
Beyond the VPN: Practical Client Identity in an

Internet with Widespread IP Address Sharing

Yu Liu and Craig A. Shue

Worcester Polytechnic Institute

{yliu25, cshue}@wpi.edu

Abstract—To support remote employees, organizations often
use virtual private networks (VPNs) to provide confidential and
authenticated tunnels between the organization’s networks and
the employees’ systems. With widespread end-to-end application-
layer encryption and authentication, the cryptographic features
of VPNs are often redundant. However, many organizations still
rely upon VPNs. We examine the motivations and limitations
associated with VPNs and find that VPNs are often used to
simplify access control and filtering for enterprise services.

To avoid limitations associated with VPNs, we propose an
approach that allows straightforward filtering. Our approach
provides evidence a remote user belongs in a network, despite
the address sharing present in tools like Carrier-Grade Network
Address Translation. We preserve simple access control and
eliminate the need for VPN servers, redundant cryptography, and
VPN packet headers overheads. The approach is incrementally
deployable and provides a second factor for authenticating users
and systems while minimizing performance overheads.

Index Terms—Virtual private networks, access control,
software-defined networking, residential networks, NAT

I. INTRODUCTION

Virtual private network (VPN) tools allow organizations to

manage remote users’ access as if they are local. VPN was

designed to ensure confidentiality, integrity, and authenticity

of remote user communication. However, in recent years, the

deployment of end-to-end cryptography has grown substan-

tially, with over 90% of web servers supporting TLS [8]. Since

confidentiality, integrity, and authenticity can be reasonably

assured at the application layer, the VPN’s cryptography may

often be redundant. Further, it comes at a cost: 1) VPN servers

act as an aggregation point that can become a bottleneck [4], 2)

a greater portion of each network packet is used for headers for

the cryptographic protocols, and 3) VPN licenses for remote

users can be expensive for organizations [3].

Enterprises are often motivated to deploy VPNs in order

to: 1) protect data confidentiality and authenticity, 2) manage

communication at the remote endpoint, and 3) simplify access

control. With redundant cryptography, the first goal is decreas-

ingly important. The second goal, as we discuss in Section III,

can be better achieved with endpoint filtering. We explore the

remaining goal, access control, in detail in this work.

Within the network, an organization may use network ad-

dress translation (NAT) to assign hosts and devices to private,

unroutable address space so that the infrastructure cannot be

reached by outsiders without going through NAT devices [22].

Such network addresses can be used as unique identifier in

allow-lists for intranet service management, like web, email

and firewalls [2], [18]. However, such address filtering is

impractical with remote users, since Internet Service Providers

(ISPs) often use dynamic addresses for their customers. Some

ISPs have adopted carrier-grade network address translation

(“carrier-grade NAT” or CGN) to dynamically share limited

IPv4 address space. CGN was used in 92% of cellular net-

works [23] by 2016. Some providers estimate that 30 million

home networks will be affected by CGN with the deployment

of 5G networks.

While organizations may wish to use NAT with VPN servers

to enable address-based filter, the VPN overheads may be a

challenge. Ideally, organizations would have a network-level

identifier that would allow quick and easy validation of a

remotely-connecting end user. Such identifiers could serve

as a “first-factor” authenticator that provides evidence of the

connecting machine’s or network’s likely legitimacy. This

factor can then be combined with other robust authentication

factors, such as application-layer credentials, on the server

endpoint. Importantly, the end-user and the organization must

both assent to use of the identifier to avoid misuse.

In this work, we explore a practical and deployable approach

to allow end-users to create dynamic network-level factors for

access control. Our contributions include:

• Dynamic Identifier Insertion: Using software-defined

networking (SDN) techniques, we allow endpoints and

residential routers to insert authentication identifiers into

traffic in an application-agnostic manner. Organizations

may use these identifiers to for lightweight access control.

• Gateway and Endpoint Validation: Using iptables,

we allow organizations to deploy validater conveniently,

which provides functionality similar to a VPN without

creating unnecessary bottlenecks.

II. BACKGROUND AND RELATED WORK

We provide background on CGN, software-defined network-

ing, user identity, and identifier encoding.

