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Abstract

Understanding the behavior of no-regret dynamics in general N-player games is
a fundamental question in online learning and game theory. A folk result in the
field states that, in finite games, the empirical frequency of play under no-regret
learning converges to the game’s set of coarse correlated equilibria. By contrast,
our understanding of how the day-to-day behavior of the dynamics correlates to the
game’s Nash equilibria is much more limited, and only partial results are known
for certain classes of games (such as zero-sum or congestion games). In this paper,
we study the dynamics of follow the regularized leader (FTRL), arguably the most
well-studied class of no-regret dynamics, and we establish a sweeping negative
result showing that the notion of mixed Nash equilibrium is antithetical to no-regret
learning. Specifically, we show that any Nash equilibrium which is not strict (in
that every player has a unique best response) cannot be stable and attracting under
the dynamics of FTRL. This result has significant implications for predicting the
outcome of a learning process as it shows unequivocally that only strict (and hence,
pure) Nash equilibria can emerge as stable limit points thereof.

1 Introduction

Regret minimization is one of the most fundamental requirements for online learning and decision-
making in the presence of uncertainty and unpredictability [11]. Defined as the difference between
the cumulative performance of an adaptive policy and that of the best fixed action in hindsight, the
regret of an agent provides a concise and meaningful benchmark for quantifying the ability of an
online algorithm to adapt to an otherwise unknown and unpredictable environment.
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Arguably, the most widely studied class of no-regret algorithms is the general algorithmic scheme
known as follow the regularized leader (FTRL) [56, 57]. This umbrella learning framework includes
as special cases the multiplicative weights update (MWU) [2, 3, 32, 62] and online gradient descent
(OGD) algorithms [64], both of which achieve a min-max optimal O(T'/?) regret guarantee. For
obvious reasons, the ability of FTRL to adapt optimally to an unpredictable environment makes them
ideal for applying them in multi-agent environments — i.e., games. In this case, if all agents adhere to
a no-regret learning process based on FTRL (or one of its variants), as the sequence of play becomes
more predictable, stronger regret guarantees are achievable, possibly down to constant regret, see e.g.,
[5, 6, 20, 30, 37, 38, 50, 58] and references therein. As such, several crucial questions arise:

What are the game-theoretic implications of the no-regret guarantees of FTRL?
Do the dynamics of FTRL converge to an equilibrium of the underlying game?

A folk answer to this question is that “no-regret learning converges to equilibrium in all games”
[43], suggesting in this way that no-regret dynamics inherently gravitate towards game-theoretically
meaningful states. However, at this level of abstraction, both the type of convergence as well as the
specific notion of equilibrium that go in this statement are not as strong as one would have hoped for.
Formally, the only precise conclusion that can be drawn is as follows: under a no-regret learning
procedure, the empirical frequency of play converges to the game’s set of coarse correlated equilibria
[23, 24].

This leads to an important disconnect with standard game-theoretic solution concepts on several
grounds. First, even in 2-player games, coarse correlated equilibria may be exclusively supported on
strictly dominated strategies [60], so they fail even the most basic requirements of rationalizability
[19, 22]. Second, the archetypal game-theoretic solution concept is that of Nash equilibrium (NE),
and convergence to a Nash equilibrium is a much more tenuous affair: since no-regret dynamics
are, by construction, uncoupled (in the sense that a player’s update rule does not explicitly depend
on the payoffs of other players), the impossibility result of Hart & Mas-Colell [25] precludes the
convergence of no-regret learning to Nash equilibrium in al/l/ games. This is consistent with the
numerous negative complexity results for finding a Nash equilibrium [18, 54]: an incremental method
like FTRL simply cannot have enough power to overcome PPAD completeness and converge to Nash
equilibrium given adversarially chosen initial conditions.

In view of the above, a natural test of whether the dynamics of FTRL favor convergence to a Nash
equilibrium is to see whether they eventually stabilize and converge to it when initialized nearby. In
more precise language, are Nash equilibria asymptotically stable in the dynamics of FTRL? And,
perhaps more importantly, are all Nash equilibria created equal in this regard?

