On Achieving Reliable and Efficient Precondition
Execution Enforcement in Internet-of-Things

Qian Zhou and Fan Ye
Department of Electrical and Computer Engineering, Stony Brook University
Email: {gian.zhou, fan.ye} @stonybrook.edu

Abstract—In IoT it is common that before a command can
execute on a smart object, certain preconditions (on possibly
other objects) should be met first to ensure safety or efficiency.
Existing work has realized automatic precondition execution:
when a user issues a command, her device automatically finds
out all the precondition commands, and executes them in the
correct order. However, security issues have not been considered:
it assumes that a user device honestly follows the order it has
been told to send commands to objects, and objects trust users
thus do not check whether the preconditions are indeed met.
In this paper we propose two strategies to enforce precondition
execution order: 1) Snowball relying on signed declarations from
precondition objects; 2) Onion using disposable access tokens
encrypted by a trustworthy server. OQur extensive analysis and
experiments on a 20-node testbed show that both strategies are
secure and reliable. Snowball has higher availability while Onion
is more efficient and responsive: Onion uses 1.6/2.1 s to access
20 one-hop/multi-hop objects, 62%/54% of Snowball’s time.

Index Terms—IoT, Security, Building Automation

I. INTRODUCTION

In IoT there are common constraints that before a command
can execute on a smart object (i.e. IoT device), certain states
(called preconditions) on other objects should be satisfied for
safety or efficiency. E.g., before a fire sprinkler sprays, the
outlets within its spraying range should be powered down to
prevent electric shocks; before an AC starts giving off cool
air, the doors/windows should be closed to save energy. A
command may have multiple preconditions, and each precon-
dition may have its own preconditions, leading to multiple,
recursive preconditions structured in a directed acyclic graph
called precondition execution graph (PEG) [1].

Usually, users have to manually track and execute the com-
mands that set those preconditions true (called precondition
commands) one by one. Such laborious, error-prone operations
daunt users and cause safety risks. Recently, solutions like
APEX [1] are proposed for automatic precondition execution
in IoT: a user obtains from a trustworthy backend server a PEG
where the sink state (i.e. the vertex with no successor) corre-
sponds to a user command, and predecessors are preconditions;
when the user issues a command, her device (e.g., smartphone)
automatically executes the precondition commands in the PEG
order, and executes the user command at the end.

However, existing work assumes user/IoT devices are al-
ways trustworthy, and faithfully follow the rule: i) a user de-
vice honestly follows the PEG order to send commands to ob-
jects, which trust users thus do not check whether the precon-
ditions are indeed set; ii) objects faithfully execute commands

from users and return their states. In reality, besides common
attacks targeting a single message’s integrity/freshness, there
are special attacks focusing on tampering with execution
order among different commands. A user device or object
can easily violate precondition constraints intentionally (e.g.,
malicious devices) or unintentionally (e.g., implementation
bugs). Mechanisms reliably enforcing precondition execution
are needed by both devices to verify that preconditions are
indeed met, before they start subsequent execution.

In this paper we propose two strategies for such enforce-
ment. 1) Snowball achieves the goal based on state declara-
tions generated and signed by predecessor objects in the PEG;
successor objects verify them and ensure their preconditions
are satisfied. The more downstream an object is located in the
PEG, the more precondition declarations it needs to verify,
which resembles snowballing. 2) Onion uses disposable access
tokens generated and encrypted by the backend: a token for
accessing a successor object is encrypted; to use it, the user
must access the predecessor objects first and obtain a secret
from each of them to construct the decryption key. Tokens are
decrypted and released gradually, like an onion peeled layer
by layer. We claim our contributions as follows:

o We identify multiple attacks tampering with precondition
execution order in IoT, and propose a signing-based
solution called Snowball that allows objects to verify the
states of their precondition objects.

o We also devise an encryption-based solution called Onion
that uses encrypted, disposable tokens where a token
for accessing an object cannot be decrypted before its
precondition objects are accessed.

+ We implement them and conduct extensive analysis and
experiments on a 20-node testbed. Both achieve secure
and reliable order enforcement. Snowball needs less ac-
cess to the backend, thus is more robust upon backend
unavailability; Onion has higher efficiency and lower
latency—it takes 1.6/2.1 s to access 20 one-hop/multi-
hop objects, 62%/54% of Snowball’s time.