A. Carrier-Grade NAT (CGN) and Address Sharing

To help with the scarcity of IPv4 addresses, providers use

CGN to share addresses across users [23]. CGN typically

combines network addresses and transport layer ports to map

traffic to the appropriate end-user. Some guides recommend

30,517 public IP address for every 1,000,000 subscribers [20].

Richter et al. [23] found that while only 13.3% of non-cellular

ASes use CGNs, 92% of cellular networks use them [23]. In

Link Layer
Header

Outer IP
Header

Inner IP
Header

Transport Layer
Header Data

Link Layer
Header

Outer IP
Header

Transport Layer
Header Data

Options

Packet with Shim

Original Packet

Fig. 1. IP-in-IP packet format.

their 5G cellular deployment plans, some providers estimate

they will serve 30 million home networks [24]. Address

sharing is widespread on the Internet and is expected to grow.

B. Software-Defined Networking (SDN)

The SDN paradigm uses a centralized controller to separate

the data plane and control plane of network traffic. The

OpenFlow protocol [17] allows the controller to alter data

structures in switches and routers to enable inspection and

arbitrary forwarding of packets. OpenFlow can be enabled

in software bridges on endpoints via Open vSwitch [15].

With OpenFlow, a controller can typically inspect or alter the

first few packets in a network flow and then order switches

to cache appropriate rules through a FLOW_MOD order for

handling subsequent packets in a flow. This can minimize the

performance overheads.

C. IP Addresses and Host Identity

Address sharing affects a wide range of public IP address-

based applications, such as firewall policies. IP reputation is

used by major email providers, in tools such as Microsoft’s

SmartScreen [18], to assess risk associated with incoming

email messages [1]. Such tools may mistakenly assume that IP

addresses change infrequently and are unlikely to be shared.

This leads to false negatives when attackers move across IP

addresses and false positives when innocent people happen to

use an IP address previously involved in an attack [9].

Komu et al. [14] surveyed Internet architecture efforts

that aim to split the “locator” functionality from network

addresses from the “identifier” associated with the system.

Methods like HIP [19] and MILSA [21] propose to assign

persistent identities to each host and use network address

solely for routing and forwarding. The required mapping

between identifiers and addresses requires infrastructure or

OS changes, which complicate deployment. Further, ISPs have

used “super cookies” for persistent identity [6] at the cost of

user privacy [12].

D. Mechanisms to Encode Application-Agnostic Identifiers

We use an IP-in-IP shim to add options in a backwards-

compatible, standardized manner, as shown in Figure 1. We

insert a second IP header in front of the original transport

layer header. The outer IP address is used as the locator and

the inner IP header conveys identifier data. While we could

re-purpose header fields inside the inner IP header to encode

identifiers, this may cause intermediate routers that inspect

the inner header to drop the packets if they are considered

malformed. We thus leave these fields unchanged.

III. MOTIVATIONS FOR VPN DEPLOYMENTS

Organization commonly use VPNs with their employees to:

1) protect packet confidentiality, integrity, and authenticity via

cryptography, 2) control communication to remote systems,

and 3) simplify access control by signalling a host’s “insider”

status [11], [16].

Web protocols make up the majority of Internet traffic,

and recent surveys show that over 90% of web traffic is

now protected by TLS [5]. TLS is common in business

application communication, including web and email traffic.

Other protocols, such as remote desktop tools, file transfer,

secure shell and network printing, commonly use application-

layer cryptography. A significant portion of communication

between remote users and an organization’s network already

have application-layer security assurances.

Some legacy protocols or devices may not support cryp-

tography. However, organizations may use the reverse proxy

model [7] to protect such devices without requiring VPNs.

IV. APPROACH: INDICATING AUTHENTICITY VALIDATION

Inspired by Kerberos [13] and HTTP cookies, we explore

a token-based design to provide evidence showing a client is

likely an authenticated user in the system.

A. Design Goal: Evidence Supporting Legitimacy

Our goal is to re-create the weak connection evidence for

an organization’s servers in a lighter weight manner. We

want to present the server with evidence that an end-user

interacted with an authentication server at the organization and

is likely to be legitimate. We aim to simplify first-pass network

connection filtering through a simple authentication token,

while leaving robust user identification to the application layer.

