Mp(A)).

Suppose that {u(t) : t € [0,1]} is a continuous and piecewise smooth path
in M, (U(A)) such that u(0) = (¢®idy,, )(u) and u(l) = (¢ @ idag,)(u).
Put w(t) = (¢ @ idypy,, )(w)*u(t). Then w(0) = (¥ ®idyy,, ) (u)* (¢ @ idpy,, )(u) €
CU(A) and w(1) = 14. Thus,

Rewl0) = o [ (0= 5L [ st 0
_ QLM 01 T(d%t)w*(t))dt
for all 7 € T(A). By 28.1,
Ry, (2) € pa(Ko(A)).
It follows that
Ry € Hom(K (B), pa(Ko(A)).
O

THEOREM 28.3. Let Cy,Cy € By be unital separable simple C*-algebras, and
A=C,®U;, B=C_Cy®Us, where Uy and Us are UHF-algebras of infinite type,
and B satisfies the UCT. Suppose that B is a unital C*-subalgebra of A, and
denote by 1 the embedding. For any A € Hom(K1(B), pa(Ko(A))), there exists
¢ € Inn(B, A) (see Definition 2.8 of [21]) such that there are homomorphisms
0; : Ki(B) — Ki(M,,,) with (7o)« 0 0; = idg, By, i = 0,1, and the rotation map
R, ,: Ki(M,,) — Aff(T(A)) is given by

(e28.5) Ry p(z) = palz — 01(m0):1(2)) + Ao (m0)1(2))

for all x € K1(M,,). In other words,

(€28.6) [¢] =[2] in KK(B,A)

and the rotation map R, ,, : K1(M, ) — Aff(T'(A)) is given by

(e28.7) R, ,(a,b) = pa(a) + \(b)

for some identification of K(M,,,) with Ko(A) ® K1(B).
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PrROOF. The proof is exactly the same as that of Theorem 4.2 of [44]. By
Lemma 23.3 and Lemma 24.1 (see also Lemma 24.2 and Remark 22.15), we have
the properties (B1) and (B2) associated with B (defined in 3.6 of [44]) as in
Theorem 4.2 of [44]. In 4.2 of [44], it is also assumed that p(Ko(A)) is dense
in Aff(T'(A)), which is only used to get that ¥(K1(B)) C pa(Ko(A)), which
corresponds to the assumption A(K7(B)) C pa(Ko(A)) here. O

DEFINITION 28.4. Let A be a unital C*-algebra and let C be a unital sep-
arable C*-algebra. Denote by Mon{,, (C, A) the set of all asymptotic uni-
tary equivalence classes of unital monomorphisms from C' into A. Denote by
K : Mon¢,,(C,A) - KK.(C,A)™" the map defined by

C, A).

Let k € KK.(C,A)™". Denote by () the set of classes of all ¢ € Mon
such that K(p) =&

Denote by KKUT,(A,B)™ the set of triples (x,a,v) for which
k € KK.(A,B)™, a : U(A)/CU(A) — U(B)/CU(B) is a homomorphism,
v:T(B) = T(A) is a continuous affine map, and both « and ~ are compatible
with k. Denote by & the map from Mon¢ , (C, A) into KKUT(C, A)*" defined
by

@ — [p] for all ¢ € Mon

(IS’U.(

C, A)

GSU(

asu(

e = ([p], <p o) for all ¢ € Mong,,(C, A).

Denote by (k, «, ) the subset of ¢ € Mon¢ . (C, A) such that &(¢) = (k, «, 7).

asu(

THEOREM 28.5. Let C and A be two unital separable amenable C*-algebras.
Suppose that o1, pa, 3 : C — A are three unital monomorphisms for which

[p1] = [p2] = [ws] in KK(C,A)) and (p1)r = (v2)r = (p3)1-
Then
RLPMPQ + R«szs = EWl»‘PS'
PROOF. The proof is exactly the same as that of Theorem 9.6 of [40]. O

LEMMA 28.6. Let A and B be two unital separable amenable C*-algebras. Sup-
pose that 1,92 : A — B are two unital monomorphisms such that

