
Planning with General Objective Functions:

Going Beyond Total Rewards

Ruosong Wang⇤

Carnegie Mellon University
ruosongw@andrew.cmu.edu

Peilin Zhong⇤

Columbia University
pz2225@columbia.edu

Simon S. Du
University of Washington, Seattle
ssdu@cs.washington.edu

Ruslan Salakhutdinov
Carnegie Mellon University
rsalakhu@cs.cmu.edu

Lin F. Yang
University of California, Los Angeles

linyang@ee.ucla.edu

Abstract

Standard sequential decision-making paradigms aim to maximize the cumulative

reward when interacting with the unknown environment., i.e., maximize
PH

h=1 rh
where H is the planning horizon. However, this paradigm fails to model important
practical applications, e.g., safe control that aims to maximize the lowest reward,

i.e., maximize minHh=1 rh. In this paper, based on techniques in sketching algo-
rithms, we propose a novel planning algorithm in deterministic systems which
deals with a large class of objective functions of the form f(r1, r2, ...rH) that are
of interest to practical applications. We show that efficient planning is possible
if f is symmetric under permutation of coordinates and satisfies certain technical
conditions. Complementing our algorithm, we further prove that removing any
of the conditions will make the problem intractable in the worst case and thus
demonstrate the necessity of our conditions.

1 Introduction

Markov decision process (MDP) is arguably the most popular model for sequential decision-making
problems. MDP assumes both the transition function T : S ⇥ A ! S and the reward function
r : S ⇥A ! R only depend on the current state-action pair where S is the state space and A is the

action space, and the objective of the agent is to maximize the summation of all rewards
PH

h=1 rh
where H is the planning horizon and rh = r(sh, ah).

The drawback of the standard MDP model is that it even fails to capture some simple sequential
decision-making tasks. For example, in self-driving, the goal is not to maximize the total reward but
to maximize the minimum reward on the trajectory, say if one models a car crash as �1 reward and 0
reward otherwise. Note that in this simple example, the state transition function T and the reward
function r still satisfy the Markov property. The only difference is that the objective changes from

maximizing the sum of rewards
PH

r=1 rh to maximizing the minimum of rewards minHh=1 rh.

This “small" difference requires the agent to change the planning strategy significantly because the
agent needs to look at the full history of rewards. This gives rise the following natural problem:

Can we design a provably efficient algorithm for general objective functions?

Here by efficient, we mean the complexity of the algorithm does not scale exponentially in H . This
is a challenging question as existing approaches for MDP models cannot be applied here.

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

In this paper, we give a positive answer to the above question by designing an efficient algorithm for
objective functions f(r1, r2, . . . , rH) that satisfy certain technical conditions. Below we list several
motivating examples of objective functions that satisfy these conditions.

1. f(r1, r2, . . . , rH) = min {r1, r2, . . . , rh}: this objective function naturally formalizes
sequential decision-making problems related to safety concerns, which we have discussed
above.

2. f(r1, r2, . . . , rH) = max {r1, r2, . . . , rh}: this objective function models the maximum
reward-oriented behavior, which has been explicitly studied in the reinforcement learning
literature, e.g., in [41], where the authors used this objective function to model certain
financial problems.

3. f(r1, r2, . . . , rH) = median {r1, r2, . . . , rh}: maximizing cumulative rewards is equiv-
alent to maximizing the mean of the reward values, which is not robust to adversarial
perturbations and outliers. Maximizing the median or other quantiles of the reward values is
a much more robust objective function, which is often used in situations where one seeks
a robust solution. For instance, if each reward is collected by a noisy sensor, the median
objective gives a much more robust solution than the mean objective.

4. f(r1, r2, . . . , rH) =
PK

k=1 r(k) where r(k) represents the k-th largest reward in {rh}
H
h=1:

this objective function naturally models problems where the agent has a capacity constraint
so that the agent can only keep the largest K rewards.

Other objective functions have also appeared in previous work [47, 40, 34, 19, 37, 8, 39, 48, 13, 36].
We stress that the goal of this paper is not to study specific objective functions, but to give a
characterization on the class of objective functions that admits provably efficient planning algorithms.

1.1 Our Contributions

In this paper, we develop an efficient algorithm that finds near-optimal policies in tabular deterministic
systems for a wide range of objective functions. We assume there is an objective function f : RH !
R, such that for a sequence of reward values r1, r2, . . . , rH , the objective function f maps the reward
values to an objective value f(r1, r2, . . . , rH). Here H is the planning horizon. We assume all reward
values rh 2 [0, 1] and the objective value f(r1, r2, . . . , rH) 2 [0, 1]. Therefore, we may assume f is
a function that maps a vector in [0, 1]H to an objective value in [0, 1].

We focus on the planning problem in tabular deterministic systems with general reward functions,
i.e., given a deterministic system, our goal is to output a policy which (approximately) maximizes
the objective function.2 Before stating our results, we first give the three conditions on the objective
function that our algorithm requires.

Definition 1.1 (Symmetry). For a function f 2 [0, 1]H ! [0, 1], we say f is symmetric if for
any permutation (i1, i2, . . . , iH) of (1, 2, . . . , H) and x 2 [0, 1]H , we have f(x1, x2, · · · , xH) =
f(xi1 , xi2 , . . . , xiH).

