
Cloud FPGA Security with RO-Based Primitives
Shanquan Tian
Yale University

New Haven, CT, USA
shanquan.tian@yale.edu

Andrew Krzywosz
Yale University

New Haven, CT, USA
andrew.krzywosz@yale.edu

Ilias Giechaskiel
Independent Researcher

London, United Kingdom
ilias@giechaskiel.com

Jakub Szefer
Yale University

New Haven, CT, USA
jakub.szefer@yale.edu

Abstract—Physical Unclonable Functions (PUFs) and True
Random Number Generators (TRNGs) are common primitives
that can increase the security of user logic on FPGAs. They
are typically constructed using Ring Oscillators (ROs). However,
PUF and TRNG primitives are not currently available on Cloud
FPGAs as some commercial Cloud FPGA providers prohibit
deploying ROs implemented using Lookup Tables (LUTs). To
aid in bringing RO-based PUFs and TRNGs to commercial
Cloud FPGAs, this work implements and evaluates PUFs and
TRNGs built using ROs that incorporate latches and flip-flops.
The primitives are tested on Amazon’s commercial F1 Cloud
FPGAs. The designs are the first constructive uses of ROs in
Cloud FPGAs and are available under an open-source license.

Index Terms—Cloud FPGAs, Ring Oscillators, PUFs, TRNGs

I. INTRODUCTION

With the emergence of Cloud FPGA offerings, users can
easily deploy their FPGA-based designs to the cloud on
demand. Unfortunately, deploying FPGA-based designs in the
cloud poses new challenges. Thus, most existing Cloud FPGA
research has primarily focused on attacks, e.g., [1]–[3], and
countermeasures to these attacks, e.g., [5], [6].

Meanwhile, this paper addresses an orthogonal issue: pro-
viding a good source of randomness for cryptography, and
allowing users to fingerprint FPGAs for authentication and
reliability purposes. To this end, this paper introduces and eval-
uates Physical Unclonable Function (PUF) and True Random
Number Generator (TRNG) primitives based on novel types
of Ring Oscillators (ROs) for use in Cloud FPGAs. As some
commercial Cloud FPGA providers block ROs implemented
using Lookup Tables (LUTs), this work instead leverages ROs
consisting of latches and flip-flops [1], [9].

The presented PUFs achieve good inter- and intra-device
Hamming Distances (HDs), and can reliably distinguish be-
tween dozens of different Cloud FPGA chips. Moreover, our
PUF fingerprints are accurate even when the temperature of
the FPGA changes. Our designs only use few resources, and
work well on several locations of the FPGA die.

The presented TRNGs pass all the National Institute of
Standards and Technology (NIST) randomness tests. They can
produce random bits for use both within the FPGA and by the
host software. The bandwidth is limited only by the number
of ROs used or the current PCIe interface implementation.

We have made the code used in this work available un-
der an open-source license at https://caslab.csl.yale.edu/code/
cloud-ro-primitives/.

This research was supported by NSF grant 1901901.

II. BACKGROUND

This section provides the relevant background on ROs (Sec-
tion II-A), PUFs (Section II-B), and TRNGs (Section II-C).

A. Ring Oscillators

Traditional ROs implemented using LUTs are detected and
prohibited by some cloud providers, such as Amazon Web
Services (AWS), preventing LUT-based RO PUFs and TRNGs
from being possible on the cloud. However, alternative ROs
replace one of the LUT stages with a latch or a flip-flop [1],
[9], as shown in Figure 1. We use these types of ROs for the
first time to develop PUFs and TRNGs in Cloud FPGAs.

B. Physical Unclonable Functions

RO-based PUFs exploit the RO frequency sensitivity on
random manufacturing variations to create a unique fingerprint
of otherwise-identical chips [10]. These fingerprints can be
used for IP protection and reliability purposes, in the absence
of digital IDs that are currently inaccessible in Cloud FPGAs.

