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Abstract

Distributional data Shapley value (DShapley)
has recently been proposed as a principled
framework to quantify the contribution of in-
dividual datum in machine learning. DShap-
ley develops the foundational game theory
concept of Shapley values into a statistical
framework and can be applied to identify data
points that are useful (or harmful) to a learn-
ing algorithm. Estimating DShapley is com-
putationally expensive, however, and this can
be a major challenge to using it in practice.
Moreover, there has been little mathematical
analyses of how this value depends on data
characteristics. In this paper, we derive the
first analytic expressions for DShapley for the
canonical problems of linear regression, binary
classification, and non-parametric density es-
timation. These analytic forms provide new
algorithms to estimate DShapley that are sev-
eral orders of magnitude faster than previous
state-of-the-art methods. Furthermore, our
formulas are directly interpretable and pro-
vide quantitative insights into how the value
varies for different types of data. We demon-
strate the practical efficacy of our approach
on multiple real and synthetic datasets.

1 Introduction

Data valuation has emerged as an important topic
for machine learning (ML) as well as for the broader
discussions around the economics of data. Proposed
policies such as the Designing Accounting Safeguard
to Help Broaden Oversight and Regulations on Data
Act, also known as DASHBOARD Act, and the Data
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Dividend in the US would stipulate that companies
need to quantify the value of the data that they col-
lect from customers (Warner) 2019; \Wadhwal, 2020)).
Such valuation could have important implications for
policy, regulation, taxation and potentially even for
individual compensation (Posner and Weyl, [2018). Re-
cently data Shapley, a data valuation framework based
on the foundational Shapley value in economics, has
gained significant attention (Ghorbani and Zoul [2019;
Jia et al., 2019b). Data Shapley is appealing from
a policy perspective because it inherits the same fair
allocation properties that the original Shapley value
uniquely satisfies. Moreover, it has shown to empiri-
cally capture the notion of which datum helps or harms
the ML model.

A fundamental limitation of data Shapley, however, is
that it is defined with respect to a fixed dataset. The
statistical and random nature of data is ignored. Ac-
cordingly, data Shapley needs to be recalculated even
when the dataset changes slightly, which is computa-
tionally expensive, and it could also be unstable for
randomly drawn datasets. To tackle these challenges,
Ghorbani et al.| (2020) proposed distributional Shapley
value (DShapley) as the natural statistical extension of
the Shapley value, by considering the expected value of
data Shapley value with respect to the underlying dis-
tribution. While DShapley is numerically more stable
and does not require the aforementioned recalculation,
DShapley is still mathematically challenging to analyze
and computationally hard to estimate.

In this paper, we address these challenges by developing
rigorous analyses and computationally efficient algo-
rithms for DShapley. Theoretical contributions:
we develop the first analytic expressions for DShapley
for linear regression, binary classification, and non-
parametric density estimation, which are widely used
canonical examples of supervised and unsupervised
learning. Our formulations are also easy to inter-
pret and provide direct insights into how DShapley
behaves for different data. Algorithmic contribu-
tions: based on our theory, we provide new algorithms
to efficiently estimate DShapley which is several or-



Efficient Computation and Analysis of Distributional Shapley Values

ders of magnitude faster than previous state-of-the-art
methods. We support our analyses with numerical
experiments on both real and synthetic datasets.

Related works Shapley value was initially proposed
in a seminar paper and has been stud-
ied extensively in the field of cooperative game theory
(Dubey et al., [1981}; [Grabisch and Roubens, [1999;
mann and Shapley, 2015)). Shapley value has been
widely applied in economics [1989; Moulin, |1992),
management science and has also been
appeared in ML literature. Examples include feature se-
lection (Cohen et al., [2005; [Zaeri-Amirani et al 2018),
data marketplace design (Agarwal et al.,|2019; |Fernan;
dez et al., [2020), and model explanation (Lundberg
and Lee| 2017} [Chen et al 2019} [Sundararajan and
Najmil [2019; |Ghorbani and Zoul, 2020).

