
On Achieving Reliable and Efficient Precondition

Execution Enforcement in Internet-of-Things

Qian Zhou and Fan Ye

Department of Electrical and Computer Engineering, Stony Brook University

Email: {qian.zhou, fan.ye}@stonybrook.edu

Abstract—In IoT it is common that before a command can
execute on a smart object, certain preconditions (on possibly
other objects) should be met first to ensure safety or efficiency.
Existing work has realized automatic precondition execution:
when a user issues a command, her device automatically finds
out all the precondition commands, and executes them in the
correct order. However, security issues have not been considered:
it assumes that a user device honestly follows the order it has
been told to send commands to objects, and objects trust users
thus do not check whether the preconditions are indeed met.
In this paper we propose two strategies to enforce precondition
execution order: 1) Snowball relying on signed declarations from
precondition objects; 2) Onion using disposable access tokens
encrypted by a trustworthy server. Our extensive analysis and
experiments on a 20-node testbed show that both strategies are
secure and reliable. Snowball has higher availability while Onion
is more efficient and responsive: Onion uses 1.6/2.1 s to access
20 one-hop/multi-hop objects, 62%/54% of Snowball’s time.

Index Terms—IoT, Security, Building Automation

I. INTRODUCTION

In IoT there are common constraints that before a command

can execute on a smart object (i.e. IoT device), certain states

(called preconditions) on other objects should be satisfied for

safety or efficiency. E.g., before a fire sprinkler sprays, the

outlets within its spraying range should be powered down to

prevent electric shocks; before an AC starts giving off cool

air, the doors/windows should be closed to save energy. A

command may have multiple preconditions, and each precon-

dition may have its own preconditions, leading to multiple,

recursive preconditions structured in a directed acyclic graph

called precondition execution graph (PEG) [1].

Usually, users have to manually track and execute the com-

mands that set those preconditions true (called precondition

commands) one by one. Such laborious, error-prone operations

daunt users and cause safety risks. Recently, solutions like

APEX [1] are proposed for automatic precondition execution

in IoT: a user obtains from a trustworthy backend server a PEG

where the sink state (i.e. the vertex with no successor) corre-

sponds to a user command, and predecessors are preconditions;

when the user issues a command, her device (e.g., smartphone)

automatically executes the precondition commands in the PEG

order, and executes the user command at the end.

However, existing work assumes user/IoT devices are al-

ways trustworthy, and faithfully follow the rule: i) a user de-

vice honestly follows the PEG order to send commands to ob-

jects, which trust users thus do not check whether the precon-

ditions are indeed set; ii) objects faithfully execute commands

from users and return their states. In reality, besides common

attacks targeting a single message’s integrity/freshness, there

are special attacks focusing on tampering with execution

order among different commands. A user device or object

can easily violate precondition constraints intentionally (e.g.,

malicious devices) or unintentionally (e.g., implementation

bugs). Mechanisms reliably enforcing precondition execution

are needed by both devices to verify that preconditions are

indeed met, before they start subsequent execution.

In this paper we propose two strategies for such enforce-

ment. 1) Snowball achieves the goal based on state declara-

tions generated and signed by predecessor objects in the PEG;

successor objects verify them and ensure their preconditions

are satisfied. The more downstream an object is located in the

PEG, the more precondition declarations it needs to verify,

which resembles snowballing. 2) Onion uses disposable access

tokens generated and encrypted by the backend: a token for

accessing a successor object is encrypted; to use it, the user

must access the predecessor objects first and obtain a secret

from each of them to construct the decryption key. Tokens are

decrypted and released gradually, like an onion peeled layer

by layer. We claim our contributions as follows:

• We identify multiple attacks tampering with precondition

execution order in IoT, and propose a signing-based

solution called Snowball that allows objects to verify the

states of their precondition objects.

• We also devise an encryption-based solution called Onion

that uses encrypted, disposable tokens where a token

for accessing an object cannot be decrypted before its

precondition objects are accessed.

• We implement them and conduct extensive analysis and

experiments on a 20-node testbed. Both achieve secure

and reliable order enforcement. Snowball needs less ac-

cess to the backend, thus is more robust upon backend

unavailability; Onion has higher efficiency and lower

latency—it takes 1.6/2.1 s to access 20 one-hop/multi-

hop objects, 62%/54% of Snowball’s time.

II. MODELS AND ASSUMPTIONS

Node Types. We consider the backend, subject devices and

objects. As is widely used in practice, the backend is not a

single server, but a hierarchy of servers run by the admin to

manage registered subjects/objects; it realizes a chain of trust,

and resists collapse under the load and a single point of failure.

