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Abstract

We propose a general framework of using multi-level log-Gaussian Cox process to model
repeatedly observed point processes with complex structures; such type of data have become
increasingly available in various areas including medical research, social sciences, economics
and finance due to technological advances. A novel nonparametric approach is developed
to efficiently and consistently estimate the covariance functions of the latent Gaussian
processes at all levels. To predict the functional principal component scores, we propose a
consistent estimation procedure by maximizing the conditional likelihood of super-positions
of point processes. We further extend our procedure to the bivariate point process case in
which potential correlations between the processes can be assessed. Asymptotic properties
of the proposed estimators are investigated, and the effectiveness of our procedures is
illustrated through a simulation study and an application to a stock trading dataset.
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1. Introduction

With the recent advancement of data collection technologies, large-scale event time data
recorded with high temporal resolutions have become increasingly available through various
trading, social media, and retail platforms. Analyzing such data is important in understand-
ing user behaviors. One major challenge with such data is that they often have large sample
sizes and complex structures. As an example, we analyze a dataset that draws from stock
trading transactions (recorded at the second level) by more than 300,000 Chinese trading
accounts over approximately three years. Figure 1 shows the estimated overall trading
intensity within a transaction day and the ratios of the estimated trading intensities at
the account and day levels relative to the overall trading intensity, based on 1,000 sample
accounts over 672 days. As shown in the figure, the trading intensities vary considerably
within each day, between accounts, and across days.
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Figure 1: Estimated overall trading intensity and ratios of the estimated trading intensities
at the account and day levels relative to the overall trading intensity.

Our main interest is to develop a methodology to investigate the impacts of the different
sources of variations for event time data that are repeatedly observed over time and from
multiple accounts, as is the case in our example data. To that end, we view the event
times from each account on a given day as a realization from a so-called log-Gaussian Cox
process (LGCP, Mgller et al., 1998; Simpson et al., 2016). A log-Gaussian Cox process is
a Poisson process that has a latent intensity function the logarithm of which is a Gaussian
process. We decompose the log-latent intensity as the sum of three independent Gaussian
processes, reflecting variations at the account, day, and account-day levels, respectively. To
maintain modeling flexibility, we approximate these latent Gaussian processes nonparamet-
rically using the Karhunen-Loéve expansion (Watanabe, 1965), in which each process is
characterized as a linear combination of orthogonal eigenfunctions (as illustrated in (6)).
This approach does not require parametric assumptions such as specific forms of the mean
and the covariance function of the latent Gaussian process that are commonly used in exist-
ing literature (see Yu et al., 2009; Simpson et al., 2016, etc.). Instead, we impose some less
restrictive moment and smoothness conditions on the latent Gaussian processes, which are
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outlined in detail in Section 4. In this sense, the proposed approach offers greater flexibility
in modeling complex event time data.

Although the use of the Karhunen-Loéve expansion (Watanabe, 1965) in the current
setting may appear straightforward, there are nontrivial challenges. In particular, one chal-
lenge is how to nonparametrically estimate the covariance function for each latent Gaussian
process based on which the eigenfunctions and associated principal component scores can be
estimated. Instead of trying to estimate the covariance functions directly, we first propose
four nonparametric estimators to estimate different aspects of the covariance structure, and
then define the estimator for each covariance function as a ratio involving a subset of these
four estimators. To predict the principal component scores, we develop a conditional like-
lihood estimation approach. Both procedures are novel compared to their counterparts in
the existing literature (see Section 2 for details). Furthermore, we allow correlation among
the random principal component scores over time. In contrast, most existing literature
assumes the principal component scores to be independent. Although allowing this corre-
lation creates complexity in studying the theoretical properties of the proposed estimators,
this complexity is accommodated in our framework (see Section 4 for details).

Our proposed modeling framework is extremely flexible and can be readily extended
to model event time data with even more complex structures. In our example data, each
event is either a buy or sell transaction. Therefore, we model the observed event times
from each account on a given day as a realization from a bivariate point process instead of
a univariate point process. To understand the correlation between the buying and selling
activities, we extend our proposed modeling framework to a bivariate log-Gaussian Cox
process model (see Section 3 for details). In addition to the transaction types, the data
contain information on the brokerage branch to which each account belongs. A brokerage
branch is a geographic office at which an individual establishes a stock trading account, and
its location is typically close to the account holder’s home address. It may be interesting to
study whether the trading activities from accounts in the same branch are similar, possibly
due to branch-related factors such as local income levels, economic activity, news, social
interaction, etc. To answer this question, we can introduce an additional Gaussian process
when decomposing the log-latent intensity function to reflect the branch level effect. In
Appendix C, we illustrate how our proposed modeling framework can be easily generalized
to this new setting.

1.1 Literature review

There has been a growing interest in using point process models to analyze event time data
in the machine learning community (see Zhao et al., 2015; Karimi et al., 2016; Farajtabar
et al., 2016, 2017; Hosseini et al., 2017; Xiao et al., 2017; Xu et al., 2017; Upadhyay et al.,
2018; Zarezade et al., 2018, etc.). Most existing work is built upon parametric point pro-
cess models such as the Hawkes process (Hawkes and Oakes, 1974). Several multivariate
Hawkes process models have been proposed to jointly model sequences of observed events
in continuous time (see Farajtabar et al., 2016, 2017; Zarezade et al., 2018; Achab et al.,
2018, etc.). In principle, for our example data, the multivariate Hawkes process can be used
to directly model potential interactions between trading activity among different accounts.
However, a direct application of the multivariate Hawkes process to our example data is
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difficult at least for two reasons. First, the multivariate Hawkes process depends on a set of
background rate functions that characterizes the overall rate of events for different accounts
and days, which can be rather complex and heterogeneous, as suggested by Figure 1. It
can be challenging to estimate such a large number of background rate functions simulta-
neously. Second, it is unclear how one should define the triggering kernel across different
accounts and days. The triggering kernel is typically a function of the distance between a
given time point and a past event time. Because the stock market does not operate on a
continuous-time schedule, it is not straightforward to define the distance between two time
points from different days and possibly also from different weeks.

From a different perspective, our example data are replicated time series of point pro-
cesses, in that the trading times of each account form a series of point processes and the
different accounts constitute the replicates. Such data are different from that typically
considered for Hawkes processes, and consequently would require a different modeling ap-
proach. Nevertheless, for the stock trading data under consideration, one can still fit a
univariate Hawkes process model to the combined temporal point process from each ac-
count, (see Section 2.2 for more details). Our simulation study and the real data analysis
demonstrate that such a univariate Hawkes process may fail to capture important aspects
of the observed multi-level temporal point process data.

In contrast to the multivariate Hawkes process, the proposed method aims at modeling
the correlations between trading activities from different accounts by identifying the con-
tributing latent factors. For example, under our model (1), trading activities from different
accounts on the same transaction day are correlated due to a common underlying day effect.
The latent intensities used in our proposed modeling framework are random functions. Our
approach, therefore, connects the literature on log-Gaussian Cox processes and multi-level
functional data analysis, where the term “multi-level” refers to the decomposition of the
log-latent intensity functions at the account, day, and account-day levels. Even though
modeling repeatedly observed random functions is well studied in the functional data anal-
ysis literature (e.g., Yao et al., 2005; Hall et al., 2006; Di et al., 2009; Yu et al., 2009; Li
et al., 2010, 2013; Chen and Miiller, 2012; Chen et al., 2017), existing techniques in classical
functional data analysis do not apply to our setting because the latent intensity functions
are not observed.

A few recent works consider functional data analysis for point processes (e.g., Bouzas
et al., 2006; Illian et al., 2006; Wu et al., 2013; Gervini, 2016; Xu et al., 2020). The mod-
eling techniques used in these work, which ranges from the functional principal component
analysis of stochastic density processes (Wu et al., 2013) to the independent component
analysis of latent intensity functions (Gervini, 2016), require independent replicates of the
event times. However, as seen from Figure 1, the event times from the same account or
the same day may be correlated due to shared common trading patterns at the account or
day levels. It is unclear whether the existing approaches can be generalized to this more
complex setting. In contrast, by using multi-level log-Gaussian Cox processes, we can de-
compose the log-latent intensity functions of the point processes to meaningfully account
for different sources of variations and to study these variations separately.

Lastly, we note that although there are many work on multivariate point processes
(e.g., Van Lieshout and Baddeley, 1999; Baddeley et al., 2000; Lemonnier and Vayatis,
2014; Jalilian et al., 2015; Bacry and Muzy, 2016; Farajtabar et al., 2016, 2017; Achab
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et al., 2018), the work is sparse in functional settings with multiple levels. Our proposal,
therefore, fills an existing gap in the literature on multivariate point processes.

1.2 Organization of the paper

The remainder of the article is organized as follows. Section 2 introduces the proposed
procedure for univariate log-Gaussian Cox processes, which includes the model formulation,
estimation, and principal component score prediction. Section 3 extends the procedure to
bivariate log-Gaussian Cox processes. Section 4 studies the theoretical properties of the
proposed estimators. Specifically, we allow autocorrelations within the random principal
component scores in our theoretical framework. Section 5 demonstrates the efficacy of the
proposed methods through a simulation study. Section 6 applies the proposed method
to the stock trading dataset. All proofs are contained in the Supplementary Material.
Throughout the rest of the article, we refer to our proposed approach as the multi-level
functional principal component analysis (MFPCA).

2. MFPCA for Univariate log-Gaussian Cox processes
2.1 Model formulation

To illustrate our model formulation, we describe our model specifications in the context
of the stock trading data introduced in Section 1. However, the proposed framework is
general and can be used for other applications. One such example is datasets that collect
time-stamps of user/consumer activities (e.g., liking or sharing a social media post, making
a purchase, posting a review of a service product, etc.) for a large group of users over a
certain period. Moreover, a post can be either an original post created by the user or a repost
of another user’s post, just like each trading event can be either a buying or selling event.
Our proposed method can be applied to investigate the sources of variations in the activity
of social media users, and such analyses can provide useful insights into user/consumer
activity patterns, which in turn can be used as features in downstream business strategy
development such as advertisement placement and content recommendations.