Our contributions. We establish a stark and robust dichotomy between how the dynamics of
FTRL treat Nash equilibria in mixed (i.e., randomized) vs. pure strategies. For the case of mixed
Nash equilibria we establish a sweeping negative result to the effect that the notion of mixed Nash
equilibrium is antithetical to no-regret learning. More precisely, we show that any Nash equilibrium
which is not strict (in the sense that every player has a unique best response) cannot be stable and
attracting under the dynamics of FTRL. Schematically:

Informal Theorem: Asymptotically stable point for FTRL = Pure Nash equilibrium

Equivalently: Mixed Nash equilibrium = Not asymptotically stable under FTRL

The linchpin of our analysis is the following striking property of the FTRL dynamics: when viewed in
the space of “payoffs” (their natural state space), they preserve volume irrespective of the underlying
game. More precisely, the Lebesgue measure of any open set of initial conditions in the space
of payoffs remains invariant as it is carried along the flow of the FTRL dynamics (cf. Fig. 2).
Importantly, this result is not true in the problem’s “primal” space, i.e., the space of the player’s
mixed strategies: here, sets of initial conditions can expand or contract indefinitely under the standard
Euclidean volume form.

This duality between payoffs and strategies is the leitmotif of our approach and has a number of
important consequences. First, exploiting the volume-preservation property of FTRL, we show that
no interior Nash equilibrium (and, furthermore, no closed set in the interior of the strategy space) can
be asymptotically stable under the dynamics of FTRL, as this effectively would necessitate volume
contraction in the interior of the space (Theorem 4.2).



To move beyond this result and disqualify all non-strict Nash equilibria (not just interior ones) more
intricate arguments are required. In this case, a fundamental distinction arises between classes of
dynamics that may attain the boundary of the players’ strategy space in finite time versus those that
do not. The first case concerns FTRL dynamics with an everywhere-differentiable regularizer, like
the Euclidean regularizer that gives rise to OGD and the associated projection dynamics. The second
concerns dynamics where the regularizer becomes steep at the boundary of the strategy simplex,
e.g., like the Shannon-Gibbs entropy that gives rise to the multiplicative weights update (MWU)
algorithm and the replicator dynamics. While the interior of the strategy simplex is invariant for the
second class of dynamics, this is not the case for the former: in Euclidean-like cases, the support of
the mixed strategy of an agent may change over time. This leads to an essential dichotomy in the
boundary behavior of different classes of FTRL dynamics. Nonetheless, despite the qualitatively
distinct long-run behavior of the dynamics, a unified message emerges: under the dynamics of FTRL,
only strict Nash equilibria survive (Theorem 4.3).

Finally, for the case of steep, entropy-like regularizers we prove that not only their asymptotically
stable points but much more generally any asypmptotically stable set must contain at least one pure
strategy profile (Theorem 4.5).

Related work. The regret properties of FTRL have given rise to a vast corpus of literature which
we cannot hope to review here; for an appetizer, we refer the reader to [10, 56] and references therein.
On the other hand, the long-run behavior of FTRL in games (even finite ones) is nowhere near as well
understood. A notable exception to this is the case of the replicator dynamics which have been studied
extensively due to their origins and connection with evolutionary game theory, cf. [26, 55, 59, 63] for
a review. For the replicator dynamics, a special instance of the volume preservation principle was
first discovered by Akin [1] and ultimately gave rise to the so-called “folk theorem” of evolutionary
game theory:? in population games, the notions of strict Nash equilibrium and asymptotic stability
coincide [27]. This instability of mixed Nash equilibria plays a major role in the theory of population
games as it shows that even the weakest form of mixing cannot be stable in an evolutionary sense.
The volume preservation result that we establish here can be seen as a much more general “learning
analogue” of this biological principle and provides an important link between population dynamics
and the theory of online learning in games.