Definition 1.2 (Approximate Homogeneity). Let "̄, �̄ 2 (0, 1). For a function f 2 [0, 1]H ! [0, 1],
we say f satisfies ("̄, �̄)-approximate homogeneity if for any x, y 2 [0, 1]H such that xh 2 [yh, (1 +
�̄)yh] for all 1 h H , we have f(y) 2 [f(x)� "̄, f(x) + "̄].3

Definition 1.3 (Insensitivity to Small Entries). Let "̂, �̂ 2 (0, 1). For a function f 2 [0, 1]H ! [0, 1],

we say f is ("̂, �̂)-insensitive to small entires if for any x 2 [0, 1]H we have f(x) 2 [f(x)�"̂, f(x)+"̂],

where x is a vector in [0, 1]H such that xh =

(

xh if xh � �̂

0 otherwise
.

Now we briefly discuss the three conditions that our algorithm requires. The first condition requires
that the objective function f is symmetric under permutation of coordinates. The second condition

2We remark that in deterministic systems, the planning problem is almost equivalent to the learning problem
(i.e., the agent needs to interact with the environment to learn the transition and the reward), since the agent can
readily reach all state-action pairs and learn the transition and reward using linear number of samples.

3We remark that the condition f(y) ∈ [f(x)− ε̄, f(x) + ε̄] can be changed to f(y) ∈ [(1− ε̄)f(x), (1 +
ε̄)f(x)] so that the error on the objective function value is also multiplicative. Note that the later condition is

strictly stronger since f(x) ≤ 1 for any x ∈ [0, 1]H .

2

requires that, for any input x 2 [0, 1]H , if one increases each coordinate in x multiplicatively by
a factor of at most (1 + �̄), then the error on the objective function f is bounded by "̄. The final

condition states that, for any input x 2 [0, 1]H , truncating all entries smaller than �̂ to zero leads to an
approximation error of at most "̂. Given these conditions, now we state our main algorithmic result.

Theorem 1.4 (Informal). Given an objective function f which is symmetric, ("/4, �̂)-insensitive to
small entries, and satisfies ("/4, �̄)-approximate homogeneity, there is an algorithm that finds an

"-optimal policy in deterministic systems with time complexity O((|S||A|+ T) ·HΘ(log(1/δ̂)/δ̄)) if
evaluating the objective function f on a single input costs T time.

As stated in the theorem, the running time of our algorithm exponentially depends on log(1/�̂)/�̄.

However, as we will show in examples given below, �̂ and �̄ are often constants if one aims at a
policy with constant additive error, and therefore, our algorithm runs in polynomial time in those
cases. Moreover, Our algorithm accesses the objective function f in a black-box manner and thus
automatically handles a large class of loss functions.

One may ask whether it is possible to remove those conditions in Definition 1.1-1.3. In Section 7, we
further show that removing any of the three conditions will induce an exponential lower bound and
makes the problem intractable in the worst-case. Therefore, all of our three conditions are necessary.

Below we give two large families of objective functions that can be handled by our algorithm. We
note that these two families of objective functions have already included all examples mentioned in
the introduction.

Symmetric Norm. A symmetric norm is a norm that satisfies the additional property that for
any x 2 R

H , any permutation � and any assignment of si 2 {�1, 1}, f(x1, x2, . . . , xn) =
f(s1xσ1

, s2xσ2
, . . . , snxσn

). Symmetric norm includes a large class of norms, for example the
`p norm, the top-k norm (the sum of absolute values of the leading k coordinates of a vector),
max-mix of `p norms (e.g. max{kxk2, ckxk1} for some c > 0), and sum-mix of `p norms (e.g.
kxk2 + ckxk1 for some c > 0), as special cases. More complicated examples include the k-support
norm [3] and the box-norm [35], which have found applications in sparse recovery.

For any symmetric norm f that satisfies f(x) 2 [0, 1] for any x 2 [0, 1]H , f is symmetric, (", ")-
insensitive to small entries and satisfies (", ")-approximate homogeneity. Therefore, when applying
our algorithm to such an objective function f , our algorithm finds an "-optimal policy in time

O((|S||A| + T) · HΘ(log(1/ε)/ε)). Thus, our algorithm gives a polynomial-time approximation
scheme (PTAS), i.e., the algorithm runs in polynomial time for any constant " > 0.

Lipschitz Functions. Recall that a function f : [0, 1]H ! [0, 1] is Lipschitz continuous with
respect to the `1 norm with Lipschitz constant L if for any x, y 2 R

H , |f(x)� f(y)| Lkx� yk1.
Clearly, such function f is (", "/L)-insensitive to small entries and satisfies (", "/L)-approximate
homogeneity. If f is additionally symmetric, then our algorithm finds an "-optimal policy in time

O((|S||A|+T) ·HΘ(log(L/ε)L/ε)). Therefore, for constant L and ", our algorithm runs in polynomial
time. An important example that satisfies the above conditions is the median function (or the k-th
largest reward for any k), where we have L = 1 and thus our algorithm gives a PTAS.

2 Related Work

Most planning and reinforcement learning algorithms with provable guarantees rely on the MDP
model. For the setting where the number of state and actions is finite, a.k.a. the tabular setting,
considered in this paper, this is a long line of work trying to obtain the tight sample complexity and
regret bounds [30, 45, 4, 1, 24, 28, 26]. Recently, there are attempts to generalize the tabular setting to
more complicated scenarios [51, 17, 31, 25, 14, 46, 15, 27, 53, 38, 16]. However, to our knowledge,
all these works only study the case where the objective function is the sum of total rewards and cannot
be applied to the general objective functions considered in this paper. The only exception we are
aware of is the work by [41], who studied the objective function f(r1, r2, . . . , rH) = maxHh=1 rh.
However, the algorithm in [41] can not be applied to the general class of objective functions.