II. MODELS AND ASSUMPTIONS

Node Types. We consider the backend, subject devices and
objects. As is widely used in practice, the backend is not a
single server, but a hierarchy of servers run by the admin to
manage registered subjects/objects; it realizes a chain of trust,
and resists collapse under the load and a single point of failure.
Subjects (i.e. users) use subject devices (e.g., smartphones) to



operate objects (i.e. IoT devices). We focus on security design
above the network layer, and assume these two types form
a ground network, where nodes in proximity are wirelessly
connected and multi-hop routing [2], [3] is available.

A subject or object (denoted as X) must first register at the
backend to join the system. This is a common requirement in
real enterprise environments. X is issued with an ID, private
key K%'*, public key certificate C ERT'x (signed by the admin
so it cannot be forged/altered), and the admin’s public key
KP" (5o X can verify the admin’s signatures). Besides, X
receives a symmetric key K3’™ (possessed by X and the
admin only). CERTx is publicized by X in the ground
network, cached by nearby objects and can be queried [4].

Node Resources. Subject devices have good computing
resources (e.g., Galaxy S8 has an octa-core CPU, 4GB RAM).
Small objects (e.g., smoke detectors, occupancy sensors) are
usually constrained, battery-powered sensors, while larger
ones (e.g., door locks, ACs) are resource-rich (like Raspberry
Pi), wall-powered, and with actuators. Nodes are roughly time
synchronized (e.g., error within tens of seconds).

As pointed out in [1], IoT precondition execution usually
involves actuator devices, of which the actuations prepare
the physical (mechanical/electrical/thermal, etc.) environment
for subsequent actuations. E.g., outlets must be turned off
before sprinklers spray water, windows must be closed be-
fore ACs work. Unlike tiny sensor devices, actuator devices
(outlets/sprinklers/windows/ACs) are mostly resource-rich and
wall-powered. Thus in this paper we focus on objects which
have sufficient computing resources and energy for public-key
operations (e.g., signatures) at reasonable speed. The support
for resource-poor objects is discussed in Section VIII.

State & Precondition. A state is a predicate on an object’s
variable, denoted as (obj : war opr wvalue) where obj,
var, opr are object identifier, variable name and operator
(e.g., =,>,€). As defined in [1]: if state A must be true
before a command can execute to set state B true, then A
is B’s precondition. E.g., (outlet; : status = ‘of f’) =
(sprinkers : status = ‘spray’) means outlet; should be
turned off before sprinklery sprays.

A. Background in Automatic Precondition Execution

Model: One Controller, Many Objects. Precondition ex-
ecution using this model has three steps: 1) A controller (a
subject device, or an object which is delegated as a controller)
obtains from the backend a PEG—a directed acyclic graph
where each vertex is a state, the sink state (i.e. the vertex
with no successor) corresponds to a controller command, and
predecessors are preconditions; 2) When issuing a command,
the controller finds out the command’s PEG and converts each
precondition to a precondition command, getting a combo
consisting of the controller command and all of its precon-
dition commands; 3) The controller performs one round of
combo execution by following the PEG order to execute those
commands: a command is sent to its target object only if it gets
ripe for execution (i.e., all of its precondition commands have
been successfully executed). One round ends if the sink object

finishes execution or this round is aborted. And repeating this
process (no matter executing the same or a different combo)
counts as another round.

E.g., a watchdog is delegated as a controller. When detecting
smoke, it decides to make the fire sprinklers spray; by checking
and following the PEG, it first safely shuts down the PCs
powered by the outlets below the sprinklers, then turns off the
outlets, and finally triggers the sprinklers.

Another model distributes the controller roles among the
subject device and multiple objects. However, multiple con-
trollers suffer from PEG synchronization overhead and fail-
ures. Besides, when multiple users attempt to execute com-
bos on the same object, using a single controller for each
combo can handle contention arbitration and subsequent abor-
tion/recovery [1] much more easily.