Recent work has examined the non-convergence of FTRL dynamics in more specialized settings.
Coucheney et al. [17] established a version of the folk theorem of evolutionary game theory for a
subclass of “decomposable”, steep FTRL dynamics. By contrast, Mertikopoulos et al. [38] focused
on two-player zero-sum games (and networked versions thereof), and showed that almost all trajec-
tories of FTRL orbit interior equilibria at a fixed distance without ever converging to equilibrium,
generalizing the previous analysis for replicator dynamics by Piliouras & Shamma [49]. This is an
interior equilibrium avoidance result, but one that uniquely concerns zero-sum games. Although the
above results apply for continuous-time dynamics, in discrete-time non-convergence results only
become stronger. Bailey & Piliouras [4] proved that discrete-time FTRL diverges away from the
Nash equilibrium in zero-sum games, whereas Cheung & Piliouras [12] established Lyapunov chaos
(volume-expansion, butterfly effects). Understanding the detailed geometry of non-equilibrating
FTRL dynamics, e.g., periodicity/chaos, is an interesting direction where volume analysis has found
application [6, 8, 13, 39, 40, 48]. Non-convergence, recurrence results have recently been established
for FTRL dynamics via volume analysis even outside normal form games, e.g., in non-convex non-
concave min-max differential games [61] and imperfect information zero-sum games [47]. Finally,
such instability, non-convergence results have inspired new, dynamics-based, solution concepts for
games that generalize strict Nash while allowing cyclic, recurrent behavior [28, 44—46, 53].

In the converse direction, a complementary research thread has shown strict Nash equilibria are
asymptotically stable under several incarnations of the FTRL dynamics [9, 15, 17, 34-37]. Our paper
establishes the converse to this stability result, thus leading to the the following overarching principle
(which covers all generic N-player games):

Asymptotic stability under FTRL <= Strict Nash equilibrium

ZInterestingly, Akin’s result was established under a special non-Euclidean volume form on the game’s
strategy space, a fact which made any attempts at generalization particularly elusive.



This result has significant implications for predicting the outcome of a learning process as it shows
unequivocally that its pointwise stable outcomes are precisely the strict (and hence, pure) Nash
equilibria of the underlying game.

2 Preliminaries

Notation. If f is a function of a single variable, we will abuse notation slightly and extend it to
vector variables x € R"” by letting f(x) « (f(x1),..., f(x,)). We will also understand inequalities
involving vectors component-wise, i.e., (x1,...,Xx;) > 0 means that x; > O foralli=1,...,n.

The game. Throughout the sequel, we will focus on finite games. Formally, a finite game in normal
form is defined as a tuple I' = T'(\V, A, u) consisting of (i) a finite set of playersi e N = {1,...,N};
(if) a finite set of actions (or pure strategies) A; = {a1, ..., an,} per player i € N; and (iii) each
player’s payoff function u; : A — R, where A = []; A; denotes the ensemble of all possible action
profiles @« = (ay,...,ay). In this general context, players can also play mixed strategies, i.e.,
probability distributions x; = (x;q,)e;e4; € A(A;) over their pure strategies @; € A;. Collectively,
we will write X; := A(A;) for the mixed strategy space of player i and X' = []; X; for the space of
all mixed strategy profiles x = (xy,...,xnN).

Given a mixed profile x € X, the corresponding expected payoff of player i will be

ui(x) = ZmeAl'--ZaNeAN Xlay XN,y Uila1, ..., an). (D
To keep track of the payoffs of each individual action, we will also write
Vig; (X) = u (a3 x-) 2

for the payoff of the pure strategy a; € A; in the mixed profile x = (x;;x_;) € X.> Hence, writing
Vi(x) = (Vig; (X)) yen; € R4 for the payoff vector of player i, we get the compact expression

ui(x) = (vi(x),x;) = Z Xia;Via; (X) 3)
[e73 GA[
where, in standard notation, (v, x) = v x denotes the ordinary pairing between v and x.

In terms of solutions, the most widely used concept in game theory is that of a Nash equilibrium
(NE), i.e., a state x* € X such that
ui(x*) > u;(x;;x*;) forallx; € X;andalli e V. (NE)
Writing supp(x}) = {a@; € A, : X;4, > 0} for the support of x7, Nash equilibria can be equivalently
characterized via the variational inequality
Viar(x%) 2 vig; (x) forall @] € supp(x;) and all a; € A;, i € N. 4)
In turn, this characterization leads to the following taxonomy:

1. x™ is called pure if supp(x™) = []; supp(x]) is a singleton.
2. If x* is not pure, we say that it is mixed; and if supp(x*) = A, we say that it is fully mixed.