[p1] = [w2] in KK(A,B) and (¢1)r = (p2)7-

Suppose that (p2)r : T(B) — T(A) is an affine homeomorphism. Suppose also
that there is o € Aut(B) such that

[a] = [idp] in KK(B,B) and ar = idr.
Then

(e 288) Rgpl,aoch - RidB,a © (902)*1 + E‘Ph@z
in Hom(K, (A), Aff(T(B)))/Ro.
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PrROOF. Using 28.5, we compute that

Rolaops = Ropipo + Ropsaop, = Ry, + Ridp,a © (p2)1-
O

THEOREM 28.7. Let B be a unital separable simple amenable C*-algebra in
By satisfying the UCT, let C = B ® Uy, where Uy is a UHF-algebra of infinite
type, let Ay be a unital separable amenable simple C*-algebra in By, and let
A = Ay ® Uy, where Uy is another UHF-algebra of infinite type.  Then the
map K& : Mon,,(C,A) - KKUT(C,A)™™ is surjective. Moreover, for each

asu

(k,a,7) € KKUT(C, A)*™, there exists a bijection
n: <H7 «, 7> - Hom(Kl (0)7 pA(KO(A)))/:RO

PrOOF. It follows from Lemma 24.4 (also Remark 22.15) that & is surjective.

Fix a triple (x,a,v) € KKT(C,A)™ and choose a unital monomorphism
@ : C — A such that [¢] = k, ¢* = a, and o1 = 7. If ¢, : C — A is another
unital monomorphism such that K(y1) = K(p), then by Lemma 28.2,

(¢28.9) Roppy € Hom(K1(C), pa(Ko(A)))/Ro.

Let A € Hom(K;(C), pa(Ko(A))) be a homomorphism. It follows from Theo-
rem 28.3 that there is a unital monomorphism v € Inn(¢(C), A) with [¢oyp] = [¢)]
in KK(C, A) such that there exists a homomorphism 0 : K;(C) = K1 (M ypoy)
with (mg)s«1 0 6 = idg,(¢) for which Ry yo, 00 = A Let 8 = 9 o ¢. Then
R, 500 = \. Note also that, since ¢ € Inn(¢(C), A), % = ¢* and Bt = pr. In
particular, K(8) = K(¢).

Thus, for each unital monomorphism ¢, we obtain a well-defined and surjec-
tive map

ng : ([, %, 1) — Hom(K1(A), pa(Ko(A)))/Ro.

To see that 7, is injective, consider two monomorphisms ¢1,¢2 : C — A in
([¢¢], ¥*, 1) such that

R‘pﬂpl = E‘pﬂfh‘
Then, by Theorem 28.5,

(e 28'10) R<Pl7902 = RSDMP + Etﬂ»sﬂfz = 7ELP7<P1 + ESIMPQ =0.

It follows from Theorem 27.5 that ¢, and @5 are asymptotically unitarily equiv-
alent. The map 7, is the desired bijection 1 as ([¢], ¥, o1) = (K, a,7). O

DEFINITION 28.8. Denote by KKUT. *(A, A)*T the subset of those elements
(k,o,7) € KKUT,(A, A)** for which |, (a) is an isomorphism (i = 0,1), «
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is an isomorphism, and +y is an affine homeomorphism. Recall from the proof of
Theorem 28.7 that

Mha : ([idal,id%, (ida)r) — Hom(K1(A), pa(Ko(A)))/Ro

is a bijection.

Denote by (id4) the class of those automorphisms ¢ which are asymptot-
ically unitarily equivalent to id 4—this subset of Aut(A) gives rise to a sin-
gle element in Mon{,, (A, A) which should not be confused with the subset
([id 4], idit47 (ida)r) C MonZ,, (A, A). Note that, if ¢ € (ida), then v is asymptot-
ically inner, i.e., there exists a continuous path of unitaries {u(t) : t € [0,00)} C
A such that

Y(a) = lim u(t)*au(t) for all a € A.

t—o0

Note that (id4) is a normal subgroup of Aut(A).