Security. Existing work including APEX considers no secu-
rity issues, and assumes that: i) all messages are authenticated,
fresh; ii) controllers follow the give PEGs to operate objects,
which trust controllers thus do not check whether their precon-
ditions are indeed set; iii) objects honestly execute commands
and return their states to controllers.

We choose to work on the one controller model due to the
model’s simplicity and efficiency. We will secure its execution
order against malicious subject devices and malicious objects.
Security model and analysis can be found in Section VI.

III. DESIGN GOALS

Execution Order Enforcement. Any order specified by a
backend-issued PEG must be reliably enforced during com-
mand execution, despite malicious subject devices and objects.
Especially, to know if a command is ripe, an object should be
able to check whether all the preconditions of the command
(corresponding to all of its predecessors in the PEG) are met.

Availability. Command execution on objects should involve
access to the backend as little as possible, so execution is still
available upon backend machine failures or connection losses,
which happen in reality despite dedicated maintenance.

Efficiency. Command execution should be efficient in as-
pects of computation cost and message overhead, such that
execution latency is short and user experience is positive.

Non-Goals. We focus on protecting the order among dif-
ferent commands, while securing each single command (e.g.,
integrity, freshness) has been significantly studied and we
leverage existing work [5]. We do not consider execution order
confidential so secrecy is not a goal. Also, resistance to DoS
attacks and physical level jamming is out of the scope.

IV. STRATEGY A: SNOWBALL

Snowball achieves order enforcement based on signatures
signed by predecessor objects in the PEG and verified by
successor objects. In this strategy, each object returns to the
controller a signed declaration of its state upon execution
completion; when the controller sends a command to target
object O, it attaches the declarations from all of O’s prede-
cessor objects such that O can check if this command is ripe
(yes if the preconditions are all set) before executing it. The



more downstream O is located in the PEG (i.e. closer to the
sink), the more precondition declarations it needs to check—
verification cost and message overhead snowball.

Our design is built on top of Heracles [5], a capability-based
access control [6] system where a controller requests secure,
unforgeable tokens called tickets from the backend, and uses
them as proof of access rights during command execution.
Thus once tickets are obtained, controllers can access objects
even if the backend is unavailable. Heracles protects each sin-
gle command’s authenticity/integrity/freshness, and we bring
in extra protection on execution order among commands.

A. Ticket Requesting
TKT : [Irkr, S, {State,, Statey}, Teapiry) STGadm

Fig. 1: TKT in Snowball Strategy

Controller S requests from the backend a ticket (TKT)
which is a token with a PEG embedded in. It is used to prove
to objects that S is authorized to set any state in the PEG true.

Heracles Components. In Fig. 1, Ik, S, Tegpiry denote
TKT’s ID, §’s ID and TKT’s expiry time. [...]STGx is the
content in brackets followed by a signature of it signed by
entity X . Signed by the admin, TKTs cannot be forged/altered.

Snowball Components. Originally a Heracles TKT carries
S’s access rights for accessing one or more objects but no
execution order is involved. Here we have a new component
{State,, State,}, a set of precondition relationships where
State; is State,’s direct predecessor and multiple such rela-
tionships together constitute a PEG.

B. Command Execution

CMDo, : [Irnp,Icmp, TKT,{RESo,}0,en;; 05, F, Tissue) SIGs
RESo, : [IrND,IRES, Stateo;, Tissue) SIG o,

Fig. 2: CMD and RES in Snowball Strategy

Controller S, if benign, follows the PEG order to send
commands (CMD) to target objects. A CMD will be sent only
after it gets ripe, i.e., its precondition objects are accessed and
responses (RES) announcing success return. E.g., in Fig. 3 (a),
initially the CMDs to object 1-4 are ripe thus sent; after the
RESs return, the CMDs to object 5—-8 get ripe and sent.

Heracles Components. In Fig. 2, Icap, Ires, Oj, F' and
Tissue denote CMD’s ID, RES’s ID, target object’s ID, the
function to invoke, and the message’s issue time. A CMD
will be accepted by O; only if it is: 1) authorized. F' aims
to set a state authorized by T KT'; 2) authenticated. SIGg is
valid; 3) fresh. Timestamp 744, and nonce Iop/p together
protect freshness: a CMD with a too old timestamp or a used
nonce will be detected as replay and rejected.