By definition, pure Nash equilibria are themselves pure strategies and correspond to vertices of X’; at
the other end of the spectrum, fully mixed equilibria belong to the relative interior ri(X’) of X, so
they are often referred to as interior equilibria.

Another key distinction between Nash equilibria concerns the defining inequality (NE): if this
inequality is strict for all x; # x7, i € N, x* is called itself strict. Strict Nash equilibria are pure
a fortiori, and they play a key role in game theory because any unilateral deviation incurs a strict
loss to the deviating player; put differently, if x* is strict, every player has a unique best response.
Taking this idea further, x* is called quasi-strict if (4) is strict for all a; € A; \ supp(x}), i.e., if all
best responses of player i are contained in supp(xf ). By a deep result of Ritzberger [51], all Nash
equilibria are quasi-strict in almost all games;* in view of this, we will tacitly assume in the sequel
that all equilibria considered are quasi-strict, a property known as “genericity” [14, 22, 31].
Remark. We should stress here that quasi-strict equilibria need not be pure: they could be partially
or even fully mixed, e.g., as in the case of Stag Hunt, Rock-Paper-Scissors, Matching Pennies, the
Battle of the Sexes, etc. We provide a series of illustrative examples in the supplement.

3We are using here the standard game-theoretic shorthand (x;;x_;) := (x{,....xi, ..., xn) to highlight the
strategic choice of a given player i € N versus that of the player’s opponents N_; := N\ {i}.
4Speciﬁcally, on a set which is open and dense (and hence of full measure) in the space of all games.



Regret. A key requirement in online learning is the minimization of the players’ regret, i.e., the
cumulative payoff difference between a player’s mixed strategy at a given time and the player’s best
possible strategy in hindsight. In more detail, assuming that play evolves in continuous time ¢ > 0,
the (external) regret of a playeri € N relative to a sequence of play x(7) € X is defined as

T
Reg (1) = max [ [u(piii(6) = wix(0)] i, ©

Pi €t

and we say that player i has no regret under x(t) if Reg;(T) = o(T).

No-regret learning via regularization. The most widely used method to achieve no-regret is the
class of policies known as follow the regularized leader (FTRL) [56, 57]. Heuristically, at each r > 0,
FTRL prescribes a mixed strategy that maximizes the players’ cumulative payoff up to time ¢ minus
a regularization penalty which incentivizes exploration. Formally, this is represented by the dynamics

t
Yiai (1) = Yia; (0) + / Vig; (x(s)) ds {aggregate payoffs}
0

Xiay (1) = Qiay (i (1)) {choice of stratcgy}
or, in more compact notation:
y() =v(Q(y(1)). (FTRL)

In the above, each y;,, plays the role of an auxiliary “score variable” which measures the aggregate
performance of the pure strategy «; € A; over time. These scores are subsequently tranformed to
mixed strategies by means of a player-specific choice map y; = x; = Q;(y;) which is defined as

Qi(yi) = argmax{(y;, x;) — h;(x;)} forally; € J; = R™. (6)

Xi E.X',j

In other words, Q;: V; — A; essentially acts as a “soft” version of the best-response correspondence
yi P> argmax, v (Vi,;), suitably regularized by a convex penalty term /%;(x;). The precise
assumptions regarding the regularizer function h;: X; — R will be discussed in detail later; for now,
we provide two prototypical examples of (FTRL) that will play a major role in the sequel:
Example 2.1 (Entropic regularization and exponential weights). One of the most widely used
regularizers in online learning is the (negative) Gibbs-Shannon entropy 4; (x;) = X, Xia, 10g Xiq;.
A standard calculation then yields the so-called logit choice map, written in vectorized form as
Ai(yi) = exp(yi)/ X a,ea; €XP(Via,)- In turn, this leads to the exponential weights dynamics:

yi(t) =vi(x(1)),
xi (1) = Ai(yi(1)).

The system (EW) describes the mean dynamics of the so-called multiplicative weights update (MWU)
algorithm (or “Hedge”); for an (incomplete) account of its long history, see [2, 3, 11, 21, 29, 32, 33,
62] and references therein.