Suppose that we observe daily trading times from n accounts during m days. The trading

times observed from account ¢ on day j can be written as N;j = {T3;;, 1 =1,...,# {N;;}},
where 0 < Tjj1 < Tijo < -+ < Tjju(n,;3 < T for some given 7' > 0, and #{Nj;} is a
nonnegative integer random variable, ¢ = 1,....n, j = 1,...,m. We assume that each

N;j is generated from an inhomogeneous Poisson process conditional on a latent intensity
function A;(t), t € [0,T], where

Aij(t) = Xo(t) exp[Xi(t) +Y;(t) + Zi; (1)) (1)

In (1), Ag(t) is a deterministic baseline function representing the average daily trading pat-
tern, and X;(t), Y;(t) and Z;;(t) are Gaussian processes characterizing deviations from the
baseline for the ith account, the jth day, and the residual deviation, respectively. Model (1)
assumes that stock trading activities are affected by both account and day related factors.
The latent process Z;;(t) reflects that different individuals may adjust their trading behav-
iors differently in reaction to market conditions or news on a given day. We assume that
at any given time ¢, X;(t), Y;(t) and Z;;(t) are independent normal random variables with
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mean 0 and bounded variances 0% (t), 0% (t) and o%(t). We further assume that X;(¢) and
X (t) are independent for ¢ # ¢', and that Z;; and Z; j» are independent for j # j'. However,
Y;(t) and Yj(t) can be correlated even if j # j’; this enables us to account for potential
temporal dependences over consecutive transaction days.

The motivation for model (1) can be better understood in the context of our example
stock trading data. An investor’s trading activity on a given day is jointly impacted by
various factors which include personal characteristics (e.g., social-economic status), and the
overall stock market condition that is affected by the day-related events such as macroeco-
nomic conditions, market-wide news, government policy interventions, etc. An important
goal of our modeling approach is to extract account-related contributions to trading ac-
tivity while controlling for the impacts of day-related factors. Such extraction can help
a researcher investigate potential differences in trader behavior. Using model (1), we can
accomplish this goal by studying the differences among fitted X;(-)’s for ¢ = 1,--- ,n. On
the other hand, exploiting the variations at the day level could help a researcher understand
how evolving macroeconomic conditions, government interventions, etc., affect an investor’s
trading behavior. This can be accomplished by studying how Y}(-)’s evolve over time as j
increases from 1 to m. Section 6 contains more detail on these issues.

2.2 Benchmark models

To the best of our knowledge, there has been no existing method that directly models multi-
level temporal point process data as described in Section 2.1. For the stock trading data,
one simple strategy is to create a single-level process for each account ¢ by combining IV;;,
j =1,---,m, sequentially, as illustrated in Figure 2. As a result, the combined process,
denoted as N{, becomes a temporal point process defined on the extended time interval
[0, mT1], and can be modeled using existing methods.

Latent X,(t) X,(0) X, (0 X,(0)
Process i + + +
Yi(t) +2,,(¢) Yo (£) + Zi2 (1) Yy () + Zy oy () Y (£) + Zi (£)
e 00 — o [ 1 ] . - 000 — o . @ ,
¥ | | T
“ T 2T C (m-1)T m
Day 1 Day 2 Day m-1 Day m

Figure 2: An illustration of the combined temporal point process Ny for the account i.

The first model we consider is the Hawkes process. Denote Nf(B) as the number of
events in B C R from account ¢, and define the corresponding intensity function as

() = 161%1 STLE[NE(t, t + 8)|Haiyl,
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where H;; is the event time history up to time ¢ for the account 7, i« = 1,--- ,n. The
intensity function of a Hawkes process takes the form

X (t) = ps(t) —i—/o wi(t — s)N{(ds), te€[0,mT], (2)

where p§(-) > 0 is the background intensity, and w;(-) is the transfer function, for i =
1,--- ,n. The transfer functions are typically assumed to be nonnegative, suggesting that
past events increase the chance of occurrence for future events, commonly known as the
“self-exciting” property. For the stock trading data, it is reasonable to assume that the
background intensities are the same for a given account at different days, which can be
approximated by cyclic cubic B-splines as follows:

Mf(t) = €Xp Zﬁi,k’Bk’(t/T_ I.t/TJ) , te [O>mT]a t=1,---,n, (3)
k=1

where By(-)’s are cyclic B-spline basis functions defined on [0,1], and |¢] is the largest
integer less than or equal to . For the transfer function, we use the popular exponential
triggering kernel w;(d) = «; exp (—v;d), with o; > 0,7; > 0, 7 = 1,--- ,n. All parameters
can be estimated using standard maximum likelihood estimation (Rizoiu et al., 2017).

The second benchmark model we consider is the Log-Gaussian Cox process with a
parametric covariance function (P-LGCP). Specifically, we assume that for each N¢, there
exists a latent Gaussian process X{(¢) with a mean 0, and an exponential covariance function
C%(s,t) = Cov[X{(s), X{(t)] = ajexp(—|s —t|/v) with a5 > 0,7; > 0, such that the
intensity function of N{ has the form

Ai(t) = pi(t) exp [X7 (1) — /2], t € [0,mT], (4)

where the background intensity Af(-)’s are also approximated by cyclic B-spline basis func-
tions as suggested in (3). All parameters in model (4) can be obtained by the two-step
estimation procedure proposed in Waagepetersen and Guan (2009).

A closer look at Figure 2 suggests some potential drawbacks of models (2) and (4). For
each Nf, the latent process X;(-) appears repeatedly for m days, and hence its impacts
can be incorporated to the nonparametric periodic background intensity function (3) for
both models (2) and (4). Therefore, variations at the account level can still be captured
to a certain degree by modeling N{’s separately using the benchmark models. However,
such a strategy is not suitable for evaluating the impacts of Y;(-)’s. Specifically, for the
Hawkes process model (2), the self-exciting property may not completely characterize the
clustering patterns because the event occurrences are also triggered by day-related external
factors Yj(-)’s, which impact all accounts at any given day j. The same issue exists with
the P-LGCP model (4). In our simulation study and real data analysis, both benchmark
models fail to capture variations arise from Yj(-)’s. Our simulation study further suggests
that they also yield worse predictions of intensities A;;(-)’s when the observed point process
data are generated from the multi-level model (1). See Sections 5.2 and 6.4 for more details.
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2.3 Multi-level principal component analysis (MFPCA)

In this subsection, we describe the proposed estimation framework for model (1). Following
the formula of the moment generating function of a Gaussian random variable, the marginal
intensity function can be calculated as

p(t) = E[\i;(1)] = Ao(t) explo (t)/2 + 0§ (1) /2 + 05(t) /2], ()

where the expectation is taken jointly over X;(t), Y;(t) and Z;;(t).
Let Rx(s,t) = Cov[X;(s),X;(t)], s,t € [0,T], be the covariance function of X;(t).
Suppose that Rx(s,t) has the following spectral decomposition:

o0
Rx(s,t) =) i ok (s)é% (1),
k=1
where 7;¥ > 13X > .-+ > 0 are the eigenvalues of Rx(s,t) and ¢i( ’s are the correspond-

ing orthogonal eigenfunctions. Similarly, let Ry (s,t) = Cov[Yj(s),Y;(t)] and Rz(s,t) =
Cov[Z;j(s), Zi;(t)], s,t € [0,T], be the covariance functions of Y}(t) and Z;;(t). We have

)= "nl o (s)or (t), Rz(s.t)= ank 2,
k=1

where nf > nd > .- > 0and nZ > nZ > --- > 0 are the eigenvalues of Ry (s,t) and
Rz(s,t), and qb};’s and ¢f’s are the corresponding orthogonal eigenfunctions. Using the
Karhunen-Loeve expansion (Watanabe, 1965), we can express the random functions X;(t),
Yj(t) and Z;;(t),i=1,...,n,j=1,...,m, as

=D G M), Vi) =D &hor (), Zii(t) = ket (1), (6)
k=1 k=1 k=1

where fl),g, 34 ko and £ ik are normal random variables with mean 0 and variances nk , nk and
n,f . The expressions in (6) have infinite parameter space dimensionality and are infeasible
for estimations in practice. Instead, a common approach is to approximate (6) by using the
leading principal components, i.e.,

Px Py
tya > Ghon (1), i)=Y ther (), Z wak (7)
k=1 k=1

where px, py and pz are sufficiently large to include dominant modes of variation, and the

notation ‘a2’ indicates potential truncation error when using only finite px, py and pz. We
TS ¢ X Y \T Z z Z N\T ;

write &' = (§3,-- -, sz) E] = (&) G &py )t and &5 = (51, ,6,,) i =1,.0m,

j=1,...,m, and refer to them as the functional principal component scores.

In our model, we assume that the functional principal component scores at the account,
day and account-day levels are independent of each other, i.e., fzx , 5}/ and £Z-Zj are uncorre-
lated. We assume that & and £, are independent if (i, k) # (7, k'), that 5}; and 5}7,6, are
independent if k # K/, and that fljk, and &7 1 are independent if (¢, j, k) # (i',7',k"). How-

ever, &Y ik and §j,k can be correlated, i.e., the principal component scores at the day level can
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be autocorrelated. For example, ﬁ’s may follow an autoregressive correlation structure,
. Y _ qy Y ) s . .

Le., & = > elkf(j—l)k + €k, for some positive integer gy, where £;;’s are independent
random errors.

2.4 Covariance estimation

To estimate the eigenvalues and eigenfunctions (n;X, ¢ (t))’s, (0¥, ¢¥ (t))’s and (n#, ¢Z (t))’s,
we need to estimate the covariance functions Rx(s,t), Ry (s,t) and Rz(s,t), s,t € [0,T].
Existing methods (see, e.g. Di et al., 2009) cannot be used to estimate these functions since
the intensity functions are unobserved (i.e., latent functions).