Another body is Shapley value-based data valuation
methods, yet most of the literature focuses on data
Shapley values (Ghorbani and Zou, 2019} [Jia et all
. Data Shapley value has been shown to empiri-
cally work better than other methods of data valuation,
such as using leave-one-out residual estimate (Cookl
and Weisberg), 1982)), or influence-based scores (Ham-
pel, 1974; |[Koh and Liang, 2017), but it can cause
expensive computational costs when data are regularly
collected. Other promising data valuation schemes
have been proposed to leverage reinforcement learning
(Yoon et al., 2019). These approaches lack the fairness
principles that has uniquely satisfied by the Shapley
value.

DShapley was introduced as a rigorous statistical exten-
sion of Shapley value (Ghorbani et all, [2020). Previous
to our work, the only computationally efficient form for
data Shapley is just for the nearest neighbor classifier
; and similar results are not known for
DShapley. Our work develops principled and efficient
methods for analyzing and computing DShapley.

2 Preliminaries

We review existing Shapley value-based data valuation
methods. To begin with, we define some notations. Let
Z be a random variable for data defined on Z C R4
and denote its distribution by Pz. In supervised learn-
ing, we set Z = (X,Y) defined on X x ), where X
and Y are the input and its label, respectively, and
in unsupervised learning Z = X. We denote a util-
ity function by U : U32,27 — R. Here, the utility
function describes model performance. For instance,
in classification, U(S) could be the test accuracy of a
model trained using a subset S C X x ). We define
the marginal contribution of z* € Z with respect to
SCZas A(z5U,8):=U(SU{z*}) —U(S). We use

the conventions ZY := {(}} and U(P) = 0. For a set
S, we denote its cardinality by |S|, and we use [m] to
denote a set of integers {1,...,m}.

Data Shapley value applies the cooperative game theory
concept of Shapley value to ML problems
land Zoul 2019; |Jia et al.; [2019b)). More precisely, given
a utility function U and a fixed dataset B C Z with
|B| = m, data Shapley value of a point z* € B is
defined as

BEUB) = >

j=1 (?—1)

> AESUS), (1)

\z*
Sij

where B}Z* ={S C B\{z*} |S| =j—1} for j € N.
Note that the cardinality |Bj\.z | is (’;7:11) for all j € [m].
That is, data Shapley value is a weighted average of
the marginal contribution A(z*; U, S). Data Shapley
provides a principled data valuation regime in that
the value uniquely satisfies the natural properties
of fair valuation, namely, symmetry, null player, and
additivity (Ghorbani and Zoul, 2019} |Jia et al., 2019al).
We review these properties and the uniqueness of data
Shapley value in the Supplementary Material.

Despite the aforementioned promising theoretical char-
acteristics, data Shapley value has a critical limitation;
the original data Shapley value is defined with respect
to a fixed dataset B. Even if a single point in B is
changed, in principle, all of the values should be recom-
puted and the exact computation of the value costs
exponential computational complexity. This is particu-
larly problematic in typical statistics and ML settings,
where the data points are regularly collected from an
underlying distribution. In order to resolve this issue
and capture the statistical nature of data valuation,
DShapley has been proposed where data Shapley is
treated as a random variable (Ghorbani et al., 2020)).
To be more specific, given a utility function U, a data
distribution Pz, and some m € N, |Ghorbani et al.
defined DShapley of a point z* as

v(z*;U, Pz,m) := ]EBNPZLA [p(z*;U,BU{z"}]. (2)

DShapley is the expectation of data Shapley value
over random datasets of size m containing z*.
bbani et al|(2020) further showed that DShapley pos-
sesses some desirable properties. For instance, DShap-
ley is stable under small perturbations to the data
points themselves and to the underlying data distribu-
tion (Ghorbani et al. (2020, Theorems 2.7 and 2.8)),
which have not been clear with . However, estimat-
ing DShapley is still computationally expensive and
thus it critically hampers the practical use of DShapley.
In this paper, we focus on canonical problems of linear
regression, binary classification, and non-parametric
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density estimation, deriving new expressions for DShap-
ley that lead to new mathematical insights and efficient
computation algorithms.

3 Distributional Shapley values for
linear regression and classification

We present rigorous analyses of DShapley for linear
regression problems. In Sec. we first provide a gen-
eral reformulation of DShapley without distributional
assumptions on inputs. In Sec. [3.2] we simplify DShap-
ley as a function of Mahalanobis distance and an error
when inputs are Gaussian. In Sec. we consider sub-
Gaussian inputs and provide upper and lower bounds
for DShapley. In Sec. [3:4] we present an application of
our theoretical result to binary classification.