(EW)

Example 2.2 (L? regularization). Another popular choice of regularizer is the quadratic penalty
hi(x;) = (1/2)]x;]|>. In this case, the associated choice map is the Euclidean projector on the simplex,
I; (yi) = argmin,. ¢ . [|y; — x|, which gives rise to the Euclidean regularization dynamics

yi(t) = vi(x(1)), (ERD)
xi (1) =L (yi(1)).
Beyond the two prototypical examples discussed above, the origin of the dynamics (FTRL) can
be traced to Shalev-Shwartz & Singer [57], Nesterov [42], and, via their link to online mirror
descent (OMD)), all the way back to Nemirovski & Yudin [41]. Describing the history and literature
surrounding these dynamics would take us too far afield, so we do not attempt it.

3 The fundamental dichotomy of FTRL dynamics

To connect the long-run behavior of (FTRL) to the Nash equilibria of the underlying game, we must
first understand how the players’ mixed strategies evolve under (FTRL). Our goal in this section is
to provide some background to this question as a precursor to our analysis in Section 4. To lighten
notation, we will drop in what follows the player index i, writing for example x,, instead of the more
cumbersome x;,; we will only reinstate the index i if absolutely necessary to avoid confusion.



Figure 1: The inverse images of neighborhoods of different points in X under the Euclidean choice map Q = II.

3.1. Scores vs. strategies. To begin, we note that (FTRL) exhibits a unique duality: on the one
hand, the variables of interest are the players’ mixed strategies x(¢) € &’; on the other, the dynamics
(FTRL) evolve in the space ) of the players’ score variables y (f). Mixed strategies are determined by
the corresponding scores via the players’ choice maps y — x = Q(y), but this is not a two-way street:
as we explain below, the map Q: YV — X is not invertible, so obtaining an autonomous dynamical
system on the strategy space X’ is a delicate affair. In the general case, invoking standard arguments
from convex analysis [7, 52] we have y(t) € VAa(x(t)) + PC(x(¢)), where

PC(x) ={y €)Y :yq = ygforall @ € supp(x), 5 € A} @)
denotes the polar cone to X at x.

In the entropic case of Example 2.1, the logit choice map Q = A only returns fully mixed strategies
since exp(y) > 0. In the relative interior ri(X’) of X', we have by Eq. (7) that PC(x) = {(z,...,1) :
t € R}. As aresult, A is not surjective; however, up to a multiple of (1, ..., 1), itis injective. On
the other hand, in the Euclidean framework of Example 2.2, the choice map Q = II can also return
non-fully mixed strategies. Both Eq. (7) and Fig. 1 show that on the boundary PC(x) is strictly larger
compared to the interior. Thus IT is surjective but not injective, even modulo a subspace of ).

The key obstacle to mapping the dynamics (FTRL) to A’ is the lack of injectivity of Q. In turn, this
allows us to make two key observations: (i) there is an important split in behavior between boundary
and interior states; and (ii) this split is linked to whether the underlying choice map is surjective or
not. We elaborate on this below.

3.2. The steep/non-steep dichotomy. The lack of injectivity of A on ri(X) is a technical artifact
of the sum-to-one constraints of the strategy probabilities: knowing all but one of the strategy
probabilities we can easily recover the remaining one. Thus the ) space, having the same number
of coordinates as the A" space, also contains redundant information. With an appropriate projection
we can remove this redundancy and restore injectivity in the interior, deriving the dynamics of x ()
on X. Making this argument precise for the entropic case of Example 2.1, we obtain the replicator
dynamics:

Yo =Xo[va(x) —u(x)]. (RD)

On the other hand, this is not enough for the Euclidean framework of Example 2.2. When trajectories
approach bd(X), the positivity constraints x; > 0 kick in finite time. Unlike the sum-to-one
constraints of the previous case, these cannot be resolved with a dimensionality reduction so we
cannot obtain a well-posed dynamical system on X" as above. This problem can only be temporarily
avoided for time intervals where supp(x(#)) remains constant. For these intervals x(#) can be shown
to satisfy the projection dynamics [34]

Yo =va() = lsupp)I™ Y0 vs(o) i € supp(x). (PD)

In contrast to the replicator dynamics, different trajectories of (PD) can merge or split any number of
times, and they may transit from one face of X" to another in finite time [34, 35].