Snowball Components. Malicious S does not follow
the order, so we add new components Ipyp (round ID)
and {RESo,}o,ca; for objects to perform execution order
check: a CMD will be accepted only if it is also 4) ripe.
{RESo,}0,cn, is a set containing the RESs from all of O;’s
predecessor objects (denoted as A;) in the PEG. O; finds
out its precondition objects A; from T KT in the CMD, and

regards the CMD ripe only if YO; € A;, a fresh RES (with
fresh T;ssue and Igrpg) exists in the CMD’s RES set and it
carries the same round ID as the CMD, declares State; is set,
and is signed properly by O;. E.g., in Fig. 3 (a), object 20
verifies the RESs of object 1-16 before executing the CMD.

Note that CMDs and RESs in one round of combo execution
have the same Irnyp, such that a CMD cannot put an RES
of other rounds in its RES set as execution order proof. The
round ID is recorded when the round ends, and subsequent
messages with used round IDs will be rejected.

V. STRATEGY B: ONION

Onion achieves order enforcement based on encryption
performed by the backend. The backend issues controller S be-
forehand with an onion-like token set whose outer layers are
tickets (TKT) for accessing predecessor objects in the PEG and
inner layers for successors. Initially, only the outermost layer
TKTs (for accessing the PEG’s source objects, i.e. those with
no predecessor) are in plaintext while all the inner ones are
encrypted. S uses plaintext TKTs to access the corresponding
objects, which return the secrets needed to “peel” (decrypt)
the Onion’s current outermost layer and unseal the plaintext
TKT of next layer. S repeatedly peels the Onion and accesses
objects till the innermost TKT (for accessing the PEG’s sink
object) is obtained and consumed.
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Fig. 3: A sample PEG and the corresponding Onion

Since a TKT cannot be decrypted until the secrets from all
of its predecessor objects are collected, the correct execution
order is enforced. In Fig. 3: originally only TKTI is in
plaintext; S uses it on object 1-4 and each of them returns a
secret; S uses the 4 secrets to compute a decryption key to peel
Layerl, releases TKT2 and uses it on object 5-8; the process
is repeated till TKTS is released (this requires the secrets from
object 1-16) and used on object 17-20.

A. Onion Requesting
TKTJ' : []RND7 ITKT7 S, {Statem, Statey}, Statej, Tempiry}SIGadm

Fig. 4: TKT in Onion Strategy

Controller S requests an Onion from the backend. Note that
when using Snowball, the backend returns a PEG-level TKT
which can be used to set any state in the PEG true, while
here an Onion consists of multiple state-level TKTs (some are
encrypted), with each being an access token for setting one
state. E.g., in Fig. 4, TKT, can only be used to set State;
true. TKTs in one Onion have the same round ID, i.e. Ignp.



Onion Generator. In Algorithm 1, the backend first gen-
erates a TKT for each state and a secret ¢ for each object
of the input PEG (line 4-9). {n, is a hash-based message
authentication code HMAC(key, msg), key is the symmetric
key K (Sgyjm issued to O; at bootstrapping, possessed by only
O; and the backend. For each state State;, if it is a source
state (line 11-12), then T KT} is directly put in the Onion.
Otherwise (line 13-18) T'K'T}; is encrypted before being put.
( )K;”C denotes the ciphertext of the content in parentheses
encrypted using key K7"¢, and K7"¢ is the bitwise XOR
output of the secrets of S and all O; € Aj, where A; is
State;’s predecessor object set. E.g., in Fig. 3, TKTS targeting
State5 (object 17-20) is encrypted by a key generated using
&s and 16 object secrets o, —€0,4-

Algorithm 1 Onion Generator (run by the backend)

1: function ONTONGEN(S, PEG)

2 Onion < @

3 Irnp < Random()

4: for all State; € PEG .vertices do

5: TKT; < TicketGen(Irnp, S, State;)
6

7

8

9

for all O; of State; do
goj — HMAC(K(S/)‘Z_W, TKTj-IRNDH-ITKT)

end for

: end for
10: for all State; € PEG .vertices do
11: if State; is a source state then
12: add TKT; to Onion
13: else
14: B§"0+—HMACQQ?"ZIRND)
15: for all O; € A; do
16: K5« K" @ Co,
17: end for
18: add (TKTj;)K$" to Onion
19: end if
20: end for
21: return Onion

22: end function

B. Command Execution

[IC'I\JD7 TKT77 Oj F7 T‘issue]SIGS
[IrEs, Stateo;, €0, Tissue] SIG o,

CMDo, :
RESo, :

Fig. 5: CMD and RES in Onion Strategy

In Fig. 5, a command (CMD) using T KT} as access right
and execution order proof is sent to target O;, which returns
secret {o; in its response (RES) upon execution success.