More precisely, an RO PUF consists of n ROs, whose
frequencies are sampled and compared through counters. Out
of the possible n · (n− 1)/2 pairs, typically only m = O(n)
are used to create an m-bit fingerprint. The number of bits in
which two PUF responses differ (Hamming Distance, or HD)
should be small when sampled from the same FPGA (intra-
device HD), and large for different FPGAs (inter-device HD).

So far, almost all RO-based PUFs have been implemented
with LUTs, and large-scale analyses of RO PUFs have been
very limited [4], [16]. However, Wild et al. have implemented
latch-based RO PUFs as a way of reducing resource utiliza-
tion [15], [16]. Nevertheless, their RO design is different from
the one used in this work, and they only evaluated it on local
FPGAs, not on Cloud FPGAs. By contrast, we collect PUF
data on dozens of FPGAs, implement the first RO-based PUFs
on the cloud, and evaluate the first-ever flip-flop-based RO
PUF, whether locally or on the cloud.

C. True Random Number Generators

TRNGs leverage unique device characteristics to produce
unpredictable random sequences of bits for key generation
and encryption, among others, without having to rely on
potentially untrusted software for their source of randomness.
Conversely, TRNGs on FPGAs can alternatively be used as
a trusted hardware-based entropy generator to supplement the
randomness that is available to host software.



(a) Latch-based RO (b) Flip-flop-based RO

Fig. 1. The (a) latch-based and (b) flip-flop-based ring oscillators used
in this work. Figures adapted from [1].

RO-based TRNGs exploit the jitter behavior of signal tran-
sitions in the analog output of an RO [11]. The uncertainty
in the exact timing of a rising or falling edge is influenced
by environmental and manufacturing factors, making samples
within this transition period good candidates for generating
random numbers. Due to the difficulties associated with di-
rectly sampling an RO within its jitter period, an XOR tree of
n ROs is sampled at a fixed rate [11]. Unlike prior work which
has exclusively used LUT-based ROs, our TRNGs leverage
latch-based and flip-flop-based ROs for the first time.

III. RO PUF DESIGN

Our PUF design introduces the idea of redundant ROs,
which allows us to evaluate the quality of each RO pair by pre-
testing the PUF design on a smaller number of Cloud FPGA
instances, and discarding “bad” RO pairs, which decrease the
effectiveness (uniqueness and reliability) of the PUF response.

Our PUFs consist of 512 ROs, with each RO only used
in one comparison pair. The 256 resulting pairs then generate
256 bits for pre-testing with 40 FPGA instances. After the pre-
testing phase, 128 “good” bits (i.e., RO pairs) that generate
high entropy are chosen to be included in the final PUF
responses, with the other 128 bits ignored entirely. As we
show in Section V-A when testing with 160 instances, the
selection of high-entropy bits decreases the intra-device HD
of the PUF response, while increasing the inter-device HD. In
other words, our approach significantly improves the reliability
and uniqueness of the RO PUFs by finding the RO pairs that
are stable within an FPGA, but differ among FPGAs.

Figure 2 shows our RO PUF module, which consists of
n = 512 ROs with two multiplexers (MUXes) and two RO
counters for comparing the RO pairs. The m = n/2 = 256 RO
pairs use adjacent ROs to eliminate systematic variations [7],
[8], and each RO is only used once. The RO outputs drive the
counters, which are sampled on a system clock timer set by the
software. To minimize noise, when an RO pair is sampled, the
other ROs are disabled. In pre-processing, m = 256 bits are
sent back each time, and are used to identify the 128 good RO
pairs. In later experiments with more (and different) FPGAs,
the same 128 good RO pairs that were identified in the pre-
processing stage are used to generate the PUF fingerprints.