The two cases above are not just conveniently chosen examples, but archetypes of the fundamentally
different behaviors that can be observed under (FTRL) for different regularizers. As we discuss in the

SIn particular, for all y € PC(x), we have yo = yg whenever a, 8 € supp(x). The similarity of this condition
to the characterization (4) of Nash equilibria is not a coincidence: x* is a Nash equilibrium of I if and only if
v(x*) € PC(x*) [14, 35].



supplement, this polar split is intimately tied to the behavior of the derivatives of / at the boundary of
X. To formalize this, we say that # is steep if ||Vh(x)|| — oo whenever x — bd(X); by contrast, if
sup,c ¢ [|VA(x)|| < co, we say that & is non-steep. Thus, in terms of our examples, the negentropy
function of Example 2.1 is the archetype for steep regularizers, while the L? penalty of Example 2.2
is the non-steep one. The split between steep and non-steep dynamics may then be stated as follows:

1. If h is steep, the mixed-strategy trajectories x (t) = Q(y(¢)) carry all the information required
to predict the evolution of the system; in particular, x (0) fully determines x(¢) for all ¢ > 0,
and x (0) remains fully mixed for all time.

2. If h is non-steep, the trajectories x (1) = Q(y(z)) do not fully capture the state of the system:
x(0) does not determine x(¢) for all ¢+ > 0, and even the times when x(¢) changes support
cannot be anticipated by knowing x (0) alone. For concision, we defer the precise statement
and proof of this dichotomy to the paper’s supplement.

4 Convergence analysis and results

We now turn to the equilibrium convergence properties of (FTRL). The central question that we seek
to address here is the following: Which Nash equilibria can be stable and attracting under (FTRL)?
Are all equilibria created equal in that regard?

4.1. Notions of stability. At a high level, a point is (a) stable when every trajectory that starts
nearby remains nearby; and (b) attracting when it attracts all trajectories that start close enough.
Already, this heuristic shows that defining these notions for (FTRL) is not straightforward: the target
points are strategy profiles in X', while the dynamics (FTRL) evolve in the dual space ). When £ is
steep, we can define an equivalent presentation of (FTRL) on &X', so this problem can be circumvented
by working solely with mixed strategies; however, when 4 is non-steep, this is no longer possible and
we need to navigate carefully between X and ). In view of this, we have the following definitions:

* x* € X is stable if, for every neighborhood U of x* in X, there exists a neighborhood U’ of
x* such that x(¢) = Q(y(¢)) € U for all t > 0 whenever x(0) = Q(y(0)) € U".

* x* € X is attracting if there exists a neighborhood U of x* in X’ such that x(¢) = Q(y(¢)) —
x* whenever x(0) = Q(y(0)) € U.

* x* € X is asymptotically stable if it is both stable and attracting.

For obvious reasons, asymptotic stability is the “gold standard” for questions pertaining to equilibrium
convergence and it will be our litmus test for the appropriateness of an equilibrium x* € A" as an
outcome of play. Specifically, if a Nash equilibrium is not asymptotically stable under (FTRL), it
is not reasonable to expect a no-regret learner to converge to it, meaning in turn that it cannot be
justified as an end-state of the players’ learning process. We expound on this below.

4.2. Volume preservation. A key observation regarding asymptotic stability is that neighborhoods
of initial conditions near an asymptotically stable point should “contract” over time, eventually
shrinking down to the point in question. Our first result below provides an apparent contradiction to
this principle: it shows that volume is preserved under (FTRL), irrespective of the underlying game.

Proposition 4.1. Let Ry C Y be a set of initial conditions for (FTRL) and let R; = {y(¢) : y(0) €
Ro} denote its evolution under (FTRL) after time t > 0. Then, vol(R;) = vol(Ry).