In our algorithm we adopt the layering technique first proposed by [23]. Such technique has been
widely applied in the streaming and sketching literature. We refer interested readers to [10, 29, 2, 9, 7]

3

and references therein. However, to our best knowledge, this is the first time that the layering technique
appears in sequential decision-making algorithms.

There is a line of research studying empirical aspects of non-Markovian rewards [5, 49]. See [49]
for early schemes. These works define a task specification model and then generate a reward
function to fulfill that specification. Classical models are based on sub-goal sequences [42, 43] and
linear temporal logic and its variants [44, 18, 32, 11, 33, 50, 20], while recent approaches include
reward machines [21, 12, 52, 22]. However, these works focus on empirical aspects of RL with
non-Markovian rewards, while we design the first provably efficient algorithm under a set of necessary
and sufficient conditions on the objective function in this work.

Another line of research considers risk-sensitive optimization in reinforcement learning. Examples of
objectives that are considered in this line of search include a mean-variance criterion [47, 40, 34, 19],
Conditional Value at Risk (CVaR) [37, 8, 39, 48, 13] and a Chernoff functional [36]. These papers
focus on specific risk-sensitive objectives, while in this work we give a provably-efficient algorithmic
framework to handle a large class of reward functions.

3 Preliminaries

Notations. Throughout the paper, for a positive integer H , we use [H] to denote the set
{1, 2, . . . , H}. We use kxkp to denote the `p norm of a vector x. For a condition E , we use
[E] to denote the indicator function, i.e., [E] = 1 if E holds and [E] = 0 otherwise.

Deterministic Systems. Let D = (S,A, T, r,H, f) be a deterministic system, where S is the
set of states, A is the set of actions, T : S ⇥ A ! S is a deterministic transition function, r :
S ⇥A ! [0, 1] is a reward function,4 H 2 Z+ is the planning horizon, and f is a objective function
f : [0, 1]H ! [0, 1].5 We assume there is a fixed initial state s1 2 S in the determinisitc system.

A policy ⇡ chooses an action a based on the current state s 2 S and the time step h 2 [H]. Formally,
⇡ = {⇡h}

H
h=1 where for each h 2 [H], ⇡h : S ! A maps a given state to an action. The policy

⇡ induces a trajectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , where a1 = ⇡1(s1), r1 = r(s1, a1),
s2 = T (s1, a1), a2 = ⇡2(s2), r2 = r(s2, a2), etc.

In this paper, we focus on the planning problem in deterministic systems with a general class of
objective functions. Given a deterministic system D, our goal is to efficiently find a policy ⇡ that
(approximately) maximizes the objective value f(⇡) = f(r1, r2, . . . , rH). We use ⇡⇤ to denote
the optimal policy and f(⇡⇤) to denote its objective value. We say a policy ⇡ is "-optimal if
f(⇡) � f(⇡⇤)� ".

4 Algorithm for the k-th Largest Reward

As a warm-up, we consider a simple case where the objective function is the k-th largest value among
the rewards collected along the trajectory, i.e., f : [0, 1]H ! [0, 1] is defined as x 2 [0, 1]H , f(x) =
xik , where (i1, i2, · · · , iH) is a permutation of (1, 2, . . . , H) such that xi1 � xi2 � · · · � xiH .

High-level Ideas. Despite being an important objective function, it is not immediately clear how to
efficiently find a near-optimal policy for the objective function defined above. The main technical
issue here is that one cannot simply use Bellman-type dynamic programming to solve this problem.
Here, we reformulate the problem and develop a dynamic programming algorithm with an augmented
state space to solve the reformulated problem. More specifically, finding a policy ⇡ that maximizes
the k-th largest reward is equivalent to finding the largest reward value r such that there exists a policy
⇡ so that there are at least k rewards with value at least r on the trajectory induced by ⇡. Therefore,
we enumerate the largest reward value r and use a dynamic programming approach, which will be
described in more detail below, to find a policy ⇡ to maximize the number of rewards with value at
least r on the induced trajectory. To avoid enumerate a continuous reward value r, in our algorithm,

4For the sake of representation, here we assume the rewards are in [0, 1]. Our algorithm can be readily
generalized to handle rewards in a different range.

5Again, the assumption that the objective value is in [0, 1] is only for sake of presentation.

4

we first discretize reward values so that all reward values are in {0, ", 2", . . . , 1} which induces an
additive approximation error of at most ".

Dynamic Programming. Here we give a detailed description of the dynamic programming algo-
rithm with augmented state space mentioned above. For each state s 2 S, l 2 [1/"] and a policy ⇡,
we use V π

h (s, l) to denote the number of discretized rewards with value at least l · " for a trajectory
starting from state s induced by policy ⇡ at level h, and Qπ

h(s, a, l) to denote the number of discretized
rewards with value at least l · " for a trajectory starting from state-action pair (s, a) induced by policy
⇡ at level h. Similar to standard dynamic programming approaches for planning, we use V ⇤

h (s, l) to
denote the largest number of discretized rewards with value at least l · " for a trajectory starting from
state s induced by any policy ⇡ at level h, and Q⇤

h(s, a, l) is defined analogously. Note that V ⇤(·, ·)
and Q⇤(·, ·, ·) can be efficiently calculated using a Bellman-type dynamic programming approach.
More specifically, for each s 2 S , a 2 A and l 2 [1/"], we have

V ⇤

h (s, l) = max
a2A

Q⇤

h(s, a, l)

and

Q⇤

h(s, a, l) =

⇢

[r(s, a) � l · "] if h = H

V ⇤

h+1(T (s, a), l) + [r(s, a) � l · "] otherwise
.