3.1 A general reformulation of distributional
Shapley values

Throughout this section, we let (X,Y) be a pair of
input and output random variables defined on X x Y C
RP xR. We assume that Y = X7 3+e is the underlying
linear model where e is a random error whose mean
is zero and variance is 2. Here, X can come from an
arbitrary distribution with bounded first two moments.
For a subset S C X x ), we denote a design matrix
and its corresponding output vector based on S by
Xg € RII¥P and Yy € RISI respectively. For v > 0,
the ridge regression estimator based on S is defined as
Bs~ = (XTXs +~I,) ' XEYs where I, is the p x p
identity matrix. For ¢ € N, a constant Cy;, > 0, and
an estimator B eRp , we define a utility function as
Uy(S.3) = (Cin— [ (y— 7 B)2dPx.y (,9))L(IS] > q).
Here, 1(-) is the indicator function. To this end, we
suppress the notation if the ridge regression estimator
is used, i.e., Uy~(S) == Uy(S,Bs~). We denote the
Gaussian distribution with mean p and covariance X
by N (i, ). Lastly, we denote the data to be valued
by (z*,y*) and its error by e* := y* — z*1 3.

The DShapley can be equivalently expressed as fol-
lows (Ghorbani et al.l {2020):

I/((I*, y*)7 Uq,’ya PX,Y7 m)
=EjuimBsopr 1 [AE"47);: Ugrs ST (3)

where j ~ [m] denotes j follows a uniform distribution
over [m]. Using Equation (3), we further derive a
general reformulation of DShapley in the following
proposition.

Proposition 1 (A general form of DShapley). Let
ElY | X] = XTB8, Var(Y | X) = 02, and E(XXT) =
Y.x. Then, for any q > 2 and some fized constant Cliy,
DShapley of a point (z*,y*) with the ridge regression

estimator is given by
v((@*y"); Ug s Pxy,m)

1 iE e T AL Sx Aglar
i~ Xs~Py *T A=L )2
m e x| I+ TAg . x¥)

x (2+2Ta5ha")o =) | +h(y),

where Ag’lw = (XIXg +~IL,)" ! and h(y) is a term
such that limy 04 h(y)/(vlog(vy)) = 0 and h(0) = 0.

In the expression , different choices of Cj;, in the
utility function U, 4 cause constant changes in DShap-
ley. To be more specific, for a fixed C' € R and for all
S C X x Y, suppose U, (S) = U, (S) + C1(|S| >
q). Then DShapley is v((z*,y*);Uq~, Px,y,m) =
v((z*,y*); U,M,Px,y,m) + C/m. In this respect, we
simply choose a constant Cly, that gives the simplest
form in Proposition [I] and the following results.

Proposition [I| simplifies the expected value of the
marginal contributions of (z*,y*) in Equation (3)) with
a few terms such as the squared error e*? and the ridge
leverage score x*TAg’lvx* (Cohen et al., 2017, McCurdy,
2018). This new formulation provides mathematical
insights and interpretations. For a fixed x*, DShapley
is negatively related to the squared error e*? as long
as 7 is small enough; as the error decreases, DShapley
increases. In addition, DShapley is determined only
by the first two conditional moments of ¥ given X,
meaning that it does not rely on other higher moments
or a particular distribution of Y. Furthermore, it is
noteworthy that Proposition [I| does not require a spe-
cific distributional assumption on X except for the
moment condition E(XX?) = Y. In the following
sections, we pay more attention to the input distribu-
tion and propose computationally efficient algorithms
for DShapley.

3.2 Distributional Shapley value when inputs
are Gaussian

When input data are Gaussian, we introduce a new
expression for DShapley in the following theorem. To
begin with, for ¥ > 1, we denote the Chi-squared
distribution with k degree of freedom by x3.