The marginal second-order intensity p;; i .2(s,t) = E[Aij(s)Aij(t)] can be shown as
pigry2(8,1) = Xo(s) Ao (H)E{exp[Xi(s) + Xo(t) + Yj(s) + Yy () + Zij(s) + Zury (1]},

for i,/ =1,...,n, j,7/ = 1,...,m. To ease presentation, we first focus on the case where
Y;(s) and Yj/(t) are independent if j # j’. We point out that our method is valid even when
this assumption does not hold. As a matter of fact, our theoretical investigation is carried
out without this independence assumption. Under this assumption, it follows from (5) and
the moment generating function of a Gaussian random variable that

p(S)p(Tf) eXp[RX(Sv t) + RY(Sa t) + RZ(57 t)]7 if i = i/7j = j/)
p(s)p(t) exp[Rx (s,1)], ifi=1d,j#7
ig,'3’,2(S, 1) = 8
s 2D 7 ey ote)explBy (s, 1), tittg=g
p(s)p(t), ifi#d,j#7"

Denote A(s,t) = p(s)p(t) exp[Rx(s,t)+ Ry (s,t)+Rz(s,t)], B(s,t) = p(s)p(t) exp[Rx (s, t)],
C(s,t) = p(s)p(t) exp|Ry (s,t)] and D(s,t) = p(s)p(t). Note that A(s,t), B(s,t) and C(s,t)
contain information about the correlation at the account-day, account and day levels, re-
spectively. The covariance functions Rx (s, t), Ry (s,t) and Rz(s,t) can be easily calculated
once we obtain A(s,t), B(s,t), C(s,t) and D(s,t). Next, we develop estimators for these
functions, which are later used to derive estimators for the covariance functions.

We first consider the estimation of p;; i 2(s,t). By Campbell’s theorem (e.g., Mgller
and Waagepetersen, 2003), it holds for any measurable function f(u,v) that

uFv

Bl S5 fwo)| = [ [ fw oot vdude,

uEN,-]-,vENi/j/

where the expectation is over the point processes N;; and Ny ;. Let K(-) be a kernel function
and Kp(t) = h™'K(t/h). We can estimate p;j;/j 2(s,t) under the four different scenarios in
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(8) with

U

Kp(s —u)Kp(t —v)
Z nme(s;h)c(t;h)

>

"
M:
M

=1 j=1 u,vEN;;
B " & Kp(s —u)Kp(t —v)
= 2 ; Z;A ue;% ) m(m — 1)c(s; h)e(t; h)’

§ 9)

R 9 W) Kt — )
‘ﬁﬂ?;ZQM%QZ;,mnn—lx@mx@my
— - - - U)Kh(t — 1})
V=LTET X e o Dl

where ¢(s;h) = [ Kp(s — x)dx is an edge correction term. To understand the construction of
these estimators, consider Ap(s,t) as an example. By defining f(u,v) = Kp (s —u)Kp(t —v)
and noting that p;j;j2(s,t) = A(s,t), it follows from the Campbell’s theorem that

E [//l\h(s,t)] //Kh s —u)Kp(t — v)A(u, v)dudv.

;
c(s; h)e(t

If the bivariate function A(-,-) is smooth and h is sufficiently small such that A(u,v) ~
A(s,t) for any (u,v) in the small neighborhood around (s, t) defined by the function Kj(-),
then E [gh(s, t)} ~ A(s,t). We show in the Supplementary Material that ﬁh(s, t), Eh(s, t),
Ch(s,t) and Dy(s,t) are consistent estimators for A(s,t), B(s,t), C(s,t) and D(s,t), re-
spectively. In view of (8), we can estimate the covariance functions using

~

. B (s.t ~ C(s.t - Ay(s. YDy (s.1
Ban(s,t) = 1og 20 B o 210g Q0D Ry g (0D D) -
Dh(37t> Dh(s t) Bh(sat)ch(svt)

for s,t € [0,T]. As suggested by Theorem 1 in Section 4.1, one may need to use differ-
ent bandwidths hg, h, and h, for estimating Rx(s,t), Ry(s,t), Rz(s,t) when n,m are of
different magnitudes.

From the estimated covariance functions, the eigenvalues and eigenfuncAtion can be es-
timated using methods proposed in Yao et al. (2005). Specifically, (7, ¢i (t))’s can be
obtained by solving the integral equation

Lﬁ&mw%@mzﬁ%m, (11)

where Af’s are subject to constraints f[q?f(s)]z ds =1and [ af(s)&b\lx(s) ds =0if k # 1,
for k,1 = 1,2,...,px. Eigenvalues and eigenfunctions (n), ¢} (t))’s and (nf, ¢7(t))’s can
be estimated similarly. The validity of solving (11) for eigenvalues and eigenfunctions is
ensured by the uniform convergence of the covariance function §W7h(s,t) to Rw (s,t) for
W = XY, or Z under mild conditions, as given by Theorem 1 in Section 4.1. We refer the
reader to the proof of Theorem 2 in Yao et al. (2005) for more technical details.

10
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Remark 1 The computational cost of the estimators given in (10) is of order Q(nm), or

more precisely, of the order of the total number of events in all N;;’s. We use Ap(s,t) as

an example to illustrate this point. Note that

fé”z Kh s—u Kh(t —v) _ ZKh(s — ) ZKh(t —v)| ZKh(s — u)Kp(t — )
c(t; h) c(t; h) c(syh)e(t;h)

c(s;
u,WEN;; uEN;; (s;h) VEN;; u€Nyj

The computational cost to calculate each of the three single summations in the above is of the
order of the number of events in N;;. Thus, the computational cost to obtain gh(s, t) is of the
order of the total number of events in all Nj;’s, which is of order O(nm). Similarly, we can
show that the same is true for the other three terms. Therefore, the overall computational
complexity of (10) is of order O(nm), which is confirmed by our simulation studies in
Section 5.1. See Figure 5 for more details.

2.5 Predict functional principal component scores

Having estimated the eigenvalues and eigenfunctions, we next predict the functional prin-
cipal component scores. Markov Chain Monte Carlo based approaches have been proposed
for predicting principal component scores (Di et al., 2009). However, such approaches are
not applicable in our setting because our model cannot be formulated as a linear mixed
model (see Di et al., 2009). In this section, we develop a new procedure based on condi-
tional likelihood. We will focus on predicting the principal component scores at the account
and day levels, i.e., &X’s and &; 's. We give an approach to estimate &£7;’s in Appendix B.
To predict the functional principal component scores for X;(t), define

UNZJ and NX U U

j=1 i1 j=1

In the stock trading data, NiX and NX are the aggregated trading times over m days for

(2
account ¢ and for all accounts excluding account i, respectively. Conditional on the latent

function X;(-), the marginal intensity functions of N;X and N are

A X ()] = Y ERG(6)1Xi()] = mAo(t) explXs(t) + o3 ()/2 + 05 (1)/2], (12)
j=1

X0 = S B ()]X0] = (n— Dimdo(t) exploX (1)/2 + o3 (/2 + 03(0)/2),
i'#i j=1

where \;;(t) is as defined in (1), the first expectation is taken over Y;(t)’s and Z;;(t)’s, and
the second expectation is taken further over X;/(t)’s with ¢’ # i. Using the approximation
of X;(t) in (7) with estimated eigenfunctions ng (t)’s and conditional on the presence of an
event at t, the probability for this event to be from account i is

X0 exp | R, 6407 ()]

— - ~ = (€,
A [t X ()] + o2 [ X () exp[ X & ¢k()} + (n— 1) exp[6% () /2]

11
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where ai((t)’s are obtained from solving (11) and 5% (¢) = nyh(t, t) is obtained from (10).
We then predict EZ-X by maximizing the following conditional likelihood:

LXE) = | ] = wegd| S I L-= wegh)] s (13)

ueNX ueNZX,

Similarly, the functional principal component scores for Y;(t) can be obtained by maximizing
the conditional likelihood

i) =| Il = we)H|§ I - e (14)

Y Y
ueNj UEN,]'

where N jY and ij are the aggregated trading times over n accounts on day j and for all
days excluding day j, respectively, and

exp [0, €401 (1]

¥ (t;€))
T e [0 €0 ()] + (m - D exol5E (1)/2])

2.6 Goodness-of-fit measure

In this section, we propose a goodness-of-fit measure for model (1). To demonstrate the
main idea, we consider the aggregated trading times over m days for different accounts,
denoted as N1X,~ ,NX, as defined in Section 2.5. Let 0 = rg < 7 < --- <71 =T
be a sequence of time points that form a partition of the interval [0,7], and denote by
#{NX}(ri_1,m) the total number of events from N;* that fall between the sub-interval
(ri—1,m],l=1,---, L. Focus on the sub-time interval (r;_1, 7], the proportion of observed
events in U NX(r;_y,7;) that are from the ith account, i.e. from N;X(r;_1,7;), can be
estimated as

#{N Y (r1,m)
St #HANF (e, )

When the number of days m is large, p;(r;_1,7;) under model (1) is a good estimator for
S ot X () dt
Jol o par [t X ()] dt
where ;* [t|X;(-)]’s are as defined in (12). Note that i [t|X;(-)] = p(t) exp [X;(t) — 0% (¢)/2]

due to (5) and (12), i = 1,...,n, where p(t) is deﬁned in (5). Using the estimated model (1)
with a bandwidth h, we can then approximate the p;(r;_1,7;)’s as

pi(ri—1,m1) = i=1,....,n; [=1,---,L. (15)

pi(ri—1,m1) = (16)

S () exp [SRX EXOX (1) - 5% 4 (0)/2] at

SISy pnlt) exp | RX, EXOK (1) - 5%, (0)/2] at

pi(ri—1,ri3h) = ; (17)

12
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where i =1,...,n;l=1,--- L and

Note that we have deliberately emphasized the dependence of p;(r;_1,7;;h) on the band-
width h. The goodness-of-fit of model (1) at the X level within the sub-time interval
(ri—1, rl] can be measured by the discrepancy between the two discrete probability distribu-
tions ]P’X [D1(ri—1,71), s Pn(ri—1,7)] and ]P’l)fh = [p1(ri—1,ri;h), -+, Pulri—1,r; h)]. We
propose the following goodness-of-fit measure based on the Kullback—Leibler divergence

) — BX || X Pi(ri—1,71)

Dx(r;h) = dki, (]P’l ||]P’l7h> Z:pZ (ri=1,77)log [M] . re(ro,m),  (18)
forl = 1,---,L. In practice, the functlon Dx(r;h) is a step function on [0,7] that can
be used as a graphical tool to check whether model (1) with the bandwidth h fits the
data adequately well at the X-level. A goodness-of-fit measure at the Y level, denoted as
Dy (r; h), can be defined in the same way using the aggregated data over n accounts. Finally,
our numerical studies suggest that the choice of partition 0 = rg <71 < --- < rp =T is
of limited importance and we recommend using equal quantiles of the pooled event times
U N with L = 20. Such a choice ensures that there are 5% observed event times within
each sub-interval (r;_q,7;) for il =1,--- L.