Clearly, the above dynamic programming algorithm can be readily implemented in O(|S||A|H/")
time.

Output the Policy. In order to find a policy that approximately maximizes the k-th largest reward,
we enumerate all possible l 2 [1/"], and find the largest l such that V ⇤

1 (s1, l) � k where s1 is the
initial state. For such l 2 [1/"], we know that there exists a policy so that on the induced trajectory,
there are at least k rewards with value at least l · ". Moreover, for any l0 > l, there exists no policy
such that there are at least k rewards with value at least l0 · ". These two facts imply that l · " is indeed
the best result one can achieve, up to an additive approximation error of at most ".

It is also easy to output a policy using V ⇤(·, ·) and Q⇤(·, ·, ·) obtained by the dynamic programming
algorithm. To output a policy, we may choose actions greedily with respect to Q⇤(·, ·, l). Formally,
we define the policy to be ⇡h(s) = argmaxa2A Q⇤

h(s, a, l). Using such a policy, we are effectively
choosing a policy to maximize the number of rewards with value at least l · " on the induced trajectory.
On the other hand, since V ⇤

1 (s1, l) � k, it is guaranteed that there at least k rewards with value at
least l · " on some trajectory, and thus the k-th largest reward is at least l · ".

Before getting into more complicated algorithms for more general cases, we would like to review
the key ideas in our approach. For an objective function like the k-th largest reward which globally
depends on all reward values on the trajectory, we show that it is possible to keep using the Bellman-
like dynamic programming approach if one reformulates the problem carefully and augments the
state space. Such ideas will be a crucial part of our final algorithm for solving the general case.

5 Algorithm for General Symmetric Norms

In this section, we consider a more general case where the objective function f : [0, 1]H ! [0, 1] is a
symmetric norm. Recall that a symmetric norm f(·) is a norm and satisfies the additional property
that for any x 2 R

H , any permutation � and any assignment of si 2 {�1, 1},

f(x1, x2, . . . , xn) = f(s1xσ1
, s2xσ2

, . . . , snxσn
).

High-level Ideas. Similar to the previous algorithm, in the new one, we still discretize the re-
ward values. More specifically, for each reward value, we discretize it to its nearest value in
{1, 1/2, 1/4, . . . , "}, and we truncate all reward values less than " to zero. Compared to the approach
in Section 4, the advantage of this new approach is that there are only O(log(1/")) different dis-
cretized reward values. Since the approximation ratio of our algorithm depends on the number of
different discretized reward values, this new discretization approach gives a much better approxi-
mation ratio. Our algorithm is built upon the layering framework in the sketching literature [23, 7].
For a symmetric norm, its value is completely determined by the histogram of the input, and we
approximate the histogram by discretizing the input reward values. Here, the main observation is

5

that, after the discretization, there exists a “contributing reward value” such that even if we set all
other rewards values to be zero and find an optimal policy with respect to this specific reward value,
the resulting policy will still be a good approximation to the original problem. Moreover, finding
the optimal policy for a specific reward is equivalent to finding a policy with maximum number of
non-zero reward values, which can be efficiently solved using dynamic programming.

In our algorithm, we enumerate all discretized reward values r in {1, 1/2, 1/4, . . . , "}. For each r,
for all state-action pair (s, a) whose discretized reward value does not equal r, we change r(s, a) to
0. After this step, the new discretized reward values will be binary, i.e., all discretized reward values
will either be r or 0, and then we find a policy to maximize the symmetric norm objective function for
the deterministic system with binary reward values. Since there are log(1/") + 1 possible values for
r, effectively we find log(1/") + 1 policies during our algorithm. We return the policy with largest
objective function value. In the remaining part of this section, we first show how to find a policy to
maximize a symmetric norm objective function in a deterministic system with binary reward values,
and then analyze the approximation ratio of our algorithm.

To proceed, we need the following fact regarding symmetric norms.

Lemma 5.1 (Proposition IV.1.1 in [6]). If f(·) is a symmetric norm, for any x, y 2 R
H such that

|xi| |yi| for all i, we have f(x) f(y).

The above lemma implies that symmetric norms satisfy (", ")-approximate homogeneity for any
" > 0. Now we are ready to present the algorithm for general symmetric norms.

Dynamic Programming. For a deterministic system with binary reward values, in order to max-
imize a symmetric norm objective function, we only need to maximize the number of non-zero
reward values on the trajectory, which follows from the monotonicity property of symmetric norms
in Lemma 5.1. In order to find a policy that maximizes the number of non-zero reward values on
the trajectory, we may use an approach similar to the classical Bellman-type dynamic programming.
For each state s 2 S and policy ⇡, we use V π

h (s) to denote the number of non-zero reward values
for a trajectory starting from state s induced by policy ⇡ at level h, and Qπ

h(s, a) is defined similarly.
We define V ⇤

h (s) to be the largest number of non-zero reward values for a trajectory starting from s
induced by any policy at level h, and Q⇤(s, a) is defined analogously. We note that V ⇤(·) and Q⇤(·, ·)
can be efficiently calculated, since

V ⇤

h (s) = max
a2A

Q⇤

h(s, a)

and

Q⇤

h(s, a) =

⇢

[r(s, a) > 0] if h = H

V ⇤

h+1(T (s, a)) + [r(s, a) > 0] otherwise
.