Our approach is designed to be effective against “off-path”

adversaries, such as other clients that happen to share a CGN

gateway and are multiplexed onto the same IP address. The

authenticator value is constructed to make it difficult for

an adversary to guess the value and impersonate the client.

However, the approach is not designed to be robust against

an “on-path” adversary, such as a network provider. Such an

adversary would be able to inspect or alter the IP-in-IP shim

layer and discover the identifiers. Further, the shim is only

inserted in the first packet in the flow, so an on-path adversary

could simply hijack the flow for malicious purposes after the

initial verification. However, this threat model is consistent

with our design goals of keeping robust authentication at the

application layer.

B. Leveraging Authentication Servers

As shown in Figure 2, when the client initiates an authen-

tication request, the first packet of the flow is elevated to the

SDN controller. The controller learns about the authentication

server and its support of our protocol through DNS records,

which are configured by the organization. The controller

Laptop OVS Switch Internet

Authentication
Server

Application
Server

1. Send request

Controller

2. Elevate
packet

3. Add Shim to Indicate
support of the protocol

4. Return modified
packet

6. Validate data login, generate
and send clientKey

8. Store
the clientKey

7. Elevate
response

5. Send to server

Fig. 2. The key transfer from the authentication server to the OpenFlow
controller.

Laptop OVS Switch Internet

Authentication
Server

Application
Server

1. Send request

Controller

2. Elevate
packet

3. Examine destination, find
 stored keys, craft IP-in-IP
packet and insert the token

4. Send modified
packet

6. Verify the token in iptables
module, allowif it is valid

7. Send response
8. Receive response

5. Send
packet

Fig. 3. The process for the client to authenticate to the application server.

signals the client’s support via an IP-in-IP shim. When the

authentication server replies, it includes a client key that the

client can use to authenticate itself using an HMAC derived

using a pre-shared secret between the authentication server and

application server.

The authentication server communicates the key and iden-

tifier by crafting an IP-in-IP packet. The inner IP header

includes an option field in which both the client key and a

unique identifier are encoded. The OpenFlow switch simply

elevates any packet with IP-in-IP shims to the controller for

review, allowing the controller to obtain the key and identifier.

C. Using OpenFlow to Manage Tokens

As shown in Figure 3, when a client initiates a query to the

application server, the OpenFlow switch elevates the request to

the OpenFlow controller. The controller consults its database

and user preferences, determines that a token is needed. Then

the controller creates an IP-in-IP shim. In the inner header, it

creates an IP option that contains a token that is an HMAC

derived from the unique identifier, client key, and a nonce. The

controller sends this modified packet back to the switch for

transmission using an OpenFlow PACKET_OUT message.

The application server parses the IP-in-IP message, vali-

dates the token, and removes it before delivering it to the

actual destination application. To do this, we develop open

source iptables modules using the Xtables-Addons frame-

work [10]. We develop a match module to intercept the

packets of our protocol and verify the token. If the result is

positive, the second target module removes the inner IP

header and decapsulates the IP-in-IP packet so the application

can process it. With these modules, any network flows with

unverified tokens will be denied access.

TP-Link Archer C7 Router
OpenWrt + Open vSwitch

Internet

Thinpad S3 Laptop

External Network

Home Network

Controller
floodlight + our modules

Mac OSX Laptop
Authentication

Server
Application

Server
Client

Machine

Fig. 4. Our experiment architecture.

V. IMPLEMENTATION

We implement our system in a home network, shown

in Figure 4, to evaluate its security and performance. We

examine the required modifications for a regular client, an

authentication server (e.g., an identity provider), an application

server (e.g., a relying party), and an SDN controller.

We create our client host in a virtual machine (VM) on a

physical machine. On a different physical machine, we run the

application server and the authentication server as VMs. For

our SDN gateway, we use a TP-Link Archer C7 router running

OpenWrt and an Open vSwitch module. The two physical

machines are connected via two LAN ports of the router. The

VMs bridge their network interfaces and receive their DHCP

leases from the router. The router and two physical machines

are located in a residential LAN. The controller runs on a

remote university campus server, emulating the use of a remote

third-party SDN service provider. We implement our SDN

controller and module using the Floodlight SDN framework.