2.7 Bandwidth selection

Next, we describe a procedure to select the bandwidth in (9) based on the goodness-of-fit
measure proposed in Section 2.6. As suggested by Theorem 1, the optimal bandwidths at
X,Y, Z levels might be different, and they depend on n and m. As such, our proposed
method chooses different bandwidths for Rx(-,-), Ry (:,-) and Rz(-,-), respectively. We
first consider the bandwidth selection for Rx(-,-). Randomly partition the Ni¥,---  NX
into K folds, denoted as Sp,---,Sk. The main idea is to use data in S_j = Up£,Si to
fit model (1) and then measure its goodness-of-fit to the hold out data in S using the
approach proposed in Section 2.6. The cross-validation score can then be defined as

CVX K ; [; dK1, < XskHP ) X (T'Z - Tll)] ) (19)

where @IX‘S’“ and IP’l L S are as defined in (18) using data included in S and S_g, receptively.

The optimal bandwidth h, is then chosen by minimizing CV x (h).

Following the same procedure, we can define the cross-validation score CVy (h) using
data aggregated over all accounts, Ny ,---, NY  as defined in Section 2.5 and choose the
optimal B accordingly. The bandwidth Selectlon for Rz(-,-) cannot be carried out in the
same way since we can not predict 5 ’s consistently. Alternatively, we simply choose the
h., for Ryz(-,-) as the one that provides good fits at both X and Y levels by minimizing the
added cross-validation score

CVz(h) = CVx(h)+ CVy(h).

Our simulation studies suggest that such a choice yields satisfactory performances.

13



Xu, WANG, BiaN, HUANG, BURCH, ANDRADE, ZHANG, GUAN

3. MFPCA for Bivariate log-Gaussian Cox processes
3.1 Model formulation

In the stock trading data, we observe two types of events from each account, i.e., buy or
sell trades. Therefore, we can view the observed event times as realizations from bivariate
point processes. By modeling the underlying bivariate point processes, we may gain insight
into the temporal covariation of accounts’ buying and selling activities.

Let Ni;; and N3 ;; denote the buying and selling times observed from account ¢ on day
j,i=1,...,nand j =1,...,m. As in Section 2, we assume that N, ;; is generated from
an inhomogeneous Poisson process conditional on a latent intensity function A, ;;(t), where

Ar,ij (t) = >\T,0(t) eXp[Xr,i(t) + Y;",j (t) + Zr,ij (t)]v r= 17 2. (20)

Similar to the univariate case, A (t) is a fixed baseline function representing the average
daily pattern, X, ;(t) and Y, j(t) are random functions reflecting deviations from the baseline
at the account and day levels, respectively, and Z, ;;(t) is the residual deviation, r = 1, 2.
We assume that at any given t, X, ;(t), Y ;(t) and Z, ;;(t) are independent Gaussian random
variables with mean 0 and variances 037 (1), O'%Y (t) and 03, (), r=1,2.

Similar to the development in the univariate case, we can write X, ;(t), Y, ;(t) and

Zy,i(t) using the Karhunen-Loeve expansion as:

W Y W)

Xri(t) = Zfifik(ﬁfk(t% Y, ;(t) = Zfék@bzk(ﬂ, Zyij(t) ~ ngijmrz,k(t): (21)
k=1 k=1 k=1

(r)

where p)z (r) (r)

, p; and er
normal random variables with mean 0 and variances nifk, 772/ . and 777~Zk7 and d)i(k(t), }fk(t)

are sufficiently large positive integers, fﬁfik, f}f ik and 57«Zijk are

and ¢TZ (1) are orthogonal eigenfunctions.
Define €5 = (¢X,,...,¢X T gy —(g¥.,, ... & Tand&?,, = (¢2.4,..., 62 )T
E'r‘,z ( raly ’€T7ip(;;)) 757‘,‘] ( r,gls ’§TJP§/T)) 57‘,1‘] ( rajls ’gr,ijp(Z?))
Y
T,j
and £TZM as in the univariate case. To introduce dependence between two point processes,

we further assume that (5{2,55{», (5%,5%) and (5fij,§§,ij) each follow a multivariate
Gaussian distribution with covariance matrices %, =¥ and %, respectively. Under such
assumptions, we can write

r =1,2. At each r, we assume the same correlation structure within and between 57)42,

=2y 7 =) 7 xf
Pe(ma) e ) () @

where T}V = diag(n%, - 777:‘;“))7 W=X)Y,Zandr=1,2.

w

3.2 Parameter estimation

The eigenvalues and eigenfunctions (nfk, gbfk(t))’s, (nzk, <Z>}:k (t))’s and (nfk, qbfk(t))’s can be
estimated using the approach detailed in Section 2.4; the principal component scores can
be predicted using the approach described in Section 2.5. The primary goal in this section
is the estimation of the covariance matrices 275, X1, and $7,.

14
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We first describe cross covariances estimation at the X level. To that end, first define
Qx(s,t) = Cov [X1,(s), X2,(t)] and aékk, = Cov (fffik,fgfik,). It follows from (21) that

W 5

t) ~ Z Z Ufg,kkfﬁbfk(swgfk/(t)-

k=1k/'=1
This implies that
o / / Qx (5, )64 (5)0% (D) ds.

Because gbfk(s) and qbgfk, (t) can both be estimated, an estimate of aékk, can be obtained
if Qx(s,t) can be estimated. This can be achieved by generalizing the approach used to
estimate the covariance function Rx(s,t) in Section 2.4. The cross covariances at the Y
and the Z levels can be estimated similarly. The detailed formulas are in Appendix A.

4. Asymptotic Properties

In this section, we investigate the theoretical properties of our proposed estimators when
both the number of user accounts n and the number of days m increase. We show that
the covariance and cross-covariance function estimators suggested in (10) and (26) converge
uniformly in probability to their theoretical counterparts as n,m — oco. Consequently, all
eigenfunctions and eigenvalues at different levels as well as correlations among functional
principal component scores of buying and selling activities can be consistently estimated.
We show that with sufficiently large m and n, the functional principal component scores
for each account, i.e., S;X and each day, i.e., S}/, can be consistently estimated. Asymptotic
convergence rates are derived for all consistent estimators. All proofs are collected in the
Supplementary Material.

4.1 Consistency of covariance function estimators

We start our investigation on the asymptotic properties of the covariance function estimators
n (10). Before we state our theorem, we first introduce some regularity conditions.

[C1] There exist constants ¢y > 0 and Cp > 0 such that (a) E [# {Nij}]k < Cy for k < 4;
() co < pijaryrals,t) < Co; and (c) (M‘ < Cp for any s,t € [0,T] and

wi'=1,...,n;5,7 =1,....,m

] T

[C2] There exists a constant Ky > 0 such that

sup mIZZ‘COV Y (t)]] < Ko.

s,t€[0,T] J=1 =1

[C3] Assume that (a) h, — 0, nhi — oo and nhS < oo; (b) hy — 0, mh4 — oo and
mhf < co; and (c) h, — 0, nh4%oo mh? — oo and (m+n)h6<oo

[C4] Assume that the kernel K (z) is compactly supported satisfying: (a f_oo K(x)dx = 1;
(b) [72 @ K (z)dz < oo; (c) there exists a constant ¢1 > 0 such that c(s; h)e(t; h) > 1
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for all h > 0 and s,t € [0,7]; and (d) the inverse Fourier transformation of the kernel
function £(z) = [ e ™K (u) du is absolutely integrable, that is, [ |¢(z)]dz < oco.

[C5] Define random functions

My(s.t) = LSS e [Xi(s) 4 X0 - ok(s)/2 - o 0)/2]
1=1 ¢/ #i=1

My(s.) = — 3 3 exp [¥i(s) + Ylt) — o(s)/2 — 02 (8)/2]
mm = 1) = 55

Assume that there exists a constant C); such that, with a probability tending to 1,
[Mw (s1,t1) — Mw (s2,t2)| < Car (|1 — s2| + [t — t2), as m,n — oo,
for any s1, s2,t1,t2 € [0,T], and W = X or Y.

Condition C1 imposes some constraints on the random daily intensity functions X;;(-)’s.
Specifically, condition C1(a) requires that, on average, there should be only a finite number
of transactions for any user on a given day. Condition C1(b) is satisfied if the baseline inten-
sity Ao(+) is bounded from above and below since we have assumed that sup,¢jo 7y o3, (s) < o
for W = XY, and Z. From a practical point of view, this means that the average user
trading frequency in a stock market should be finite and bounded away from 0 at any time
of day. Condition C1(c) imposes some mild smoothness conditions on A\g(t) and the covari-
ance functions Ry (s,t), W = X,Y, and Z, so that they have bounded absolute partial
derivatives. Condition C2 essentially assumes that there are only short term longitudinal
correlations among trading intensities in the stock market. Conditions C3-C4 are technical
conditions on the choice of bandwidth and kernel functions that are analogous to those
in, for example, Yao et al. (2005). Condition C5 imposes some mild restrictions on the
smoothness of the sample paths of the latent stochastic processes X;(-)’s and Yj(-)’s, and
they closely resembles the commonly employed stochastic equicontinuity assumption in the
literature (Newey, 1991)

The following theorem states that with the above conditions, the covariance estimators
in (10) are uniformly convergent in probability to the true covariance functions.

Theorem 1 Under conditions C1-C5, we have that as n,m — oo,

sup ‘J/%X’hz(s,t) — Rx(s,t)| = O, (n_l/thg) ,
5,t€[0,T7]

sup ‘ﬁy,hy(s,t) — Ry (s,t)] = O, (m_1/2h;2) ,
5,t€[0,T]

sup ‘ﬁz,hz (s,t) —Rz(s,t)| = O, (n_l/QhZ_2 + m_l/zhz_Q) .
s,t€[0,T]

The proof is given in the Supplementary Material.
Theorem 1 states that the convergence rates of Rx p,(s,t) and Ry, (s,t) are determined
by the number of replicates at the X level (i.e., n) and the Y level (i.e., m), respectively.
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However, the convergence rate of ﬁzvhz(s,t) is determined by n and m jointly. These
observations are confirmed by our simulation studies in Section 5.1.