When receiving the RES from O;, & adds o, to a set
called SecretSet. Then as shown in Algorithm 2, it checks if
any state in the Onion becomes ripe now: State;i1 is ripe
it YO; € Aji1 (predecessor), there is o, in SecretSet.
Then S computes the bitwise XOR output of £s and those
£o,, gets K jljcl which is identical to K7, and decrypts
(TKTj+1) K15 This decryption “peels” the Onion, making
its encrypted part smaller. Now S has TK7T;;, and can

perform next access. In this way, S has to follow the PEG
order to obtain TKTs and execute CMDs.

Algorithm 2 Onion Peeler (run by controller S)

1: function On10NPEEL(Onion, SecretSet)

2 NewTkt + @

3 get PEG, Irnyp from Onion’s any plaintext TKT
4 for all State;1 € PEG.vertices do

5: if VO; € Aj;1, there is o, € SecretSet then
6 K% « HMAC(K ™, IrnD)

7 for all O, € Aj+1 do
8 K%« K @ o,
9

: end for
10: decrypt (TKTjy1) K515 with K499
11: add TKT;11 to NewTkt
12: end if
13: end for
14: return Onion and NewTkt

15: end function

Note that CMDs in one round of combo execution must
use TKTs with the same Igrnyp. Each Irgr is recorded till
Texpiry 1s reached, for detecting TKT replay. Like Snowball,
here Icyp/Irps are recorded at message reception, and
Irnp is recorded when the round ends. Subsequent messages
containing any used ID will be rejected.

VI. SECURITY ANALYSIS

Security Model. We assume the backend is trustworthy
and well-protected. Its communication with subject devices
or objects is secure. Subject devices/objects are reasonably
well protected, e.g., by their OS. Also, we assume breaking
the cryptographic algorithms (e.g., AES, ECDSA, in 128-bit
strength) are computationally infeasible.

An attacker can capture, inject, modify or replay messages
sent over the communication channel. Her goal is to compro-
mise execution order, making unripe commands accepted. For
expression simplicity, we denote the predecessor objects of
O; (j > 2) as O1-0;_1, with O;_; being its direct predeces-
sor. We show as below both strategies resist well attacks from
a malicious controller unless the attacker compromises all the
precondition objects; a rogue insider object causes limited
harm and how to mitigate it is discussed.

A. Malicious Controller

A malicious controller can be a node impersonating benign
controller S (denoted as Zs), or S which has gone rogue (de-
noted as Rs). Zs poses as S to send unripe CMDs, which will
be rejected for their invalid signatures, unless Zs compromises
S’s private key. If Zs does have the key, it becomes equivalent
to Rs. Rs’s CMDs have correct signatures, and to make its
unripe CMDs accepted, it just tampers with execution order
proof (RES set in Snowball or TKT in Onion).

1) Proof Forgery. When using Snowball, Rs may try to
forge the PEG part in T KT to make target O; believe that
there is no precondition. It will fail since the integrity of T KT



is protected by the admin’s signature. It may also forge the
RESs from all of O;’s precondition objects, i.e. O1-0;_1,
which needs the private keys of all of them.

When using Onion, Rs may also forge T KT} targeting O;,
and fail due to the same reason. Or it may peel the Onion for
getting T'K'T}, but that needs the symmetric keys of O1-0;_;
for decryption key construction.

2) Proof Replay. When using Snowball, Rs gets RESo,—
RES’@F1 from the 1Ist round, and uses them to access
O, directly in subsequent rounds. However, Snowball has
timestamps and nonces to prevent replay attacks: an object
regards an RES as a valid execution order proof only if the
RES has a new enough timestamp T;s5ye and its ID Irgg has
not been received by the object before.

