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Abstract
We consider the problem of estimating a ranking
on a set of items from noisy pairwise compar-
isons given item features. We address the fact that
pairwise comparison data often reflects irrational
choice, e.g. intransitivity. Our key observation is
that two items compared in isolation from other
items may be compared based on only a salient
subset of features. Formalizing this framework,
we propose the salient feature preference model
and prove a finite sample complexity result for
learning the parameters of our model and the un-
derlying ranking with maximum likelihood esti-
mation. We also provide empirical results that
support our theoretical bounds and illustrate how
our model explains systematic intransitivity. Fi-
nally we demonstrate strong performance of max-
imum likelihood estimation of our model on both
synthetic data and two real data sets: the UT Zap-
pos50K data set and comparison data about the
compactness of legislative districts in the US.

1. Introduction
The problem of estimating a ranking is ubiquitous and has
applications in a wide variety of areas such as recommender
systems, review of scientific articles or proposals, search
results, sports tournaments, and understanding human per-
ception. Collecting full rankings of n items from human
users is infeasible if the number of items n is large. There-
fore, k-wise comparisons, k < n, are typically collected
and aggregated instead. Pairwise comparisons (k = 2)
are popular since it is believed that humans can easily and
quickly answer these types of comparisons. However, it
has been observed that data from k-wise comparisons for
small k often exhibit what looks like irrational choice, such
as systematic intransitivity among comparisons. Common
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models address this issue with modeling noise, ignoring its
systematic nature. We observe, as others have before us
(Seshadri et al., 2019; Rosenfeld et al., 2020; Pfannschmidt
et al., 2019; Kleinberg et al., 2017; Benson et al., 2016; Chen
and Joachims, 2016b;a), that these systematic irrational be-
haviors can likely be better modeled as rational behaviors
made in context, meaning that the particular k items used in
a k-wise comparison will affect the comparison outcome.

Consider the most common model for learning a single
ranking from pairwise comparisons, the Bradley-Terry-Luce
(BTL) model. In this model, there exists a judgment vector
w∗ ∈ Rd that indicates the favorability of each of the d
features of an item (e.g. for shoes: cost, width, material
quality, etc), and each item has an embedding Ui ∈ Rd,
i = 1, . . . , n, indicating the value of each feature for that
given item. Subsequently, the outcome of a comparison is
made with probability related to the inner product 〈Ui, w∗〉;
the larger this inner product, the more likely item i will
be ranked above other items to which it is compared. A
key implicit assumption is that the features used to rank all
n items are the same features used to rank just k items in
the absence of the other n − k items. However, we argue
that the context of that particular pairwise comparison is
also relevant; it is likely that when a pairwise comparison is
collected, if there are a small number of features that “stand
out,” a person will use only these features and ignore the rest
when he or she makes a comparison judgment. Otherwise,
if there are no salient features between a pair of items, a
person will take all features into consideration. This theory
has been hypothesized by the social science community to
explain violations of rational choice (Tversky, 1972; Tver-
sky and Simonson, 1993; Rieskamp et al., 2006; Brown and
Peterson, 2009; Shepard, 1964; Torgerson, 1965; Tversky,
1977; Bordalo et al., 2013). For example, (Kaufman et al.,
2017) collected preference data to understand human per-
ception of the compactness of legislative districts. They
hypothesized that the features respondents use in a pairwise
comparison task to judge district compactness vary from
pair to pair, which explains why their data are more reliable
for larger k. To illustrate this point, we highlight a con-
crete example from their experiments. Given two images
of districts, they asked respondents to pick which district
is more compact. When comparing district A with district
B or district C in Figure 1, one of the most salient features
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is the degree of nonconvexity. However, when comparing
district B and district C, the degree of nonconvexity is no
longer a salient feature. These districts look similar on many
dimensions, forcing a person to really think and consider all
the features before making a judgment. Let Pij be the em-
pirical probability that district i beats district j with respect
to compactness. Then, from the experiments of (Kaufman
et al., 2017), we have PAB = 100%, PBC = 67%, and
PAC = 70%. These three districts violate strong stochas-
tic transitivity, the requirement that if PAB ≥ 50% and
PBC ≥ 50%, then PAC ≥ max{PAB , PBC}.

District A District B District C

Figure 1. Three districts used in pairwise comparison tasks in
(Kaufman et al., 2017)

We propose a novel probabilistic model called the salient
feature preference model for pairwise comparisons such that
the features used to compare two items are dependent on
the context in which two items are being compared. The
salient feature preference model is a variation of the stan-
dard Bradley-Terry-Luce model. At a high level, given
a pair of items in Rd, we posit that humans perform the
pairwise comparison in a coordinate subspace of Rd. The
particular subspace depends on the salience of each fea-
ture of the pairs being compared. Crucially, if any human
were able to rank all the items at once, he or she would
compare the items in the ambient space without projection
onto a smaller subspace. This single ranking in the ambient
space is the ranking that we would like to estimate. Our
contributions are threefold. First, we precisely formulate
this model and derive the associated maximum likelihood
estimator (MLE) where the log-likelihood is convex. Our
model can result in intransitive preferences, despite the fact
that comparisons are based off a single universal ranking. In
addition, our model generalizes to unseen items and unseen
pairs. Second, we then prove a necessary and sufficient
identifiability condition for our model and finite sample
complexity bounds for the MLE. Our result specializes to
the sample complexity of the MLE for the BTL model with
features, which to the best of our knowledge has not been
provided in the literature. Third, we provide synthetic exper-
iments that support our theoretical results and also illustrate
scenarios where our salient feature preference model results
in systematic intransitives. We also demonstrate the efficacy
of our model and maximum likelihood estimation on real
preference data about legislative district compactness and
the UT Zappos50K data set.

1.1. Related Work

The Bradley-Terry-Luce Model One popular probabilis-
tic model for pairwise comparisons is the Bradley-Terry-
Luce (BTL) model (Bradley and Terry, 1952; Luce, 1959).
In this model, there are n items each with an unknown util-
ity ui for i ∈ [n], and the items are ranked by sorting the
utilities. The BTL model defines

P(item i beats item j) =
eui

eui + euj
. (1)

Although the BTL model makes strong parametric assump-
tions, it has been analyzed extensively by both the machine
learning and social science community and has been applied
in practice. For instance, the World Chess Federation has
used a variation of the BTL model in the past for ranking
chess players (Menke and Martinez, 2008). The sample
complexity of learning the utilities or the ranking of the
items with maximum likelihood estimation (MLE) has been
studied recently in (Rajkumar and Agarwal, 2014; Negah-
ban et al., 2016). Moreover, there is a recent line of work
that analyzes the sample complexity of learning the utilities
with MLE and other algorithms under several variations
of the BTL model, including when the items have features
that may or may not be known (Li et al., 2018; Oh et al.,
2015; Lu and Negahban, 2015; Park et al., 2015; Saha and
Rajkumar, 2018; Niranjan and Rajkumar, 2017). Our model
is also a variation of the BTL model where the utility of
each item is dependent on the items it is being compared to.

Violations of Rational Choice The social science com-
munity has long recognized and hypothesized about irra-
tional choice (Shepard, 1964; Torgerson, 1965; Tversky,
1977; 1972; Bordalo et al., 2013). See (Rieskamp et al.,
2006) for an excellent survey of this area including refer-
ences to social science experiments that demonstrate scenar-
ios where humans make choices that can violate a variety of
rational choice axioms such as transitivity. There has been
recent progress in modeling and providing evidence for vi-
olations of rational choice axioms in the machine learning
community (Seshadri et al., 2019; Rosenfeld et al., 2020;
Heckel et al., 2019; Pfannschmidt et al., 2019; Kleinberg
et al., 2017; Shah and Wainwright, 2017; Ragain and Ugan-
der, 2016; Niranjan and Rajkumar, 2017; Benson et al.,
2016; Chen and Joachims, 2016b;a; Rajkumar et al., 2015;
Yang and B. Wakin, 2015; Agresti, 2012). In contrast to our
work, none of these works model preference data that both
violates rational choice and admits a universal ranking of
the items with the exception of (Shah and Wainwright, 2017;
Heckel et al., 2019). Assuming there is a true ranking of the
items, our model makes a direct connection between pair-
wise comparison data that violates rational choice and the
underlying ranking. Violations of rational choice, including
intransitivty, occur in our model because of contextual ef-
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fects due to which pairs of items are being compared. These
contextual effects distort the true ranking, whereas in the
work of (Shah and Wainwright, 2017; Heckel et al., 2019)
the intransitive choices define the ranking. Specifically, the
items are ranked by sorting the items by the probability that
an item beats any other item.

We now focus on the works most similar to ours. The work
in (Seshadri et al., 2019), which generalizes (Chen and
Joachims, 2016b;a) from pairwise comparisons to k-wise
comparisons, considers a model for context dependent com-
parisons. However, because they do not assume access to
features, their model cannot predict choices based on new
items, which is a key task for very large modern data sets.
In contrast, our model can predict pairwise outcomes and
rankings of new items. Both (Rosenfeld et al., 2020) and
(Pfannschmidt et al., 2019) assume access to features of
items and propose learning contextual utilities with neural
networks. In contrast, we propose a linear approach with
typically far fewer parameters to estimate. Furthermore, the
latter work does not contain any theory, whereas we prove a
sample complexity result on estimating the parameters of
our model. In all of the aforementioned works in this para-
graph, the resulting optimization problems are non-convex
with the exception of a special case in (Seshadri et al., 2019)
that requires sampling every pairwise comparison. In con-
trast, the negative log likelihood of our model is convex.
Interestingly, the work in (Makhijani and Ugander, 2019)
shows that for a class of parametric models for pairwise
preference probabilities, if intransitives exist, then the nega-
tive log likelihood cannot be convex. Our model does not
belong to the class of parametric models they consider.

Notation For an integer d > 0, [d] := {1, . . . , d}. For
x, y ∈ Rd, 〈x, y〉 :=

∑d
i=1 xiyi. For x ∈ Rd and Ω ⊂ [d],

let xΩ ∈ Rd where (xΩ)i = xi if i ∈ Ω and 0 otherwise.
For i, j ∈ [n], “i >B j” means “item i beats item j.” Let
P(X) be the power set of a set X . Given a set of vectors
S = {xi ∈ Rd}qi=1, span(S) = {

∑q
i=1 αixi : αi ∈ R}.

2. Model and Algorithm
Salient Feature Preference Model Suppose there are n
items, and each item j ∈ [n] has a known feature vector
Uj ∈ Rd. Let U :=

[
U1U2 · · ·Un

]
∈ Rd×n. Let w∗ ∈

Rd be the unknown judgment weights, which signify the
importance of each feature when comparing items. Let
τ : [n] × [n] → P([d]) be the known selection function
that determines which features are used in each pairwise
comparison. Let P := {(i, j) ∈ [n] × [n] : i < j} be
the set of all pairs of items. Let Sm = {(i`, j`, y`)}m`=1

be a set of m independent pairwise comparison samples
where (i`, j`) ∈ P are chosen uniformly at random from
P with replacement, and y` ∈ {0, 1} indicates the outcome

of the pairwise comparison where 1 indicates item i` beat
item j` and 0 indicates item j` beat item i`. We model
y` ∼ Bern(P(i` >B j`)) where

P(i` >B j`) =
exp

(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w∗〉

)
1 + exp

(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w∗〉

) .
(2)

To understand the probability model given by Equation (2),
note that 〈U τ(i,j)

i , w∗〉 is the inner product of Ui and w∗

after Ui is projected to the coordinate subspace given by
τ(i, j). Therefore, Equation (2) is simply the utility model
of Equation (1) where the utilities are inner products com-
puted in the subspace defined by the selection function
τ . If the selection function returns all the coordinates, i.e.
τ(i, j) = [d], then Equation (2) becomes the standard BTL
model where the utility of item i is 〈Ui, w∗〉 and fixed re-
gardless of context, i.e., regardless of which pair is being
compared. This model is typically called “BTL with fea-
tures,” and we will refer to it as FBTL. See Section 6 in
the Supplement for a natural extension of Equation (2) to k-
wise comparisons for k > 2. Furthermore, we assume that
the true ranking of all the items depends on all the features
and is given by sorting the items by 〈Ui, w∗〉 for i ∈ [n].

Selection Function We propose a selection function τ
inspired by the social science literature, which posits that
violations of rational choice axioms arise in certain scenarios
because people make comparison judgments on a set of
items based on the features that differentiate them the most
(Rieskamp et al., 2006; Brown and Peterson, 2009; Bordalo
et al., 2013).

For two variables w, z ∈ R, let µ := (w + z)/2 be their
mean and s̄ := ((w − µ)2 + (z − µ)2)/2 be their sample
variance. Given t ∈ [d] and items i, j ∈ [n], the top-t
selection function selects the t coordinates with the t largest
sample variances in the entries of the feature vectors Ui, Uj .

Algorithm: Maximum Likelihood Estimation Given
observations Sm = {(i`, j`, y`)}m`=1, item features U ∈
Rd×n, and a selection function τ , the negative log-
likelihood of w ∈ Rd is

Lm(w;U, Sm, τ) =
m∑
`=1

log (1 + exp (ui`,j`))− y`ui`,j` ,

(3)

where ui`,j` =
〈
w,U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉
.