The proof of Theorem 1 utilizes similar technical devices used in Yao et al. (2005), but
several new challenges need to be addressed. Firstly, unlike Yao et al. (2005), the intensity
functions are latent functions that are not directly observable. Therefore, we need to study
properties of a series of carefully designed random sums given in (9), instead of simply
smoothing observed functional data. As a result, new conditions on the observed point
processes need to be imposed as suggested in condition C1. Secondly, Theorem 1 investi-
gates multi-level latent functions while Yao et al. (2005) only studies single-level functional
data. To the best of our knowledge, there are limited rigorous theoretical investigations
on the asymptotic properties of multi-level functional data analysis despite its popularity.
Therefore, our work makes a useful contribution to the literature in this respect. Finally,
the functional data studied in Yao et al. (2005) are independent random trajectories while
the observed point processes in our work are not. For example, all N;;’s for different i’s
are dependent due to the common component Y; in their latent intensities defined in (1).
In addition, we also allow dependence among the latent processes Y;(t)’s in Theorem 1 as
specified in condition C2. The involvement of dependence further complicates our analysis.

The following corollary is a direct consequence of Theorem 1.

Corollary 1 Under conditions C1-C5, we have that, as n,m — oo,
(a) fork=1,....pw, W=X,Y, or Z,
= = 0p (n72052), [ =l | = 0p (mV20)
A=l = O, (n V2% 4202,

(b) for k € IV, W = X,Y, or Z, with T as the indices of eigenvalues 1" ’s with
multiplicity 1,

sup |G (1)~ oX ()] = 0y (n712052),

te[0,7)

swp oY (0) =} ()] = Oy (m 2,2,

te[0,T

sup |67(0) — o ()] = O (22 m 272
te[0,T

The proof of Corollary 1 follows readily from the proof of Theorem 2 in Yao et al. (2005)
and is thus omitted.

4.2 Prediction accuracies of functional principal component scores

Theorem 1 and Corollary 1 ensure the accuracy of the estimated covariance functions and
their corresponding eigenfunctions. It is therefore reasonable to expect the conditional
likelihoods (13) and (14) to yield consistent estimators &;° and E}/, which characterize the
trading pattern at the account and day levels, respectively. Denote || - || as the Euclidean
norm. Our theoretical investigation relies on the following conditions.
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[S1] E [supte[O’T] |Xl(t)|] < 00 and E |sup,cp p [V ()]| < oo

[S2] There exists an absolute constant Ly > 0 such that p;(l SUPye(o,7] H(;SX (75)“2 < Lp and

_ 2 .
Py SUPye[0,7] H(,i)y(t)H < Ly as px and py increase.
[S3] For any nonnegative sequence €y, — 0 as n,m — oo, we have that

1 2
P{ it [ p(0)exp [Xi(0) - ok (0)/2] [8], 0% (1) dtéemn} - 0,

18, I=1 Jo

inf ' 2
P{||6:3|:1/0 p(t) exp [Yj(t) — 0% (1)/2] [ o (t )" dt < en,m} — 0,

as n,m — oQ.

[S4] Let ;1 1, = Corr (f}fk,f;f’k), k=1,...,py, then for any fixed j, one has that

m

sup and

t,s€[0,T] J1=15' 4]

Z Qi3 k11 01, (8)¢h (1)] < o0

k=1

m m

THDODS

b€l iy it jir=1,57

Z 055" k055" kM ¢k ( )(bz(t) <00

k=1

[S5] The number of functional principal components, py, satisfies (a) (n~!+m~1)log(m+
n)pw — 0; and (b) p¥log(m + n) (n=Y2h=2 + m™1/2h=2 4 ¢,,,) — 0 as pw,n,m —

2
00, where epy, = SUPyco.7] D hepyy 11 n (o ()] for W =X or Y.

Conditions S1-S5 are technical conditions on the latent Gaussian processes. Condition S1
imposes mild moment conditions on the latent Gaussian processes. Condition S2 is trivially
true if all eigenfunctions in ¢~ (-) and ¢ (-) are uniformly bounded over the domain [0, 1].
Condition S3 ensures that the Hessian matrix of the conditional likelihoods (13) and (14)
are strictly positive definite with a probability approaching one. Condition S4 is only needed
for Y;(-) so that there are only a “small” number of Yj/(-) strongly correlated with Yj(-),
analogous to condition C2. Condition S5 requires that the decaying rates of eigenvalues
of covariance functions should be sufficiently fast as py grows and that py should not be
too large compared to sample sizes n, m. These additional conditions are needed as latent
random functions are not observed in our framework. Moreover, all components in §‘ZX or
E}/ need to be estimated simultaneously. This is different from classical functional data
analysis where the principal component scores can be estimated separately, see, e.g., Yao
et al. (2005); Chen and Miiller (2012).

~X Y
Theorem 2 Let§; and §; be mazimizers of the conditional likelihoods (13) and (14), re-
spectively. Under conditions C1-C5 and S1-55, and assuming that all eigenvalues of covari-
ance functions RX(S, t) and Ry (s,t) are of multiplicity 1, we have that as px, py,n,m — 0o,

1 1
=0z + g +eon ) V0]

_ ~ 1 1
py1/2 HE;/ _53/” =0y [(ﬁh% + \/mh% +€pY) log(m—i—n)} .
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The proof is given in the Supplementary Material.

Theorem 2 suggests that the convergence rates of EZ and E are controlled by (i) the
estimation errors of the covariance functions and their elgenfunctlons and (ii) the truncation
errors of the Karhunen-Loeve expansion in (7), which are reflected in terms e,, and ey, .

Note that the lengths of the vectors sz and EZY increase as px and py grow, and hence the

overall convergence rate in Euclidean norm || - || will be slower by a factor of p¥2 or p%,/ 2,

4.3 Consistency of cross-covariance function estimators

To study the convergence rate of the cross-covariance function estimators given in (26), we
need some additional assumptions on the marginal cross second-order intensity functions
and the cross covariances among the day level latent processes.

[C1*] There exist constants ¢y > and Cy > 0 such that (a) E [# {Nr,ij}]k < €, for k < 4:
* APt 1 5 (55t)
(b) Co < pij7i/j/’2($,t) < 007 and (C) %
Z7ZI = 17"'7n;j7j/ = 17"-;m.

[C2*] There exists a constant Ky > 0 such that

< Cp for any s,t € [0,T] and r = 1,2,

sup ZZ‘COV Y1,(s ng()}}gKo.

tGOT]mJ 14/=1

[C3*] Define random functions

Mx(s,t) = Py — Z Zexp [X1i(s) + Xoo(t) — of x(5)/2 — 03 x () /2],

= 11’751 1

My (s,t) = ey p— Z Z exp [V1,5(s) + Yar(t) — of v (5)/2 — 03 (1) /2] .

J 1j'#j=1

Assume that there exist a constant 'y such that, with a probability tending to 1,
[ My (s1,t1) — Myy(s2,t2)| < Cwnr (|1 — s2| + [t1 — t2), as m,n — oo,

for any s1,s9,t1,t2 € [0,T], and W = X or Y.

Theorem 3 Under conditions C1*-C3* and C3-C4, we have that, as n,m — oo,

sup|Quxn (s:8) = Qx(s,8)| = 0y (n712072),
5,6€[0,T]

sup ’@Y,hy(&t) —Qy(s,t)] = Op (m_1/zh;2) )
$,6€[0,T

sup ’@th (s,t) = Qz(s,t)| = O, (n_l/th_Q + m_1/2h22> .
$,6€[0,T

19



Xu, WANG, BiaN, HUANG, BURCH, ANDRADE, ZHANG, GUAN

The proof of Theorem 3 is almost identical to that of Theorem 1 and thus is omitted. The
only difference is that one has to impose three additional assumptions C1*-C3* to regulate
the strengths of dependence between the two types of point processes and smoothness of
latent processes.

The following corollary is an immediate consequence of Theorem 3.

Corollary 2 Under conditions C1*-C3* and C3-C4, if we further assume that all eigen-
values of covariance functions Ryw(s,t), W = X,Y, or Z, are of multiplicity 1, we have
that as n,m — oo,

SX X = 0, (n—l/Qh;Q) , S - =0, (m—l/th—z) ,
$H-Sh = 0, ("71/2]1;2 + mfl/thfz) )
where the convergence is entry-wise for the matrix.

The proof is a straightforward application of the Slutsky’s Theorem combining the results
of Corollary 1 and Theorem 3. We thus omit the proof.

5. Simulation

In this section, we demonstrate the effectiveness of the proposed approach through sim-
ulation studies. For the univariate log-Gaussian process, the data are simulated from the
univariate point processes model presented in Section 2.1 using the following intensity model:

Px Py Pz
Xij(t) = Xo(t)exp | > &xon (1) + Y _Eror () + > &nor )|, telo,1], (23)
k k

k=1

fori =1,---,n,j=1,---,m. Weset px = py = pz = 2, M(t) = 0.3cos(2nt) + 1

and simulate principal component scores fi),g , §}§€ and fgk as independent normal random

variables with means 0 and variances equal to the eigenvalues 77,? , 7713 and 77kZ , k=12
Y

respectively. To allow correlations at the Y level, 5]5.;’5 are generated sequentially as £;; =
0.55;/_1’1 + €, where ¢ ~ N(0,0.75n)). The eigenfunctions are set as ¢z (t) = {1,v/3(1 —
2t)}, Y (t) = {1,v2sin(2nt)}, and ¢Z (t) = {1,/2sin(4nt)}, which are used to mimic those
in our real data. Throughout this section, the Epanechnikov kernel function is used in all
simulation studies and summary statistics based on B = 500 simulation runs are calculated.

5.1 Estimation of the univariate two-level model

We first evaluate the accuracies of the proposed MFPCA procedure in estimating the
eigenvalues and eigenfunctions for univariate point processes. In this subsection, we fix
nf( = 7]%/ = 771Z = 0.5, nﬁf = 77%/ = 772Z = 0.2 and allow n, m to vary. The bandwidths ﬁx, fly,
and }Azz are selected by the data-driven procedure proposed in Section 2.7.