Theorem 2 (DShapley when inputs are Gaussian).
Assume E[Y | X] = XT3, Var(Y | X) = o2 and
X ~ Ny(0,Xx). For j > p, let T; be a Chi-squared
random variable with j —p + 1 degree of freedom, i.e.,
T ~ X§7p+1- Then, for any q > p+ 3 and some fized
constant Cyin, DShapley of a point (z*,y*) with the
least squares estimator is given by

v((=*,y");Ugo, Px,y,m)
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3_1( 21**2+TU)
E |=
Z j—p l‘*TZ;(:L‘*—i—Tj)

7 q

) (4)

where the expectation is with respect to the Chi-squared
distributions.

Theorem [2] presents a new representation of DShap-
ley when v = 0 and inputs are Gaussian. The new
form (| . depends only on the two terms, the error
e*? and the term x*TZ x*, also known as the Ma-
halanobis distance of x* from zero with respect to
Y x. Likewise Proposition [T} a direct implication is
that any points with the same error level have the
same DShapley when they have the same Mahalanobis
distance. In addition, a role of e*? is also explicitly
explained. DShapley for the point with the smaller
squared error is higher than the other point, i.e.,
V((:E*v yik)v Uq.,Oa PX,Yv m) < I/((.’t*, y;)a Uq,Ov PX,Y; m)
if e32 > e32. This inequality matches our intuitions that
the big error e*? is likely to produce small marginal con-
tributions A((z*,y*); Ug.~, S). We provide illustrations
on how DShapley changes with respect to x*TZ;(lx
and e*? in the Supplementary Material.

Efficient estimation of DShapley As for the esti-
mation of DShapley v((«*,y*); Uq0, Px,yv,m), we pro-
pose to use the Monte-Carlo approximation method.
We describe a simple version of the proposed algorithm
in Alg. [Tl A detailed version is provided in the Supple-
mentary Material.

A similar idea has been suggested in a number of al-
gorithms including TMC-SHAPLEY (Ghorbani and Zou,
2019) or D-SHAPLEY (Ghorbani et al.; [2020). Although
the previous state-of-the-art algorithms and the pro-
posed algorithm make use of the Monte-Carlo method,
there are notable differences. Since the previous al-
gorithms are based on Equation , they require the
utility evaluation U, ¢(S) for every random dataset S.
This computation is expensive because it includes the
matrix inversion (X% Xg)~!. However, the proposed
algorithm avoids such computational costs because the
new form has nothing to do with a random dataset
S. This characteristic is not obtained with Equation
and Proposition [} In terms of the computational com-
plexity, when the maximum number of Monte-Carlo
samples is T', the previous state-of-the-art algorithms
require O(mTp?) computations. In contrast, the pro-
posed Alg. [I]only needs to perform the matrix inversion
once for Z;(l, and the computational complexity for
the proposed algorithm is O(mT + p?), which is sub-
stantially smaller since 7" is usually large.

Algorithm 1 DShapley for the least squares estimator
when inputs are Gaussian.

Require: Estimates for :c*TE)_(lsc*, e*?, and o2. The
maximum number of Monte Carlo samples T. A
utility hyperparameter ¢ > p + 3.

procedure

for j € {q,...,m} do

Sample t[3), ..., 7] from the XGpi1-
.7 ZL’*TZ 2+t ; 0_2

A — TZz 1j5—p (I*TE *+t[¢[];2
DD —Aj/m

end for

ﬁ((x*vy*); qu PX,va) — v

end procedure

3.3 Distributional Shapley values when
inputs are sub-Gaussian

In this section, we develop closed-form bounds for
DShapley when inputs are sub-Gaussian. To be more
formal, we first define the sub-Gaussian.

Definition 1 (Sub-Gaussian). We say that a random
variable X in R is sub-Gaussian if there are positive
constants Cgsur, and vsy, such that for every t > 0,
P(IX| > t) < Cswpe "% holds. In addition, we
say that a random vector X in RP is sub-Gaussian if
the one-dimensional marginals (X, x) are sub-Gaussian
random variables for all x € RP.

Note that a class of sub-Gaussian includes many useful
random variables such as Gaussian and any bounded
random variables (Vershyninl 2010). Now we develop
bounds for DShapley in the following theorem.

Theorem 3 (Upper and lower bounds for DShap-
ley when inputs are sub-Gaussian). Assume that
E[Y | X] = XTB and Var(Y | X) = o%. Suppose
Y s bounded and X are sub-Gaussian in RP with
E(XXT) = Xx. Then, for ¢ > 2 and some fized
constant Cyin, DShapley of a point (x*,y*) with the
ridge regression estimator has the following bounds.