To evaluate the effect of temperature on the quality of
the proposed RO PUFs, we further add an RO Sensor and
RO Heaters module to our design. This module allows us to
increase and observe the FPGA temperature, collecting PUF
fingerprints at different thermal states of the fabric, proving
the stability of our design across environmental conditions

�����

����

����

������

������ �����

�

�����

�����

�������

�����

�����

�

�
���

��������

0110…

�������

������������������������

������

�����

���������

���������

������

�����

������

�����

������

�����

Fig. 2. Diagram of the RO PUF on AWS F1 instances. The controller
communicates with the user’s virtual machine running on the server
over PCIe via the shell. The PUF consists of latch-based or flip-
flop-based ROs, with each RO pair’s response processed through
multiplexers, counters, and a comparator. The RO-based sensor and
heaters test the temperature stability of the PUF.

that might arise in a data center. The RO sensor and heaters
are also used in testing the TRNG design, which is discussed
separately in the next section.

IV. RO TRNG DESIGN

As explained in Section II-C, to extract entropy from phase
jitter, our TRNG design (Figure 3) uses an XOR tree merging
outputs from multiple ROs [11]. Our XOR tree combines the
output of 16 latch-based or flip-flop-based ROs to produce
a bit, and we use two independent XOR trees to capture 2
simultaneous bits of data at the FPGA clock rate of 125MHz.
The bits are passed into a 32-bit collector, which, upon
becoming full, passes the value into a first-in, last-out (FILO)
buffer, and resets itself to collect another set of 32 bits.
Bits are generated at an effective rate of 250MHz. This rate
can be increased by adding more independent XOR trees, or
increasing the sampling frequency, i.e., the FPGA clock speed.

Assuming the TRNG outputs are independent and identi-
cally distributed (i.i.d.), a von Neumann extractor can remove
the TRNG bias [14]. The extractor works by splitting the
sequence of TRNG outputs into consecutive non-overlapping
bit pairs. If the two bits are identical (11 or 00), the extractor
does not output a new random bit. Otherwise, it outputs the
first of the two bits, i.e., a 10 outputs a 1 and a 01 outputs a 0.
Denoting the probability that the TRNG outputs a 1 as p, the
expected number of bits E that the extractor uses to produce
an output satisfies the equation

E = 2 · (2 · p · (1− p)) + (E + 2) ·
(
p2 + (1− p)

2
)



�����

����

����

������

������ �����

�

�����

�����

�������

���

����

���������

�

����

��������

1010…

�������

������������������������

�������

������

�����

������

�����

������

�����

���������

�������

����

Fig. 3. Diagram of the RO TRNG on AWS F1 instances. The TRNG
design exploits RO jitter through an XOR tree, which is sampled and
aggregated into 32-bit values that are stored in a FILO buffer. The
control logic and RO sensor and heaters are similar to the RO PUF
design of Figure 2.

i.e., E = 1/ (p (1− p)). When p is the ideal 50%, the yield
1/E = p (1− p) is 25%. For our RO TRNG, p ≈ 48%,
resulting in a yield of 24.96%. As we further improve the
randomness of the outputs by XORing four independent and
debiased bitstreams together, the final bitstream yield of our
TRNG is 6.24%, for a bandwidth of approximately 15.6Mbps
in its current implementation with two independent XOR trees
sampled at 125MHz.

V. EVALUATION

This section evaluates our PUF (Section V-A) and TRNG
(Section V-B) designs on Cloud FPGAs. All experiments are
performed on AWS EC2 F1 instances in the North Virginia
region, which use Xilinx Virtex UltraScale+ VU9P chips.
Amazon’s “shell” uses clock regions X4Y0:X5Y9, while by
default we place the RO PUF on region X2Y7 and the RO
TRNG on X2Y11 (on separate bitstreams), as shown in the
sample floorplan of Figure 4. Sections V-A4 and V-B1 vary
these locations for the PUF and TRNG respectively to show
that the quality of the results does not fundamentally depend
on the specific clock regions chosen.

Note that UltraScale+ FPGAs contain 8 Lookup Tables
(LUTs) and 16 registers in each Configurable Logic Block
(CLB). As a result, it is possible to fit four flip-flop- or latch-
based ROs per CLB, each using 2 LUTs and 1 register. By
contrast, only two traditional 3-stage LUT-based ROs can fully
fit within each CLB, showing that our primitives result in
better resource utilization compared to other designs.