Subjects (i.e. users) use subject devices (e.g., smartphones) to



operate objects (i.e. IoT devices). We focus on security design

above the network layer, and assume these two types form

a ground network, where nodes in proximity are wirelessly

connected and multi-hop routing [2], [3] is available.

A subject or object (denoted as X) must first register at the

backend to join the system. This is a common requirement in

real enterprise environments. X is issued with an ID, private

key K
pri
X , public key certificate CERTX (signed by the admin

so it cannot be forged/altered), and the admin’s public key

K
pub
adm (so X can verify the admin’s signatures). Besides, X

receives a symmetric key K
sym
X (possessed by X and the

admin only). CERTX is publicized by X in the ground

network, cached by nearby objects and can be queried [4].

Node Resources. Subject devices have good computing

resources (e.g., Galaxy S8 has an octa-core CPU, 4GB RAM).

Small objects (e.g., smoke detectors, occupancy sensors) are

usually constrained, battery-powered sensors, while larger

ones (e.g., door locks, ACs) are resource-rich (like Raspberry

Pi), wall-powered, and with actuators. Nodes are roughly time

synchronized (e.g., error within tens of seconds).

As pointed out in [1], IoT precondition execution usually

involves actuator devices, of which the actuations prepare

the physical (mechanical/electrical/thermal, etc.) environment

for subsequent actuations. E.g., outlets must be turned off

before sprinklers spray water, windows must be closed be-

fore ACs work. Unlike tiny sensor devices, actuator devices

(outlets/sprinklers/windows/ACs) are mostly resource-rich and

wall-powered. Thus in this paper we focus on objects which

have sufficient computing resources and energy for public-key

operations (e.g., signatures) at reasonable speed. The support

for resource-poor objects is discussed in Section VIII.

State & Precondition. A state is a predicate on an object’s

variable, denoted as 〈obj : var opr value〉 where obj,

var, opr are object identifier, variable name and operator

(e.g., =, >,∈). As defined in [1]: if state A must be true

before a command can execute to set state B true, then A
is B’s precondition. E.g., 〈outlet1 : status = ‘off ’〉 ⇒
〈sprinker2 : status = ‘spray’〉 means outlet1 should be

turned off before sprinkler2 sprays.

A. Background in Automatic Precondition Execution

Model: One Controller, Many Objects. Precondition ex-

ecution using this model has three steps: 1) A controller (a

subject device, or an object which is delegated as a controller)

obtains from the backend a PEG—a directed acyclic graph

where each vertex is a state, the sink state (i.e. the vertex

with no successor) corresponds to a controller command, and

predecessors are preconditions; 2) When issuing a command,

the controller finds out the command’s PEG and converts each

precondition to a precondition command, getting a combo

consisting of the controller command and all of its precon-

dition commands; 3) The controller performs one round of

combo execution by following the PEG order to execute those

commands: a command is sent to its target object only if it gets

ripe for execution (i.e., all of its precondition commands have

been successfully executed). One round ends if the sink object

finishes execution or this round is aborted. And repeating this

process (no matter executing the same or a different combo)

counts as another round.

E.g., a watchdog is delegated as a controller. When detecting

smoke, it decides to make the fire sprinklers spray; by checking

and following the PEG, it first safely shuts down the PCs

powered by the outlets below the sprinklers, then turns off the

outlets, and finally triggers the sprinklers.

Another model distributes the controller roles among the

subject device and multiple objects. However, multiple con-

trollers suffer from PEG synchronization overhead and fail-

ures. Besides, when multiple users attempt to execute com-

bos on the same object, using a single controller for each

combo can handle contention arbitration and subsequent abor-

tion/recovery [1] much more easily.

Security. Existing work including APEX considers no secu-

rity issues, and assumes that: i) all messages are authenticated,

fresh; ii) controllers follow the give PEGs to operate objects,

which trust controllers thus do not check whether their precon-

ditions are indeed set; iii) objects honestly execute commands

and return their states to controllers.

We choose to work on the one controller model due to the

model’s simplicity and efficiency. We will secure its execution

order against malicious subject devices and malicious objects.

Security model and analysis can be found in Section VI.

III. DESIGN GOALS

Execution Order Enforcement. Any order specified by a

backend-issued PEG must be reliably enforced during com-

mand execution, despite malicious subject devices and objects.

Especially, to know if a command is ripe, an object should be

able to check whether all the preconditions of the command

(corresponding to all of its predecessors in the PEG) are met.

Availability. Command execution on objects should involve

access to the backend as little as possible, so execution is still

available upon backend machine failures or connection losses,

which happen in reality despite dedicated maintenance.

Efficiency. Command execution should be efficient in as-

pects of computation cost and message overhead, such that

execution latency is short and user experience is positive.