Similarly, when using Onion, Rs only follows the PEG
order once, gets all the TKTs and then replays them. It is also
stopped by timestamps and nonces: an object regards a TKT
as a valid proof only if the TKT is not expired and its ID
I7 T has not been received before. A received It can be
removed from the tracking list after Teypiyy.

Availability Comparison. Each Onion can be used only once
because the TKTs within are disposable for anti-replay. S may
estimate how many rounds it will execute, and request an
appropriate number of Onions from the backend. Requesting
too many is a waste, while too few leads to Onion exhaustion
and the backend has to be accessed again. Upon backend
unavailability, new Onions are unavailable, making objects
unaccessible. A Snowball TKT can be used for arbitrary times
before expiry, thus less access to the backend is needed, and
higher availability in object access is achieved.

3) Proof Graft. Rs may start the 1st round of combo
execution and access O;—-O;_; in order, so it collects enough
proofs to access Oj; then it aborts this round, and uses another
round (with a different PEG) to modify O;-0;_; such that
O;’s preconditions in the 1st round are no longer met; then
it uses the Ist round proofs to access O;. Note that since the
Ist round was aborted, Rs has never used them on O;, so
O, cannot detect them as replay.

To resist this attack, in each round of combo execution:
1) when using Snowball, RESs’ Irnyp must be identical to
CMD’s Irnp to get accepted by objects as valid execution
order proof; ii) when using Onion, TKTs have the same round
ID. When a round is completed, the sink object notifies all
the predecessors; if an object receives an abortion signal, it
notifies all the objects in the PEG. Either notification carries
the current Iryp, and makes the receivers end the round,
mark the round ID as used. Objects will discard subsequent
messages with used round IDs, rejecting grafted proof.

B. Malicious Object

Similarly, the attacker can be a node impersonating benign
object O; (denoted as Zp,), or rogue O; (denoted as Ro,).
Unless Zp, compromises O;’s private key, its RESs will be
discarded due to invalid signatures. As for Rp;:

Proof Forgery. In both strategies, after receiving a CMD
from S, Ro; discards it and returns a dishonest RES announc-

ing that it has set State; true. Then S moves on to send a
CMD to O, 1, which actually is unripe. E.g., a window falsely
claims that it is closed, then the AC is turned on when the room
is unsealed. This attack does not compromise the entire PEG
but only one edge, i.e. State; = State;;1. S may get input
from objects besides the state’s owner object for lie detection
(e.g., an extra sensor can monitor the window’s status), but a
full solution is out of the scope.

VII. PERFORMANCE EVALUATION

Experiment Settings. We implement Snowball and Onion,
and conduct real experiments on a 20-object testbed. To accu-
rately evaluate the extra overhead our design brings into the
existing system APEX [1], we follow its experiment settings:
1) Each object is emulated by a Raspberry Pi communicating
via WiFi (the rationality of using resource-rich Pis is shown in
Section II; the support for resource-poor objects is discussed
in Section VIII); 2) The PEG in Fig. 3 (a) is tested; 3) Two
network topologies are evaluated—one-hop situation where all
the 20 objects are 1 hop away from controller S, and multi-
hop situation where object 1-4, 5-8, 9-12, 13-16, 17-20 are
1,2, 3, 4, 5 hops away from S respectively. In reality S is a
subject device, or an object delegated as a controller, so we use
another Pi as an object controller first, and then show the case
of a subject device controller. As for cryptographic algorithms,
ECDSA (elliptic curve secp256r1 [7], 128-bit strength) is used
for signatures, AES (128-bit) for encryption.