L
m .
J
X ((2+$*TZ;< x*Alower(j)) Aratlo( ) *2)
1
y*)’ Uq7,y7PX7y,m) +o <m>
m—1 Ty ICC*A2 (])

l Z upper
m
=q—

1+1'*TE T Alowcr( ))2
((2+$*Tz 2" Aupper (Jj ))‘7 _Arath(J)6*2)7

(1+ x*TEX o* Aupper(7))?

=q— 1

<v((z*
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where the function h is defined in Proposition |1 and

2
1 + x*TE;(lx*Alower(j)
L+ 2 TS o Aypper () ]

Aratio (]) = (

Mower(7) and Aypper(J) are two explicit constants that
scale O(1/j) and depend only on ~ and the sub-
Gaussian distribution. The explicit expression for
Aiower(J) and Aupper(j) are provided in the Supplemen-
tary Material.

Theorem [3| provides upper and lower bounds for DShap-
ley when inputs are sub-Gaussian. As Theorem [2] the
main component of the bounds consists of the Maha-
lanobis distance x*TE;(lx* and the squared error e*2.
Hence, data points with the same Mahalanobis distance
lead to having the same bounds if the error levels are
the same. Although the new bounds in Theorem [3] are
not the exact form of DShapley, they are analytically
expressed, and can be efficiently computed without

Monte Carlo sampling.

The two assumptions in Theorem Compared
to Proposition[} we additionally assume the boundness
of Y and the sub-Gaussian distribution on inputs in
Theorem [3] The former implies the boundness of the
marginal contribution A((z*,y*); Uy, S) for all S C
X x Y, and the latter ensures that eigenvalues of Ag’l
are in the closed interval [Ajower(J); Aupper(j)] with
high probability. Combining these two ingredients,
we obtain the bounds for DShapley as a function of
Alowcr (.7) and Auppcr (.])

3.4 Application to binary classification

We now study an efficient DShapley estimation method
for binary classification datasets. Our approach is to
transform binary classification data and apply Theorem
To be more precise, let (X,Y) be a pair of input
and output random variables and assume E(Y | X) =
7 = logit™(X”j). Here, logit(n) := n/(1 — 7) for
m € (0,1). We define the working dependent variable
Z and its corresponding weight w as

ZZU—F(Y—?T)@ade:ﬂ'(l—ﬂ'), (5)

on
respectively, where n = X7 3. Note that On/on =
w™!.  We propose to consider DShapley with re-

spect to the transformed random variables (X, 7) :=
(w'?X,w'/?Z) instead of (X,Y). In the following
corollary, we provide a lower bound of DShapley in
binary classification. An upper bound and detailed
notations are provided in the Supplementary Material.

Corollary 4 (DShapley in binary classification). As-
sume E[Y | X] = logit " (XTB) and X are sub-
Gaussian in RP with E(XXT) = Sx. For a point

(z*,y*), let 7 = logit™*(2*T3), w* = 7*(1 — 7*), and
2* =a*TB + (y* — %) /w*. Then, for any q > p+ 3
and some fized constant Cl,, DShapley of a point
((w*)lﬂx*, (w*)l/Qz*) has a lower bound given by

v <((w*)1/2x*, (w*)l/ZZ*) ;Uq,Ovp)N(’va)

-1

3

* *Tx—1 %2 -
w-r EX o Alowcr(-j)

1 (1+ W*x*Ti)_clx*Aupper(j))Q

Y

1
m .
J

x (24w a TS Rower () — Arkio0)e5?)

o(2)

where e;? == (w*)~1(y* — 7*)? and the function h is
defined in Proposition [1]

I
=]

Although a typical choice of the utility function in
classification is accuracy, using U, o with the transfor-
mation in Corollary [] provides sensible data values.
This is because our approach can be viewed as using
the iteratively re-weighted least squares (IRLS) algo-
rithm (Greenl |1984)), a classic algorithm for finding the
maximum likelihood estimator (MLE) in generalized
linear models. To be more specific, for a set of ran-
dom samples {(X;,Y;)}2 | from Pxy and their work-
ing dependent variables and its corresponding weights
{(Z;,w;)}£., based on (f]), the IRLS estimator is de-
fined as

BrrLs = (XTWX)'XTWz, (6)

where X is a matrix whose i-th row is X', W is a
diagonal matrix whose i-th element is w;, and similarly
7Z is a vector whose i-th element is Z;. Note that the
estimator @ is the least squares estimator with the
transformation in Corollary 4] Hence, the DShapley
captures the contribution to finding the MLE in binary
classification.