Non-Goals. We focus on protecting the order among dif-

ferent commands, while securing each single command (e.g.,

integrity, freshness) has been significantly studied and we

leverage existing work [5]. We do not consider execution order

confidential so secrecy is not a goal. Also, resistance to DoS

attacks and physical level jamming is out of the scope.

IV. STRATEGY A: SNOWBALL

Snowball achieves order enforcement based on signatures

signed by predecessor objects in the PEG and verified by

successor objects. In this strategy, each object returns to the

controller a signed declaration of its state upon execution

completion; when the controller sends a command to target

object O, it attaches the declarations from all of O’s prede-

cessor objects such that O can check if this command is ripe

(yes if the preconditions are all set) before executing it. The



more downstream O is located in the PEG (i.e. closer to the

sink), the more precondition declarations it needs to check—

verification cost and message overhead snowball.

Our design is built on top of Heracles [5], a capability-based

access control [6] system where a controller requests secure,

unforgeable tokens called tickets from the backend, and uses

them as proof of access rights during command execution.

Thus once tickets are obtained, controllers can access objects

even if the backend is unavailable. Heracles protects each sin-

gle command’s authenticity/integrity/freshness, and we bring

in extra protection on execution order among commands.

A. Ticket Requesting

TKT : [ITKT ,S, {Statex, Statey}, Texpiry]SIGadm

Fig. 1: TKT in Snowball Strategy

Controller S requests from the backend a ticket (TKT)

which is a token with a PEG embedded in. It is used to prove

to objects that S is authorized to set any state in the PEG true.

Heracles Components. In Fig. 1, ITKT ,S, Texpiry denote

TKT’s ID, S’s ID and TKT’s expiry time. [...]SIGX is the

content in brackets followed by a signature of it signed by

entity X . Signed by the admin, TKTs cannot be forged/altered.

Snowball Components. Originally a Heracles TKT carries

S’s access rights for accessing one or more objects but no

execution order is involved. Here we have a new component

{Statex, Statey}, a set of precondition relationships where

Statex is Statey’s direct predecessor and multiple such rela-

tionships together constitute a PEG.

B. Command Execution

CMDOj
: [IRND, ICMD, TKT, {RESOi

}Oi∈Λj
,Oj , F, Tissue]SIGS

RESOj
: [IRND, IRES , StateOj

, Tissue]SIGOj

Fig. 2: CMD and RES in Snowball Strategy

Controller S, if benign, follows the PEG order to send

commands (CMD) to target objects. A CMD will be sent only

after it gets ripe, i.e., its precondition objects are accessed and

responses (RES) announcing success return. E.g., in Fig. 3 (a),

initially the CMDs to object 1–4 are ripe thus sent; after the

RESs return, the CMDs to object 5–8 get ripe and sent.

Heracles Components. In Fig. 2, ICMD, IRES ,Oj , F and

Tissue denote CMD’s ID, RES’s ID, target object’s ID, the

function to invoke, and the message’s issue time. A CMD

will be accepted by Oj only if it is: 1) authorized. F aims

to set a state authorized by TKT ; 2) authenticated. SIGS is

valid; 3) fresh. Timestamp Tissue and nonce ICMD together

protect freshness: a CMD with a too old timestamp or a used

nonce will be detected as replay and rejected.

Snowball Components. Malicious S does not follow

the order, so we add new components IRND (round ID)

and {RESOi
}Oi∈Λj

for objects to perform execution order

check: a CMD will be accepted only if it is also 4) ripe.

{RESOi
}Oi∈Λj

is a set containing the RESs from all of Oj’s

predecessor objects (denoted as Λj) in the PEG. Oj finds

out its precondition objects Λj from TKT in the CMD, and

regards the CMD ripe only if ∀Oi ∈ Λj , a fresh RES (with

fresh Tissue and IRES) exists in the CMD’s RES set and it

carries the same round ID as the CMD, declares Statei is set,

and is signed properly by Oi. E.g., in Fig. 3 (a), object 20

verifies the RESs of object 1–16 before executing the CMD.

Note that CMDs and RESs in one round of combo execution

have the same IRND , such that a CMD cannot put an RES

of other rounds in its RES set as execution order proof. The

round ID is recorded when the round ends, and subsequent

messages with used round IDs will be rejected.

V. STRATEGY B: ONION

Onion achieves order enforcement based on encryption

performed by the backend. The backend issues controller S be-

forehand with an onion-like token set whose outer layers are

tickets (TKT) for accessing predecessor objects in the PEG and

inner layers for successors. Initially, only the outermost layer

TKTs (for accessing the PEG’s source objects, i.e. those with

no predecessor) are in plaintext while all the inner ones are

encrypted. S uses plaintext TKTs to access the corresponding

objects, which return the secrets needed to “peel” (decrypt)

the Onion’s current outermost layer and unseal the plaintext

TKT of next layer. S repeatedly peels the Onion and accesses

objects till the innermost TKT (for accessing the PEG’s sink

object) is obtained and consumed.