Approximation Ratio. Now it remains to analyze the approximation ratio of our algorithm. First,
we truncate all reward values less than " to zero, and thus an additive approximation error of " will
be induced. Moreover, reducing each reward value to its nearest value in {1, 1/2, 1/4, . . . , "} will
induce a multiplicative approximation error of at most 2. From now on, we assume all reward values
are in {1, 1/2, 1/4, . . . , ", 0}. Suppose that the discretized reward values on the trajectory induced
by the optimal policy is r = (r1, r2, . . . , rH). For each 0 i log(1/"), we define a new vector

r̂(i) whose h-th entry is rh if rh is exactly 2�i and 0 otherwise. An important observation is that

max
i

f(r̂(i)) � Ω(f(r)/ log(1/")),

since by triangle inequality we have

log(1/ε)
X

i=0

f(r̂(i)) � f(r).

Moreover, in our algorithm, for each value in {1, 1/2, 1/4, . . . , "}, we find a policy which maximizes
the number of rewards with that value on the trajectory induced by the policy, which means the
objective value of the found policy is at least

max
i

f(r̂(i)) � Ω(f(r)/ log(1/")).

6

Combining with the truncation step that removes all reward values less than ", our algorithm is
guaranteed to output a policy with objective value at least Ω((f(⇡⇤)� ")/ log(1/")), where f(⇡⇤)
is the objective value of the optimal policy. We remark that the approximation guarantee of this
algorithm can be improved by using more sophisticated discretization procedure. Here we give this
algorithm simply for motivating algorithms in later sections, and thus do not focus on optimizing the
approximation guarantee.

6 Algorithm for General Objective Functions

In this section, we present our algorithm for finding "-optimal policies for deterministic systems with

general reward functions. We assume the objective function f is symmetric, ("/4, �̂)-insensitive to
small entries, and satisfies ("/4, �̄)-approximate homogeneity. We first give the high-level ideas of
our algorithm. The formal description is given in Algorithm 1, and we give the formal analysis of our
algorithm in the supplementary material.

High-level Ideas. Our algorithm combines ideas in Section 4 and Section 5. We discretize the
reward values using a similar approach as in Section 5, and then find an optimal policy for the
discretized reward values using dynamic programming with an augmented state space. Below we
give more details for these two main components of our algorithm.

Discretization. Similar to Section 5, we discretize reward values so that all reward values are in

{�̂, �̂ · (1 + �̄), �̂ · (1 + �̄)2, . . .}, and truncate all reward values less than �̂ to zero. Formally, for a
state-action pair (s, a), the discretized reward value r̂(s, a) is defined as

r̂(s, a) =

(

0 r(s, a) < �̂

�̂ · (1 + �̄)j r(s, a) 2 [�̂ · (1 + �̄)j , �̂ · (1 + �̄)j+1)
.

There are two advantages of using such a discretization approach. First, there are only log1+δ̄(1/�̂) =

Θ(log(1/�̂)/�̄) different reward values after discretization. Since the running time of our dynamic
programming algorithm depends exponentially on the number of different reward values, such a
discretization approach significantly improves the efficiency of our algorithm. Moreover, since

the reward function f is ("/4, �̂)-insensitive to small entries and satisfies ("/4, �̄)-approximate
homogeneity, the additive error induced by the discretization approach is upper bounded by "/2.
Therefore, we can find an "-optimal policy for the original problem if we can find an optimal policy
for the deterministic system with discretized reward values.

Dynamic Programming. After the discretization step, the state space for possible reward values
has been significantly reduced, and we use a dynamic programming approach to find the optimal
policy. For a policy ⇡ and a state s 2 S, we use V π

h (s) to denote the multiset of reward values
on the trajectory starting from state s induced by policy ⇡ at level h. We use V ⇤

h (s) to denote
the set of all possible multisets of reward values on trajectories induced by all policies at level h,
i.e., V ⇤

h (s) = [π{V
π

h (s)}. Qπ

h(s, a) and Q⇤

h(s, a) are defined analogously. Here, we may safely
ignore the order of the reward values since the objective function f is symmetric. Moreover, for

each s 2 S, the size of V ⇤

h (s) is upper bounded by HΘ(log(1/δ̂)/δ̄), since for each discretized
reward value r, there are at most H rewards with discretized value r on a trajectory, and there are

only log1+δ̄(1/�̂) = Θ(log(1/�̂)/�̄) different reward values after the discretization.6 As shown
in Algoriithm 1, V ⇤(·) and Q⇤(·, ·) can be efficiently calculated, using a Bellman-type dynamic
programming algorithm.

Output the Policy. In order to find a policy for the discretized reward values, we enumerate all
multisets of reward values R 2 V ⇤

1 (s1), and find the one with the largest objective value f(R).
In order to output the policy, we start from the initial state s1, find an action a 2 A such that
R 2 Q⇤(s, a), remove r̂(s, a) from R and continue this procedure inductively.