COROLLARY 28.9. Let A; € Bg be a unital simple amenable C*-algebra satis-
fying the UCT and let A = A; @ U for some UHF-algebra U of infinite type.
Then one has the following short exact sequence:

0~ Hom(Ky(A), pa(Ko(AN)/Ro " Aut(4)/(id.)
3 KKUT (A, A)TF 0.
In particular, if o, ¢ € Aut(A) are such that
R(p) = R(Y) = K(ida),
then
Mida (P oY) =M, (@) + M, ().

Proor. It follows from Lemma 24.4 (see also Remark 22.15) that, for any
(K, @, 7), there is a unital monomorphism h : A — A such that K(h) = (k, a, 7).
The fact that x € KK_ (A, A)™™ implies that there is k1 € KK_ (A4, A)"F
such that

KX K1 =K1 X k= [ida].

Using Lemma 24.4, choose hy : A — A such that
R(h) = (w17t y7h.

It follows from Lemma 27.1 that hq oh and ho h; are approximately unitarily
equivalent. Applying the standard approximate intertwining argument of G. A.
Elliott (Theorem 2.1 of [12]), one obtains two isomorphisms ¢ and ¢~! such that
there is a sequence of unitaries {u,} in A such that

¢(a) = lim Adug,i10h(a) and ¢ '(a) = liﬁm Adwugy, o hi(a)

n— oo
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for all a € A. Thus, [¢] = [h] in KL(A, A) and p* = h* and pr = hy. Then, as in
the proof of 24.4, there is 1)y € Inn(A, A) such that [tpgop] = [ida] in KK (A, A)
as well as (g o p)¥ = ht and (g o ¢)r = hy. So we have ¥y o p € Aut(A, A)
such that K(¢o o ¢) = (k, @, ). This implies that K is surjective.

Now let A € Hom(K:(C), Aff(T(A)))/Ro. The proof Theorem 28.7 says that
there is 1go € Inn(A4, A) (in place of 1) such that &(¢pgp 0id4) = K(id4) and

RidAﬂl/oo =A

Note that 1 is again an automorphism. The last part of the lemma then follows
from Lemma 28.6. U

DEFINITION 28.10 (Definition 10.2 of [37] and see also [41]). Let A be a unital
C*-algebra and B be another C*-algebra. Recall ([41]) that

Hi(Ko(A), K1 (B)) = {z € K1(B) : p([14]) = « forsome ¢ € Hom(Ko(A), K1 (B))}.

PROPOSITION 28.11 (Proposition 12.3 of [37])). Let A be a unital separable C*-
algebra and let B be a unital C*-algebra. Suppose that ¢ : A — B is a unital
homomorphism and w € U(B) is a unitary. Suppose that there is a continuous
path of unitaries {u(t) : t € [0,00)} C B such that

(e28.11) u(0) =1p and tli}m Adu(t) o p(a) = Aduo p(a)

for alla € A. Then
[u] € Hi(Ko(A), K1(B)).

LEMMA 28.12. Let C =C'"®U for some C' = @(Cn,wn) and a UHF algebra
U of infinite type, where each C, is a direct sum of C*-algebras in Cy and H.
Assume that 1, is unital and injective. Let A € By. Let 1,900 : C — A be
two monomorphisms such that there is an increasing sequence of finite subsets
F, C C with dense union, an increasing sequence of finite subsets P, C K1 (C)
with union equal to K1(C), a sequence of positive numbers (6,) with > 0, < 1
and a sequence of unitaries {u,} C A such that

Adu, 01 =5, w2 on F, and pa(botty (@2, untni1)) =0 for all x € P,,.

Suppose that Hy(Ko(C), K1(A)) = K1(A). Then there exists a sequence of uni-
taries vy, € Uy(A) such that

(€28.12) Adv, 0 o1 =5, 02 on F, and

(e28.13) pa(botty (2,0 vp11)) =0, x € Py

PrROOF. Let x, = [u,] € K1(A). Since H1(Ko(C), K1(A)) = Ki(A), there is

a homomorphism
Kn,0 - K()(C> — Kl(A)
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such that k., 0([1c]) = —z,. Since C satisfies the Universal Coeflicient Theorem,
there is k, € KL(C ® C(T), A) such that

(Kn)la(Ko(c)) = Fno  and  (kn)lg(x, (c)) = 0.