A. Message Overhead

Without loss of generality, the number of objects in a PEG
(n rows, m objects each row on average) is denoted as N =
mn. We find Onion has much smaller message overhead than
Snowball. An Onion command (CMD) has a constant number
of components. A Snowball CMD starts with a similar length,
but it increases with the number of predecessors, e.g., one
targeting an object in the jth row carries (j — 1)m RESs. In
our implementation, each signature has 64 B and an RES has
110 B, thus a Snowball CMD reaches up to kBs easily.
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Fig. 6: Message Overhead

Fig. 6 (a) shows the CMD lengths in our experiments. We
choose object 4, 8, 12, 16, 20 in Fig. 3 (a) as representatives
of different downstream degrees, which have 0, 4, 8, 12, 16
predecessors respectively. When using Snowball, the more
downstream the target object is in the PEG, the longer the
CMD is. E.g., the CMD for object 4 has 320 B while that for



object 20 has 2,080 B, because the latter additionally carries
the RESs of 16 predecessor objects. In contrast, an Onion
CMD is constantly 342 B long due to no object RES.

Fig. 6 (b) shows the CMD retransmission rates. We make a
message resent if an ACK for it does not return within 200 ms.
Such rates for APEX and Onion are always below 10% due to
their short messages. Snowball’s rate increases with message
length, reaching 34% for a CMD targeting object 16 (1.6 kB
long) and 63% for one targeting object 20 (2.1 kB).

B. Cryptographic Operation Time Cost

We find Onion has similar computation cost to Snowball
on the controller, but significantly smaller cost on the objects.
Tab. I presents the number of public-key operations which
dominates the computation time. On the controller, for both
strategies, S needs to sign 1 CMD and verify 1 RES signature
for each object, i.e. 2N operations in total. On the objects,
the two strategies have 3 operations in common: each object
verifies 1 CMD, 1 TKT, and signs 1 RES signature. When
using Snowball, each of the m objects in the jth row (2 <
j < n) additionally verifies the RESs of (j—1)m predecessors.
In total, Snowball needs Y7, (j — 1)m* = 0.5m*(n* —n) =
0.5(N2 —mN) more public-key operations than Onion’s 5N

TABLE I: The number of public-key operations

Strategy Controller Objects Overall
sign  verify sign verify

Snowball N N N 05(N?2—mN)+2N  O(N?)

Onion N N N 2N  O(N)

According to our experiments, on the controller Fig. 7 (a),
for both strategies, S spends around 548 ms on cryptographic
operations for 20 objects. Onion strategy additionally needs
S to peel Onion layers, which is symmetric-key (AES) de-
cryption and not compute intensive. The Onion in Fig. 3 needs
to be peeled for 4 times, costing 3.1 ms only.
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Fig. 7: Cryptographic Time

On an object Fig. 7 (b), the two strategies have 3 operations
in common which cost 72.5 ms. Snowball needs objects to
verify predecessor RESs: object 4, 8, 12, 16, 20 verifies 0, 4,
8, 12, 16 signatures respectively. The total computation time
increases, from object 4’s 72.5 ms to object 20’s 313.2 ms.
In contrast, Onion costs 74 ms in total for whichever object:
though it needs each object to additionally compute a hash
value &, that costs 1.5 ms only.

C. Execution Latency

We test the overall latency to access 20 objects in the PEG
order, when APEX (with no security mechanism for order
enforcement), Snowball, and Onion are used respectively,
under one-hop and multi-hop situation. The ladder-shaped
curves in Fig. 8 show that objects are accessed in the correct
order (e.g., object 1-4 first, then 5-8). In one-hop situation
Fig. 8 (a), APEX costs 1.0 s to access 20 objects; Snowball
needs 2.6 s while Onion needs 1.6 s, about 62% of Snowball’s
time. We notice that the latency of Onion increases linearly as
a more downstream object becomes the target; however, that
of Snowball increases quadratically, because an object needs
to verify the signatures from all of its predecessors.
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Fig. 8: Execution Latency

In multi-hop situation Fig. 8 (b), similar phenomena are
observed: APEX, Onion, Snowball cost 1.5 s, 2.1 s, 3.9 s
respectively. Onion’s advantage over Snowball in responsive-
ness becomes more obvious: it saves 1.8 s and costs 54%
of Snowball’s time. The latency difference becomes larger
than one-hop because Snowball’s long CMDs (those targeting
object 17-20) have high retransmission rates (Fig. 6), and the
more hops CMDs travel, the more time Onion saves.

Subject Device Controller. Controller S can also be a
subject device (usually a smartphone). The computation time
on a Samsung Galaxy S8 is 33 ms, shorter than Pi’s 548 ms
due to its better computing resource. So it can reduce both
strategies’s overall latencies by 0.5 s, but the time difference
between Snowball and Onion does not change.