������

������

��������

���������

��

�������

(a) Floorplan of RO PUF

��

�������

������

�������

��������

����������

(b) Floorplan of RO TRNG

Fig. 4. Sample floorplans of our (a) PUF and (b) TRNG designs for
Cloud FPGAs, as realized on AWS F1 instances.

Fig. 5. Ignoring low-entropy bits (PUF-B) improves Uniqueness and
maintains Reliability compared to the baseline PUF-A. Temperature
increases due to RO heaters do not affect the PUF responses.

A. Evaluation of RO PUF Design on AWS

Our PUF generates 128-bit fingerprints out of 256 ROs
pairs. We validate our design by calculating the Unique-
ness (the average inter-device Hamming Distance (HD) over
responses from different FPGAs), and the Reliability (the
average intra-device HD over repeated measurements from the
same FPGA). Ideal PUFs have Uniqueness values of 0.5, as
their responses behave randomly. Reliability values are close
to 0, as few bits differ when re-querying the PUF.

1) Improving Uniqueness while Maintaining Reliability:
Previous RO PUF designs usually compare m = n/2 RO pairs
out of n ROs and output n/2 bits, but our design eliminates
low-entropy bits and instead produces n/4 = 128 bits. To
evaluate the quality of our PUF design, we compare the
Uniqueness and the Reliability of the baseline implementation
(PUF-A), which uses all n/2 = 256 RO pair comparisons,
to our improved 128-bit PUF, PUF-B. Figure 5 shows that
the Uniqueness of PUF-B increases to ≈0.25 from ≈0.13 in
PUF-A, while maintaining the Reliability at almost the same
value. In addition, Figure 5 shows that the RO heaters do not



TABLE I
DIFFERENT RO PUF IMPLEMENTATIONS.

Design Explanation # ROs # Bits

PUF-A Baseline PUF using 512 RO pairs 512 256
PUF-B As A, but ignores low-entropy ROs 512 128
PUF-C As B, but physically removes ROs 256 128
PUF-D As B, but ignores pairs [1, 3, 5, . . .] 512 128

(a) PUF-B performs the best by
increasing Uniqueness

(b) Uniqueness remains the same
when testing on additional FPGAs

Fig. 6. Uniqueness and reliability for the four setups of Table I. (a)
The best uniqueness is achieved when ignoring but not removing low-
entropy bits (PUF-B). (b) Uniqueness remains constant when testing
on additional FPGAs that were not used in pre-testing.

influence the Uniqueness and Reliability much, indicating that
the RO PUFs are stable at different temperatures.

2) Choosing Low Entropy Bits: To show the benefits of the
novel idea to ignore but not remove low-entropy RO pairs,
we implement two additional types of PUFs: PUF-C which
physically removes the “bad” ROs from the floorplan, and
PUF-D, which instead ignores randomly selected RO pairs.
Table I contains a summary of the four PUF designs. PUFs A,
B, D utilize 669 slices, while PUF-C uses 359 slices.

Figure 6a shows that although the Reliability remains almost
the same for all four PUF designs, the Uniqueness of PUF-
B is much higher than that of the remaining three PUFs.
In particular, PUF-C suggests that re-routed logic will still
influence the entropy of the remaining RO pairs, i.e., the
“good” bits from PUF-B no longer remain good in PUF-C.

Moreover, the locations of “good” bits remain stable across
many FPGAs. Although 40 FPGAs were used in pre-testing
for PUF-B, Figure 6b shows that the Uniqueness of PUF-B
stays stable when applying the PUF with the same “good” bits
to 160 different instances.

3) PUF Responses for Different FPGAs: By storing PUF
responses in a database, users are able to infer (based on the
HD) whether a given FPGA has been used before or not:
as Figure 7 shows, the intra-device and inter-device HDs of
N = 40 new F1 FPGA instances (measured 20 times) are
clearly separated. Even if the RO heaters are turned on, the
intra-device HD stays almost the same, and always under 10.
By contrast, inter-device HD ranges from about 20–50, so a
threshold of 15 can be used to separate PUF responses from
the same device to those from different devices.