Without loss of generality, we may assume that [1¢] € P, n=1,2,..... For each
0, choose a positive number 7,, < d,, such that

Adu, o1 =y, @2 on F,.
By Lemma 24.1, there is a unitary w, € U(A) such that
llp2(a), wn]|| < (6n —mn)/2  for all a € F, and Bott(ps, wn)|p, = knlg,)-
Put v, = u,w,, n=1,2,.... Then
Advy, 0 1 =, 92 on Ty, pa(botts(pe, v;0041))]2, =0
and, since [1¢] € Py,
[Un] = [un] —zn, =0,
as desired. O

THEOREM 28.13. Let B € By be a unital separable simple C*-algebra which
satisfies the UCT, let A1 € By be a unital separable simple C*-algebra, and let
C =BU; and A = A} ® Uy, where Uy and Us are unital infinite dimen-
sional UHF-algebras. Suppose that Hy(Ko(C), K1(A)) = K1(A) and suppose
that p1,2 : C — A are two unital monomorphisms which are asymptotically
unitarily equivalent. Then ©1 and o are strongly asymptotically unitarily equiv-
alent, that is, there exists a continuous path of unitaries {u(t) : t € [0,00)} C A
such that

u(0) =1 and tlim Adu(t) o ¢1(a) = pa(a) for all a € C.
(o)
PROOF. By 4.3 of [40], one has

[p1] = [p2] in KK(C,A),
ot =9t (p1)r = (p2)7 and Ry, 4, =0.

Then by Lemma 28.12 (see also Remark 22.15), one may assume that v,, € Up(A)
(n = 1,2,...) in the proof of Theorem 27.5. It follows that &,([l¢]) = 0, n =
1,2, ..., and therefore k,([1¢]) = 0. This implies that 7, o 5([1¢]) = 0. Hence
wy, € Up(A), and also u, € Up(A). Therefore, the continuous path of unitaries
{u(t)} constructed in Theorem 27.5 is in Up(A), and then one may require that
u(0) = 14 by connecting u(0) to 14. O
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29. The General Classification Theorem

LEMMA 29.1. Let Ay € By be a unital separable simple C*-algebra, let A =
Ay ®@U for some infinite dimensional UHF-algebra, and let p be a supernatural

number of infinite type. Then the homomorphism 1 : a — a ® 1 induces an
isomorphism from Uy(A)/CU(A) to Uy(A® M,)/CU(A® M,).

PROOF. There are sequences of positive integers {m(n)} and {k(n)} such that
A® Mp = 1111171_,00 (A X Mm(n)a Zn), where

In - Mm(n) (A) — Mm(n+1)(A>
k(n)
is defined by (a) = diag(a,a,...,a) for all a € M,,y)(A), n = 1,2,.... Note,
Mm(n) (4) = Mm(n) (A1) ® U and Mm(n) (A7) € By. Let

be defined by

Jn(u) = diag(u,1,1,...,1) for all u € U((My,n)(A)).
———
k(n)—1
It follows from Corollary11.11 of [21] that j, is an isomorphism. By Corollary
11.7 of [21], the abelian group Uy(M,,(n)(A))/CU(Mp,(n)(A)) is divisible. For
each n and i, there is a unitary U; € M, (,41)(A) such that
Ui*El,lUi = E’i,’ia 1= 27 37 it k(”))

where E;,; = E;’ZE?_)l)m(n)H e;; and {e; ;} is a system of matrix units for
Mm(n+1). Then

tn(u) = 0 (Usu'U2)(Usu'Us) -+ (U ()0 Uk ()
——
where v/ = diag(u, 1,1, ..., 1), for all u € M,,(,)(A). Thus,
0, (@) = k(n)jn ().
It follows that o}, ts(a,,() (A))/CU M,y (A)) 18 injective, since

UO(Mm(n—H) (A))/CU(Mm(n+1) (A)>

is torsion free (see Lemma 11.5 of [21]) and j, is injective. For each z €
Uo(Mn(n+1)(A)/CU (M (n41)), there is a unitary v € My, (,41)(A) such that

]n(@) =%
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since j, is an isomorphism. By the divisibility of Up(Mp,(n)(A)/CU(Mpy(n)),
there is u € M, (,)(A) such that

uk(n) — ﬂk(”) = 7.