Equation 3 is equivalent to logistic regression with features
x` = U

τ(i`,j`)
i`

−Uτ(i`,j`)
j`

. See Section 7 of the Supplement
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for the derivation. We estimate w∗ with the maximum like-
lihood estimator ŵ, which requires minimizing a convex
function: ŵ := argminwLm(w;U, Sm, τ).

3. Theory
In this section, we analyze the sample complexity of esti-
mating the judgment weights with the MLE given by min-
imizing Lm of Equation (3). We first consider the sample
complexity under an arbitrary selection function, and then
specialize to two concrete selection functions: one that se-
lects all features per pair and another that selects just one
feature per pair. Throughout this section, we assume the
set-up and notation presented in the beginning of Section 2.

First, the following proposition completely characterizes the
identifiability of w∗. Identifiability means that with infinite
samples, it is possible to learn w∗. Precisely, the salient
feature preference model is identifiable if for all (i, j) ∈ P
and for w1, w2 ∈ Rd, if P(i >B j;w1) = P(i >B j;w2),
then w1 = w2 where P(i >B j;w) refers to Equation (2)
where w is the judgement vector. The proof is in Section 8
of the Supplement.
Proposition 1 (Identifiability). Given item features U ∈
Rn×d, the salient feature preference model with selection
function τ is identifiable if and only if span{Uτ(i,j)

i −
U
τ(i,j)
j : (i, j) ∈ P} = Rd.

Now we present our main theorem on the sample complexity
of estimating w∗. Let

b∗ := max
(i,j)∈P

|〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉|,

which is the maximum absolute difference between two
items’ utilities when comparing them in context, i.e. based
on the features given by the selection function τ . Let

W(b∗) := {w ∈ Rd : max
(i,j)∈P

|〈w,U τ(i,j)
i −U τ(i,j)

j 〉| ≤ b∗}.

We constrain the MLE toW(b∗) so that we can bound the
entries of the Hessian of Lm in our theoretical analysis. We
do not enforce this constraint in our synthetic experiments.
Theorem 1 (Sample complexity of learning w∗). Let U ∈
Rd×n, w∗ ∈ Rd, τ , and Sm be defined as in the beginning
of Section 2. Let ŵ be the maximum likelihood estimator,
i.e. the minimum of Lm in Equation (3), restricted to the set
W(b∗). The following expectations are taken with respect
to a uniformly chosen random pair of items from P . For
(i, j) ∈ P , let

Z(i,j) := (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T

λ := λmin(EZ(i,j)),

η := σmax(E((Z(i,j) − EZ(i,j))
2)),

ζ := max
(k,`)∈P

λmax(EZ(i,j) − Z(k,`)),

where for a positive semidefinite matrix X , λmin(X) and
λmax(X) are the smallest/largest eigenvalues of X , and
where for any matrix X , σmax(X) is the largest singular
value of X . Let

β := max
(i,j)∈P

‖Uτ(i,j)
i − Uτ(i,j)

j ‖∞. (4)

Let δ > 0. If λ > 0 and

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ) ,

C2(η + λζ)
log(2d/δ)

λ2

}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 = O

exp(b∗)

λ

√
(β2d+ β

√
d) log(4d/δ)

m


where C1, C2 are constants given in the proof and the ran-
domness is from the randomly chosen pairs and the out-
comes of the pairwise comparisons.

We utilize the proof technique of Theorem 4 in (Negahban
et al., 2016), which proves a similar result for the standard
BTL model of Equation (1), i.e. when U = In×n, the n×n
identity matrix, d = n, and τ(i, j) = [d] for all (i, j) ∈ P .
We modify the proofs for arbitrary U and d. See Section 10
in the Supplement for the proof.

We now discuss the terms that appear in Theorem 1. First,
the d log(d/δ) terms are natural since we are estimating
d parameters. Second, estimating w∗ well essentially re-
quires inverting the logistic function. When b∗ is large, we
need to invert the logistic function for pairwise probabilities
that are close to 0 and 1. This is precisely the challenging
regime, since a small change in probabilities results in a
large change in the estimate of w∗, and thus we expect to
require many samples to estimate w∗ when b∗ is large. The
exponential dependence on b∗ is standard for this type of
analysis and arises from the Hessian of Lm. Third, η and
ζ arise from a matrix concentration bound applied to the
Hessian of Lm. Fourth, λ arises from the minimum eigen-
value of the Hessian of Lm in a neighborhood of w∗, which
controls the convexity of Lm. This type of dependence also
appears in other state of the art finite sample complexity
analyses (Negahban et al., 2012). In addition, to better un-
derstand the role of λ, we present the following proposition
whose proof is in Section 9 in the Supplement. Proposition
2 shows that the requirement λ > 0 in Theorem 1 is fun-
damental, because we would otherwise be unable to bound
the estimation error for the non-identifiable part of w∗, i.e.,
the projection of w∗ onto the orthogonal complement of
span{Uτ(i,j)

i − Uτ(i,j)
j : (i, j) ∈ P} = Rd.
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Proposition 2. λ > 0 if and only if the salient feature
preference model is identifiable.

Finally, if one assumes λ, η, ζ, β, exp(b∗) are O(1), then
Ω(d log(d/δ)) samples are enough to guarantee the error is
O(1). However, as we will show in the corollaries, these
parameters are not always O(1), increasing the complexity.
We point out that the combination of the features U and
the selection function τ is what dictates the parameters of
Theorem 1. For the top-t selection function in particular,
we plot λ, ζ, η, b∗, β, the number of samples required by
Theorem 1, and the bound on the estimation error as a
function of intransitivity rates in the Supplement in Section
13.1, to provide further insight into these parameters. Since
we envision practical selection functions will be dependent
on the features themselves, further analysis is a challenging
but exciting subject of future work.

For deterministic U , we now specialize our results to FBTL
as well as to the case where a single feature is used in each
comparison. The following corollaries provide insight into
how a particular selection function τ impacts λ, η, and ζ
and thus the sample complexity.

First, we consider FBTL. In this case, the selection function
selects all the features in each pairwise comparison, so there
cannot be intransitivities in the preference data. The follow-
ing Corollary of Theorem 1 gives a simplified form for λ
and upper bounds ζ and η. The terms involving the condi-
tioning of UUT are natural; since we make no assumption
on w∗, if the feature vectors are concentrated in a lower di-
mensional subspace, estimation of w∗ will be more difficult.
See Section 11 of the Supplement for the proof.

Corollary 1.1 (Sample complexity for FBTL). For the se-
lection function τ , suppose |τ(i, j)| = d for any (i, j) ∈ P .
In other words, all the features are used in each pairwise
comparison. Let ν := max{max(i,j)∈P ‖Ui−Uj‖22, 1}. As-
sume n > d. Without loss of generality, assume the columns
of U sum to zero:

∑n
i=1 Ui = 0. Let δ > 0. Then,

λ =
nλmin(UUT )(

n
2

) ,

ζ ≤ ν +
nλmax(UUT )(

n
2

) , and

η ≤ νnλmax(UUT )(
n
2

) +
n2λmax(UUT )2(

n
2

)2 .

Hence, if

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ),

C3 log(2d/δ)νnλ̄
}

where

λ̄ =

(
λmax(UUT ) + λmax(UUT )2 + λmin(UUT )

λmin(UUT )2

)

then with probability at least 1− δ,

‖w∗−ŵ‖2 = O

 exp(b∗)n

λmin(UUT )

√
(β2d+ β

√
d) log( 4d

δ )

m


where C1 and C3 are constants given in the proof.

To the best of our knowledge, this is the first analysis of the
sample complexity for the MLE of FBTL parameters. There
are related results in (Saha and Rajkumar, 2018; Negahban
et al., 2012; Heckel et al., 2019; Shah and Wainwright, 2017)
to which our bound compares favorably, and we discuss this
in Section 11.2 of the Supplement.

Second, suppose the selection function is very aggres-
sive and selects only one coordinate for each pair, i.e.
|τ(i, j)| = 1 for all (i, j) ∈ P . For instance, the top-1
selection function has this property. This type of selection
function can cause intransitivities in the preference data as
we show in the synthetic experiments of Section 4.1.

Corollary 1.2. Assume that for any (i, j) ∈ P , |τ(i, j)| =
1. Partition P = tdk=1Pk into d sets where (i, j) ∈ Pk if
τ(i, j) = {k} for k ∈ [d]. Let β be defined as in Theorem 1
and

ε := min
(i,j)∈P

‖Uτ(i,j)
i − Uτ(i,j)

j ‖∞.

Let δ > 0. Then

λ ≥ ε2(
n
2

) min
k∈[d]

|Pk|,

ζ ≤ β2 +
β2(
n
2

) max
k∈[d]

|Pk|, and

η ≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) .
Hence, if

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ), C4(Q1 +Q2)

}
,

where

Q1 =

(
β4

ε4

) (n
2

)
maxk∈[d] |Pk|+ maxk∈[d] |Pk|2

mink∈[d] |Pk|2
,

Q2 =

(
β2

ε2

) (n
2

)
+ maxk∈[d] |Pk|
mink∈[d] |Pk|

,
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then with probability at least 1− δ,

‖w∗− ŵ‖2 = O

exp(b∗)
(
n
2

)
ε2 min
k∈[d]
|Pk|

√
(β2d+ β

√
d) log( 4d

δ )

m



where C1 and C4 are constants given in the proof.

There are two main implications of Corollary 1.2 if we con-
sider β and ε constant. First, suppose there is a coordinate
k ∈ [d] such that |Pk| := |{(i, j) ∈ P : τ(i, j) = k}| is
small. Intuitively it will take many samples to estimate
w∗ well, since the chance of sampling a pairwise com-
parison that uses the k-th coordinate of w∗ is |Pk|/

(
n
2

)
.

Corollary 1.2 formalizes this intuition. In particular, λ =
O(|Pk|/

(
n
2

)
), and since λ comes into the bounds of The-

orem 1 in the denominator of both the lower bound on
samples and the upper bound on error, a small λ makes
estimation more difficult.

Second, on the other hand, if ε is fixed, the maximum lower
bound on λ given by Corollary 1.2 is max mini∈[d] |Pi| =(
n
2

)
/d where the maximum is with respect to any partition

of P . In this case, |Pi| ≈ |Pj | for all i, j ∈ [d], so the
chance of sampling a pairwise comparison that uses any
coordinate is approximately equal. Therefore, λ, η, ζ =
O(1/d), and by tightening a bound used in the proof of
Theorem 1, Ω(d2 log(d/δ)) samples ensures the estimation
error is O(1). See Section 11.4 in the Supplement for an
explanation.

Ultimately, we seek to estimate the underlying ranking of
the items. The following corollary of Theorem 1 says that
by controlling the estimation error of w∗, the underlying
ranking can be estimated approximately. The sample com-
plexity depends inversely on the square of the differences of
full feature item utilities. Intuitively, if the absolute differ-
ence between the utilities of two items is small, then many
samples are required in order to rank these items correctly
relative to each other. See Section 12 in the Supplement for
the proof.

Corollary 1.3 (Sample complexity of estimating the rank-
ing). Assume the set-up of Theorem 1. Pick k ∈ [

(
n
2

)
].

Let αk be the k-th smallest number in {|〈w∗, Ui − Uj〉| :
(i, j) ∈ P}. Let M := maxi∈[n] ‖Ui‖2. Let γ∗ : [n]→ [n]
be the ranking obtained from w∗ by sorting the items by
their full-feature utilities 〈w∗, Ui〉 where γ∗(i) is the posi-
tion of item i in the ranking. Define γ̂ similarly but for the
estimated ranking obtained from the MLE estimate ŵ. Let

δ > 0. If

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ),

C2(η + λζ)
log(2d/δ)

λ2
,

C5M
2e2b∗(β2d+ β

√
d) log(4d/δ)

α2
kλ

2

}
,

then with probability 1− δ,

K(γ∗, γ̂) ≤ k − 1,

where K(γ∗, γ̂) = |{(i, j) ∈ P : (γ∗(i) − γ∗(j))(γ̂(i) −
γ̂(j)) < 0}| is the Kendall tau distance between two rank-
ings and C1, C2, and C5 are constants given in the proof.

4. Experiments
See Sections 14.1, 14.2, and 14.8 of the Supplement for
additional details about the algorithm implementation, data,
preprocessing, hyperparameter selection, and training and
validation error for both synthetic and real data experiments.

4.1. Synthetic Data

We investigate violations of rational choice arising from
the salient feature preference model and illustrate Theo-
rem 1 while highlighting the differences between the salient
feature preference model and the FBTL model throughout.
Given the very reasonable simulation setup we use, these ex-
periments suggest that the salient feature preference model
may sometimes be better suited to real data than FBTL.

For these experiments, the ambient dimension d = 10, the
number of items n = 100, and comparisons are sampled
from the salient feature preference model with top-t selec-
tion function. The coordinates of U , respectively w∗, are
drawn from N (0, 1/

√
d), respectively N (0, 4/

√
d), so that

P(i >B j) is bounded away from 0 and 1 for i, j ∈ [n].
This set-up ensures b∗ does not become too large.