Figure 3 shows the estimation accuracies of the eigenfunctions based the mean absolute
deviation (MAD) defined as

B 1
. 1
MAD (¢>kW) SEY ’qbkw OO — W) dt, for W = XY, Z, and k = 1,2,
B b=1"0
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where a,zv (t)®’s are the estimated eigenfunctions in the bth simulation. Figure 3 (a) and
Figure 3 (d) show that the estimation accuracies of ¢; (t)’s improve as n increases, but not
necessarily so as m increases. Figure 3 (b) and Figure 3 (e) illustrate opposite trends for the
estimation of ¢} (¢)’s. In contrast, the estimation accuracies of ¢Z (t)’s improve as n and/or
m increases. These observations are consistent with our theoretical findings in Theorem 1.

a~ a "
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Figure 3: Estimation accuracies of eigenfunctions at X,Y and Z levels.

Next, Figure 4 illustrates the estimation accuracies of the eigenvalues using the relative
root mean squared errors (RMSE) defined as

B
1 2
Relative RMSE(7)") = i By [ﬁ,?/’(b) . nm Cfor W=X,Y,Z, and k= 1,2.
k b=1

The results are similar to our observations in Figure 3 and thus we omit further discussion.

Figure 5(a)-(b) and (c)-(d) show the averaged linear correlation coefficients between the
estimated principal component scores using conditional likelihoods (13)-(14) and the true
ones under various settings. It is seen that at both the X and Y levels, the correlation
coefficients are generally rather high in all case scenarios, suggesting excellent prediction
performances. We also observe that compared to the first PC scores, the second PC scores
are generally more difficult to predict. Finally, Figure 5 (c¢) and (f) illustrate the averaged
CPU time (in seconds) for estimating the covariance functions Ry (s,t), W = X,Y, Z, with
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Figure 4: Estimation accuracies of eigenvalues at X,Y and Z levels.

a fixed bandwidth. All simulation runs were carried out in the software R on a cluster of
100 Linux machines with a total of 100 CPU cores, with each core running at approximately
2 GFLOPS. As discussed in the Remark 1 in Section 2.4, the computational costs of the
proposed estimation method indeed grows linearly with m and n and is of the order O(nm).

5.2 Comparisons with benchmark models

In this subsection, we investigate the benefits of using the two-level model compared to
benchmark models suggested in Section 2.2, namely, the Hawkes process model and the
parametric Log-Gaussian Cox process model (P-LGCP). In addition, we consider a single-
level model assuming that the point process N;; has the latent intensity A;;(¢) of the form

)\ij(t) = o(?) exp[Xi(t)L i=1-,n;g=1,---,m. (24)

We simulate the data from model (23) with a fixed X = 0.5,75 = 0.2 and 7] = n{ =
0.5¢, 77%/ = 772Z = 0.2¢q for ¢ = 0,0.1,0.2,--- ;1. Under this setting, the two-level model
reduces to the single-level model when ¢ = 0, and the difference between these two models
becomes larger as g grows. All other settings remain the same as those in Section 5.1.
To fit the single-level model, we apply the method proposed in Wu et al. (2013) to the
aggregated point processes NiX = UT:1Nija 1 =1,---,n, to predict the random intensity
function in (24). For comparisons between various fitted models, we consider three metrics:
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Figure 5: Estimation accuracies of principal scores at X,Y and Z levels and the computa-
tion times.

(1) the overall mean absolute deviation: OMAD = -L %™ Pyl X (1) — Aij(2)|dt;
(2) the overall goodness-of-fit at the X level: Fitx = fol Dx (r; h)dr with Dx(r; h) defined
in (18);

(3) the overall goodness-of-fit at the Y level: Fity that is similarly defined as Fity.

For the Hawkes and the P-LGCP model, the estimated background intensity fi;(-)’s as
suggested in (3) are used as S\ij(-)’s in the definition of OMAD. The summary statistics
based on B = 500 simulation runs are summarized in Figure 6. When computing Fit x and
Fity for the Hawkes and the P-LGCP model, the model-based probabilities defined in (16)
do not have closed-forms as given in (17). Therefore, for each simulation run, we numerically
approximate the model-based probabilities by the average of the empirical probabilities (15)
computed using 100 replicate datasets simulated from the fitted models. Figure 6 (a) shows
that as ¢ increases, the estimation accuracies of A;;’s using the single-level model as well
as the two benchmark models become much worse than the two-level model. However, the
single-level model can indeed still capture the variations at the X level as indicated by
Figure 6 (b), where the averaged Fity for both single-level and two-level models are well
within the 95% quantile bands of Fitx (Truth).
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In contrast, while the Hawkes and the P-LGCP model can capture the general trend of
the variations at the X level, their performances are significantly worse than those of the
other two models. One possible explanation is that the parametric assumptions imposed on
the benchmark models may not be suitable for the underlying data, as we have discussed
in Section 2.2. Since the single-level model (24) completely ignores the variations at the Y
level, it essentially assumes p;(ri—1,r;;hy) = 1/m for j =1,--- ,m in the definition of Fity,
which provides rather poor goodness-of-fit at the Y level as ¢ grows. The Fity’s computed
using simulated data from the fitted Hawkes and P-LGCP models have almost the same
trend as ¢ increases in Figure 6, suggesting that both models fail to capture variations at
the Y level. In summary, when data are generated from the two-level model (23) but fitted
with a single-level model (24) or benchmark models given in Section 2.2, variations at the
X level can be captured to a certain degree while variations at the Y level may be poorly
characterized. This leads to rater inaccurate estimates of the underlying latent intensity
functions A;;(t)’s.

(a) Estimation accuracy of 3, (t) (b) Goodness-of-fit at the X level (c) Goodness-of-fit at the Y level
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Figure 6: Comparisons between the two-level and the single-level model as well as
benchmark models. The Fitx(Truth) (Fity(Truth)) is computed by replacing
pi(ri—1,r;h) in (18) with the theoretical probability (16).

5.3 Estimation of the bivariate log-(Gaussian Cox process

Next, we evaluate the estimation performance for the bivariate point process model pre-
sented in Section 3.1. The same eigenvalues and eigenfunctions are used as in the univariate
model (23). The principal scores are generated from the covariance structure in (22), with
=X =3V = 27 = diag{0.5,0.2} for r = 1,2, and 35 = B}, = BF, = ( 00'125 06115 >
We apply the proposed MFPCA procedure for bivariate point processes to the simulated
data. Of particular interest is to estimate the cross-covariance matrices, i.e., Z{g, ZE and
%, Table 1 shows the empirical means and standard errors of these estimates from 500
simulations. The empirical means are generally close to the true values, and the standard
errors decrease as the sample size increases. There are some apparent biases in estimating
2%, =Y, when m = n = 100, but the biases become much smaller when m = n = 300.
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DS 1 7

0.20 0.15 0.20 0.15 0.20 0.15

Truth 0.15 0.10 0.15 0.10 0.15 0.10
0.I180 0.127 | 0.183  0.128 [ 020 0.144
(0.115)  (0.056) | (0.111) (0.058) | (0.045) (0.030)

m=n=100 | '0.129° 0.082" | 0.127 0.077 | 0.139° 0.088
(0.060) (0.036) | (0.056) (0.035) | (0.028) (0.020)

0.196  0.142 | 0.180  0.140 | 0.203  0.143
(0.08)  (0.037) | (0.065) (0.036) | (0.026) (0.014)

m=n=300 | (.138  0.091 | 0.137 0.089" | 0.142" 0.089
(0.036) (0.025) | (0.036) (0.023) | (0.016) (0.009)

Table 1: Empirical means and standard errors (SEs, in parentheses) of the estimated X5,
»¥, and £% in the bivariate case. Each box shows a 2 x 2 matrix of empirical
means/SEs.

6. Application to Stock Trading Data

The example data to which we apply our methodology contains stock market buy and sell
transactions from 331,599 investor accounts at a leading brokerage house in mainland China
during the period covering January 4th, 2007 to September 30th, 2009. These accounts are
from 98 branches distributed over 25 provinces in the central and eastern coastal areas of
mainland China.

As background on the Chinese stock market, during 2006-2017 its market capitaliza-
tion grew more than five-fold to become the second-largest in the world (Carpenter and
Whitelaw, 2017). Among the world’s ten largest stock exchanges, two are operated in
mainland China (the Shanghai Stock Exchange and the Shenzhen Stock Exchange)!. The
Chinese market began to boom in November 2006 (Andrade et al., 2013), just before the
start of our sample period. The Shanghai Stock Exchange (SSE) Composite Index dou-
bled from around 2,000 points to more than 4,000 points in less than six months. Many
observers characterized the market as experiencing a bubble, and in an attempt to cool
down the market, on May 30th, 2007, the Chinese government tripled the transaction tax
on trades from 0.1% to 0.3%.? Although the market experienced several major sell-offs fol-
lowing the tax increase, the SSE market index recovered and kept increasing until reaching
a historic high of 6,124 points on October 16th, 2007. Afterward, the market index plunged
and in April 2008 the transaction tax was reduced to its prior level of 0.1%. The market
continued to decline, with the SSE index in mid-September 2008 down approximately 70%
from its October 2007 high. To stimulate buying, on September 18th, 2008, the Chinese
Government announced the abolition of the tax on buying (maintaining it only for sales)
among other measures to bolster the market. The market gradually recovered and the SSE
composite index closed at 2,779 points on September 30th, 2009.

The period we study contains 672 trading days, and on average, each account in our
dataset has 150 buy or sell transactions during this period. Each investor account has a

1. See the World Federation of Exchanges (https://www.world-exchanges.org).
2. See Andrade et al. for evidence supporting a stock market bubble during this time-period, as well as
further discussion of the tripling in the transaction tax.
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randomly-assigned identification number and there is insufficient information for us to dis-
cern actual investor identity. There is a large variation in the trading frequencies across
accounts where the total number of transactions ranges from 0 to 874,263. In our analy-
sis, we have removed accounts with fewer than 30 or more than 2,000 total transactions,
which results in retaining approximately 47% of the accounts in the broader dataset, or
equivalently, a total of 157,203 accounts. We do not consider accounts with fewer than 30
transactions because it would be difficult to estimate the account-level effect for such ac-
counts. Accounts with more than 2,000 trades are likely institutions that submit trades on
behalf of other investors and account for only around 0.2% of the total data. Our results are
not materially affected by changing the minimum cutoff to 10 or by changing the maximum
cutoff to 1,000.