D. Summary
TABLE II: Comparison. v': advantageous item
Metric Snowball Onion
Security Yes Yes
Computation Cost O(N?) vO(N)
Message Overhead up to kBs  v'102 bytes
Ticket Reusability v Yes No

Onion has smaller message overhead, computation cost and
execution latency, and may be preferred for its high efficiency
and responsiveness. Snowball has better availability because
its tickets (TKT) can be used repeatedly while Onions are
disposable. Using them in combination may be recommended:
S requests multiple disposable Onions plus one Snowball
TKT; it uses Onions first for responsive object access, and
uses the Snowball TKT as a provisional substitute after the
Onions are exhausted and before new Onions are available.



VIII. DISCUSSION

Support for Resource-Poor Objects. In reality resource-
constrained, battery-powered objects may involve in precon-
dition execution, and they can only run public-key algorithms
slowly, occasionally. A delegation strategy [5] can make Snow-
ball and Onion work on them: a constrained object establishes
a symmetric key with a resource-rich object and delegates
public-key operations to the rich one.

Another way is to replace compute intensive signatures
in constrained objects’ TKTs/CMDs/RESs with message au-
thentication codes (MAC). Rich objects still use signatures.
Specifically, the backend replaces S1G g4 With a MAC gen-
erated by K gjm to authenticate the TKT to constrained object
O;. Similarly, controller S and O; establish a symmetric
key beforehand, and use it to authenticate their CMDs/RESs.
Onion has less establishment overhead than Snowball. This
is because Snowball requires objects to verify predecessor
objects’ RESs, thus symmetric keys should also be established
between objects, besides between S and objects.

Resistance to Object Failures. We have shown in Sec-
tion VI that our strategies resist well not only controller
failures but also object failures. Though less analysis is on
object failures than on controller ones, it is because this work
focuses on securing the model of one controller and many
objects. In such a “star topology” model, the controller is the
pivot entity that coordinates overall execution order, thus can
launch more attacks targeting execution order. Given a benign
controller, a failed object can launch no attacks targeting
execution order except lying about its state; this can at most
violate one PEG edge, causing limited harm.

General Applicability. This work secures the order of
actions among multiple devices. It is a generic problem beyond
just precondition execution. Our solution is generally applica-
ble to contexts where one or multiple devices are required to
reliably follow a specified order to do a series of tasks. E.g.,
open a window to air the room for 10 minutes, and then close
it; update firmware on all objects in a house, then reboot, and
perform a suite of test operations on them.

IX. RELATED WORK

Centralized Policy Enforcement. Many IoT solutions [8],
[9], [10] use centralized execution for access control: subjects
send commands to the cloud; the cloud checks if subjects
have the access rights, and if yes, it forwards commands to
target objects. CoOMPES [11] is a cloud-based system with
predefined policies of what commands to execute under what
conditions; it receives condition information from objects, and
sends commands back. CityGuard [12] is a centralized smart
city safety watchdog enforcing safety policies.

Policy enforcement in these systems is trivial because ob-
jects only accept commands from the centralized entity which
reliably carries out polices. But they are vulnerable to a single
point of failure, have long execution latency, and may not be
preferred especially in enterprise-scale IoT [5].

Distributed Policy Enforcement. There are also solutions
using distributed execution [5], [13], [14], [15] which al-

low subjects to send commands directly to objects, without
involving the centralized entity. However, what they do is
ensure each individual command is valid (e.g., authenticated,
authorized, fresh), and realizing order enforcement among
multiple commands is essentially a different problem. Our
strategies achieve distributed execution order enforcement.

X. CONCLUSION

In this paper, we describe the design, implementation and
evaluation of two strategies for precondition execution en-
forcement in IoT: Snowball is signing-based while Onion is
encryption-based. Our analysis and experiments on a 20-node
testbed show that both strategies are secure and reliable. Snow-
ball has higher availability while Onion is more efficient and
responsive: Onion uses 1.6/2.1 s to access 20 one-hop/multi-
hop objects, 62%/54% of Snowball’s time.
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