First, the salient feature preference model can produce pref-
erences that systematically violate rational choice. In con-
trast, the FBTL model cannot. Let Pij = P(i >B j)
and T = {(i, j, k) ∈ [n]3 : Pij > .5, Pjk > .5}.
Then (i, j, k) ∈ T satisfies strong stochastic transitivity
if Pik ≥ max{Pij , Pjk}, moderate stochastic transitivity
if Pik ≥ min{Pij , Pjk}, and weak stochastic transitivity if
Pik ≥ .5 (Cattelan, 2012). We sample U and w∗ 10 times
as described in the beginning of the section and allow t to
vary in [d]. Figure 2 shows the average ratio of the number
of weak, moderate, and strong stochastic transitivity vio-
lations to |T | as a function of t ∈ [d]. There is very little
deviation from the average. The standard error bars over the
10 experiments were plotted but they are so small that the
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Figure 2. The salient feature preference model with the top-t se-
lection function produces systematic intransitives and pairwise
comparisons that are inconsistent with the underlying ranking.
When t = 10, the salient feature preference model with the top-
t selection function is the FBTL model, and hence there are no
intransitives or pairwise inconsistencies.

markers covered them. All
(
n
2

)
probabilities given by Equa-

tion (2) are used to calculate the intransitivity rates. In the
same figure we also show the percentage of pairwise com-
parisons that are inconsistent with the true ranking under the
same experimental set-up. These are the pairs i, j such that
〈Ui − Uj , w∗〉 < 0, meaning item i is ranked lower than
item j in the true ranking, but 〈U τt(i,j)i − Uτt(i,j)j , w∗〉 > 0
meaning item i beats item j by at least 50% when com-
pared in isolation from the other items. Notice that when
t = 10, the salient feature preference model is the FBTL
model, so there are no pairwise inconsistencies or intransi-
tives. Although this example is synthetic, real data exhibits
intransitivity and even inconsistent pairs with the underlying
ranking as discussed in the real data experiments in Section
4.2.

Second, we illustrate Theorem 1 with the top-1 selection
function, and where U and w are sampled once as described
in the beginning of this section. We sample m pairwise
comparisons for m ∈ {(100)2i−1 : i ∈ [10]}, fit the MLEs
of both the salient preference model with the top-1 selection
function and FBTL, and repeat 10 times. Figure 3 shows
the average estimation error of w∗ on a logarithmic scale as
a function of the number of pairwise comparison samples
also on a logarithmic scale. Figure 3 also shows the exact
theoretical upper bound where δ = 1

d = 1
10 of Theorem 1

without constants C1 and C2 as stated in Section 10 of the
Supplement. Again, there is very little deviation from the
average. The standard error bars over the 10 experiments
were plotted but they are so small that the markers covered
them. There is a gap between the observed error and the
theoretical bound, though the error decreases at the same
rate. The error of the MLE of FBTL does not improve with
more samples, since the pairwise comparisons are generated

8 10 12 14 16
number of pairwise comparisons 

 on log2 scale

1

0

1

2

3

lo
g 1

0
w

*
w
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Estimation error on log-log scale

theoretical bound
salient feature MLE
FBTL MLE

Figure 3. Illustration of Theorem 1 with the exact theoretical up-
per bound for the salient feature preference model with the top-1
selection function. Although there is a gap between the bound
and the observed estimation error, they decrease at the same rate
eventually. Excluding the first two points, the salient feature MLE
errors slope on the log-log scale is -0.154, whereas the theoretical
bounds slope is -0.151.

according to the salient feature preference model with the
top-1 selection function. See Section 13.2 in the Supplement
for investigating model misspecification, i.e. fitting the
MLE of the top-t selection function for t 6= 1 with the same
experimental set-up.

By estimating w∗ well, we can estimate the underlying rank-
ing well by Corollary 1.3. Under the same experimental
set up, Figure 4 shows the Kendall tau correlation (defini-
tion given in Supplement 13.2) between the true ranking
(obtained by ranking the items according to 〈Ui, w∗〉) and
the estimated ranking (according to 〈Ui, ŵ〉) but on a new
set of 100 items drawn from the same distribution. The
maximum Kendall tau correlation between two rankings is 1
and occurs when both rankings are equal. Also, estimating
w∗ well allows us to predict the outcome of unseen pairwise
comparisons well, as shown in the Supplement in Section
13.2.

4.2. Real Data

For the following experiments, we use the top-t selection
function for the salient feature preference model, where t
is treated as a hyperparameter and tuned on a validation set.
We compare to FBTL, RankNet (Burges et al., 2005) with
one hidden layer, and Ranking SVM (Joachims, 2002). We
append an `2 penalty toLm for the salient feature preference
model and the FBTL model, that is, for regularization param-
eter µ, we solve minw∈Rd Lm(w) + µ‖w‖22. For RankNet,
we add to the objective function an `2 penalty on the weights.
As explained in more detail in subsections 14.6 and 14.11 in
the Supplement, the hyperparameters for the salient feature
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Figure 4. Kendall tau correlation between the true ranking and
the estimated ranking where pairwise comparisons are sampled
from the salient feature preference model with the top-1 selection
function. Estimating w∗ well implies being able to estimate the
underlying ranking well as stated in Corollary 1.3.

preference model are t for the top-t selection function and
µ, the hyperparameter for FBTL is µ, the hyperparameter
for Ranking SVM is the coefficient corresponding to the
norm of the learned hyperplane, and the hyperparameters for
RankNet are the number of nodes in the single hidden layer
and the coefficient for the `2 regularization of the weights.

District Compactness (Kaufman et al., 2017) collected
preference data to understand human perception of com-
pactness of legislative districts in the United States. Their
data include both pairwise comparisons and k-wise ranking
data for k > 2 as well as 27 continuous features for each
district, including geometric features and compactness met-
rics. Although difficult to define precisely, the United States
law suggests compactness is universally understood (Kauf-
man et al., 2017). In fact, the authors provide evidence that
most people agree on a universal ranking, but they found
the pairwise comparison data was extremely noisy. They
hypothesize that pairwise comparisons may not directly cap-
ture the full ranking, since all features may not be used
when comparing two districts in isolation from the other
districts. Hence, this problem is applicable to our salient
feature preference model and its motivation.

The goal as set forth by (Kaufman et al., 2017) is to learn a
ranking of districts. We train on 5,150 pairwise comparisons
collected from 94 unique pairs of districts to learn ŵ, an
estimate of the judgment vector w∗, then estimate a ranking
by sorting the districts by 〈ŵ, Ui〉. The k-wise ranking data
sets are used for validation and testing. Since there is no
ground truth for the universal ranking, we measure how
close the estimated ranking is to each individual ranking.
In this scenario, we care about the accuracy of the full
ranking, and so we consider Kendall tau correlation. Given
a k-wise comparison data set, Table 1 shows the average

Kendall tau correlation between the estimated ranking and
each individual ranking where the number in parenthesis is
the standard deviation. The standard deviation on shiny1
and shiny2 is relatively high because the Kendall tau
correlation between pairs of rankings in these data sets has
high variability, shown in Figure 10 in the Supplement.

The MLE of the salient feature preference model under the
top-t selection function outperforms both the MLE of FBTL
and Ranking SVM by a significant amount on 6 out 7 test
sets, suggesting that pairwise comparison decisions may be
better modeled by incorporating context. The MLE of the
salient feature preference model, which is linear, is compet-
itive with RankNet, which models pairwise comparisons as
in Equation (1) except where the utility of each item uses a
function f defined by a neural network, i.e. ui = f(Ui).

The salient feature preference model may be outperforming
FBTL and Ranking SVM since this data exhibits significant
violations of rational choice. First, on the training set of pair-
wise comparisons, there are 48 triplets of districts (i, j, k)
where both (1) all three distinct pairwise comparisons were
collected and (2) Pij > .5 and Pjk > .5. Seventeen violate
strong transitivity, 3 violate moderate transitivity, but none
violate weak transitivity. Second, given a set of k-wise rank-
ing data, let P̂ij be the proportion of rankings in which item
i is ranked higher than item j. There are 20 pairs of districts
that appear in both the k-wise ranking data and the pairwise
comparison training data. Four of these pairs of items i, j
have the property that (.5 − Pij)(.5 − P̂ij) < 0, meaning
item i is typically ranked higher than item j in the ranking
data, but j typically beats i in the pairwise comparisons.

UT Zappos50k The UT Zappos50K data set con-
sists of pairwise comparisons on images of shoes and 960
extracted vision features for each shoe (Yu and Grauman,
2014; 2017). Given images of two shoes and an attribute
from {“open,” “pointy,” “sporty,” “comfort”}, respondents
picked which shoe exhibited the attribute more. The data
consists of easier, coarse questions, i.e. based on comfort,
pick between a slipper or high-heel, and harder, fine grained
questions i.e. based on comfort, pick between two slippers.

We now consider predicting pairwise comparisons instead of
estimating a ranking since there is no ranking data available.
We train four models, one for each attribute. See Table
2 for the average pairwise comparison accuracy over ten
train (70%), validation (15%), and test splits (15%) of the
data. The pairwise comparison accuracy is defined as the
percentage of items (i, j) where i beats j a majority of the
time and the model estimates the probability that i beats j
exceeds 50%.

In this case, the MLE of the FBTL model and the salient
feature preference model under the top t selection function
perform similarly. Nevertheless, while the FBTL model
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Table 1. Average Kendall tau correlation over individual rankings on test sets for district compactness. The number in parenthesis is the
standard deviation.

Model: Shiny1 Shiny2 UG1-j1 UG1-j2 UG1-j3 UG1-j4 UG1-j5

Salient features 0.14 (.26) 0.26 (.2) 0.48 (.21) 0.41 (.09) 0.6 (.1) 0.14 (.14) 0.42 (.09)
FBTL 0.09 (.22) 0.18 (.17) 0.2 (.12) 0.26 (.07) 0.45 (.15) 0.2 (.13) 0.06 (.14)
Ranking SVM 0.09 (.22) 0.18 (.17) 0.22 (.12) 0.26 (.07) 0.45 (.15) 0.2 (.13) 0.06 (.14)
RankNet 0.12 (.24) 0.24 (.18) 0.28 (.14) 0.37 (.08) 0.53 (.11) 0.28 (.08) 0.15 (.15)

Table 2. Average pairwise prediction accuracy over 10 train/validation/test splits on the test sets by attribute for UT Zappos50k. C
stands for coarse and F stands for fine grained. The number in parenthesis is the standard deviation.

Model: open-C pointy-C sporty-C comfort-C open-F pointy-F sporty-F comfort-F

Salient features 0.73 (.02) 0.78 (.02) 0.78 (.03) 0.77 (.03) 0.6 (.04) 0.59 (.04) 0.59 (.03) 0.56 (.03)
FBTL 0.73 (.02) 0.77 (.03) 0.8 (.03) 0.78 (.03) 0.6 (.03) 0.6 (.03) 0.59 (.03) 0.58 (.05)
Ranking SVM 0.74 (.02) 0.78 (.03) 0.79 (.03) 0.78 (.03) 0.6 (.03) 0.6 (.04) 0.6 (.04) 0.58 (.03)
RankNet 0.73 (.01) 0.79 (.01) 0.78 (.03) 0.8 (.02) 0.61 (.02) 0.59 (.02) 0.59 (.04) 0.59 (.05)

utilizes all 990 features, the best t’s on each validation set
and split of the data do not use all features, so our model is
different from yet competitive to FBTL. See Table 3 in the
Supplement. This suggests that the salient feature prefer-
ence model under the top-t selection function for relatively
small t is still a reasonable model for real data.

5. Conclusion
We focused on the problem of learning a ranking from pair-
wise comparison data with irrational choice behaviors, and
we formulated the salient feature preference model where
one uses projections onto salient coordinates in order to
perform comparisons. We proved sample complexity results
for MLE on this model and demonstrated the efficacy of our
model on both synthetic and real data. Going forward, we
would like to develop techniques to learn both the selection
function τ and feature embeddings simultaneously. Finally,
it will be useful to consider how to incorporate context into
models more sophisticated than BTL, and also consider con-
textual effects in other tasks that use human judgements
such as ordinal embedding (Terada and Luxburg, 2014).
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Supplement

6. Extension of the salient feature preference model to k-wise comparisons
We describe how to extend the salient feature preference model of Equation (2) from pairwise comparisons to k-wise
comparisons when k > 2. We base our generalization on the Placket-Luce model (Plackett, 1975; Luce, 1959), which is a
generalization of the BTL model from pairwise comparisons to k-wise comparisons.

Let the domain of the selection function τ be [n]k instead of [n]× [n], i.e. τ : [n]k → P([d]). Then for T` = (t1, . . . , tk)
where ti ∈ [n] are items, the probability of picking the ranking t1 >B · · · >B tk is

P(t1 >B · · · >B tk) =
k∏
`=1

exp
(
〈U τ(T`)

t`
, w∗〉

)
∑
j∈[k]\[`−1] exp

(
〈U τ(T`)

tj , w∗〉
) , (5)

where “t1 >B · · · >B tk” means item t1 is preferred to item t2 and so on and so forth.