6Recall that the number of multisets of cardinality k with elements taken from a finite set of cardinality n is
at most kn. Notice that “multisets” are different from “sequence”, i.e., for multisets we do not care about orders
of elements.

7

Running Time. As mentioned above, for each state-action pair (s, a), the size of Q⇤

h(s, a) and

V ⇤

h (s) is upper bounded by HΘ(log(1/δ̂)/δ̄). Therefore, the running time of the dynamic programming

part is at most O(|S||A| ·HΘ(log(1/δ̂)/δ̄)). Moreover, in order to output the policy, we evaluate the

objective function f on HΘ(log(1/δ̂)/δ̄) different inputs. Suppose evaluating the objective function
f on a single input costs T time, the total running time of our algorithm will be O((|S||A|+ T) ·

HΘ(log(1/δ̂)/δ̄)).

Approximation Guarantee. Under the assumption that the objective function f is symmetric,

("/4, �̂)-insensitive to small entries, and satisfies ("/4, �̄)-approximate homogeneity, for any vector
r 2 [0, 1]H , we have |f(r1, r2, . . . , rH)� f(r̂1, r̂2, . . . , r̂H)| "/2, where for each h 2 [H], r̂h is
the discretized value of rh as defined above. Since our algorithm finds the optimal policy with respect
to the discretized reward values, the policy ⇡ returned by our algorithm satisfies f(⇡) � f(⇡⇤)� ".

Algorithm 1 Deterministic Systems with General Reward Functions

1: for h 2 [H] do
2: for (s, a) 2 Sh ⇥A do

3: Let Q⇤(s, a) =

⇢

{{r̂(s, a)}} if h = H

{R [{r̂(s, a)} | R 2 V ⇤(T (s, a))} otherwise

4: Let V ⇤(s) = [a2AQ
⇤(s, a).

5: end for
6: end for
7: Initialize policy ⇡̄ arbitrarily.
8: for R 2 V ⇤(s1) do
9: Initialize policy ⇡R arbitrarily.

10: Let R1 = R.
11: for h 2 [H] do

12: Let ⇡R(sh) = a 2 A such that Rh 2 Q⇤(s, a).
13: Let Rh+1 = Rh \ {r̂(sh, a)} and sh+1 = T (sh,⇡R(sh)).
14: end for
15: Let ⇡̄ = ⇡R if f(⇡R) > f(⇡̄).
16: end for
17: Return ⇡̄.

7 Hardness Results

In this section, we prove that, without any of the three assumptions, any algorithm needs to query
the values of f for exponentially many different inputs vectors to find a near-optimal policy. More
concretely, since we consider algorithms that can deal with a large family of objective functions,
we assume that the algorithm access the objective function f in a black-box manner, and we prove
exponential lower bounds on the number of times that the algorithm evaluates the objective function
f . Since the query complexity lower bounds the running time, our hardness results demonstrate that
all of our three assumptions are necessary to ensure the intractability of the problem.

Hard Instance. In our hard instances, in each level h 2 [H], there is a single state sh 2 Sh.
There are two actions a1 and a2 in the action space A, and T (sh, a1) = T (sh, a2) = sh+1 for any
1 h < H .

Necessity of Symmetry. We first show that if the objective function f is insensitive to small entries,
satisfies approximate homogeneity but is not symmetric, then any algorithm still needs to query
exponential number of values of f to find a near-optimal policy, and thus demonstrate the necessity
of the assumption that f is symmetric. Here we have r(s, a1) = 1/2 and r(s, a2) = 1 for any s 2 S .
Now we define the objective function f , which is parameterized by a vector ✓ 2 {1/2, 1}H .

8

For a vector ✓ 2 {1/2, 1}H , we define a function fθ : [0, 1]H ! [0, 1]. For a vector x 2 [0, 1]H , if
there exists xh = 0 for some h 2 [H] then we define fθ(x) = 0. Otherwise,

fθ(x) = min
h2[H]

min{xh/✓h, ✓h/xh}.

It is easy to verify that for any " > 0, f satisfies (", ")-approximate homogeneity and is (2", ")-
insensitive to small entries. In the hard instance, the objective function f is set to be fθ, where ✓ is
one of the 2H vectors in {1/2, 1}H .

Recall that in our hard instance, all reward values are in {1/2, 1}, and for any x 2 {1/2, 1}H ,
fθ(x) = 1 if x = ✓, and fθ(x) = 1/2 if x 6= ✓. Therefore, to receive an objective value of 1, the
agent must choose the correct actions for all the H steps, and otherwise the agent will always receive
an objective value of 1/2. Here, the optimal policy is ⇡(sh) = a1 if ✓h = 1/2 and ⇡(sh) = a2 if
✓h = 1. Therefore, the correct actions are fully encoded in the vector ✓. However, there are 2H

possible vectors for ✓. Therefore, to find the correct actions for all the H steps, the agent must
enumerate all the 2H possible combinations of actions to figure out the underlying vector ✓. This
intuition is made formal is the supplementary material using Yao’s minimax principle [54].

Necessity of Approximate Homogeneity. Here we show that if the objective function f is sym-
metric, insensitive to small entries but does not satisfy approximate homogeneity, then any algorithm
still needs to query exponential number of values of f to find a near-optimal policy, and thus demon-
strate the necessity of approximate homogeneity. Here we have r(sh, a1) = (2h + 2H � 1)/4H
and r(s, a2) = (h + H)/2H for any h 2 [H]. Now we define the objective function f , which is
parameterized by a vector ✓ 2 R

H where ✓h 2 {(2h+ 2H � 1)/4H, (h+H)/2H} for all h 2 [H].