As above,
1) = k(n)jn(0) = 2.

So Zi|U0(Mm(n>(A))/CU(Mm<n)(A)) is surjective. It follows that

U 00 U (Mo ) (A))/CU (Mo (A))

is an isomorphism. One then concludes that zi|U0( A)/CU(A) 18 an isomorphism.
O

LEMMA 29.2. Let Ay and By be two unital separable simple C*-algebras in By,
let A= A1 ®U; and let B = By ® Us, where Uy and Uy are two UHF-algebras of
infinite type. Let ¢ : A — B be an isomorphism and let 8 : B ® M, — B ® M,
be an automorphism such that B.1 = idk, (Benm,) for some supernatural number
p of infinite type. Then

VHU(A)/CU(4)) = (90)*(U(A)/CU(A)) = U(B)/CU(B),

where o9 = 10 @, P = forop and where v : B — B ® M, is defined by
1(b) = b®1 for allb € B. Moreover, there is an isomorphism p : U(B)/CU(B) —
U(B)/CU(B) with u(Uy(B)/CU(B)) C Uy(B)/CU(B) such that

Fopopt =yt and gop=qi,
where 1 : U(B)/CU(B) — K1(B) is the quotient map.
PRrROOF. The proof is exactly the same as that of Lemma 11.3 of [40]. O

LEMMA 29.3. Let Ay and By be two unital simple amenable C*-algebras in Bg
satisfying the UCT, let A = A; @ Uy, and let B = By ® Us, where Uy and Us
are UHF-algebras of infinite type. Suppose that 1,92 : A — B are two isomor-
phisms such that [p1] = [p2] in KK (A, B). Then there exists an automorphism
B : B — B such that [5] = [idg] in KK(B, B) and 3 o 2 is asymptotically uni-
tarily equivalent to v1. Moreover, if Hi(Ko(A), K1(B)) = K1(B), then 8 can be
chosen so that o1 and o py are strongly asymptotically unitarily equivalent.

ProOOF. It follows from Theorem 28.7 that there is an automorphism (5, : B —
B satisfying the following condition:

(€29.1) (8] = [idp] in KK(B,B),

(€29.2) BE = ol o (e and (B1)r = (¢1)7 0 (p2)7
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By Corollary 28.9, there is automorphism Sz € Aut(B) such that

(€29.3) [82] = [idp] in KK(B,B),
(€29.4) B3 =idy, (B2)r = (idp)r, and
(e29.5) Rdg,ﬁz = —Egol,fhom © (‘PZ):ll'

Put 8 = 5 0 1. It follows that

(€29.6) [Bo@a] =[p1] in KK(A,B),(Bops)t= ‘PL and
(Bow2)r = (1)1

Moreover, by 28.6,

(e 29'7) Rsahﬂosaz = RidBﬁz 0 (4,02)*1 +§¢1ﬁ10$&2
= (_§¢17ﬁ10¢2 0 (@2);11) o (p2)s1 + R%ﬁlwz =0.

It follows from 28.7 that 5o @9 and ¢, are asymptotically unitarily equivalent.
In the case that Hy(Ko(A), K1(B)) = K1(B), it follows from Theorem 28.13
that S o @9 and 1 are strongly asymptotically unitarily equivalent. O

LEMMA 29.4. Let Ay and By be two unital simple amenable C*-algebras in By
satisfying the UCT and let A = A® U; and B = By ® Us for UHF-algebras
Uy and Us of infinite type. Let ¢ : A — B be an isomorphism. Suppose that
B € Aut(B ® M,) is such that

[5] = [idB®Mp] m KK(B ®MP’B®MP) and BT = (idB®Mp)T

for some supernatural number p of infinite type.