State1

State3

State5

State2

State4

1 2 3 4

9 10 11 12

17 18 19 20

5 6 7 8

13 14 15 16

C
o
n
tr
o
ll
e
r

Source

State

Sink

State

(a) Sample PEG

Layer1 

Layer2 

Layer3 

Layer4

TKT1 

TKT2 

TKT3 

TKT4 

TKT5

(b) Sample Onion

Fig. 3: A sample PEG and the corresponding Onion

Since a TKT cannot be decrypted until the secrets from all

of its predecessor objects are collected, the correct execution

order is enforced. In Fig. 3: originally only TKT1 is in

plaintext; S uses it on object 1–4 and each of them returns a

secret; S uses the 4 secrets to compute a decryption key to peel

Layer1, releases TKT2 and uses it on object 5–8; the process

is repeated till TKT5 is released (this requires the secrets from

object 1–16) and used on object 17–20.

A. Onion Requesting

TKTj : [IRND, ITKT ,S, {Statex, Statey}, Statej , Texpiry]SIGadm

Fig. 4: TKT in Onion Strategy

Controller S requests an Onion from the backend. Note that

when using Snowball, the backend returns a PEG-level TKT

which can be used to set any state in the PEG true, while

here an Onion consists of multiple state-level TKTs (some are

encrypted), with each being an access token for setting one

state. E.g., in Fig. 4, TKTj can only be used to set Statej
true. TKTs in one Onion have the same round ID, i.e. IRND .



Onion Generator. In Algorithm 1, the backend first gen-

erates a TKT for each state and a secret ξ for each object

of the input PEG (line 4–9). ξOj
is a hash-based message

authentication code HMAC(key,msg), key is the symmetric

key K
sym
Oj

issued to Oj at bootstrapping, possessed by only

Oj and the backend. For each state Statej , if it is a source

state (line 11–12), then TKTj is directly put in the Onion.

Otherwise (line 13–18) TKTj is encrypted before being put.

(...)Kenc
j denotes the ciphertext of the content in parentheses

encrypted using key Kenc
j , and Kenc

j is the bitwise XOR

output of the secrets of S and all Oi ∈ Λj , where Λj is

Statej’s predecessor object set. E.g., in Fig. 3, TKT5 targeting

State5 (object 17–20) is encrypted by a key generated using

ξS and 16 object secrets ξO1
–ξO16

.

Algorithm 1 Onion Generator (run by the backend)

1: function ONIONGEN(S, PEG)

2: Onion← ∅

3: IRND ← Random()
4: for all Statej ∈ PEG.vertices do

5: TKTj ← TicketGen(IRND,S, Statej)
6: for all Oj of Statej do

7: ξOj
← HMAC(Ksym

Oj
, TKTj.IRND‖.ITKT )

8: end for

9: end for

10: for all Statej ∈ PEG.vertices do

11: if Statej is a source state then

12: add TKTj to Onion

13: else

14: Kenc
j ← HMAC(Ksym

S
, IRND)

15: for all Oi ∈ Λj do

16: Kenc
j ← Kenc

j ⊕ ξOi

17: end for

18: add (TKTj)K
enc
j to Onion

19: end if

20: end for

21: return Onion

22: end function

B. Command Execution

CMDOj
: [ICMD, TKTj ,Oj , F, Tissue]SIGS

RESOj
: [IRES , StateOj

, ξOj
, Tissue]SIGOj

Fig. 5: CMD and RES in Onion Strategy

In Fig. 5, a command (CMD) using TKTj as access right

and execution order proof is sent to target Oj , which returns

secret ξOj
in its response (RES) upon execution success.

When receiving the RES from Oj , S adds ξOj
to a set

called SecretSet. Then as shown in Algorithm 2, it checks if

any state in the Onion becomes ripe now: Statej+1 is ripe

if ∀Oi ∈ Λj+1 (predecessor), there is ξOi
in SecretSet.

Then S computes the bitwise XOR output of ξS and those

ξOi
, gets Kdec

j+1 which is identical to Kenc
j+1, and decrypts

(TKTj+1)K
enc
j+1. This decryption “peels” the Onion, making

its encrypted part smaller. Now S has TKTj+1 and can

perform next access. In this way, S has to follow the PEG

order to obtain TKTs and execute CMDs.