For any vector x 2 [0, 1]H , we use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that
0 xi1 xi2 . . . xiH 1. We define fθ(x) = 1 if xih = ✓h for all h 2 [H], and fθ(x) = 0
otherwise. Clearly, f is symmetric and (0, ")-insensitive to small entries for any " 1/2, but does
not satisfy approximate homogeneity. The objective function f is set to be fθ, where ✓ is one of
the 2H vectors defined above. In order to receive an objective value of 1, the agent must choose the
correct actions for all the H steps, and otherwise the agent will always receive an objective value of
0, which implies an exponential query lower bound using the same argument mentioned above.

Necessity of Insensitivity to Small Entries. Here we show that if the objective function f is
symmetric, satisfies approximate homogeneity but is not insensitive to small entries, then any
algorithm still needs to query exponential number of values of f to find a near-optimal policy, and

thus demonstrate the necessity of insensitivity to small entries. Here we have r(sh, a1) = 2�H(2h�1)

and r(sh, a2) = 2�2Hh for any h 2 [H]. Now we define the objective function f , which is

parameterized by a vector ✓ 2 R
H where ✓h 2 {2�H(2h�1), 2�2Hh} for all h 2 [H].

For a vector ✓ satisfying the above condition, we define a function fθ : [0, 1]H ! [0, 1]. For a vector
x 2 [0, 1]H , if there exists xh = 0 for some h 2 [H] then we define fθ(x) = 0. Otherwise, we use
i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that 1 � xi1 � xi2 � . . . � xiH � 0,
and we define

fθ(x) = min
h2[H]

min{xih/✓h, ✓h/xih}.

For any " > 0, f satisfies (", ")-approximate homogeneity. It is also clear that f is symmetric. In the
hard instance, the objective function f is set to be fθ, where ✓ is one of the 2H vectors defined above.
To receive an objective value of 1, the agent must choose the correct actions for all the H steps, and
otherwise the agent will receive an objective value of 1/2. The lower bound can be proved using the
same argument as above.

8 Conclusion

In this paper, we study planning problems with general objective functions in deterministic systems,
and give the first provably efficient algorithm for a broad class of objective functions that satisfy
certain technical conditions. We complement our positive results by showing that these conditions
are necessary. An interesting direction is to extend our results to stochastic environments. Another
interesting future direction is to study sequential decision-making problems with a huge state space
and a general objective function for which one needs to combine function approximation techniques
with the analysis in our paper.

9

Broader Impact

This work is mainly theoretical. By devising provably efficient algorithms for planning with general
objective functions, we believe our various algorithmic insights (discretization, augmenting state
space) could potentially guide practitioners to design efficient and theoretically-principled planning
algorithms that work for various settings.

Disclosure of Funding

Ruosong Wang and Ruslan Salakhutdinov were supported in part by NSF IIS1763562, US Army
W911NF1920104 and ONR Grant N000141812861. Peilin Zhong is supported in part by NSF grants
CCF-1740833, CCF-1703925, CCF-1714818 and CCF-1822809 and a Google Ph.D. Fellowship.
Part of the work is done while Simon S. Du was at the Institute for Advanced Study where he was
supported by NSF grant DMS-1638352 and the Infosys Membership.

References

[1] S. Agrawal and R. Jia. Posterior sampling for reinforcement learning: worst-case regret bounds.
In NIPS, 2017.

[2] A. Andoni. High frequency moment via max stability. Unpublished manuscript, 2012.

[3] A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction with the k-support norm. In Advances
in Neural Information Processing Systems, pages 1457–1465, 2012.

[4] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
263–272. JMLR. org, 2017.

[5] F. Bacchus, C. Boutilier, and A. Grove. Rewarding behaviors. In Proceedings of the National
Conference on Artificial Intelligence, pages 1160–1167, 1996.

[6] R. Bhatia. Matrix analysis. 1997.

[7] J. Błasiok, V. Braverman, S. R. Chestnut, R. Krauthgamer, and L. F. Yang. Streaming symmetric
norms via measure concentration. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 716–729, 2017.

[8] V. Borkar and R. Jain. Risk-constrained markov decision processes. In 49th IEEE Conference
on Decision and Control (CDC), pages 2664–2669. IEEE, 2010.

[9] V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger. An optimal algorithm for large
frequency moments using o (nˆ(1-2/k)) bits. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 28. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[10] V. Braverman and R. Ostrovsky. Recursive sketching for frequency moments. arXiv preprint
arXiv:1011.2571, 2010.

[11] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith. Non-markovian rewards expressed in
ltl: guiding search via reward shaping. In Tenth Annual Symposium on Combinatorial Search,
2017.

[12] A. Camacho, R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Ltl and beyond:
Formal languages for reward function specification in reinforcement learning. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pages 6065–6073,
2019.

[13] Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-sensitive and robust decision-making:
a cvar optimization approach. In Advances in Neural Information Processing Systems, pages
1522–1530, 2015.

[14] C. Dann, N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. On polyno-
mial time PAC reinforcement learning with rich observations. arXiv preprint arXiv:1803.00606,
2018.

[15] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford. Provably efficient
RL with rich observations via latent state decoding. In International Conference on Machine
Learning, pages 1665–1674, 2019.