Then there exists an automorphism o € Aut(B) with [a] = [idp] in KK (B, B)
such that 10 a o @ and S o110 ¢ are asymptotically unitarily equivalent, where
1: B — B® M, is defined by 1(b) =b® 1 for all b € B.

Proor. It follows from Lemma 29.2 that there is an isomorphism
w:U(B)/CU(B) — U(B)/CU(B) such that

Fopopt=(Borop)t

Note that vr : T(B ® M) — T(B) is an affine homeomorphism.
It follows from Theorem 28.7 that there is an automorphism « : B — B such
that

[a] = [idg] in KK(B,B),
ot =p, ar=(Borop)ro((oy)r)™" = (idpem,)r and
Ridpa(2)(T) = = Rgorog, 100 (917 () ez (7)) for all z € Ki(A)
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and for all 7 € T(B).
Denote by 1 =10 a o ¢. Then we have, by Lemma 28.6,

Wl =logl =[Boroy] in KK(A, B M,)
Pr =t opopt = (Borop)t and
Yr =(oacp)r=(op)r=(Borop)r.

Moreover, for any = € K1(A) and 7 € T(B @ M,),

Rporop,i(2)(T)

= Rporop,100(7)(7) + Reroa © Pu1(2)(T)

= Rporopop(@)(T) + Ridg 00 © pu1 (@) (17" (7))
= Rporop100(2)(T) = Rporopaop (911 (#x1(2))(T) = 0.

It follows from Theorem 27.5 that 1oaop and Sorop are asymptotically unitarily

equivalent. O

Let N be the class of separable amenable C*-algebras which satisfy the UCT.

THEOREM 29.5. Let A and B be two unital separable simple C*-algebras in N.
Suppose that there is an isomorphism

I : El(A) — ElI(B).

Suppose also that, for some pair of relatively prime supernatural numbers p and
q of infinite type such that M, ® My = Q, we have A® M, € By, B M, € By,
A® M, € By, and B My € By. Then,

ARZ2B®Z.

PROOF.  The proof is almost identical to that of 11.7 of [40], with a few neces-
sary modifications. Note that I" induces an isomorphism

Ty : El(A® M,) — ElI(B ® M,).

Since A ® M, € By and B ® M, € By, by Theorem 21.10 of [21], there is an
isomorphism ¢, : A® M, — B ® M,. Moreover (by the proof of Theorem 21.10
of [21]), ¢, carries I'y. In the same way, I' induces an isomorphism

T, : El(A® M,) — EI(B ® M,)

and there is an isomorphism 4 : A ® My — B ® My which induces I'.
Put ¢ = ¢, @idy, : A®Q - BRQ and ¢ = ¢y ®idy, : A®Q - B® Q.
Note that
(©)wi = (¥)wi (1=0,1) and o7 = ¢r
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(all four of these maps are induced by T'). Note that pr and r are affine
homeomorphisms. Since K,;(B ® Q) is divisible, we in fact have [¢] = [¢] (in
KK(A®Q,B®Q)). It follows from Lemma 29.3 that there is an automorphism
b:B®Q — B®Q such that

[6] = lideq] in KK(B®Q,B®Q)

and such that ¢ and S o1 are asymptotically unitarily equivalent. Since K;(B®
Q) is divisible, H1(Ko(A® Q), K1(B® Q)) = K1(B® Q). It follows that ¢ and
B o are strongly asymptotically unitarily equivalent. Note also in this case

Br = (idpeq)T-

Let : : B® Mq — B ® @ be defined by «(b) = b® 1 for b € B. We consider the
pair 3 o1 014 and 72 0 1¢4. Applying Lemma 29.4, we obtain an automorphism
a: BMy — B®M, such that 1oa01q and o101, are asymptotically unitarily
equivalent (in B ® Q). So, by Lemma 29.3, they are strongly asymptotically
unitarily equivalent in B ® ). Moreover,

[a] = [i[dpon,] in KK(B® My, B® M,).