4) Different RO Types and Locations: As mentioned in
Section I, we implement flip-flop-based RO PUFs in addition

(a) Intra- and inter-device HD (b) Temperature effect on intra-HD

Fig. 7. PUF-B Hamming Distances (a) intra- and inter-device, and
(b) with or without the RO heaters enabled.

Fig. 8. The Uniqueness and Reliability of PUF-B using two types of
ROs at three locations on the FPGA.

to latch-based RO PUFs. Figure 8 compares the two RO types
on three different locations of the FPGA device. Both RO types
work well on all three locations, but the Uniqueness of latch-
based PUFs is generally higher than those with flip-flops.

B. Evaluation of RO TRNG Design on AWS

To assess the proposed RO TRNG, the generated bit se-
quences are tested against the NIST SP 800-22 test suite,
which leverages several common statistical tests for evalu-
ating random number generators (though such tests cannot
prove “true” randomness). Table II shows the test results for
N = 500 sequences and L = 400,000 bits per sequence. Our
TRNG passes all tests, which require a success rate of 488/500
or 209/216. As a result, our design is capable of producing
sufficiently random sequences at a 96% confidence interval.
Because some tests run multiple times, we have only included
the minimum pass rate and p-value for each test, which was
generated through a χ2 test on the p-values obtained from
individual sequences for each statistical test.

1) RO Types, Location, and Thermal Impact on TRNG
Quality: We tested the RO TRNG design using both latch-
based and flip-flop-based ROs on different FPGA locations,
and with the RO heaters enabled to evaluate the impact
of thermal changes on the TRNG quality. There was no
statistically significant difference among the RO types (latch-
based or flip-flop-based), location (different SLR dies), or
temperature, with the results almost identical to Table II.

2) TRNG Bandwidth: As explained in Section IV, the
TRNG has a yield of 6.25%, for a bandwidth of 15.6Mbps.
The design utilizes 58 slices on the FPGA, which translates
to a raw bandwidth on the FPGA of 7.8Mbps per XOR tree,



TABLE II
NIST SP 800-22 RANDOMNESS TESTS.

† MINIMUM OUT OF ALL RUNS SHOWN. ‡ MINIMUM OCCURS IN
1/148 RUNS, AND THE OVERALL TEST PASSES.

Statistical Test Result p-value

Frequency 494/500 0.5955
BlockFrequency 498/500 0.0711
Runs 494/500 0.7981
LongestRuns 496/500 0.2702
MatrixRank 494/500 0.6038
FFT 494/500 0.3070
NonOverlappingTemplate†‡ 487/500 0.7830
OverlappingTemplate 493/500 0.9140
MaurerUniversal 492/500 0.4154
LinearComplexity 496/500 0.8343
Serial1 497/500 0.1296
Serial2 494/500 0.5914
ApproximateEntropy 494/500 0.2649
CumulativeSums1 495/500 0.1815
CumulativeSums2 495/500 0.5261
RandomExcursions† 211/216 0.2299
RandomExcursionsVariant† 212/216 0.5729

or 0.27Mbps per CLB slice. Bandwidth can be easily further
improved by introducing additional XOR tree instances within
the design, using more ROs to improve the randomness of each
TRNG, or sampling at a higher frequency.

VI. RELATED WORK

Most security-related research on Cloud FPGAs has focused
on attacks such as crosstalk between long routing wires [1],
covert channels between different physical dies of the same
FPGA chip [2], and side-channel leakage within the same
FPGA die [3]. Besides attacks in the multi-tenant setting,
temperature-based temporal covert channels between consec-
utive users of the same FPGA are also possible [12].