Algorithm 2 Onion Peeler (run by controller S)

1: function ONIONPEEL(Onion, SecretSet)

2: NewTkt← ∅

3: get PEG, IRND from Onion’s any plaintext TKT

4: for all Statej+1 ∈ PEG.vertices do

5: if ∀Oi ∈ Λj+1, there is ξOi
∈ SecretSet then

6: Kdec
j+1 ← HMAC(Ksym

S
, IRND)

7: for all Oi ∈ Λj+1 do

8: Kdec
j+1 ← Kdec

j+1 ⊕ ξOi

9: end for

10: decrypt (TKTj+1)K
enc
j+1 with Kdec

j+1

11: add TKTj+1 to NewTkt

12: end if

13: end for

14: return Onion and NewTkt

15: end function

Note that CMDs in one round of combo execution must

use TKTs with the same IRND . Each ITKT is recorded till

Texpiry is reached, for detecting TKT replay. Like Snowball,

here ICMD/IRES are recorded at message reception, and

IRND is recorded when the round ends. Subsequent messages

containing any used ID will be rejected.

VI. SECURITY ANALYSIS

Security Model. We assume the backend is trustworthy

and well-protected. Its communication with subject devices

or objects is secure. Subject devices/objects are reasonably

well protected, e.g., by their OS. Also, we assume breaking

the cryptographic algorithms (e.g., AES, ECDSA, in 128-bit

strength) are computationally infeasible.

An attacker can capture, inject, modify or replay messages

sent over the communication channel. Her goal is to compro-

mise execution order, making unripe commands accepted. For

expression simplicity, we denote the predecessor objects of

Oj (j ≥ 2) as O1–Oj−1, with Oj−1 being its direct predeces-

sor. We show as below both strategies resist well attacks from

a malicious controller unless the attacker compromises all the

precondition objects; a rogue insider object causes limited

harm and how to mitigate it is discussed.

A. Malicious Controller

A malicious controller can be a node impersonating benign

controller S (denoted as IS ), or S which has gone rogue (de-

noted asRS). IS poses as S to send unripe CMDs, which will

be rejected for their invalid signatures, unless IS compromises

S’s private key. If IS does have the key, it becomes equivalent

to RS . RS ’s CMDs have correct signatures, and to make its

unripe CMDs accepted, it just tampers with execution order

proof (RES set in Snowball or TKT in Onion).

1) Proof Forgery. When using Snowball, RS may try to

forge the PEG part in TKT to make target Oj believe that

there is no precondition. It will fail since the integrity of TKT



is protected by the admin’s signature. It may also forge the

RESs from all of Oj’s precondition objects, i.e. O1–Oj−1,

which needs the private keys of all of them.

When using Onion,RS may also forge TKTj targetingOj ,

and fail due to the same reason. Or it may peel the Onion for

getting TKTj, but that needs the symmetric keys of O1–Oj−1

for decryption key construction.

2) Proof Replay. When using Snowball, RS gets RESO1
–

RESOj−1
from the 1st round, and uses them to access

Oj directly in subsequent rounds. However, Snowball has

timestamps and nonces to prevent replay attacks: an object

regards an RES as a valid execution order proof only if the

RES has a new enough timestamp Tissue and its ID IRES has

not been received by the object before.

Similarly, when using Onion, RS only follows the PEG

order once, gets all the TKTs and then replays them. It is also

stopped by timestamps and nonces: an object regards a TKT

as a valid proof only if the TKT is not expired and its ID

ITKT has not been received before. A received ITKT can be

removed from the tracking list after Texpiry .

Availability Comparison. Each Onion can be used only once

because the TKTs within are disposable for anti-replay. S may

estimate how many rounds it will execute, and request an

appropriate number of Onions from the backend. Requesting

too many is a waste, while too few leads to Onion exhaustion

and the backend has to be accessed again. Upon backend

unavailability, new Onions are unavailable, making objects

unaccessible. A Snowball TKT can be used for arbitrary times

before expiry, thus less access to the backend is needed, and

higher availability in object access is achieved.

3) Proof Graft. RS may start the 1st round of combo

execution and access O1–Oj−1 in order, so it collects enough

proofs to access Oj ; then it aborts this round, and uses another

round (with a different PEG) to modify O1–Oj−1 such that

Oj’s preconditions in the 1st round are no longer met; then

it uses the 1st round proofs to access Oj . Note that since the

1st round was aborted, RS has never used them on Oj , so

Oj cannot detect them as replay.

To resist this attack, in each round of combo execution:

i) when using Snowball, RESs’ IRND must be identical to

CMD’s IRND to get accepted by objects as valid execution

order proof; ii) when using Onion, TKTs have the same round

ID. When a round is completed, the sink object notifies all

the predecessors; if an object receives an abortion signal, it

notifies all the objects in the PEG. Either notification carries

the current IRND, and makes the receivers end the round,

mark the round ID as used. Objects will discard subsequent

messages with used round IDs, rejecting grafted proof.

B. Malicious Object

Similarly, the attacker can be a node impersonating benign

object Oj (denoted as IOj
), or rogue Oj (denoted as ROj

).