In practice, we do not know m nor W. To address
this issue, we first use the original IRLS algorithm; we
iteratively compute (5) and @ until BIRLS converges.
After convergence, we apply Corollary @] A simple
version of this process is described in Alg.[2} A detailed
version is provided in the Supplementary Material.

4 Distributional Shapley values for
non-parametric density estimation

In this section, we study DShapley for non-parametric
density estimation problems. We let Z be a random
variable defined on Z C R? as in Sec. [2[ and let p(2)
be the underlying probability density function. We
consider the kernel density estimator (KDE), a funda-
mental non-parametric density estimator in statistics
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Algorithm 2 DShapley for binary classification.
A set of

Require: A datum to be valued (z*,y*).
random samples {(X;,Y;)}2; from Py y.
procedure

while until a convergent condition is met do
m; + logit " (X7 BirLs)
Update w; and Z; based on Equation and
set W and Z
BirLs — (XTWX)1XTWZ
end while
T 1Ogit71(I*TBIRLs)
2* o Brus + (y* —7%) /(w
w* 7% (1 —7%)
Compute a lower bound of DShapley of
((w*)1/2x*’ (w*)l/zz*).

end procedure

"(1—7))

(Rosenblattl [1956; [Parzen, [1962)). For a kernel functiorﬂ
k: Z — R, the KDE based on a dataset S C Z is de-
noted by ps r(z) = ﬁ > ..es k(2 — z;). By convention,
we assume that a kernel is bounded and parameter-
ized by a bandwidth h > 0, i.e., ku(-) := h=%k(-/h)
for a kernel k. For notational convenience, we sup-
press the bandwidth notation and use k instead of
kp. For a constant Cqen > 0, and a density esti-
mator p, we define a utility function as U(S,p) =
(Caen — [ (p(2) — p(2))?dz)1(|S| > 1). When the KDE
is used, we set Uy (S) := U(S,Psx). As before, chang-
ing the constant Cgey simply shifts the value of all the
points by the same constant; therefore we just set Cyen
to simplify expressions of DShapley.

Before going to the analysis, we define DShapley of
a set, a natural extension of DShapley of a point, by
regarding a set as a point. More precisely, given a
utility function U, a data distribution Pz, and some
m € N, we define DShapley of a set as follows.

v(S*;U, Pz, m) := EjN[m]ESNP;_l [U(SUS*)=U(9).
Similar to DShapley for a point, DShapley for a set
describes the expected value of marginal contributions
of set S* over random datasets S. With this notion,
we present DShapley for the KDE in the following
: 1 m n?
theorem. To begin, let A(n,m) := =377, Gin-1?
m 2n(j—1

and B(n,m) := L diea ﬁ

Theorem 5 (DShapley for non-parametric density
estimation). Let S* C Z be a set to be valued such
that |S*| = n. Then, for some fized constant Cgen,

DShapley of S* with the KDE is given by
I/(S*;Uk,Pz,m)

!For a non-negative function k : Z — R, we say k is a
kernel if [ k(z)dz =1 and k(z) = k(—=z) for all z € Z.

—~A(n.m) / (6(2) — P-4 (2))*dz + Bln,m)g(S"),
fps*

The term ¢(S*) Suppose p(z) is twice continuously
differentiable, and for all ¢ € [d], a kernel satisfies
J 23 k(= dz<ooandf\z()| k(z)dz < oo, where z =
(2(1)»---» (@) € R%. Then, the bias (p(z) —E[k(z—2)])
of the KDE is O(h?) and thus g(S*) = O(h?) (Ghoshl
2018, Equation (1.131)). Many useful kernels such
as the Gaussian kernel or any continuous kernel with
bounded support satisfy the conditions.

where g(S*) p(z) — Elk(z — 2)])d=.