Such attacks assume that adversaries can fingerprint the
FPGA. Only one other work has introduced Cloud FPGA
fingerprints through DRAM PUFs [13]. There are three draw-
backs to that approach: first, it depends on loading and un-
loading two AWS FPGA Images (AFIs) to cause DRAM cells
to decay. As a result, it is time-consuming and not runtime-
accessible. Second, it fingerprints the external DRAM chips
(which could be replaced), and is not intrinsic to the FPGA
itself. And, third, it exploits a data remanence feature that
Amazon could patch at any moment by scrubbing memory for
bitstreams without a memory controller. By contrast, our work
ties the PUF directly to the FPGA hardware, uses minimal
resources, and can be integrated into any FPGA design.

VII. CONCLUSION

This paper implemented the first PUFs and TRNGs using
latch-based and flip-flop-based ROs on Cloud FPGAs, provid-
ing the first comprehensive large-scale analysis of any PUF or
TRNG primitives on the cloud.

The RO PUFs proposed differentiated between dozens of
separate Cloud FPGA instances, and provided a reliable way
to identify FPGAs in the absence of digital IDs, which are
currently inaccessible in today’s Cloud FPGAs. Moreover,

they remained robust even when the FPGAs were exposed to
temperature variations in the data-center environment. Finally,
the PUF designs benefited from a novel insight in their
construction which ignored (but did not physically remove)
unstable RO pairs from the PUF response.

The RO TRNG was similarly able to pass all of the NIST
randomness tests, delivering high-bandwidth random bits for
use in FPGA key generation and encryption applications, but
also as a hardware-based entropy generator for use by host
software. By open-sourcing our code, we hope to encourage
further research into positive uses of ROs on Cloud FPGAs.

ACKNOWLEDGMENT

We would like to thank Obi Nnorom, Cesar Rodriguez,
Michael McNamara and Wenjie Xiong for discussions and
contributions to early versions of the code.

REFERENCES

[1] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire
leakage with ring oscillators in cloud FPGAs,” in International Confer-
ence on Field Programmable Logic and Applications (FPL), 2019.

[2] ——, “Reading between the dies: Cross-SLR covert channels on multi-
tenant cloud FPGAs,” in IEEE International Conference on Computer
Design (ICCD), 2019.

[3] O. Glamocanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are
cloud FPGAs really vulnerable to power analysis attacks?” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2020.

[4] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley, “Large scale RO PUF
analysis over slice type, evaluation time and temperature on 28nm Xilinx
FPGAs,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2018.

[5] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Mitigating electrical-
level attacks towards secure multi-tenant FPGAs in the cloud,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 3, pp. 1–26, Sep. 2019.

[6] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FP-
GADefender: Malicious self-oscillator scanning for Xilinx UltraScale+
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, pp. 1–31, Sep. 2020.

[7] A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-
friendly secure primitive,” Journal of Cryptology, vol. 24, no. 2, pp.
375–397, Apr. 2011.

[8] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of ring
oscillator PUFs on FPGAs,” in Workshop on Embedded Systems Security
(WESS), 2010.

[9] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka,
“Oscillator without a combinatorial loop and its threat to FPGA in data
centre,” Electronics Letters, vol. 15, no. 11, pp. 640–642, May 2019.

[10] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in ACM/IEEE Design Automa-
tion Conference (DAC), 2007.

[11] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true
random number generator with built-in tolerance to active attacks,” IEEE
Transactions on Computers (TC), vol. 56, no. 1, pp. 109–119, Jan. 2007.

[12] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud FP-
GAs,” in ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2019.

[13] S. Tian, W. Xiong, I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Fin-
gerprinting cloud FPGA infrastructures,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2020.

[14] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends in Theoret-
ical Computer Science, vol. 7, no. 1–3, pp. 1–336, 2012.

[15] A. Wild, G. T. Becker, and T. Güneysu, “On the problems of realizing
reliable and efficient ring oscillator PUFs on FPGAs,” in IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
2016.

[16] ——, “A fair and comprehensive large-scale analysis of oscillation-based
PUFs for FPGAs,” in International Conference on Field Programmable
Logic and Applications (FPL), 2017.