Unless IOj
compromises Oj’s private key, its RESs will be

discarded due to invalid signatures. As for ROj
:

Proof Forgery. In both strategies, after receiving a CMD

from S, ROj
discards it and returns a dishonest RES announc-

ing that it has set Statej true. Then S moves on to send a

CMD to Oj+1, which actually is unripe. E.g., a window falsely

claims that it is closed, then the AC is turned on when the room

is unsealed. This attack does not compromise the entire PEG

but only one edge, i.e. Statej ⇒ Statej+1. S may get input

from objects besides the state’s owner object for lie detection

(e.g., an extra sensor can monitor the window’s status), but a

full solution is out of the scope.

VII. PERFORMANCE EVALUATION

Experiment Settings. We implement Snowball and Onion,

and conduct real experiments on a 20-object testbed. To accu-

rately evaluate the extra overhead our design brings into the

existing system APEX [1], we follow its experiment settings:

1) Each object is emulated by a Raspberry Pi communicating

via WiFi (the rationality of using resource-rich Pis is shown in

Section II; the support for resource-poor objects is discussed

in Section VIII); 2) The PEG in Fig. 3 (a) is tested; 3) Two

network topologies are evaluated—one-hop situation where all

the 20 objects are 1 hop away from controller S, and multi-

hop situation where object 1–4, 5–8, 9–12, 13–16, 17–20 are

1, 2, 3, 4, 5 hops away from S respectively. In reality S is a

subject device, or an object delegated as a controller, so we use

another Pi as an object controller first, and then show the case

of a subject device controller. As for cryptographic algorithms,

ECDSA (elliptic curve secp256r1 [7], 128-bit strength) is used

for signatures, AES (128-bit) for encryption.

A. Message Overhead

Without loss of generality, the number of objects in a PEG

(n rows, m objects each row on average) is denoted as N =
mn. We find Onion has much smaller message overhead than

Snowball. An Onion command (CMD) has a constant number

of components. A Snowball CMD starts with a similar length,

but it increases with the number of predecessors, e.g., one

targeting an object in the jth row carries (j − 1)m RESs. In

our implementation, each signature has 64 B and an RES has

110 B, thus a Snowball CMD reaches up to kBs easily.

SB
4

SB
8

SB
12

SB
16

SB
20

Onion

Command Type

0

0.5

1

1.5

2

2.5

C
o

m
m

a
n

d
 L

e
n

g
th

 (
k
B

)

RES

Others

TKT

(a) Command length

4 8 12 16 20

Object ID

0

20

40

60

80

R
e

tx
 R

a
te

 (
%

)

APEX

Snowball

Onion

(b) Retransmission rate

Fig. 6: Message Overhead

Fig. 6 (a) shows the CMD lengths in our experiments. We

choose object 4, 8, 12, 16, 20 in Fig. 3 (a) as representatives

of different downstream degrees, which have 0, 4, 8, 12, 16

predecessors respectively. When using Snowball, the more

downstream the target object is in the PEG, the longer the

CMD is. E.g., the CMD for object 4 has 320 B while that for



object 20 has 2,080 B, because the latter additionally carries

the RESs of 16 predecessor objects. In contrast, an Onion

CMD is constantly 342 B long due to no object RES.

Fig. 6 (b) shows the CMD retransmission rates. We make a

message resent if an ACK for it does not return within 200 ms.

Such rates for APEX and Onion are always below 10% due to

their short messages. Snowball’s rate increases with message

length, reaching 34% for a CMD targeting object 16 (1.6 kB

long) and 63% for one targeting object 20 (2.1 kB).

B. Cryptographic Operation Time Cost

We find Onion has similar computation cost to Snowball

on the controller, but significantly smaller cost on the objects.

Tab. I presents the number of public-key operations which

dominates the computation time. On the controller, for both

strategies, S needs to sign 1 CMD and verify 1 RES signature

for each object, i.e. 2N operations in total. On the objects,

the two strategies have 3 operations in common: each object

verifies 1 CMD, 1 TKT, and signs 1 RES signature. When

using Snowball, each of the m objects in the jth row (2 ≤
j ≤ n) additionally verifies the RESs of (j−1)m predecessors.

In total, Snowball needs
∑n

j=2
(j−1)m2 = 0.5m2(n2−n) =

0.5(N2−mN) more public-key operations than Onion’s 5N .

TABLE I: The number of public-key operations

Strategy Controller Objects Overall

sign verify sign verify

Snowball N N N 0.5(N2−mN)+2N O(N2)
Onion N N N 2N O(N)

According to our experiments, on the controller Fig. 7 (a),

for both strategies, S spends around 548 ms on cryptographic

operations for 20 objects. Onion strategy additionally needs

S to peel Onion layers, which is symmetric-key (AES) de-

cryption and not compute intensive. The Onion in Fig. 3 needs

to be peeled for 4 times, costing 3.1 ms only.