10

[16] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang. Is a good representation sufficient for sample
efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019.

[17] S. S. Du, Y. Luo, R. Wang, and H. Zhang. Provably efficient Q-learning with function ap-
proximation via distribution shift error checking oracle. In Advances in Neural Information
Processing Systems, pages 8058–8068, 2019.

[18] C. Gretton. A more expressive behavioral logic for decision-theoretic planning. In Pacific Rim
International Conference on Artificial Intelligence, pages 13–25. Springer, 2014.

[19] X. Guo, L. Ye, and G. Yin. A mean–variance optimization problem for discounted markov
decision processes. European Journal of Operational Research, 220(2):423–429, 2012.

[20] M. Hasanbeig, A. Abate, and D. Kroening. Logically-constrained reinforcement learning. arXiv
preprint arXiv:1801.08099, 2018.

[21] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith. Using reward machines for high-level
task specification and decomposition in reinforcement learning. In International Conference on
Machine Learning, pages 2107–2116, 2018.

[22] R. T. Icarte, E. Waldie, T. Klassen, R. Valenzano, M. Castro, and S. McIlraith. Learning reward
machines for partially observable reinforcement learning. In Advances in Neural Information
Processing Systems, pages 15497–15508, 2019.

[23] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of data streams.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
202–208, 2005.

[24] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[25] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision
processes with low bellman rank are PAC-learnable. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1704–1713. JMLR. org, 2017.

[26] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

[27] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

[28] S. Kakade, M. Wang, and L. F. Yang. Variance reduction methods for sublinear reinforcement
learning. 02 2018.

[29] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff. Fast moment estimation in data streams
in optimal space. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 745–754. ACM, 2011.

[30] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Mach.
Learn., 49(2-3):209–232, Nov. 2002.

[31] A. Krishnamurthy, A. Agarwal, and J. Langford. PAC reinforcement learning with rich observa-
tions. In Advances in Neural Information Processing Systems, pages 1840–1848, 2016.

[32] X. Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3834–3839. IEEE, 2017.

[33] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan. Environment-independent
task specifications via gltl. arXiv preprint arXiv:1704.04341, 2017.

[34] S. Mannor and J. N. Tsitsiklis. Algorithmic aspects of mean–variance optimization in markov
decision processes. European Journal of Operational Research, 231(3):645–653, 2013.

[35] A. M. McDonald, M. Pontil, and D. Stamos. Spectral k-support norm regularization. In
Advances in neural information processing systems, pages 3644–3652, 2014.

[36] T. M. Moldovan and P. Abbeel. Risk aversion in markov decision processes via near optimal
chernoff bounds. In Advances in neural information processing systems, pages 3131–3139,
2012.

11

[37] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka. Nonparametric return
distribution approximation for reinforcement learning. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, pages 799–806, 2010.

[38] C. Ni, L. F. Yang, and M. Wang. Learning to control in metric space with optimal regret. In
2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 726–733. IEEE, 2019.

[39] L. Prashanth. Policy gradients for cvar-constrained mdps. In International Conference on
Algorithmic Learning Theory, pages 155–169. Springer, 2014.

[40] L. Prashanth and M. Ghavamzadeh. Actor-critic algorithms for risk-sensitive mdps. In Advances
in neural information processing systems, pages 252–260, 2013.

[41] K. H. Quah and C. Quek. Maximum reward reinforcement learning: A non-cumulative reward
criterion. Expert Systems with Applications, 31(2):351–359, 2006.

[42] S. P. Singh. Reinforcement learning with a hierarchy of abstract models. In Proceedings of the
National Conference on Artificial Intelligence, number 10, page 202. Citeseer, 1992.

[43] S. P. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine
Learning, 8(3-4):323–339, 1992.

[44] J. Slaney. Semipositive ltl with an uninterpreted past operator. Logic Journal of the IGPL,
13(2):211–229, 2005.

[45] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages
881–888. ACM, 2006.

[46] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford. Model-based reinforcement
learning in contextual decision processes. arXiv preprint arXiv:1811.08540, 2018.

[47] A. Tamar, D. Di Castro, and S. Mannor. Policy gradients with variance related risk criteria.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pages 1651–1658, 2012.

[48] A. Tamar, Y. Glassner, and S. Mannor. Optimizing the cvar via sampling. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[49] S. Thiébaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza. Decision-theoretic planning with
non-markovian rewards. Journal of Artificial Intelligence Research, 25:17–74, 2006.

[50] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Teaching multiple tasks to an
rl agent using ltl. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, pages 452–461. International Foundation for Autonomous Agents and
Multiagent Systems, 2018.

[51] Z. Wen and B. Van Roy. Efficient exploration and value function generalization in deterministic
systems. In Advances in Neural Information Processing Systems, pages 3021–3029, 2013.

[52] Z. Xu, I. Gavran, Y. Ahmad, R. Majumdar, D. Neider, U. Topcu, and B. Wu. Joint inference of
reward machines and policies for reinforcement learning. arXiv preprint arXiv:1909.05912,
2019.

[53] L. F. Yang and M. Wang. Sample-optimal parametric Q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004, 2019.

[54] A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227. IEEE,
1977.

12

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Algorithm for the k-th Largest Reward
	Algorithm for General Symmetric Norms
	Algorithm for General Objective Functions
	Hardness Results
	Conclusion
	Proof of Theorem 1.4
	Lower Bounds
	Necessity of Symmetry