We next discuss the application of our proposed model to the stock trading data, inter-
preting what is learned where appropriate. In subsection 6.5, we discuss potential further
applications for interested finance researchers.

6.1 Eigenfunctions

We first apply our proposed MFPCA approach for univariate point processes to study the
variations of an investor’s buying and selling activities separately. The intensity functions
of the processes underlying the buying and selling activity are modeled using the two-level
models (20) with px = py = pz = 5 and bandwidths for the Epanechnikov kernel at
different levels selected by the data-driven method proposed in Section 2.7. Figure 7 shows
the first three eigenfunctions at the account (X), day (Y), and account-day (Z) levels for
both the buying and selling processes. The first three eigenfunctions at the X, Y and Z
levels explain about 96.30%, 93.44%, and 67.37% of the variation at the respective levels
for the buying process, and 96.62%, 93.25%, 67.44% of the variation for the selling process.

In Figure 7, we can see that the eigenfunctions for the buying and selling processes are
very similar. In what follows, we therefore focus on interpreting the eigenfunctions for the
buying process alone. Note that the first eigenfunctions of all three levels are flat. This
suggests that the overall buying frequency is the most important factor in explaining the
variability at each level. At the account level, the second eigenfunction decreases throughout
the day except for a small jump at the beginning of the third trading hour. This charac-
terizes trading accounts that display buying activity that steadily increases (or decreases)
throughout the day. The third eigenfunction at the account level is approximately flat at
zero until an abrupt jump around mid-day; the eigenfunction then decreases from mid-day
to the end of the day. This characterizes trading accounts that are more active in the after-
noon and whose afternoon trading activities follow an increasing or decreasing pattern. At
the day level, the second eigenfunction shows a roughly decreasing trend in the morning.
This characterizes days that have increasing or decreasing morning trading activity.

At the account-day level, the second eigenfunction is relatively steady in the morning and
afternoon with a sharp drop around noon. This characterizes contrasting morning versus
afternoon trading behaviors. The third eigenfunctions at both the day and the account-day
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Figure 7: First three eigenfunctions for the buying process (column 1 to 3) and selling
process (column 4 to 6) at the account (top row), day (middle row) and account-
day (bottom row) levels.

levels rise until mid-day and then decrease. This characterizes trading behavior that is
concentrated around mid-day.
6.2 Principal component scores

Figure 8 shows scatter plots of the principal component scores in the first three directions
for the buying process at the account level. We can see from these plots that compared to
accounts with lower scores in the first direction, those with higher scores tend to have a
smaller variation in the second and third directions. Note that a larger principal component
score in the first direction indicates higher overall buying frequency. Thus, accounts with
higher buying frequency tend to buy more evenly throughout the day than with the specific
patterns as described by the second and third directions. Richards and Willows (2018)
find that only a small proportion of investors with certain common characteristics trade
frequently, which may partially explain the homogeneity of their intra-day trading patterns
we observe. However, there has been little research in the finance literature that studies
cross-sectional differences in time-of-day trading preferences between investors with higher
trading frequencies and those with lower trading frequencies, as suggested by Figure 8. We
comment on this finding later below.

Figure 9 shows principal component scores in the first two directions for the buying
process at the day level. Because the first two eigenfunctions characterize the overall trading
frequency and morning trading activities at the day level (see Figure 7), a larger score in the
first direction indicates higher trading frequency, whereas a larger positive (negative) score
in the second direction indicates increasing (decreasing) morning trading activity during
that day. From the first plot, we can see that the trading frequency increases from the start
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of our observation window until May 30th, 2007, when the transaction tax is tripled. At
that point trading frequency begins to decline, showing that the tax increase was successful
in dampening trading activity as the government desired. This finding is also consistent
with the findings in transaction tax research (Umlauf, 1993; Mannaro et al., 2008).

Despite noticeable variability, trading frequency continues to decline until September
19th, 2008, the first trading day after the buy-side transaction tax is eliminated. There-
after, again consistent with the implications of prior research on transaction taxes, trading
frequency begins a new trend of increasing intensity. In the second plot, we observe a period
of overall decreasing morning trading activity following the tripling of the transaction tax
on May 30th, 2007. The largest scores are achieved around September 18th, 2008 when
the buy-side transaction tax is abolished, coupled with low scores in the first direction.
This implies low trading activity overall that is concentrated early in the trading day. On
September 19th, almost all the stocks reach the maximum allowable 10% daily increase
shortly after the opening of the market, and there were very few trading activities after
that.? This is consistent with the values of the scores in the first two directions. The scores
in the second direction are generally small in the other periods.

Figure 8: Scatter plots of buying scores from different directions at the account level based

on 10000 randomly selected accounts. From left to right: scores of directions 1
vs 2,1 vs3and 2 vs 3.

6.3 Correlations between buying and selling activities

To study the temporal covariation of an investor’s buying and selling activity, we apply
our proposed MFPCA approach for bivariate point processes. Table 2 shows the correla-
tion matrices of scores from the buying and selling processes together with the associated
standard error estimates obtained by bootstrapping the predicted scores at the account
and day levels. The bootstrap procedure is admittedly an ad hoc approach but can nev-
ertheless provide some measure of uncertainty for these estimates. It is not used for the

3. During the time period we study, the Chinese markets impose a maximum 10% increase or decrease in
a stock’s price. Trading in the stock closes for the rest of the day if that limit is reached, which does
happen on occasion.
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Figure 9: Principal component scores of the first (top) and second (bottom) buying direc-
tions at the day level based on 10000 randomly selected accounts. The solid line
is a fitted smoothed curve. The two vertical dashed lines from left to right mark
May 30th, 2007, and September 19th, 2008, the two transaction tax policy change
dates.

account-day level, however, because of the difficulty in estimating the scores reliably at that
level (some accounts have too few transactions). Based on the results, we observe strong
positive correlations between scores in the same direction and at the same level, i.e., there
are large diagonal elements in each of the three correlation matrices. These correlations can
be interpreted easily given the interpretations of the associated eigenfunctions. For exam-
ple, the positive correlation between the first buying and selling directions at the account
level (0.9643) suggests that accounts with higher buying frequency also have higher selling
frequency. This high correlation indicates that most trades are security selection rather
than asset-class-allocation trades, i.e., investors are typically rebalancing an existing stock
portfolio rather than increasing or decreasing its overall size. Because it is very unlikely that
the typical Chinese individual investor (as opposed to institutional investor) has access to
superior information about the stocks they trade, this finding is consistent with the finance
literature’s documentation that individual investors, to their detriment in terms of perfor-
mance and trading costs, are overconfident and trade too frequently (Odean, 1999; Barber
and Odean, 2000, 2001; Barber et al., 2008). The off-diagonal elements in the correlation
matrix can also offer insights into the correlation between buying and selling activity. For
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example, at the account level, the negative correlation between the second buying and the
third selling directions (-0.1418) implies that accounts with decreasing buying frequencies
in a transaction day are also more likely to sell earlier in the day than later. For the day
level, the positive correlation between the second buying and the third selling directions
(0.3285) implies that transaction days with decreasing buying activity in the morning tend
to have higher selling activity around the middle of trading day.

Yx Yy Yz
0.9643 -0.0005 0.-0.0244| 0.7873 0.1053 -0.0167 | 0.8110 0.1913 -0.0287

(0.1062) (0.0128) (0.0182) | (0.0134) (0.0929) (0.0767)
0.0108° 0.3982  -0.1418 | 0.0884 0.4585 0.3285 |-0.1636 0.5227 -0.2671
(

(
(0.0127) (0.1157) (0.0140) | (0.0835) (0.0896) (0.1152)
(

~0.0180 -0.0727 0.7690 | -0.0784 -0.293" 0.7600 |-0.0421 0.2415 0.5936
(0.0130) (0.0335) (0.0560) | (0.0425) (0.0928) (0.0234)

Table 2: Correlation matrices between scores (€p, &€g) from the buying and selling pro-
cesses at each level. Each matrix includes the first three directions. Bootstrapped
standard errors are shown in the parentheses.

6.4 Goodness of fit

Finally, we check the goodness-of-fit of the two-level model (1) to the stock trading data.
The results for the buying and selling processes are rather similar, so we only present some
diagnostic plots for the buying process. Figure 10 (a) and (c) illustrate the goodness-of-fit
measures computed on a random subset of 10,000 accounts applying the definition (18) at
the account (X) and day (Y') levels with different numbers of principal components. For
both account and day levels, we observe that the model estimated using only one principal
component is not able to capture all of the variation across different accounts or days. As the
number of principal components increases to 5, however, the model fits become significantly
better for both levels.

As a comparison, we compute the same goodness-of-fit measures for the Hawkes and the
P-LGCP model suggested in Section 2.2, with the model-based probabilities numerically
evaluated by the average of the empirical probabilities (15) based on 500 replicate datasets
simulated from the fitted models. In Figure 10(a), we can see that at the account level, the
Hawkes process model performs much worse than all LGCP models. The P-LGCP model
performs similar to the MFPCA model with px = 3 principal components, although its
goodness-of-fit at the boundaries is relatively worse. Overall, the MFPCA model with 5
principal components shows uniformly superior performance and achieves rather small KL-
divergence, indicating that the model captures account level variation sufficiently well. At
the day level, Figure 10(d) suggests that both benchmark models perform similarly, yielding
model fits that are significantly worse than those of the MFPCA model. This is expected
due to the reasons discussed in Section 2.2. The KL-divergence values for the MFPCA
model with 5 principal components are also rather small, especially when compared to
those at the account level, which indicates an adequate fit at the day level.
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Figure 10: Left panels: KL-divergences defined in (18) at the account and the day levels;
Middle and right panels: model fits at two sample accounts and two sample
days.