Snowball Onion

Enforcement Strategy

0

100

200

300

400

500

600

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
)

peel = 3.1ms

peelOnion

verifyRES

signCMD

(a) Computation time, S

SB
4

SB
8

SB
12

SB
16

SB
20

Onion

Command Type

0

50

100

150

200

250

300

350

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

m
s
)

cmpt =
1.5ms

compute

verify{RES}

common

(b) Computation time, O

Fig. 7: Cryptographic Time

On an object Fig. 7 (b), the two strategies have 3 operations

in common which cost 72.5 ms. Snowball needs objects to

verify predecessor RESs: object 4, 8, 12, 16, 20 verifies 0, 4,

8, 12, 16 signatures respectively. The total computation time

increases, from object 4’s 72.5 ms to object 20’s 313.2 ms.

In contrast, Onion costs 74 ms in total for whichever object:

though it needs each object to additionally compute a hash

value ξ, that costs 1.5 ms only.

C. Execution Latency

We test the overall latency to access 20 objects in the PEG

order, when APEX (with no security mechanism for order

enforcement), Snowball, and Onion are used respectively,

under one-hop and multi-hop situation. The ladder-shaped

curves in Fig. 8 show that objects are accessed in the correct

order (e.g., object 1–4 first, then 5–8). In one-hop situation

Fig. 8 (a), APEX costs 1.0 s to access 20 objects; Snowball

needs 2.6 s while Onion needs 1.6 s, about 62% of Snowball’s

time. We notice that the latency of Onion increases linearly as

a more downstream object becomes the target; however, that

of Snowball increases quadratically, because an object needs

to verify the signatures from all of its predecessors.

1 5 9 13 17 20

Object ID

0

1

2

3

4

E
x

e
c

u
ti

o
n

 L
a

te
n

c
y

 (
s

)

APEX

Snowball

Onion

(a) Latency, one-hop

1 5 9 13 17 20

Object ID

0

1

2

3

4

5

E
x

e
c

u
ti

o
n

 L
a

te
n

c
y

 (
s

)

APEX

Snowball

Onion

(b) Latency, multi-hop

Fig. 8: Execution Latency

In multi-hop situation Fig. 8 (b), similar phenomena are

observed: APEX, Onion, Snowball cost 1.5 s, 2.1 s, 3.9 s

respectively. Onion’s advantage over Snowball in responsive-

ness becomes more obvious: it saves 1.8 s and costs 54%

of Snowball’s time. The latency difference becomes larger

than one-hop because Snowball’s long CMDs (those targeting

object 17–20) have high retransmission rates (Fig. 6), and the

more hops CMDs travel, the more time Onion saves.

Subject Device Controller. Controller S can also be a

subject device (usually a smartphone). The computation time

on a Samsung Galaxy S8 is 33 ms, shorter than Pi’s 548 ms

due to its better computing resource. So it can reduce both

strategies’s overall latencies by 0.5 s, but the time difference

between Snowball and Onion does not change.

D. Summary

TABLE II: Comparison. X: advantageous item

Metric Snowball Onion

Security Yes Yes

Computation Cost O(N2) XO(N)
Message Overhead up to kBs X102 bytes
Ticket Reusability XYes No

Onion has smaller message overhead, computation cost and

execution latency, and may be preferred for its high efficiency

and responsiveness. Snowball has better availability because

its tickets (TKT) can be used repeatedly while Onions are

disposable. Using them in combination may be recommended:

S requests multiple disposable Onions plus one Snowball

TKT; it uses Onions first for responsive object access, and

uses the Snowball TKT as a provisional substitute after the

Onions are exhausted and before new Onions are available.



VIII. DISCUSSION

Support for Resource-Poor Objects. In reality resource-

constrained, battery-powered objects may involve in precon-

dition execution, and they can only run public-key algorithms

slowly, occasionally. A delegation strategy [5] can make Snow-

ball and Onion work on them: a constrained object establishes

a symmetric key with a resource-rich object and delegates

public-key operations to the rich one.

Another way is to replace compute intensive signatures

in constrained objects’ TKTs/CMDs/RESs with message au-

thentication codes (MAC). Rich objects still use signatures.

Specifically, the backend replaces SIGadm with a MAC gen-

erated by K
sym
Oj

to authenticate the TKT to constrained object

Oj . Similarly, controller S and Oj establish a symmetric

key beforehand, and use it to authenticate their CMDs/RESs.

Onion has less establishment overhead than Snowball. This

is because Snowball requires objects to verify predecessor

objects’ RESs, thus symmetric keys should also be established

between objects, besides between S and objects.