Theorem [5] shows the exact form of DShapley of a set
S*. As discussed above, under the mild conditions, the
second term is O(h?), so we focus on the first term.
The first term is the negative constant —A(n,m) times
to the integrated squared error (ISE) of ps- ;. That
means, DShapley for a set S* increases as ISE decreases,
and vice versa. Note that the ISE could be interpreted
as performance of S*.

As for the estimation of DShapley, we use the Monte-
Carlo approximation method based on Theorem
For m,B € N, sets of random samples {Z,...,2p}
and {Z},..., 25} from Pz and pg~ i, respectively, the
DShapley estimator 2(S*; Uy, Pz, m) is given by

A(S"].m) )S( ) 2p
(D= D+ k(%))
1=1

|S* m) Z Ds* k

i=1

—k(E -Z)). (D

We provide more details in the Supplementary Material.
In the following examples, we provide more insights on
DShapley with the uniform kernel. Proofs of Examples
[[] and 2] are available in the Supplementary Material.

Example 1 (A set with two elements). Suppose S* =
{1,235}, p(z) =1 for all z € [0,1] and k(z — z) =
FU(|252| < ). We set a bandwidth such that h <
2min{z7, 23, (1—27), (1—23)}. Then, we have a closed-
form expression for DShapley as follows.

V(S*;UaPZam)
A2,m) (1= 55) + Ceet if A > h,
A(Z,m) (1—ﬁ+m)+cbet ZfA<h,

where A = |27 — 23| and Cset is some explicit con-
stant independent of S*. DShapley for a set satisfying
A < h is less than the value of a set with A > h. In
other words, if the two data points are farther than h,
DShapley gets larger.

Example 2 (Synergy of two elements). We suppose
the same setting with FExample|l] and now investigate
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Figure 1: Computation time (in seconds) as a function
of number of data points to be valued in logarithmic
scale. We compare D-SHAPLEY (blue) with the pro-
posed algorithms (green) when the input dimension p
is 10 (dashed) or 30 (solid). Alg.[I]is used for regression
and Alg. [2] for classification.

the case where DShapley of S* is greater than the sum
of two DShapleys of the point, i.e.,

Z v(z;U, Pz,m). (8)

z€{z7,25}

v({z],25};U, Pz, m) >

We say there is a synergy of 27 and z5 when the in-
equality (8) holds. Although a similar analysis used in
Examplegz'ves v(z5;U, Pz,m) a closed-form expres-
ston, it is difficult to know when the inequality holds
analytically. With empirical experiments, we show that
synergy happens when A is bigger than some threshold,
i.e., when the two points are not too close.

5 Numerical experiments

We now demonstrate the practical efficacy of the DShap-
ley using real and synthetic datasets. As for the
proposed methods, we use Alg. [[] Alg. 2] and Equa-
tion for linear regression, binary classification, and
non-parametric density estimation problems, respec-
tively. To empirically show the general applicability
of the proposed methods, we include complex non-
linear models such as convolutional neural networks
(CNNs) on our image datasets. Following the com-
mon procedure in prior works, we treat the early layers
of an off-the-shelf pre-trained network as fixed fea-
ture extractors and apply Shapley to the last layer
(Ghorbani et al.| (2020)); Koh and Liang| (2017))). De-
tailed information about datasets and experiment set-
tings are provided in the Supplementary Material.
Our implementation codes are available at https!
//github.com/ykwon0407/fast_dist_shapleyl

Comparison of the computational time We
compare the computational time of D-SHAPLEY by
Ghorbani et al.| (2020) with the proposed methods
in several ML problems. As we mentioned in Sec. [3.2]

Table 1: Computation time (in seconds) of D-SHAPLEY
and the proposed algorithms in various ML problems
and datasets. The number of data to be valued is fixed
to 200 for all datasets.

ML problem

(Proposed method) Dataset

D-SHAPLEY Proposed

Gaussian-R 229.2 6.9

Linear regression abalone 226.3 5.2
(Alg. airfoil 280.7 4.6
whitewine 275.4 5.1

Gaussian-C 470.4 0.7

Binary classification  skin-nonskin 788.5 1.7
(Alg. CIFAR10 550.7 3.0
MNIST 536.7 5.3

diabetes 3307.8 0.6

Density estimation australian 5219.8 0.3
(Equation ) Fashion-MNIST 281.7 23.7
CIFAR10 338.6 28.4

the existing algorithm requires the utility evaluation,
and thus it is anticipated to have much heavier com-
putational costs than the proposed algorithm. All the
computation time results in this section are measured
with the single Intel®Xeon®E5-2640v4 CPU processor
and are an average based on 50 repetitions.