We explain Equation (5): Given items T` = (t1, . . . , tk), first project each item’s features Uti onto the coordinate subspace
spanned by the coordinates given by τ(T`). Then the utility of item ti in the presence of the other items in T is given by the
inner product of its projected features with w∗: 〈(Uti)τ(T`), w∗〉. The higher the utility an item has, the more likely the item
will be ranked higher among the items in T`. Now imagine a bag of balls where each ball corresponds to one of the items in
T`. We select balls from this bag without replacement where the probability of picking a ball is the ratio of its utility to the
sum of the utilities of all the remaining balls. The order in which we select balls results in a ranking of the k items. This
process is what Equation (5) represents.

In the pairwise comparison case (k = 2) for two items T` = (i, j), Equation (5) reduces to Equation (2), which is the salient
preference model. We can also extend the top-t selection function naturally to accommodate k-wise comparisons.

7. Negative log-likelihood derivation
Lemma 2. Under the set-up of Section 2, the negative log-likelihood of w ∈ Rd is

Lm(w;U, Sm, τ) =
m∑
`=1

log
(

1 + exp
(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
))
− y`〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉. (6)

Proof. Let Pw(Sm) be the joint distribution of the m samples Sm with respect to the judgement vector w. Then

Lm(w;U, Sm, τ) (7)
= − logPw(Sm) (8)

= − log

(
m∏
`=1

(P(y` = 1)y`P(y` = 0)1−y`)

)
by independence and since y` ∈ {0, 1} (9)

= −
m∑
i=1

y` log(P(y` = 1)) + (1− y`) log(1− P(y` = 1)) (10)

= −
m∑
i=1

y` log

 exp
(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)

1 + exp
(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)
 (11)

+ (1− y`) log

 1

1 + exp
(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)


=
m∑
i=1

log
(

1 + exp
(
〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
))
− y`〈U τ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉 (12)
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8. Proof of Proposition 1
Proposition 3 (Restatement of Proposition 1). Given item features U ∈ Rd×n, the salient feature preference model with
selection function τ is identifiable if and only if span{Uτ(i,j)

i − Uτ(i,j)
j : (i, j) ∈ P} = Rd.

Proof. Let w ∈ Rd. Then for any (i, j) ∈ P ,

P(i >B j;w) = P(i >B j;w∗) (13)

⇐⇒
exp

(
〈U τ(i,j)

i − Uτ(i,j)
j , w〉

)
1 + exp

(
〈U τ(i,j)

i − Uτ(i,j)
j , w〉

) =
exp

(
〈U τ(i,j)

i − Uτ(i,j)
j , w∗〉

)
1 + exp

(
〈U τ(i,j)

i − Uτ(i,j)
j , w∗〉

) (14)

⇐⇒ exp
(
〈U τ(i,j)

i − Uτ(i,j)
j , w〉

)
= exp

(
〈U τ(i,j)

i − Uτ(i,j)
j , w∗〉

)
(15)

⇐⇒ 〈U τ(i,j)
i − Uτ(i,j)

j , w〉 = 〈U τ(i,j)
i − Uτ(i,j)

j , w∗〉 (16)

⇐⇒ 〈U τ(i,j)
i − Uτ(i,j)

j , w∗ − w〉 = 0. (17)

⇒ Assume identifiability. By contradiction, if span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} 6= Rd, then there is some vector x 6= 0

that is orthogonal to span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}. Consider w∗ − x. Then, for any (i, j) ∈ P

〈U τ(i,j)
i − Uτ(i,j)

j , w∗ − (w∗ − x)〉 = 〈U τ(i,j)
i − Uτ(i,j)

j , x〉 (18)

= 0. (19)

Therefore, with w = w∗ − x, Equation (17) is true and implies Equation (13) meaning

P(i > j;w∗ − x) = P(i > j;w∗),

contradicting identifiability since w∗ − x 6= w∗ because x 6= 0.

⇐ Now assume span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} = Rd. We want to prove identifiability so suppose there exists w such

that Equation (13) holds. We will show w = w∗. Let x ∈ Rd where x =
∑

(i,j)∈P αi,j(U
τ(i,j)
i − Uτ(i,j)

j ) for αi,j ∈ R.
Then by Equation (17), 〈 ∑

(i,j)∈P

αi,j

(
U
τ(i,j)
i − Uτ(i,j)

j

)
, w∗ − w

〉
= 0.

Since this is true for any x ∈ Rd, w∗ − w = 0, which means w = w∗.

9. Proof of Proposition 2

Proposition 4 (Restatement of Proposition 2). Under the set-up of Section 2, λ := λmin(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i −

U
τ(i,j)
j )T ) > 0 if and only if the salient feature preference model with selection function τ is identifiable.

Proof. For both directions, we prove the contrapositive.

⇒ Assume λmin(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) = 0. Recall the expectation is with respect to a uniformly at
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random chosen pair of items. Let 0 ∈ Rd be the all 0 vector. Then there exists y 6= 0 ∈ Rd that has unit norm such that

(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 (20)

=⇒ yT (E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 (21)

=⇒ 1(
n
2

) ∑
(i,j)∈P

yT (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 since (i, j) ∈ P is chosen uniformly at random

(22)

=⇒ 1(
n
2

) ∑
(i,j)∈P

‖(U τ(i,j)
i − Uτ(i,j)

j )T y‖22 = 0 (23)

=⇒ ‖(Uτ(i,j)
i − Uτ(i,j)

j )T y‖22 = 0 ∀(i, j) ∈ P (24)

=⇒ (U
τ(i,j)
i − Uτ(i,j)

j )T y = 0 ∀(i, j) ∈ P. (25)

We now show y /∈ span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}, which establishes the salient feature preference model is not
identifiable by Proposition 1. By contradiction, suppose there exist αi,j ∈ R such that

y =
∑

(i,j)∈P

αi,j(U
τ(i,j)
i − Uτ(i,j)

j ).

Then

1 = 〈y, y〉 (26)

=

〈 ∑
(i,j)∈P

αi,j

(
U
τ(i,j)
i − Uτ(i,j)

j

)
, y

〉
(27)

=
∑

(i,j)∈P

αi,j

〈(
U
τ(i,j)
i − Uτ(i,j)

j

)
, y
〉

(28)

= 0, (29)

a contradiction.

⇐ Now suppose that the preference model is not identifiable. By Proposition 1, span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} 6= Rd.

In particular, there exists y ∈ Rd such that y 6= 0 and 〈y, U τ(i,j)
i − Uτ(i,j)

j 〉 = 0 for all (i, j) ∈ P , i.e. y is in the orthogonal

complement of span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}. Furthermore,

1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T y = 0 (30)

=⇒ (E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0, (31)

(32)

since the expectation is with respect to a uniformly at random chosen pair of items. Therefore, λmin(E(U
τ(i,j)
i −

U
τ(i,j)
j )(U

τ(i,j)
i − Uτ(i,j)

j )T ) = 0 since all the eigenvalues of E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T are non-negative
since it is a sum of positive semidefinite matrices, and 0 is an eigenvalue.

10. Proof of Theorem 1
Recall the set-up from the beginning of Section 2. There are n items where the features of the items are given by the columns
of U ∈ Rd×n and let w∗ ∈ Rd be the judgment vector. Let τ be the selection function. Let Sm = {(i`, j`, y`)}m`=1 be the m
samples of independent pairwise comparisons where each pair of items (i`, j`) is chosen uniformly at random from all the
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pairs of items P := {(i, j) ∈ [n]× [n] : i < j}. Furthermore, y` is 1 if the i`-th item beats the j`-th item and 0 otherwise

where y` ∼ Bernoulli
(

exp
(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)
1+exp

(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)). We will not repeat these assumptions in the following lemmas.

In this section, we present the exact lower bounds on the number of samples and upper bound on the estimation error. The
exact values of the constants that appear in the main text, i.e. C1 and C2, appear at the end of the proof.
Theorem 3 (restatement of Theorem 1: sample complexity of estimating w∗). Let U , w∗, τ , and Sm be defined as above.
Let ŵ be the maximum likelihood estimator, i.e. the minimum of Lm in Equation (3), restricted to the set W(b∗). The
following expectations are taken with respect to a uniformly chosen random pair of items from P . For (i, j) ∈ P , let

Z(i,j) := (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T

λ := λmin(EZ(i,j)),

η := σmax(E((Z(i,j) − EZ(i,j))
2)),

ζ := max
(k,`)∈P

λmax(EZ(i,j) − Z(k,`)),

where for a positive semidefinite matrix X , λmin(X) and λmax(X) are the smallest/largest eigenvalues of X , and where for
any matrix X , σmax(X) is the largest singular value of X . Let

β := max
(i,j)∈P

‖Uτ(i,j)
i − Uτ(i,j)

j ‖∞. (33)

Let δ > 0. If λ > 0 and if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise comparisons.

Proof. We use the proof technique of Theorem 4 in (Negahban et al., 2016). We use the notation Lm(w) instead of
Lm(w;U, Sm, τ) throughout the proof since it is clear from context.

By definition Lm(ŵ) ≤ Lm(w∗). Let ∆ := ŵ − w∗. Then

Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉 (34)
≤ −〈∇Lm(w∗),∆〉 (35)
≤ ‖∇Lm(w∗)‖2‖∆‖2, (36)

by the Cauchy-Schwarz inequality.

Recall Taylor’s theorem:

Theorem 1 (Taylor’s Theorem). Let f : Rn → R. If the Hessian Hf of f exists everywhere on its domain, then for
any x,∆ ∈ Rn, there exists λ ∈ [0, 1] such that f(x+ ∆) = f(x) + 〈∇f(x),∆〉+ 1

2∆THf (x+ λ∆)∆.

Now, we lower bound Equation (34). Let HLm be the Hessian of Lm. Then by Taylor’s theorem, there exists λ ∈ [0, 1]
such that

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (37)

=
1

2m
∆THLm(w∗ + λ∆)∆ (38)

=
1

2m

m∑
`=1

h(〈w∗ + λ∆, U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆ (39)
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where the Hessian HLm is computed in Lemma 6 and h(x) := ex

(1+ex)2 .

Note

|〈w∗ + λ∆, U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉| (40)

= |(1− λ)〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉+ λ〈ŵ, U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉| (41)

≤ (1− λ)b∗ + λb∗ (42)
= b∗ (43)

where the second to last inequality is by definition of b∗ and since ŵ ∈ W(b∗). Because h(x) = ex

(1+ex)2 is symmetric and
decreases on [0,∞) by Lemma 7, for any i, j ∈ [n],

h(〈w∗ + λ∆, U
τ(i,j)
i − Uτ(i,j)

j 〉) ≥ h(b∗) =
exp(b∗)

(1 + exp(b∗))2
.

Therefore,

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (44)

≥ exp(b∗)

2m(1 + exp(b∗))2

m∑
`=1

∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆. (45)

By Lemma 4 and 5 and combining Equations (36) and (45), with probability at least 1− δ if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
,

(
exp(b∗)

2(1 + exp(b∗))2

)
λ

2
‖∆‖22 ≤

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (46)

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
‖∆‖2 (47)

=⇒ ‖∆‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (48)

In the main paper with order terms, it is easy to see the O(·) bound on the upper bound on the estimation error. Furthermore,
it is easy to see that for the constants C1 and C2 given in the main paper, we have C1 = 4/6 and C2 = 48/3.

We now present the lemmas used in the prior proof.

Lemma 4. Let δ > 0. Under the model assumptions in this section, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
,

then with probability at least 1− δ
2 ,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where β := max(i,j)∈P

∥∥∥Uτ(i,j)
i − Uτ(i,j)

j

∥∥∥
∞
.
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Proof. For ` ∈ [m], let

X` =
1

m

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)( exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
− y`

)
,

so 1
m∇Lm(w∗) =

∑m
`=1X` by Lemma 6.

We now show (1) E(X`) = 0 where the expectation is taken with respect to a uniformly chosen pair of items, (2) the
coordinates of X` are bounded, and (3) the coordinates of X` have bounded second moments.

First E(X`) = 0. By conditioning on each pair of items, each of which have the same probability of being chosen,

E(X`) =
1(
n
2

) ∑
(i,j)∈P

E(X`|items i, j are chosen) (49)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − Uτ(i,j)

j

)( exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)
− E(y(i,j))

)
(50)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − Uτ(i,j)

j

)( exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)
−

exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

)
(51)

= 0, (52)

where the expectation is with respect to the random pair that is drawn and the outcome of the pairwise comparison.

Second, |X(k)
` | ≤

β
m where X(k)

` is the k-th coordinate of X`. Then for k ∈ [d]

|X(k)
` | (53)

=

∣∣∣∣∣ 1

m

(
(U

τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)( exp(〈w∗, Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
− y`

)∣∣∣∣∣ (54)

≤ 1

m

∣∣∣((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)∣∣∣ since

exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
, y` ∈ [0, 1] (55)

≤ 1

m
max

(i,j)∈P
‖Uτ(i,j)

i − Uτ(i,j)
j ‖∞ (56)

=
β

m
, (57)

by definition of β.
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Third, E((X
(k)
` )2) ≤ β2

m2 . Let p(x) = ex

1+ex . For k ∈ [d],

E((X
(k)
` )2) (58)

=
1(
n
2

) ∑
(i,j)∈P

E((X
(k)
` )2|items i, j are chosen) (59)

=
1(
n
2

) ∑
(i,j)∈P

1

m2

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

E
((

p(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)− y(i,j)

)2
)

(60)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

(61)

(
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2 − 2E(y(i,j))p(〈w∗, U

τ(i,j)
i − Uτ(i,j)

j 〉) + E((y(i,j))
2)
)

(62)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2
(
−
(
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)

)2

+ E((y(i,j))
2)

)
(63)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
−p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2 + E(y(i,j))

)
since y(i,j) ∈ {0, 1} (64)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)− p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2

)
(65)

≤ β2

4m2
(66)

by definition of β and since p(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉) ∈ [0, 1] and x− x2 ≤ 1
4 for x ∈ [0, 1].