Proposition 4.1 (which we prove in the supplement through an application of Liouville’s formula)
is surprising in its universality as it holds for all games and all instances of (FTRL). As such, it
provides a blanket generalization of the well-known volume-preserving property for the replicator
dynamics established by Akin [1], as well as subsequent results for zero-sum games [38].

4.3. Instability of fully mixed equilibria. As stated above, the volume-preserving property of
(FTRL) would seem to suggest that no strategy can be asymptotically stable. However, this is a
figment of the duality between strategy and score variables: a mixed strategy orbit x(¢) = Q(y(¢))
could converge in X, even though the corresponding dual orbit y(z) diverges in ) (for an illustration,
see Fig. 2 above). This again brings into sharp contrast the behavior of (FTRL) at the boundary of X’
versus its behavior at the interior. Our first instability result below shows that the volume-preserving
property of (FTRL) rules out the stability of any fully mixed equilibrium, in any game:
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Figure 2: The duality between scores and strategies under (FTRL): the dynamics are volume-preserving in
Y, but a volume of initial conditions could either collapse in finite time (in the Euclidean case, left), or shrink
asymptotically (in the logit case, right). This is due to the vastly different geometric properties of each system.

Theorem 4.2. A fully mixed Nash equilibrium cannot be asymptotically stable under (FTRL).

The main idea of the proof of Theorem 4.2 relies on a tandem application of Proposition 4.1 together
with the dimensionality reduction idea we discussed for the entropic case in Section 3. In the resulting
quotient space, the inverse image of an interior point x* € ri(X) is a single point and the induced
dynamics remain volume-preserving. If x* is asymptotically stable, a limit point argument rules out
the possibility of a trajectory entering and exiting a small neighborhood of its preimage infinitely
many times. At the same time, Lyapunov stability and volume preservation imply that the dynamics
are locally recurrent. This contradicts the transient property established above and proves that x*
cannot be asymptotically stable; the details involved in making these arguments precise are fairly
intricate, so we defer the proof of Theorem 4.2 to the supplement.

This universal instability result has significant implications as it provides a dynamic justification of
the fragility of fully mixed Nash equilibria. Theorem 4.2 illustrates this principle through the lens of
regret minimization: any deviation from a fully mixed equilibrium invariably creates an opportunity
that can be exploited by a no-regret learner. When every player adheres to such a policy, this creates
a vicious cycle which destroys any chance of stability for fully mixed equlibria.

4.4. The case of partially mixed equilibria. Taking this premise to its logical extreme, a natural
question that arises is whether this instability persists as long as even a single player employs a
mixed strategy at equilibrium. In the previous case, after the dimensionality reduction argument
we described in Section 3, neighborhoods of fully mixed equilibria in the space of strategies (X)
correspond to sets of finite volume in the space of payoffs ()). On the contrary, the case of partially
mixed equilibria is much more complex because neighborhoods of points on the boundary of X
correspond to sets of infinite volume in the space of payoffs — and this, even after dimensionality
reduction (cf. Fig. 1). Because of this, volume preservation arguments cannot rule out asymptotic
stability of Nash equilibria lying at the boundary of the strategy space: indeed, pure Nash equilibria
also lie on the boundary but they can be asymptotically stable [14, 17, 34, 35].

In view of the above, it is not a priori clear whether partially mixed equilibria would behave more
like pure or fully mixed ones — or if no conclusion can be drawn whatsoever. Our next result shows
that the dynamics of FTRL represent a very sharp selection mechanism in this regard:

Theorem 4.3. Only strict Nash equilibria can be asymptotically stable under (FTRL).
Corollary 4.4. If x* is partially mixed, it cannot be asymptotically stable under (FTRL).

Viewed in isolation, Theorem 4.2 would seem to be subsumed by Theorem 4.3, but this is not so: the
former plays an integral role in the proof of the latter, so it cannot be viewed as a special case. In
more detail, the proof of Theorem 4.3 builds on Theorem 4.2 along two separate axes, depending on
whether the underlying regularizer is steep or not:

1. In the steep case, as we discussed in Section 3 there is a well-posed dynamical system on X. As
we show in the supplement, each face of X is forward-invariant in this system, so x* must also be
asymptotically stable when constrained to the face X'* of X’ spanned by supp(x*). The conclusion
of Theorem 4.3 then follows by noting that x* is interior in A and applying Theorem 4.2 to the
restriction of the underlying game to A™.