Resistance to Object Failures. We have shown in Sec-

tion VI that our strategies resist well not only controller

failures but also object failures. Though less analysis is on

object failures than on controller ones, it is because this work

focuses on securing the model of one controller and many

objects. In such a “star topology” model, the controller is the

pivot entity that coordinates overall execution order, thus can

launch more attacks targeting execution order. Given a benign

controller, a failed object can launch no attacks targeting

execution order except lying about its state; this can at most

violate one PEG edge, causing limited harm.

General Applicability. This work secures the order of

actions among multiple devices. It is a generic problem beyond

just precondition execution. Our solution is generally applica-

ble to contexts where one or multiple devices are required to

reliably follow a specified order to do a series of tasks. E.g.,

open a window to air the room for 10 minutes, and then close

it; update firmware on all objects in a house, then reboot, and

perform a suite of test operations on them.

IX. RELATED WORK

Centralized Policy Enforcement. Many IoT solutions [8],

[9], [10] use centralized execution for access control: subjects

send commands to the cloud; the cloud checks if subjects

have the access rights, and if yes, it forwards commands to

target objects. CoMPES [11] is a cloud-based system with

predefined policies of what commands to execute under what

conditions; it receives condition information from objects, and

sends commands back. CityGuard [12] is a centralized smart

city safety watchdog enforcing safety policies.

Policy enforcement in these systems is trivial because ob-

jects only accept commands from the centralized entity which

reliably carries out polices. But they are vulnerable to a single

point of failure, have long execution latency, and may not be

preferred especially in enterprise-scale IoT [5].

Distributed Policy Enforcement. There are also solutions

using distributed execution [5], [13], [14], [15] which al-

low subjects to send commands directly to objects, without

involving the centralized entity. However, what they do is

ensure each individual command is valid (e.g., authenticated,

authorized, fresh), and realizing order enforcement among

multiple commands is essentially a different problem. Our

strategies achieve distributed execution order enforcement.

X. CONCLUSION

In this paper, we describe the design, implementation and

evaluation of two strategies for precondition execution en-

forcement in IoT: Snowball is signing-based while Onion is

encryption-based. Our analysis and experiments on a 20-node

testbed show that both strategies are secure and reliable. Snow-

ball has higher availability while Onion is more efficient and

responsive: Onion uses 1.6/2.1 s to access 20 one-hop/multi-

hop objects, 62%/54% of Snowball’s time.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation under grant number 1652276.

REFERENCES

[1] Q. Zhou and F. Ye, “Apex: automatic precondition execution with
isolation and atomicity in internet-of-things,” in Proceedings of the Inter-

national Conference on Internet of Things Design and Implementation.
ACM, 2019, pp. 25–36.

[2] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” Tech. Rep., 2003.

[3] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,
2013, pp. 15–20.

[4] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content centric
peer data sharing in pervasive edge computing environments,” in 2017
IEEE 37th International Conference on Distributed Computing Systems

(ICDCS). IEEE, 2017, pp. 287–297.
[5] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-

grained access control for internet-of-things in enterprise environments,”
in IEEE INFOCOM 2018-IEEE Conference on Computer Communica-

tions. IEEE, 2018, pp. 1772–1780.
[6] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”

IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.
[7] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, and N. Bolyard,

“Elliptic curve cryptography (ecc) cipher suites for transport layer
security (tls),” 2006.

[8] Amazon, “AWS IoT Developer Guide,”
http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf.

[9] SmartThings, “SmartThings Developer Documentation,”
https://media.readthedocs.org/pdf/smartthings/latest/smartthings.pdf.

[10] IBM, “Meet Watson: the platform for cognitive business,”
http://www.ibm.com/watson/ .

[11] J. Hall and R. Iqbal, “Compes: A command messaging service for
iot policy enforcement in a heterogeneous network,” in Proceedings of

the Second International Conference on Internet-of-Things Design and

Implementation. ACM, 2017, pp. 37–43.
[12] M. Ma, S. M. Preum, and J. A. Stankovic, “Cityguard: A watchdog

for safety-aware conflict detection in smart cities,” in Proceedings of

the Second International Conference on Internet-of-Things Design and

Implementation. ACM, 2017, pp. 259–270.
[13] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security

approach to manage access control in the internet of things,” Mathemat-

ical and Computer Modelling, vol. 58, no. 5, pp. 1189–1205, 2013.
[14] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing

building management systems using named data networking,” IEEE

Network, vol. 28, no. 3, pp. 50–56, 2014.
[15] N. Ye, Y. Zhu, R.-C. Wang, and Q.-m. Lin, “An efficient authentication

and access control scheme for perception layer of internet of things,”
2014.