Therefore, 1
m∇Lm(w∗) =

∑m
`=1X` is a sum of i.i.d. mean zero random variables. Hence, each coordinate is also a sum of

i.i.d. random variables with mean zero, so Bernstein’s inequality applies. Recall Bernstein’s inequality:

Theorem 2 (Bernstein’s inequality). Let Xi be i.i.d. random variables such that E(Xi) = 0 and |Xi| ≤M . Then for
any t > 0,

P

(
m∑
i=1

Xi > t

)
≤ exp

(
−

1
2 t

2∑
EX2

i + 1
3Mt

)
.

We apply Bernstein’s inequality to the k-th coordinate of 1
m∇Lm(w∗):

P
(∣∣∣∣ 1

m
∇Lm(w∗)(k)

∣∣∣∣ > t

)
≤ 2 exp

(
−

1
2 t

2

β2

4m + βt
3m

)
(67)

since
∑m
`=1 E((X

(k)
` )2) ≤ β2

4m and |X(k)
` | ≤

β
m .
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Since ‖x‖2 ≤
√
d‖x‖∞ for any x ∈ Rd,

P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

> t

)
(68)

≤ P

(√
d

m
‖∇Lm(w∗)‖∞ > t

)
(69)

= P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
∞
>

t√
d

)
(70)

≤ 2d exp

− 1
2
t2

d

β2

4m +
β t√

d

3m

 by union bound and inequality (67) (71)

= 2d exp

(
− t2

dβ2

2m + 2βt
√
d

3m

)
(72)

= 2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
. (73)

In other words, for t > 0, with probability at least 1− 2d exp
(
− 6mt2

3dβ2+4βt
√
d

)
, ‖ 1

m∇Lm(w∗)‖2 ≤ t.

Let

α := 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ).

Set

t =

√
α

6m
.

If

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
=
α

6
,

then

2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
≤ δ

2
,

which we establish below.
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If

m ≥ α

6
(74)

=⇒ m ≥ α(4β log (4d/δ))2d

6(4β log (4d/δ))2d
(75)

=⇒ m ≥ α(4β log (4d/δ))2d

6(α− 3β2 log (4d/δ)d)2
(76)

=⇒ m ≥ αd

6
(
α−3β2 log (4d/δ)d

4β log (4d/δ)

)2 (77)

=⇒
(
α− 3β2 log (4d/δ)d

4β log (4d/δ)

)2

≥ αd

6m
(78)

=⇒
α

log (4d/δ) − 3β2d

4β
≥
√
αd

6m
(79)

=⇒ α

log (4d/δ)
≥ 4β

√
αd

6m
+ 3β2d (80)

=⇒ α

4β
√

αd
6m + 3β2d

≥ log (4d/δ) (81)

=⇒ t26m

4βt
√
d+ 3β2d

≥ log (4d/δ) (82)

=⇒ 2d exp

(
− 6mt2

4βt
√
d+ 3β2d

)
≤ δ

2
(83)

(84)

Therefore, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6

with probability at least 1− δ
2 ,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

<

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
.

Lemma 5. For (i, j) ∈ P , let Z(i,j) = (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T . Let

λ := λmin(EZ(i,j))

where for a square matrix U , λmin(U) is the smallest eigenvalue of U . Let

η := σmax(E((Z(i,j) − EZ(i,j))
2))

where σmax(X) is the largest singular value of a matrix X . Let

ζ := max
(i,j)∈P

λmax(EZ(i,j) − Z(i,j)),

where λmax(X) is the largest eigenvalue of X . The expectation in λ, η, and ζ is taken with respect to a uniformly chosen
random pair of items.

Let δ > 0. Under the model assumptions in this section, if λ > 0 and if

m ≥ 8 log(2/δ)(6η + λζ)

3λ2
,
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then with probability at least 1− δ
2 ,

1

m

m∑
`=1

∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆ ≥ ‖∆‖22
λ

2

where

∆ = ŵ − w∗.

Proof. Let

X` =
1

m
(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T − 1

m
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )).

Notice that 1
m

∑m
`=1(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T is a sum of random matrices where the randomness is
from the random pairs of items that are chosen in the samples. Therefore, bounding the smallest eigenvalue of this random
matrix is sufficient to get the desired lower bound as we show.

Since EX` = 0 by construction and X` is self-adjoint since it is symmetric and real, we apply the following concentration
bound to

∑m
`=1X`:

Theorem 3 (Theorem 1.4 in (Tropp, 2012)). Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices with dimension d. Assume that each random matrix satisfies EXk = 0 and λmax(Xk) ≤ R almost surely.
Then for all t ≥ 0

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d exp

(
−t2/2

σ2 +Rt/3

)
, (85)

where

σ2 := σmax

(∑
k

E
(
X2
k

))
.

Notice

σmax

(
m∑
`=1

E
(
X2
`

))
= mσmax(E

(
X2

1

)
) since each X` is distributed the same (86)

=
m

m2
η (87)

=
1

m
η. (88)

Then applying the above theorem, for t ≥ 0,

P

(
λmax

(
m∑
`=1

−X`

)
≥ t

)
≤ d exp

(
−t2/2

η/m+ ζt/(3m)

)
(89)

≤ d exp

(
−3mt2

6η + 2ζt

)
. (90)
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In other words, for all t ≥ 0, with probability at least 1− d exp
(
−3mt2

6η+2ζt

)
,

λmax

(
m∑
`=1

−X`

)
≤ t (91)

=⇒ ∆T

‖∆‖2

(
m∑
`=1

−X`

)
∆

‖∆‖2
≤ t (92)

=⇒ ∆T (E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))−

1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T )∆ ≤ t‖∆‖22 (93)

=⇒ ∆T
(
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))
)

∆− t‖∆‖22

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (94)

=⇒ ‖∆‖22
∆T

‖∆‖2

(
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))
) ∆

‖∆‖2
− t‖∆‖22

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (95)

=⇒ (λ− t)‖∆‖22 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (96)

since λ := λmin(E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )).

Set t = λ
2 . Since λ > 0 by assumption, Equation (96) becomes

λ

2
‖∆‖22 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆

and holds with probability at least 1− δ
2 if

m ≥ 8 log(2d/δ)(6η + λζ)

3λ2

since

d exp

(
−3mλ2

4

6η + 2λ2 ζt

)
≤ δ

2
(97)

=⇒
−3mλ2

4

6η + 2λ2 ζt
≤ − log(2d/δ) (98)

=⇒
3mλ2

4

6η + 2λ2 ζt
≥ 2 log(2d/δ) (99)

=⇒ m ≥ 8 log(2d/δ)(6η + λζ)

3λ2
. (100)

(101)
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Lemma 6 (Gradient and Hessian of Equation (3)). Given samples Sm, features of the n items U ∈ Rd×n, and w ∈ Rd,

1

m
∇Lm(w;U, Sm, τ) (102)

=
1

m

m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)
− y`

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)
(103)

and

1

m
HLm(w;U, Sm, τ) (104)

=
1

m

m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(1 + exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉))2
(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T (105)

Proof. Gradient: Let f(x) := log(1 + ex) for x ∈ R and g(w; y) := 〈w, y〉 for w, y ∈ Rd, so

1

m
Lm(w;U, Sm, τ) =

1

m

m∑
`=1

(f ◦ g)(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

) + y`g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

).

Note

f ′(x) =
ex

1 + ex

and ∇wg(w; y) = y.

We arrive at the desired result by the chain rule:

1

m
Lm(w;U, Sm, τ) = (106)

1

m

m∑
`=1

f ′(g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

))∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)− y`∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

). (107)

Hessian: Note

f ′′(x) =
ex(1 + ex)− e2x

(1 + ex)2
=

ex

(1 + ex)2
.

Let [HLm(w;U, Sm)]k be the kth row of the Hessian and ∇Lm(w;U, Sm)(k) be the kth entry of the gradient. Then by the
chain rule again,

[HLm(w;U, Sm)]Tk

= ∇w(∇Lm(w;U, Sm)(k))

=
m∑
`=1

((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))f ′′(g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

))∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)

=
m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(1 + exp(〈w,U τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉))2
((U

τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

),

which proves the claim.

Lemma 7. Let h(x) = ex

(1+ex)2 . Then h(x) is symmetric and decreases on [0,∞).



Preference Modeling with Context-Dependent Salient Features

Proof. Symmetry:

h(−x) =
e−x

(1 + e−x)2
(108)

=
e−x

e−2x(ex + 1)2
(109)

=
ex

(ex + 1)2
(110)

= h(x). (111)

Decreasing on [0,∞):

Note

h′(x) =
ex(1 + ex)2 − e2x2(1 + ex)

(1 + ex)4
(112)

=
ex(1 + ex)− e2x2

(1 + ex)3
(113)

=
ex(1− ex)

(1 + ex)3
(114)

≤ 0 (115)

for x ∈ [0,∞) since on this interval, 1− ex ≤ 0 but ex, (1 + ex)3 ≥ 0. Thus h(x) is decreasing on [0,∞).

11. Specific Selection Functions: Proofs of Corollaries 1.1 and 1.2
In this section, we present the full lower bounds on the number of samples and upper bound on the estimation error. The
definitions of the constants that appear in the main text, i.e. C3 and C4, appear at the end of the applicable proofs.

11.1. Proof of Corollary 1.1

The following lemma is a straight forward generalization from (Negahban et al., 2016), but we include the proof for
completeness. We need this lemma to prove Corollary 1.1.

Lemma 8. Let U ∈ Rd×n. Assume that the columns of U sum to 0:
∑n
i=1 Ui = 0. Then

E((Ui − Uj)(Ui − Uj)T ) =
n(
n
2

)UUT

where the expectation is with respect to a uniformly at randomly chosen pair of items.

Proof. Let ei ∈ Rn denote the i-th standard basis vector, In×n denote the n× n identity matrix, and 1 ∈ Rn be the vector
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of all ones. Since the expectation is over a uniformly chosen pair of items (i, j) ∈ P ,

E((Ui − Uj)(Ui − Uj)T ) (116)

= E(U(ei − ej)(ei − ej)TUT ) (117)

=
1(
n
2

)U
 ∑

(i,j)∈P

eie
T
i − eieTj − ejeTi + eje

T
j

UT (118)

=
1(
n
2

)U
(n− 1)

n∑
i=1

eie
T
i −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT since each item is in n− 1 comparisons (119)

=
1(
n
2

)U
(n− 1)In×n −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT (120)

=
1(
n
2

)U ((n− 1)In×n −
(
11

T − In×n
))
UT explained below (121)

=
1(
n
2

)U (nIn×n − 11T )UT (122)

=
1(
n
2

) (nUUT − U11TUT ) (123)

=
n(
n
2

)UUT since U1 =
n∑
i=1

Ui = 0 by assumption. (124)

Equation (121) is because eieTj is the matrix with a 1 in the i-th row and j-th column and 0 elsewhere and we are summing
over all (i, j) ∈ [n]× [n] where i < j. Thus, the sum equals 11T − In×n, which is the matrix with ones everywhere except
for the diagonal.

Corollary 8.1 (Restatement of Corollary 1.1). Assume the set-up stated in the beginning of Section 2. For the selection
function τ , suppose τ(i, j) = [d] for any (i, j) ∈ P . In other words, all the features are used in each pairwise comparison.
Assume n > d. Let ν := max{max(i,j)∈P ‖Ui−Uj‖22, 1}. Without loss of generality, assume the columns of U sum to zero:∑n

i=1 Ui = 0. Then,

λ =
nλmin(UUT )(

n
2

) ,

ζ ≤ ν +
nλmax(UUT )(

n
2

) ,

and

η ≤ νnλmax(UUT )(
n
2

) +
n2λmax(UUT )2(

n
2

)2 .

Let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
.

Let δ > 0. Hence, if

m ≥ max

{
m1,

48 log(2d/δ)
(
n
2

)2
3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2
)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)nλmin(UUT )

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (125)
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Proof. Throughout this proof, we use Ui instead of Uτ(i,j)
i for any items i, j since τ(i, j) selects all coordinates.

If
∑n
i=1 Ui 6= 0, simply subtract the column mean, Ū := 1

n

∑n
i=1 Ui, from each column. This operation does not affect the

underlying pairwise probabilities since

P(item i beats item j) =
1

1 + exp(−〈w∗, Ui − Uj〉)
(126)

=
1

1 + exp(−〈w∗, (Ui − Ū)− (Uj − Ū)〉)
. (127)

Let Ũ = U(I − 1
n11

T ) be the centered version of U , i.e. where we subtract Ū from each column of U . Since n > d and by
Proposition 9, if λmin(U) > 0, then λmin(Ũ) > 0 generically. Therefore, WLOG, we may assume

∑n
i=1 Ui = 0.