We will show that 8o and (a0 vq) @ idyy, are strongly asymptotically
unitarily equivalent. Define 31 = (Bo109q) ®idy, : BRQ® M, - BRQ® M,.
Let j : @ - Q ® M, be defined by j(b) = b ® 1. There is an isomorphism
s : My, — M, ® M, such that the homomorphism idy;, ® s : Mq ® M,(=
Q) = My ® My, ® My(= Q ® M,) induces (ida, ® s)«0 = j«o. In this case,
lidy, ® s] = [j]. Since K1(M,) = 0, by Theorem 27.5, idy, ® s is strongly
asymptotically unitarily equivalent to j. It follows that (« o 1)q) ® idps, and
(Boroty) ®idy, are strongly asymptotically unitarily equivalent (note that
1oaot)q and foro1)g are strongly asymptotically unitarily equivalent). Consider
the C*-subalgebra C' = fo¢(1® My) ® M, C B® Q ® My. In C, Bo¢lignm,
and jo are strongly asymptotically unitarily equivalent, where jo : M, — C' is
defined by jo(a) =1 ® a for all @ € M,. In particular, there exists a continuous
path of unitaries {v(t) : t € [0,00)} C C such that

(€29.8) tli}m Adv(t)ofop(l®a)=1®a for all a € M,.

It follows that 8 o ¢ and [ are strongly asymptotically unitarily equivalent.
Therefore Bo1) and (ao1)q) ®idyy, are strongly asymptotically unitarily equiva-
lent. Finally, we conclude that (ao,) ®idyas, and ¢ are strongly asymptotically
unitarily equivalent. Note that « o1, is an isomorphism which induces I'y.

Let {u(t) : t € [0,1)} be a continuous path of unitaries in B ® @ with u(0) =
1Bgq such that

tlirn Adu(t) o p(a) = aotpg ®idy, (a) for all a € A® Q.

One then obtains a unitary suspended isomorphism which lifts I" along Z, 4 (see
[56]). Tt follows from Theorem 7.1 of [56] that A®Z and B®Z are isomorphic. [
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DEFINITION 29.6. Denote by Ny the class of those unital simple C*-algebras
A in N for which A ® M, € NN By for any supernatural number p of infinite
type.

Of course Ny contains all unital simple amenable C*-algebras in By which
satisfy the UCT. It contains all unital simple inductive limits of C*-algebras in
Co. It should be noted that, by Theorem 19.3 of [21], Ny = Nj.

COROLLARY 29.7. Let A and B be two C*-algebras in Ng. Then AQZ = BRZ
if and only if El(A ® Z) 2 Ell(B ® Z).

ProOF. This follows from Theorem 29.5 immediately. (]

THEOREM 29.8. Let A and B be two unital separable simple amenable Z-stable
C*-algebras which satisfy the UCT. Suppose that gTR(A®Q) <1 and gTR(B®
Q) < 1. Then A= B if and only if

Ell(A) = EII(B).

PrOOF. It follows from Corollary 19.3 of [21] that A® U, B® U € By for any
UHF-algebra U of infinite type. The theorem follows immediately by Corollary
29.7. g

COROLLARY 29.9. Let A and B be two unital separable amenable simple C*-
algebras which satisfy the UCT. Suppose that gTR(A) < 1 and ¢gTR(B) < 1.
Then A = B if and only if

Ell(A) = Ell(B).

COROLLARY 29.10. Let A and B be two unital simple C*-algebras in B; N'N.
Then A = B if and only if
Ell(A) = Ell(B).

PrOOF. It follows from Theorem 10.7 of [21] that A® Z = A and BRZ = B.
The corollary then follows from Theorem 29.8. 0

REMARK 29.11. Soon after this work was completed in 2015, it was shown (see
[16]) C*-algebras A with finite decomposition rank which satisfy the UCT have
gTR(A® U) <1 for all UHF-algebras of infinite type. Therefore, by Theorem
29.8, they are classified by the Elliott invariant.
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