2. The non-steep case is considerably more difficult because (FTRL) no longer induces a well-posed
system on X. In lieu of this, by examining the finer structure of the inverse image of x*, it is
possible to show the following: for every small enough compact neighborhood & of x* in X, there
exists a finite time 7xc > 0 such that supp(x(z)) = supp(x*) for all ¢ > 7 whenever x(0) € K.
As it turns out, the dynamics after ¢ > 7x locally coincide with the mixed strategy dynamics of
(FTRL) applied to the restriction of the underlying game to the face X'* of X spanned by x*. Since
x* is a fully mixed equilibrium in this restricted game, it cannot be asymptotically stable.

4.5. Stable limit sets. We conclude our analysis with a result concerning more general behaviors
whereby the dynamics of FTRL do not converge to a point, but to a more general invariant set — such
as a chain of stationary points interconnected by solution orbits, a structure known as a heteroclinic
cycle [see e.g., 26, 55, and references therein]. As an example, in the case of two-player zero-sum
games with a fully mixed equilibrium, it is known that the trajectories of (FTRL) form periodic
orbits (cycles). However, these orbits are not asymptotically stable: if the initialization of the FTRL
dynamics is slightly perturbed, the resulting trajectory will be a different periodic orbit, which does
not converge to the first (in the language of dynamical systems, the cycles observed in zero-sum
games are not limit cycles). We are thus led to the following natural question:

What type of invariant structures can arise as stable limits of (FTRL)?

To state this question formally, we will require the setwise version of asymptotic stability: a set
S is called asymptotically stable under (FTRL) if a) all orbits x(t) = Q(y(¢)) of (FTRL) that start
sufficiently close to S remain close; and b) all orbits that start nearby eventually converge to S. Then,
focusing on the case of steep dynamics to avoid more complicated statements, we have:

Theorem 4.5. Every asymptotically stable set of steep (FTRL) contains a pure strategy.

The proof of Theorem 4.5 relies on an “infinite descent” argument whereby the faces of A" that
intersect with S are eliminated one-by-one, until only pure strategies remain as candidate elements of
S with minimal support; we provide the details in the supplement.

The importance of Theorem 4.5 lies in that it provides a succinct criterion for identifying possible
attracting sets of (FTRL). Indeed, by Conley’s decomposition theorem (also known as the “fundamen-
tal theorem of dynamical systems”) [16], the flow of (FTRL) in an arbitrary game decomposes into a
chain recurrent part and an attracting part (see [45, 46] for several examples/discussion in the case of
replicator dynamics). The recurrent part is exemplified by the periodic orbits that arise in zero-sum
games with an interior equilibrium (there are no attractors in this case) [38]. Theorem 4.5 goes a long
way to showing that the attracting part of (FTRL) always intersects the extremes of the game’s strategy
space — i.e., the players’ set of pure strategies. A special case of Theorem 4.5, in the case of replicator
dynamics, was employed in [44] as a step in the definition of new, dynamics/decomposition-based
solution concepts. Formalizing the exact form of this decomposition in arbitrary games is an open
direction for future research with far-reaching implications for the theory of online learning in games.

5 Concluding remarks

The well known universal existence theorem for (mixed) Nash equilibria in general games has been
very influential not only from a mathematics perspective but also from a public policy one as it seems
to suggest that there is no inherent tension in any societal setting between the single-minded pursuit
of individual profits and societal stability. Nash equilibria satisfy both desiderata simultaneously.
Thus, there is in principle no need for centralized intervention and guidance as market forces will
converge upon such a solution.

Our results present an argument in the opposite direction. Unless the game has a pure Nash equilib-
rium, which is definitely not satisfied in numerous strategic interactions, then societal systems do not
self-stabilize, even if they are driven by our most effective payoff seeking dynamics, i.e., gradient
learning and its follow-the-regularizer-leader variants. Exploring the tradeoffs between individual
optimality and societal stability is thus a much more subtle issue than it first meets the eye, and we
hope that we inspire follow-up work that can elucidate these questions further.
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