First, we simplify λ. By Lemma 8,

λ = λmin(E((Ui − Uj)(Ui − Uj)T )) =
nλmin(UUT )(

n
2

) .

Second, we upper bound ζ. Let (k, `) ∈ P , then

λmax

(
E(Ui − Uj)(Ui − Uj)T − (Uk − U`)(Uk − U`)T

)
(128)

= λmax

(
n(
n
2

)UUT − (Uk − U`)(Uk − U`)T
)

by Lemma 8 (129)

≤ λmax

(
n(
n
2

)UUT)+ λmax

(
(Uk − U`)(Uk − U`)T

)
(130)

= λmax

(
n(
n
2

)UUT)+ ‖(Uk − U`)‖22 (131)

≤ λmax

(
n(
n
2

)UUT)+ ν, (132)

(133)

where the second to last line is since the largest eigenvalue of a rank one matrix xxT is ‖x‖22 and the last line is by definition
of ν.

Third, we upper bound η. Let ei ∈ Rn denote the i-th standard basis vector. For any random variable X , we have

E(X − E(X))2 = E(X2)− E(X)2. (134)

Furthermore, since η is the largest singular value of a symmetric matrix squared, the largest eigenvalue of that matrix is also
equal to η. Therefore, η = λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
. Most

steps are explained below after the equations. Because the expectation is with respect to a uniformly at random pair of items
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(i, j) ∈ P and by Lemma 8,

λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
(135)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T −
n2(
n
2

)2UUTUUT
 (136)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
(Ui − Uj)(Ui − Uj)T −

n2(
n
2

)2UUTUUT
 (137)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT −

n2(
n
2

)2UUTUUT
 (138)

≤ λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

+ λmax

(
n2(
n
2

)2UUTUUT
)

(139)

= max
x

xT

‖x‖

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

 x

‖x‖
+ λmax

(
n2(
n
2

)2UUTUUT
)

(140)

= max
x

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

) xT
‖x‖

U(ei − ej)(ei − ej)TUT
x

‖x‖

+ λmax

(
n2(
n
2

)2UUTUUT
)

(141)

≤ max
x

 ν(
n
2

) ∑
(i,j)∈P

xT

‖x‖
U(ei − ej)(ei − ej)TUT

x

‖x‖

+ λmax

(
n2(
n
2

)2UUTUUT
)

(142)

= λmax

 ν(
n
2

) ∑
(i,j)∈P

U(ei − ej)(ei − ej)TUT
+ λmax

(
n2(
n
2

)2UUTUUT
)

(143)

=
νn(
n
2

)λmax

(
UUT

)
+

n2(
n
2

)2λmax

(
UUT

)2
by Lemma 8. (144)

(145)

Equation (137) is because (Ui − Uj)
T (Ui − Uj) ∈ R. Equation (142) is because (Ui − Uj)

T (Ui − Uj) ≥ 0 and
xT

‖x‖U(ei − ej)(ei − ej)TUT x
‖x‖ ≥ 0.

Now that we have bounds on η and ζ and a simplified form for λ, we apply Theorem 1, completing the proof.

Now we explain how to get from these results to those in the main paper with the order terms. The O(·) upper bound on the
estimation error is easy to see. The value of C1 is given at the end of the proof of Theorem 1. The only remaining term
to explain from the main paper is the upper bound of 8 log(2d/δ)(6η+λζ)

3λ2 , which gives us a lower bound on the number of
samples required.
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In particular,

8 log(2d/δ)(6η + λζ)

3λ2
(146)

=
48 log(2d/δ)η

3λ2
+

8 log(2d/δ)ζ

3λ
(147)

=
48 log(2d/δ)

(
n
2

)2
3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2
)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )
(148)

=
48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ λmax(UUT )2

)
+

8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ λmax(UUT )

)
(149)

≤ 48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ nλmax(UUT )2

)
+

8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ nλmax(UUT )

)
(150)

≤ 48 log(2d/δ)

3λmin(UUT )2

(
nνλmax(UUT ) + nλmax(UUT )2

)
+

48 log(2d/δ)

3λmin(UUT )

(
nν + nλmax(UUT )

)
(151)

≤ 48 log(2d/δ)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )
+
λmax(UUT )

λmin(UUT )

)
since ν ≥ 1 (152)

≤ 2 ∗ 48 log(2d/δ)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
since

λmax(UUT )

λmin(UUT )
≥ 1 (153)

= C3 log(2d/δ)nν

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
(154)

where C3 = 2 ∗ 48/3. We remark that the assumption that ν ≥ 1 was made to simplify the upper bound and is not
required.

As we mentioned, we can assume U is centered without loss of generality, because we can subtract the mean column from
all columns if they are not centered. However one may wonder then what happens to λmin(UUT ) =

√
σmin(U) once U is

centered. Since we assume n > d, it will generically be non-zero, as we make precise in the following proposition.

Proposition 9. Given an arbitrary rank-d, d× n matrix Ũ , let U be its centered version, i.e. U = Ũ(I − 1
n11

T ). Then
σmin(U) = 0 if and only if the all-ones vector is in the row space of Ũ .

Proof. Suppose Ũ contains the all-ones vector in its row space, and therefore let v be such that ŨT v = 1. Let Q =
(I − 1

n11
T ). Then

UT v = QŨT v = 0

since the all-ones vector is in the nullspace of Q, implying that σmin(U) = 0. For the other direction suppose σmin(U) = 0.
Then there exists a vector v 6= 0 such that

0 = UT v = QŨT v.

This implies either that ŨT v = 0 or ŨT v is in the nullspace of Q. Since we assumed that Ũ has full row rank, then it must
be that ŨT v = 1, the only vector in the nullspace of Q.

11.2. Discussion of Corollary 1.1 as compared to related work

While our sample complexity theorem for MLE of the parameters of FBTL is novel to the best of our knowledge, there
are some related results that merit a comparison. First, there is a result in (Saha and Rajkumar, 2018) that gives sample
complexity results for a different estimator of FBTL parameters under a substantially different sampling model. In particular,
they only allow pairs to be sampled from a graph, and then for each sampled pair they observe a fixed number of pairwise
comparisons. In their results one can see that as the number of pairs sampled increases, their error upper bound increases
and the probability of their resulting bound also decreases. In contrast, our analysis shows that our error bound decreases as
m increases, and the probability of our resulting bound remains constant.
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Second, we can also attempt a comparison to the bounds for BTL without features in (Negahban et al., 2012), despite the
fact that with standard basis features, our bound does not apply because λ = 0. Assuming that exp(b∗)/λ is a constant in
our bound and that νλ̄ is a constant, we roughly have an error bound of O(1) given m = Θ(n2(β2 +β)d log(d/δ)) samples.
The result in (Negahban et al., 2012) instead has that m = Θ(d2 log d) gives an error bound of O(1) with probability 1− 2

d ,
recalling that in their setting d = n. So if we can tighten bounds that require β in our proof, our results may compare
favorably.

Recall the definition of β in Equation (4): β := max(i,j)∈P ‖U
τ(i,j)
i − Uτ(i,j)

j ‖∞. In our proof, we use this to bound

differences between feature vectors at Equation (66). In particular, we bound 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤

β2. If we instead directly made the assumption that

β̃2 :=
1(
n
2

) max
k∈[d]

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

,

we could replace β with β̃ directly in our bounds. Assume β̃ ≤ 1/n2. Then our sample complexity would reduce to
m = Θ(d log(d/δ)) = Θ(d log(2d2)) = Θ(d log(d)) where recall δ = 2

d , beating the complexity in (Negahban et al.,
2012). However, it is not clear in general what impact the assumption that β̃ ≤ 1/n2 would have on the minimum eigenvalue
of UUT . Indeed, the standard basis vectors are a special case where β̃ ≤ 1/n, and as we pointed out, for this special case
λ = 0.

Third, although there are crucial differences between our model and the model in (Shah and Wainwright, 2017) that make a
direct comparison impossible, we attempt to roughly compare results. The first difference is that they assume the feature
vectors of the items are standard basis vectors, which means our bounds do not apply just as in the comparison with
(Negahban et al., 2012). The second difference, perhaps the most crucial, is that we make different assumptions about how
the intransitive pairwise comparisons are related to the ranking. In (Shah and Wainwright, 2017), the items are ranked
based on the probability that one items beats any other item chosen uniformly at random. There are scenarios where the
true ranking in our model is not the same as the true ranking in (Shah and Wainwright, 2017). The third difference is that
we assume that pairs are drawn uniformly at random, whereas they assume each pair (i, j) ∈ P is drawn xi,j times where
xi,j ∼ Binom(r, p) for r, p > 0.

Their result (Theorem 2) roughly says with probability 1/n13, if the gap between a pair of consecutively ranked items’
scores is at least

√
log n/(npr), then their algorithm learns the ranking exactly. We compare to our Corollary 1.3 with

k = 1 and δ = 1
n13 though again we emphasize an exact comparison is impossible because our model is not a special

case of theirs or vice versa. Our corollary says with enough samples with high probability, we learn the ranking exactly.
On average, their sampling method will see O(n2rp) samples, so a reasonable way to compare results is to show the
required number of samples in our method is comparable to O(n2rp). If we assume that β, η, ζ, λ, and M are all constant,
αk =

√
log n/(npr) which is their assumed gap between scores, and d = n, the number of samples we require is

max{n log(n ∗ n13), log(n), n log(n ∗ n13)npr/ log(n)} = O(n2pr), matching their bounds.

Fourth, the set-up of (Heckel et al., 2019) is the same as (Shah and Wainwright, 2017) except it considers the adaptive setting.
If the gaps of the utilities of consecutively ranked items are constant and denoted by ∆, then under the same assumptions in
the discussion about (Shah and Wainwright, 2017), our Corollary 1.3 is slightly better by a log factor than their Theorem
1a: O(log(n/δ)n/(∆)2)) vs. O(log(n/δ)n log(2 log(2/∆))/(∆)2)). However, if many gaps between scores are large and
only some gaps between scores are small, their adaptive method is better than our Corollary 1.3. This is not surprising
since they can adaptively chose which pair to sample next based on the past pairwise comparisons, whereas we consider the
passive setting.

11.3. Proof of Corollary 1.2

Corollary 9.1 (Restatement of Corollary 1.2). Assume the set-up stated in the beginning of Section 2. Assume that for
any (i, j) ∈ P , |τ(i, j)| = 1. Partition P = tdk=1Pk into d sets where (i, j) ∈ Pk if τ(i, j) = {k} for k ∈ [d]. Let
ε := min(i,j)∈P ‖U

τ(i,j)
i − Uτ(i,j)

j ‖∞. Then

λ ≥ ε2(
n
2

) min
k∈[d]

|Pk|,
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ζ ≤ β2 +
β2(
n
2

) max
k∈[d]

|Pk|,

and

η ≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) .
Furthermore, let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

and let

m3 :=
48 log(2d/δ)β4 maxk∈[d]

((
n
2

)
|Pk|+ |Pk|2

)
3ε4 mink∈[d] |Pk|2

+
8 log(2d/δ)β2

((
n
2

)
+ maxk∈[d] |Pk|

)
3ε2 mink∈[d] |Pk|

.

Let δ > 0. If m ≥ max{m1,m3}, then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)ε2 mink∈[d] |Pk|

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
,

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise comparisons.

Proof. Note that |Pk| > 0, so that λ > 0, for all k ∈ [d] if the model is identifiable. Let U (j)
i be the j-th coordinate of the

vector Ui, ei be the i-th standard basis vector, and for a vector x, let diag(x) be the diagonal matrix whose (i, i)-th entry is
the i-th entry of x.

First we simplify and bound λ. Since each pair of items are chosen uniformly at random,

E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) =
1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (155)

=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (156)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek), (157)

which is a diagonal matrix. Therefore,

λ =
1(
n
2

) min
k∈[d]

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 (158)

≥ ε2(
n
2

) min
k∈[d]

|Pk|. (159)

Second, we simplify and bound ζ. Since |τ(k, j)| = 1 for all k, j ∈ P , let U (τ(k,j))
i denote the coordinate of Ui

corresponding to the only element in τ(k, j). Define eτ(k,j) similarly, which is one of the standard basis vectors.
From the proof of bounding λ in Equations (155) to (157), we have E((U

τ(i,j)
i − U

τ(i,j)
j )(U

τ(i,j)
i − U

τ(i,j)
j )T ) =
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1

(n2)

∑d
k=1

(∑
(i,j)∈Pk(U

(k)
i − U (k)

j )2
)

diag(ek), so

ζ = max
(`,p)∈P

λmax(E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )− (U
τ(`,p)
` − Uτ(`,p)

p )(U
τ(`,p)
` − Uτ(`,p)

p )T ) (160)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)− (U
τ(`,p)
` − Uτ(`,p)

p )(U
τ(`,p)
` − Uτ(`,p)

p )T

 (161)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)− (U
(τ(`,p))
` − U (τ(`,p))

p )2diag(eτ(`,p))

 (162)

≤ β2

(
max
k∈[d]

(
|Pk|(
n
2

) + 1

))
(163)

(164)

since the maximum eigenvalue of a diagonal matrix is bounded by the absolute value of its largest entry. We have also
applied the triangle inequality and the definition of β since |τ(i, j)| = 1 for all (i, j) ∈ P .