Figure [I] shows the computational time of state-of-the-
art D-SHAPLEY and the proposed methods in various
the number of data to be valued, denoted by m, and
the dimension of input data, denoted by p. We consider
linear regression and binary classification problems and
use the synthetic Gaussian datasets. For both ML prob-
lems, the proposed algorithm is several orders of mag-
nitude faster than D-SHAPLEY. In particular, in case of
classification, while D-SHAPLEY requires 7015.7 seconds,
Alg. [2| takes 2.6 seconds, which is 2750 times faster,
when (m,p) = (1000, 30). Our proposed algorithms
is scalable to compute the distribution Shapley values
of hundreds of thousands of data points in thousands
of dimensions. With (m,p) = (5 x 10°,10%), Alg.
(Alg. [2) takes around 5.3 hours (resp. 30 minutes) to
compute the DShapley values for all half million data
points for linear regression (resp. binary classification).
This can be further improved with parallel computing
and GPU processors. The computation time for the
binary classification problem is much smaller because
we use a computationally cheap analytic lower bound.
The sharpness of this lower bound is examined in the
point addition experiment below.

Lastly, Table [T] shows computational time in various
tasks and real and synthetic datasets. We here fix
the number of data to be valued as 200. This fur-
ther demonstrates the computational efficiency of the
proposed algorithms across all datasets.
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Figure 2: Relative utility and its standard error bar (in %) as a function of the number of data added in (top)
linear regression, (middle) binary classification, and (bottom) non-parametric density estimation settings. We
examine the state-of-the-art D-SHAPLEY (blue), random order (gray), and our proposed algorithms (green). The
solid and dashed curves correspond to adding points with the largest and smallest values first, respectively. The

results are based on 50 repetitions.

Point addition experiment We demonstrate the
empirical effectiveness of our DShapley approach by
running point addition experiments, proposed by
bani et al| (2020). Given a model and a dataset to be
valued, we recursively add points given order (e.g. from
largest to lowest values), retrain the model with the
remained dataset, and observe how the utility changes
on the held-out test dataset. We compare the three
methods: (i) the random order, (ii) the order based on
D-SHAPLEY, and (iii) the order based on the proposed
methods. For D-SHAPLEY and the proposed algorithms,
we consider the two different types of orders. One is
from largest to lowest, denoted by ‘Largest’, and the
other is from lowest to largest, denoted by ‘Lowest’. In
the case of the ‘Largest’ order, they are expected to
capture points that help improve performance and show
a steeper performance boost than the random order.
Similarly, in the case of the ‘Lowest’ order, DShapley
is expected to capture outliers first and cause perfor-

mance degradation. As before, we use Alg. [I], Alg.
and Equation @ for linear regression, binary classifica-
tion, and non-parametric density estimation problems,
respectively.

Figure [2| shows point addition experiments in linear re-
gression, binary classification, and non-parametric den-
sity estimation problems. As we anticipated, the pro-
posed methods and D-SHAPLEY show reasonable curves;
adding data with larger DShapley leads to a greater per-
formance increase than random addition. Also, adding
data with lower DShapley causes performance degrada-
tion. Moreover, the proposed methods perform similar
to or sometimes better than D-SHAPLEY. This phe-
nomenon is because D-SHAPLEY repeatedly evaluates
the utility function on a random set, and the utility
is unstable when the size of the set is small and it
affects instability of DShapley estimation. In contrast,
the proposed methods can avoid such instability and
provide reasonable values.
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6 Concluding remarks

In this work, we derive the first computationally
tractable expressions for DShapley for the linear regres-
sion, binary classification, and non-parametric density
estimation problems. The proposed forms provide new
mathematical insights, and lead to efficient algorithms
which we demonstrated on large datasets (e.g. 10° data
points in R1%%%) and models such as CNN. We validate
our results on several commonly used datasets.
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