While Figure 10 (a) and (d) demonstrates that model (1) can adequately capture vari-
ations in most of the accounts or days, there might still be room for improvement. For
example, Figure 10(b)-(c), (e)-(f) illustrate the associations between logit transformed fit-
ted probabilities (17) and observed probabilities (15) over the time domain [0,1] for two
sample accounts and two sample days. In Figure 10(b) and (e), the model fits the observed
data quite well while in Figure 10(c) and (f), the model fails to capture some patterns at
the account or the day level.

6.5 Potential further finance applications

We view the main contribution of this paper as developing a methodology for high volume
temporal event time data generated by users (e.g., social media activity, online purchases
or reviews, or stock trades in our case) or some physical science process. Given the stock
trading data to which we apply our proposed methodology as an example, we have provided
some brief discussion about trading behavior as it relates to prior findings in the finance
literature, mainly to show that our findings are consistent with what finance researchers
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have found about trading behavior. There are, however, unresolved questions in the finance
literature that could benefit from the methodology we propose.

There is a large literature in behavioral finance and social sciences concerning interpre-
tations of trading behaviors. One topic of prior research is how trading activity differs due
to investor characteristics such as age, gender, or geographic location (e.g., Odean, 1999;
Barber and Odean, 2001; Samanez-Larkin et al., 2010; Henninger et al., 2010, etc.). An-
other is how information that induces trading disseminates across a large population (e.g.,
Feng and Seasholes, 2004). However, most existing work is based on aggregated trading
activity (e.g., the total number of trades in a day), and thus fails to gain potentially impor-
tant insights from intraday trading patterns. Furthermore, when studying the impacts of
account-related characteristics on trading behavior, trading statistics based on aggregated
data across time may fail to account for the confounding effects of day-level factors. As
data that include intraday trading information become more available, the proposed MF-
PCA framework provides a powerful tool with which to decompose the variation of such
trading data in meaningful ways and to summarize high-frequency trading activity using
multiple principal component scores. The PC scores provide a multi-dimensional view of
intraday trading activity, which in turn allows researchers to more thoroughly investigate
and describe the factors that determine trading decisions.

A second line of finance research our proposed method can benefit is that which attempts
to exploit abnormal patterns in trading activity to devise successful trading strategies (e.g.,
Andrade et al., 2008). Standard outlier detection tools can be applied to the account-
level principal component scores our methodology incorporates to identify investors with
abnormal intraday trading activity. This may lead to improvements in trading models by
identifying more predictive trading signals. At the day level, it may also be interesting to
monitor the daily trading status of the stock market to predict the formation of asset price
bubbles (e.g., Andrade et al., 2013), which may better enable policymakers to implement
countermeasures. Such monitoring could be accomplished by applying change point de-
tection tools (e.g., Polunchenko and Tartakovsky, 2012) to the multivariate time series of
principal component scores at the day level to detect abnormal changes in the stock market,
which might indicate bubble formation in its early stages.
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Appendix A: Estimation of the Cross Covariances

Given (20), the marginal intensity functions can be calculated as
pr(t) = B ()] = Aro(t) explo?y (0)/2 + 02y (0)/2 + 02 (/2] 7 =1,2.
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Define the marginal second-order cross-intensity functions pj; ;1 5(s,t) = E[A1,55(s) A2,y (1)]-
It can be easily seen that

p1(s)pa(t) exp[R@x (s, t) + Qv (s, 1) + Qz(s,t)], ifi=i',j=7,
. ) pi(s)pa(t) exp[Qx (s, )], ifi=1d,j#7,
P2 =Y ) pat) explQy (s 1), g =g, O
p1(8)p2(t), ifi#i',j#7,
where Qw(s,t) = Cov [W1,(s), Wa,(t)] for W = X,Y,Z. Let A*(s,t), B*(s,t), C*(s,t)

and D*(s,t) denote the four expressions in (25). Similar to Section 2.4, we first develop
estimators for A*(s,t), B*(s,t), C*(s,t) and D*(s,t) and then derive our estimators for
QX(S>t)7 QY(Svt) and QZ(Svt)'

To estimate pj; ;. 5(s,t), we first note that by Campbell’s theorem,

E Y fuw) //fuv,owwlg(uv)dudv

’LLGNL,']',’UGNQJIJ'/
for any real function f(s,t). We can then define
Kals — w)Ki(t — v)

A s,t) ,

n( ; ; ueN%;%\& ) nmc(s; h)c(t; h)

Kals — u)Ki(t — v)

B s, t) ,

n( ; ]Z;]'Z;é:] uele;qé:VQ ) nm(m — 1)c(s; h)c(t; h)

i k7]

Kp(s —uw)Kp(t—v
Ch 5 1) ZZZ ZZ nm??i - 1)2(8?2)0@)}1),

i=1 4/ j=1 u€N1 ;5,vEN, ;/;

N Kn(s — u)Ku(t —v)
- Z Z Z Z Z Z — De(s; h)e(t; h)’

et et et £t nm(n —1)(m
i=1 i'#i j=1 j'#j uEleij,vENQJ-/j/

where K}, and c(s; h)c(t; h) are as defined in the univariate case. In view of (25), we can
estimate Qx,h(s t), QYh(s t) and QZ n(s,t), for s, t € [0,T], with

~ B*( t) A Cr(s,1)
s, t log— , s, t log—
Qx (s, t) = gDh(S’t) Qyn(st) = gD (5.0 .
N A5 (5,) Dy (s,1)
s, lo B = .
Qzalst) =log $,t)Cp(s,t)

Appendix B: Prediction of £/’s

Let ni; = #{N;;}. Given the latent processes X;(-), Y;(-) and Z;;(-), the probability density
function for N;; is

LTI Aol exslxi(w + 50+ Zi(lexw { [ Mot exnl0) + Y5(0) + 2300t}

Mij ueN”
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Note that X;(t) and Y}(t) can be estimated by

Zg ) and Yj(t Zg

where g%i((t)’s and qgky(t)’s are estimated as in Section 2.4, and Ai),g’s and A},;’s are estimated
as in Section 2.5. Moreover, it follows from (5) that

Xo(t) = p(t) exp[~o% (t)/2 — 0% (1) /2 — 07 (t)/2].

Thus, A\o(t) can be estimated by

Ao(t) = pu(t) expl—6%(8)/2 — 63.(1) /2 — 53(t)/2],

where f(t) is defined in Section 2.6 and 62, (t) = Ry (t,t) is obtained by using (10) for
W=XY,Z.
Given the approximation

bz
t) ~ Z A

where gZA)f (t)’s are estimated as in Section 2.4, we then estimate 5%3 S by maximizing

u€ Ny

We note that the prediction accuracy will depend on the number of observations from
account ¢ on the day j. When there are only a few data points available, the resulting
estimates can be highly unreliable.

Appendix C: Nested Three-Level Model

Recall the nested three-level model

i) (1) = Xo(t) exp[Ui(t) + X (t) + Y;(t) + UYi;(t) + Zipy; (1)), (27)

where : =1,...,n, j=1,...,mand [ = 1,...,b for some positive integers b, n; and m.
We assume that at any given t, Uj(t), X;()(t), Y;(t), UYi;(t) and Z;(;;(t) are independent
normal random variables with mean 0 and variances o7 (t), 0% (t), 02 (t), 0%y (t) and o%(t).
The marginal intensity function can be calculated as

p(t) = E[Xq);(0)]
= Xo(t) explogs(t)/2 + 0% (1)/2 + 0¥ (1)/2 + oty (1) /2 + 05(1) /2].
Suppose that covariance functions at different levels are expressed as
Ry(s,t) = 302,y o () (), Rx(s,t) = 302, mg o3 (s)3 (¢)

)b (
Ry (s, t) =32 177?;%( )9y (t), RUy(S t) =0y on Y ()oY (1)
Ry(s,t) =352 1"71g ()¢k()
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where ! >0 > >0, pf >nf > >0 9 =0y > >0,V >9f¥ >... >0
andnf >nZ >--- > Oare eigenvalues of Ry (s,t), Rx(s,t), Ry (s,t), Ruy(s,t)and Rz(s,t),
respectively, and ¢ ’s, <Z>i( ’s, d) s, (bUY’s and ¢ ’s are the corresponding orthogonal eigen-
functions. The Karhunen-Loéve expansions of the random functions in (27) are

Ui(t) = 3232 &gy (8, X () Soner Erdi (0, Y5(t) = 3252 oy (1),
UYlj( ) Zk 1§l_]k‘ ( )7 Zi(l)j( ) - Zk:l éﬁl)]k(bk( )7

U ¢X Z : : :
where £, § Dk 8 kv §l ik and §i(l)j ;. are normal random variables with mean 0 and variances

771@777167771);7 7712])/ andnk’kzlv'--voo

Define p;1y;.r1)57,2(5, 1) = E[Xi);(8) sy (t)]. Tt is easy to see that

(eXp[RU(Sv t) + RX(37 t) + RY(Sa t)

+Ryy (s,t) + Rz(s,t)], iti=d(1=10),5=74,

exp[Ry(s,t) + Rx(s,t)], ifi=d(l=10),7#7,
Pig,ir )y ,2(8:1) . i i (98
o(5)p(0) = ¢ exp[Ry(s,t) + Ry (s,t) + Ryy(s,t)], ifl=U,i#4d,5=4, (28)

explRy (5.), 1AL # 15 =

eXp[RU(Svt)] ifl= l/7i e Z./aj # j/-

1 1AL £, A T

Let Nj); denote the trading times observed from account ¢ in branch [ and on day j.
We can estimate p;); (l/)]l’2<3, t) under the six different scenarios in (28) with

m uFv

R n(t—wo
Ap(s,t) = ZZZ ZZ bnlmcsh ((t h))7

=1 = 1] lu’UGNZ(l)J

— Ki(s—uw K (t—ov
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In view of (28), we can estimate the covariance functions using

~

R Bu(s.t) & Con(s,t
Rx (s, 1) = 1OgAh(i), Ry p(s,t) = logw,
D1 n(s, 1) Da (s, t)
5 Ap(s,)D1p(s,t) = B (st
Rzn(s,t) =log Ah(& )Al’h(& ), Rup(s,t) = logM,
Bh(87t)017h(8,t) D27h(3,t)

R 6 t B t
Ryyn(s,t) =log Alvh(sa )Az,h(s, )
Con(s,t)D1p(s, 1)
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