Third, we simplify η. First notice from the proof of bounding λ from Equations (155) to (157),

(
E(U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T
)2

=

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)

2

(165)

=
1(
n
2

)2 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2

diag(ek), (166)

since the matrices above are diagonal.

Also,

E(((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )2) (167)

= E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) (168)

=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (169)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4

 diag(ek), (170)

For any random variable X , we have

E(X − E(X))2 = E(X2)− E(X)2. (171)

Therefore,
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η = σmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4

 diag(ek)− 1(
n
2

)2 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2

diag(ek)

 (172)

=
1(
n
2

)σmax

 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4 − 1(
n
2

)
 ∑

(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2
 diag(ek)

 (173)

≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) (174)

since the largest singular value of a diagonal matrix is bounded by the largest entry of the diagonal in absolute value. We
have also applied the triangle inequality and definition of β.

The remainder of the corollary follows by applying the bounds on λ, ζ and η to Theorem 1.

Now we explain how to get from these results to those in the main paper with the order terms. The O(·) upper bound on
the estimation error is easy to see. The value of C1 is given at the end of the proof of Theorem 1. Finally, it is easy to see
C4 = 48/3 in the main paper.

11.4. Tightening the bounds of Corollary 1.2

Still in the setting where the selection function chooses one coordinate per pair, assume |Pi| ≈ |Pj | for all i, j ∈ [d],
where Pi is defined in Corollary 1.2. Then, as we have stated in the main text, λ, η, ζ = O(1/d), and so by Corollary 1.2,
Ω(d3 log(d/δ)) samples ensures the estimation error is O(1). However, by tightening a bound used in the proof of Theorem
1, we can show Ω(d2 log(d/δ)) samples ensures the estimation error is O(1).

Recall the definition of β in Equation (4): β := max(i,j)∈P ‖U
τ(i,j)
i − U

τ(i,j)
j ‖∞. In our proof, we use

this to bound differences between feature vectors at Equation (66). In particular, for k ∈ [d] we bound
1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2. For any k ∈ [d], since |Pi| ≈ |Pj | for all i, j ∈ [d], each coordinate

is chosen approximately
(
n
2

)
/d times. Therefore, 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2 d since only
(
n
2

)
/d

of the
(
n
2

)
terms in the sum are non-zero. We can now replace β with β/

√
d in Corollary 1.2. Therefore, Ω(d2 log(d/δ))

samples ensures the estimation error is O(1) since λ, η, ζ = O(1/d).

12. Proof of Corollary 1.3
In this section, we present the full lower bounds on the number of samples and upper bound on the estimation error. The
definitions of the constants that appear in the main text, i.e. C5, appear at the end of the proof.

Corollary 9.2 (restatement of Corollary 1.3: sample complexity of learning the ranking). Assume the set-up of Theorem
1. Pick k ∈ [

(
n
2

)
]. Let αk be the k-th smallest number in {|〈w∗, Ui − Uj〉| : (i, j) ∈ P}. Let M := maxi∈[n] ‖Ui‖2. Let

γ∗ : [n]→ [n] be the ranking obtained from w∗ by sorting the items by their full-feature utilities 〈w∗, Ui〉 where γ∗(i) is the
position of item i in the ranking. Define γ̂ similarly but for the estimated ranking obtained from the MLE estimate ŵ. Let
δ > 0. Let

m1 =
3β2 log (2d/δ)d+ 4

√
dβ log (2d2/δ)

6
,

m2 =
8 log(4d/δ)(6η + λζ)

3λ2
,

and

m3 =
64M2(1 + exp(b∗))4(3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ))

6α2
k exp(b∗)2λ2

.

If m ≥ {m1,m2,m3}, then with probability 1 − 2
d , K(γ∗, γ̂) ≤ k − 1, where K(γ∗, γ̂) = |{(i, j) ∈ P : (γ∗(i) −

γ∗(j))(γ̂(i)− γ̂(j)) < 0}| is the Kendall tau distance between two rankings.
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Proof. By Theorem 1, with probability 1− δ, we have

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
(175)

≤ αk
2M

(176)

by definition of m.

The estimated full feature utility for item i is no further than αk
2 to the true utility of item i:

|〈w∗ − ŵ, Ui〉| ≤ ‖w∗ − ŵ‖2‖Ui‖2 by CauchySchwarz (177)

≤ αk‖Ui‖2
2M

(178)

≤ αk
2
. (179)

Therefore for any i ∈ [n],
〈w∗, Ui〉 −

αk
2
≤ 〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+

αk
2
. (180)

Let Pαk := {(i, j) ∈ P : |〈w∗, Ui − Uj〉| ≥ αk} and let (i, j) ∈ Pαk . WLOG, suppose 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, i.e.
γ∗(i) − γ∗(j) ≤ 0, which means item j is ranked higher than item i in the true ranking given by γ. We want to show
〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0, i.e. γ̂(i)− γ̂(j) ≤ 0, meaning that item j is ranked higher than item i in the estimated ranking given
by γ̂.

By applying Equation (180) and using the fact 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, we have

〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+
αk
2

by Equation (180) (181)

= 〈w∗, Ui〉 − 〈w∗, Uj〉+ 〈w∗, Uj〉+
αk
2

(182)

≤ −αk + 〈w∗, Uj〉+
αk
2

since (i, j) ∈ Pαk and since 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0 (183)

≤ 〈w∗, Uj〉 −
αk
2

(184)

≤ 〈ŵ, Uj〉 by Equation (180). (185)

Hence, 〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0 for every i, j ∈ Pk, meaning that for any (i, j) ∈ Pk, γ∗ and γ̂ agree on the relative ordering
of item i and j. Furthermore, |Pk| =

(
n
2

)
− (k − 1). Therefore, K(γ∗, γ̂) ≤

(
n
2

)
− |Pk| = k − 1.

Now we explain how to get from these results to those in the main paper with the order terms. The value of C1 and C2 are
given at the end of the proof of Theorem 1. It is easy to see that C5 = 64 ∗ 4 ∗ 24/6.

13. Synthetic Experiments
Code is available at https://github.com/Amandarg/salient_features.

13.1. Plot of Parameters in Theorem 1

In this section, the goal is to empirically illustrate how the top-t selection function and intransitivities effect the parameters
b∗, ζ, η, β, and λ from Theorem 1 and hence the number of samples required and the exact upper bound on the estimation
error. Just as in the synthetic experiment section, we sample each coordinate of U from N(0, 1√

d
) and each coordinate of

w∗ is sampled from N(0, 4√
d
).

In the experiments, the ambient dimension d = 10 and the number of items n = 100. We repeat the following 10 times:
sample U and w∗, and use this U and w∗ while varying t ∈ [d] to compute all of the parameters of interest and intransitivity

https://github.com/Amandarg/salient_features
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Figure 5. The parameters of Theorem 1 for the top-t selection function as a function of the average strong stochastic transitivity violation
rate over the 10 experiments. The average over 10 experiments where a new U and w∗ are drawn each time is depicted. The bars represent
the standard error over the 10 experiments.

rates. The x-axis of each plot is the average strong stochastic transitivity (SST) violation rate defined in Section 4.1 where
the average is taken over the 10 experiments. From Figure 2, intransitives decrease as t increases, so the x-axis in Figures 5
and 6 could roughly, but not exactly, be replaced with t, where t is decreasing from 10 to 1. The y-axis on the plots depict
the average value and the bars represent the standard error over the 10 experiments.

Figure 5 shows the parameters in Theorem 1. Larger λ means smaller sample complexity, whereas smaller b∗, ζ, β and η
means smaller sample complexity.

Recall in the Supplement re-statement of Theorem 1, the number of samples m required in the theorem is

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
.

Letm1 = 3β2 log (4d/δ)d+4
√
dβ log (4d/δ)

6 andm2 = 8 log(2d/δ)(6η+λζ)
3λ2 . Figure 6 showsm1,m2, and the bound from Theorem

1 with δ = 1
δ = 1

10 without the number of samples, i.e. the upper bound plot on the left does not include the number of
samples in it. The plot shows

4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

without the 1√
m

term. Note that m1 has constant average and standard error bars since with the dimension fixed, it is a
function of β, which is constant in this case. Furthermore, this plot suggests that m1 << m2.

13.2. Additional Synthetic Experiments and Details

First we define the Kendall tau correlation. It is used in both Sections 4.1 and 4.2, and is defined as follows. Let
γ, ρ : [n] → [n] be two rankings on n items where γ(i) and ρ(i) is the position of item i in the ranking. Let A =∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))>0}, respectively D =
∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))≤0}, be the number of pairs of
items that σ and ρ agree, respectively disagree, on the relative ordering. Then the Kendall tau correlation of ρ and γ is

KT (γ, ρ) :=
A−D(

n
2

) . (186)

Second, recall the set-up in Section 4: The ambient dimension d = 10, the number of items n = 100, and the top-1 selection
function is used. The coordinates of U are drawn from N

(
0, 1√

d

)
,and the coordinates of w∗ are drawn from N

(
0, 4√

d

)
.

We sample m pairwise comparisons for m ∈ {2i ∗ (100) : i ∈ [11]}, fit the MLEs of the FBTL and salient preference model
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Figure 6. Number of samples m1 and m2 and upper bound on estimation error from Theorem 1 for the top-t selection function as a
function of the average strong stochastic transitivity violation rate over the 10 experiments. The average over 10 experiments where a new
U and w∗ are drawn is depicted. The bars represent the standard error over the 10 experiments.
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Figure 7. Pairwise prediction accuracy as a function of the number of samples, which are on the logarithmic scale, where the pairwise
comparisons are sampled from the salient feature preference model with the top-1.

with the top-1 selection function, and repeat 10 times. Figure 7 shows the average pairwise prediction accuracy, which is
defined as

|{(i, j) ∈ P : (Pij − .5)(P̂ij − 5) > 0}|(
n
2

)
where P̂ij is the estimated pairwise probability that item i beats item j. The bars shows the standard error over the 10
experiments. The gap between the salient feature preference model MLE and the FBTL MLE is expected since the data is
generated from the salient feature preference model.

Third, see Figures 8 and 9 for plots investigating model misspecification. In particular, we use the same experimental set-up
as in Section 4.1 except that in Figure 9 the salient feature preference model with the top-3 selection function is used to
generate the preference data. We fit the MLE for the salient feature preference model for the top-t selection function for all
t ∈ [d] for both plots. The FBTL model is equivalent to when t = 10.

In Figure 8, we see that the model is very sensitive to the choice of t. As we would expect, t = 2 has the second smallest
error when the number of samples exceed 210.

In Figure 9, we see that the model is still sensitive to the choice of t, but not as sensitive as in Figure 8. In this case, we can
not only overestimate t, i.e. t > 3, but underestimate t, i.e. t < 3. We see that t = 2 and t = 4–the two values of t closest to
the truth of t = 3–have roughly the same error. Interestingly, t = 1 has the worst performance.
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Figure 8. These plots investigate model misspecification. The true generative model for the pairwise preference data is the salient feature
preference model with the top-1 selection function. The coordinates of U and w are sampled from a Gaussian as described in the main
text. The MLEs for the salient feature preference model with the top-t selection function for t ∈ [d] is shown.
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Figure 9. These plots investigate model misspecification. The true generative model for the pairwise preference data is the salient feature
preference model with the top-3 selection function. The coordinates of U and w are sampled from a Gaussian as described in the main
text. The MLEs for the salient feature preference model with the top-t selection function for t ∈ [d] is shown.
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14. Real Data Experiments
Code is available at https://github.com/Amandarg/salient_features.

14.1. Algorithm implementation

In this section, we provide relevant details about how each algorithm is implemented.

• RankNet: We use the RankNet implementation found at https://github.com/airalcorn2/RankNet,
which uses Keras. However, we use the Adam optimizer with default parameters except with a learning rate of 0.0001.
We also add an `2 penalty to the weights.

• Salient feature preference model and FBTL: We use sklearn’s logistic regression solver. In particular, we set
tol = 1e− 10 and max iter = 10000. Furthermore, we do not fit an intercept. We use the default liblinear
solver for real data experiments, and the sag solver for synthetic data experiments since we do not use regularization.
All other parameters use the default values.

• Ranking SVM: We use sklearn’s LinearSVC solver with the same parameters as above. In particular, we do not
fit an intercept.

The synthetic experiments were ran on a 2016 MacBook Pro with a 2.6 GhZ Quad-Core Intel Core i7 processor. The real
data experiments were ran on the University of Michigan’s Great Lakes Cluster 1.

14.2. District compactness experiments

We refer the reader to (Kaufman et al., 2017) for the full details about the district compactness data, but provide relevant
details here. We obtained the data by contacting the authors.

14.3. Pairwise comparison description

There were three pairwise comparison studies. Due to data collection issues, only two of these pairwise comparison studies,
called shiny2pairs and shiny3pairs, are available. In shiny2pairs, there are 3,576 pairwise for 298 people
who each answered 12 pairwise comparisons. In shiny3pairs, there are 1,800 pairwise comparisons for 90 people who
each answered 20 pairwise comparisons. There is no overlap in the districts used in shiny2pairs and shiny3pairs.

14.4. k-wise rankings for k > 2 description

There are 8 sets of k-wise ranking data. In many cases, the feature data for some districts are missing entirely, so in our
own experiments, we throw out any district without feature data. Recall, we use the k-wise ranking data for validation and
testing, so we also remove any districts present in the training set.

• Shiny1 contains rankings for 298 people on 20 districts, but the feature information for 10 districts are missing. The
people are composed of undergraduate students, PhD students, law students, consultants, legislators involved in the
redistricting process, and judges.

• Shiny2 contains rankings on 20 districts for 103 people collected on Mturk. The feature information on 10 of the
districts are missing however.

• Mturk contains another set of Mturk experiments collected on 100 districts and 13 people, which we use as our
validation set. However, 34 of the districts also had pairwise comparison information collected about them, so we throw
these out.

• UG1-j1, UG1-j2, UG1-j3, UG1-j4, and UG1-j5 are 4 sets of 20-wise ranking data for 4 undergraduates at
Harvard. The initial task was to rank 100 districts at once, but the resulting data set contains 5 sets of rankings on
20 districts. Out of the 100 districts used across the 5 sets of rankings, there are 38 districts with missing feature
information.

1https://arc-ts.umich.edu/greatlakes/

https://github.com/Amandarg/salient_features
https://github.com/airalcorn2/RankNet
https://arc-ts.umich.edu/greatlakes/
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Figure 10. For each of the k-wise ranking data sets, the average agreement between people in terms of the Kendall tau correlation is
shown.

See Figure 10 which depicts the average Kendall tau correlation between pairs of rankings in a k-wise ranking data set and
the standard deviation. Recall the Kendall tau correlation, KT (·, ·), is defined in Equation (186). This plot shows roughly
how much people agree with each other, where higher values mean more agreement. In particular, suppose there are N
k-wise rankings given by σ1, . . . , σN . Then the average Kendall tau correlation for the N rankings is

1

2
(
N
2

) ∑
(i,j)∈[N ]×[N ]

KT(σi, σj)

and refer to this quantity as the average intercoder Kendall tau correlation. We see that people typically disagree on shiny2
and shiny1, whereas people tend to agree more often on the rest of the k-wise data sets perhaps because there are fewer
people.

The districts used in shiny1 and shiny2 are the same, and these districts also comprise one of the UG1 data sets as well.
However, the districts in mturk are disjoint from the rest of the k-wise ranking sets. In addition, mturk has relatively low
intercoder variability. For these two reasons, we decided to use mturk as our validation set. We decided to keep shiny1
and shiny2 separate since the original authors did and also since they are comprised of different groups of people resulting
in different behavior, e.g., shiny1 has a higher average intercoder Kendall tau correlation than shiny2.

14.5. Data preprocessing

We remove pairwise comparisons that were asked fewer than 5 times resulting in 5,150 pairwise comparisons over 94
unique pairs on 122 districts. There are 8 sets of k-wise comparison data that we use for validation and testing. We remove
any districts in the k-wise ranking data that are present in the training data. We standardize the features of the districts
by subtracting the mean and dividing by the standard deviation, where we use the mean and standard deviation from the
training set. Standardizing the features is important for the salient feature preference model with the top-t selection function,
so that each feature is roughly on the same scale. Otherwise, the top-t selection function might just choose the coordinates
with the largest magnitude, and not the coordinates truly with the most variability.

14.6. Experiment details

The hyperparameters for the salient feature preference model with the top-t selection function are t and the `2 regularization
parameter µ. The hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM, the only hyperparameter
is C which controls the penalty for violating the margin. We vary t ∈ [d] where d = 27 since there are 27 features. We vary
µ and C in {.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000}.

The hyperparameters for RankNet include the `2 regularization parameter µ and number of nodes in the hid-
den layer. We use one hidden layer. We varied the number of nodes in the single hidden unit in in {5 ∗
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i : i ∈ [19]}. We use a batch size of 250, and we use 800 epochs. Initially, we varied µ also in
{.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000}, but as we will discuss in the next section we
decided to vary µ in {.00001, .0001, .001, .01, .1, 1, 10}.

14.7. Best performing hyperparameters

Again, the validation set that was use is the mturk ranking data. Given ŵ, an estimate of w∗, we estimate the ranking by
sorting each item’s features with its inner product with ŵ. Then we pick the best hyperparameters by the largest average
Kendall tau correlation of the estimated ranking with each individual ranking in mturk.

For FBTL, the best performing hyperparameter is µ = 100000. The average Kendall tau correlation of the estimated ranking
to each individual ranking in mturk is 0.38 with a standard deviation of 0.05. The pairwise comparison accuracy on the
training set is 56%, which is defined in Section 13.2 of the Supplement. Although the regularization strength is large, the
norm of the estimated judgement vector is .015. The largest coordinate of the judgement vector in absolute value is .005 and
the smallest is .0001.

For the salient feature preference model with the top-t selection function the best performing hyperparameters are t = 2 and
µ = .001. The average Kendall tau correlation of the estimated ranking to each individual ranking in mturk is 0.54 with a
standard deviation of 0.06. The pairwise comparison accuracy on the training set is 69%.

Figure 11 shows how often each of the 27 features are selected by the top-2 selection function over unique pairwise
comparisons in the training data. Notice that var xcoord and circle area are never selected. The learned weights
for those features in the FBTL model when all the features are used are 2 of the top 3 features with the smallest weights, so
these features play a relatively insignificant role when all the features are used any way.

For RankNet, the best hyperparameters on the validation set are µ = .1 and 75 nodes in the hidden layer. The average
Kendall tau correlation of the estimated ranking to each individual ranking in mturk is 0.407 with a standard deviation of
0.05. The pairwise comparison accuracy on the training set is 59%. As we discussed in the previous section, we initially
searched over larger values of µ. The best performing hyperparameters were µ = 10000 and 40 nodes in the hidden layer.
The pairwise comparison training accuracy was higher (69%) and the average Kendall tau correlation on the validation set
was also higher (.48 with a standard deviation of .05). However, these hyperparameters were very unstable, i.e. training on
the same data with the same hyperparameters sometimes gave a completely different model where the average Kendall tau
correlation on the validation set or some of the test sets were sometimes negative.

For Ranking SVM, the best hyperparameter on the validation set is C = 1000000. The average Kendall tau correlation of the
estimated ranking to each individual ranking in mturk is 0.38 with a standard deviation of 0.05. The pairwise comparison
accuracy on the training set is 56%. Although C is large, the norm of the estimate of the judgement vector is .006, the
largest entry in absolute value is .002, and the smallest is .0006, so it is finding a non-zero estimate for the judgement vector.

14.8. Zappos experiments

We refer the reader to (Yu and Grauman, 2014; 2017) for the full details about the UT Zappos50k data set but provide
relevant details here. The data can be found at http://vision.cs.utexas.edu/projects/finegrained/
utzap50k/.

14.9. Pairwise comparison data description

The UT Zappos50K data set consists of pairwise comparisons on images of shoes and 960 extracted color and vision
features for each shoe (Yu and Grauman, 2014; 2017). Given images of two different shoes and an attribute from {“open,”
“pointy,” “sporty,” “comfort”}, respondents were asked to pick which shoe exhibits the attribute more. The data consists
of both easier, coarse questions, i.e. based on comfort, pick between a slipper or high-heel, and also harder, fine grained
questions i.e. based on comfort, pick between two slippers. Each pairwise comparison is asked to 5 different people, and the
confidence of each person’s answer is also collected.

There are 2,863 unique pairwise comparisons involving 5,319 shoes for open, 2,700 unique pairwise comparisons involving
5,028 shoes for pointy, 2,766 unique pairwise comparisons involving 5,144 shoes for sporty, and 2,756 unique pairwise
comparisons involving 5,129 shoes for comfort. For each attribute, 86% of unique pairwise comparisons involve an item
that is in no other pairwise comparison regarding that attribute. Also, for each attribute, nearly 93% of items only appear in

http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Figure 11. The frequency that the top-2 selection function chooses each feature over unique pairwise comparisons in the training data.
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Table 3. Statistics about the best performing t for the salient feature preference model with the top-t selection function on the validation
set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 440 310 110 40
Max 830 980 850 950
Average 663 614 550 563
Standard deviation 150 198 238 305

Table 4. Statistics about the best performing µ for the salient feature preference model on the validation set over 10 train/validation/test
splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 10000 100000 10000 10000
Average 4600.0 12520.0 5500.0 5311.0
Standard deviation 4409.08 29389.65 4500.0 4700.46

one pairwise comparison. In light of this, an algorithm like (Chen and Joachims, 2016b) will likely not work well since (1)
this model requires learning a set of parameters for each item and (2) the model does not work for unseen items, i.e., we
must ensure that items in testing also appear in training to evaluate the model.

Furthermore, for each of the attributes, there are no triplets of items (i, j, k) where pairwise comparison data has been
collected on i vs. j, j vs. k, and k vs. i. Therefore, we cannot even test if there are intransitivities in this data.

14.10. Data pre-processing

Respondents were given the option to declare a tie between two items. We do not train on any of these pairwise comparisons.
To be clear, we use both the “coarse” and “fine-grained” comparisons during training. We standardize the features by
subtracting the mean and dividing by the standard deviation, where we use the mean and standard deviation of the training
set for each attribute since we train a model for each attribute.

14.11. Experiment details

The hyperparameters for the salient feature preference model with the top-t selection function are t and the `2 regularization
parameter µ. The hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM, the only hyperparameter
is C which controls the penalty for violating the margin. We vary t ∈ {10 ∗ i : i ∈ [99]} since there are 990 features. We
vary µ and C in {.000001, .00001, .0001, .001, .01, .1}. For RankNet, the hyperparameters are µ and the number of nodes
in the hidden layer. We vary µ in {.05, .1, .15} and the nodes in {50, 250, 500}. We choose these values of µ to try since
on validation sets, it appeared that any value less than .05 was over fitting (train accuracy was in the 90%s but validation
accuracy was in the 70%s) and values above .15 were not learning a good model (train accuracy was in the 60%s). We only
search over these hyperparameters due to time constraints. We use ten 70% train, 15% validation, and 15% test split.

14.12. Best performing hyperparameters

Because the pairwise comparisons are either “coarse” or “fine-grained,” we pick the best hyperparameters based on the
average of the pairwise comparison accuracy on the “coarse” questions and the “fine-grained” questions on the validation
set. See Table 3 for statistics about the best performing t for the salient feature preference model with the top-t selection
function on the validation set over 10 train/validation/test splits. See Tables 4, 5, 7 for statistics about the best performing µ
for the salient feature preference model, FBTL model, and RankNet on the validation set over the 10 train/validation/test
splits. See Table 6 for statistics about the best performing C for Ranking SVM on the validation set over the over the 10
train/validation/test splits. See Table 8 for the best performing number of nodes in the hidden layer on the validation set over
the 10 splits. We also report the average pairwise accuracy, which has been defined in the main text, on the validation set for
all algorithms in Table 9.
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Table 5. Statistics about the best performing µ for FBTL on the validation set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 100000 100000 100000 100000
Average 15400 12520 17200 24211
Standard deviation 28517 29389 27827 38131

Table 6. Statistics about the best performing C for Ranking SVM on the validation set over 10 train/validation/test splits for UT
Zappos50k.

Attribute: open pointy sporty comfort

Min 10000 1000 10000 100
Max 100000 1000000 1000000 1000000
Average 70000 124300 163000 144010
Standard deviation 42426 294261 281888 288619

Table 7. Statistics about the best performing µ for RankNet on the validation set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min .05 .05 .05 .05
Max .15 .1 .15 .15
Average .075 .055 .085 .105
Standard deviation .033 .015 .039 .041

Table 8. Statistics about the best performing number of nodes in the hidden layer for RankNet on the validation set over 10
train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 50 50 50 250
Max 500 500 250 500
Average 335 205 190 350
Standard deviation 178.95 201.84 91.65 122.47

Table 9. Average pairwise prediction accuracy over 10 train/validation/test splits on the validation sets by attribute for UT Zappos50k.
C stands for coarse and F stands for fine grained. The number in parenthesis is the standard deviation.

Model: open-C pointy-C sporty-C comfort-C open-F pointy-F sporty-F comfort-F

Salient features 0.75 (.01) 0.8 (.01) 0.79 (.02) 0.77 (.03) 0.64 (.03) 0.6 (.03) 0.62 (.03) 0.66 (.03)
FBTL 0.75 (.02) 0.8 (.01) 0.79 (.01) 0.77 (.02) 0.63 (.03) 0.59 (.03) 0.6 (.02) 0.62 (.03)
Ranking SVM 0.75 (.02) 0.8 (.02) 0.8 (.01) 0.77 (.02) 0.62 (.04) 0.59 (.03) 0.6 (.02) 0.62 (.04)
RankNet 0.75 (.02) 0.78 (.03) 0.78 (.01) 0.76 (.02) 0.67 (.03) 0.61 (.04) 0.61 (.02) 0.64 (.03)