VI. EVALUATION: SECURITY AND PERFORMANCE

To evaluate the security of the approach, we create new

connections from the client machine to the application server.

The application server runs our iptables modules locally

to allow validated packets with a default deny rule to drop any

new flows that are not approved by our match module.

In our first scenario, we disable the OpenFlow controller

module, causing the client to send packets without a token.

All such attempts were blocked by the default deny rule. We

further enable our OpenFlow module that intercepted only the

first packet in each flow to insert the properly constructed

header but with an invalid token. Likewise, all such flows were

properly blocked. Finally, when we use the OpenFlow module

to construct a proper header and a valid token value all such

flows were properly matched and authorized. In each scenario,

we ran 20 trials.

To evaluate the performance of our key transfer module, we

transmit a TCP SYN packet to a port without an associated

application server, resulting in a TCP RST packet that refuses

the connection. This simple exchange allows us to monitor

any overheads at the OpenFlow controller and iptables

modules to signal support for the protocol, encode keys into

packets, and extract those keys.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e
rc

e
n
ta

g
e
 o

f
T

ri
a
ls

RTT of Key Transfer, OpenFlow Agent on Physical Router (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

Fig. 5. Key transfer between client and authentication server across 1,000
trials, with the TP-Link router executing the OpenFlow agent.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

P
e
rc

e
n
ta

g
e
 o

f
T

ri
a
ls

RTT with Application Server, OpenFlow Agent on Physical Router (ms)

Baseline (2 RTTs to Controller)
Pro Forma OpenFlow Elevations

Full Implementation

Fig. 6. In key validation, the client interact with application server in 1,000
trials. The OpenFlow agent runs on the physical TP-Link router.

During the key transfer at the authentication server, the

client sends 1,000 TCP requests and measures the round-trip

time (RTT) that includes all the overheads. Two elevations to

the OpenFlow controller are required. In Figure 5, the leftmost

(green) line indicates baseline of two RTTs with the controller.

The 90th percentile is 83ms. The middle (blue) line shows the

measured end-to-end RTT for the client to the server using

pro forma OpenFlow elevations that omit alterations. The 90th

percentile of the RTT is 86ms. The 90th percentile of our full

implementation (the rightmost, red line) rises to 87ms.

To measure the performance evaluation of the key validation

associated with the application server, the client sends a

UDP packet and measures the RTT in 1000 trials. In each

trial, the packet is elevated to the controller twice: once to

perform the IP-in-IP encapsulation and once to handle the

UDP server’s response. In Figure 6, the baseline of two RTTs

with the controller remains the same (green, leftmost line)

with a 90th percentile RTT of 83ms. In the pro forma scenario

(blue, middle line), the 90th percentile RTT is 90ms. In the

full implementation scenario (rightmost, red line), the 90th

percentile RTT is 93ms.

VII. CONCLUSION

We explore an alternative to VPNs for simplified access

control filtering using a shared identifier. This allows end-

point servers to pre-filter traffic, achieving the same goals

while reducing bottlenecks, extra server infrastructure, redun-

dant cryptography, packet header overheads, and complexity.

We proposed an SDN-based architecture to facilitate user-

controlled persistent identity. We used iptables modules to

implement the approach and the results show that our method

is effective, lightweight, and incrementally deployable.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. 1651540.

REFERENCES

[1] Amazon, Inc., “Amazon SES IP blocklist FAQs,” https://docs.aws.
amazon.com/ses/latest/DeveloperGuide/blocklists.html, 2019.

[2] Apache, “Access control,” https://httpd.apache.org/docs/2.4/howto/
access.html, 2020.

[3] D. Athow, “7 best business VPN solutions 2020,” https://www.techradar.
com/news/best-vpn-for-business-our-5-top-choices, 2020.

[4] M. Cooney, “Coronavirus challenges remote networking,”
https://www.networkworld.com/article/3532440/coronavirus-
challenges-remote-networking.html, 2020.

[5] C. Cullen, “Sandvine releases 2019 global internet phenomena re-
port,” https://www.sandvine.com/press-releases/sandvine-releases-2019-
global-internet-phenomena-report, 2019.

[6] A. C. Estes, “The dangers of supercookies,” https://www.theatlantic.com/
technology/archive/2011/08/dangers-supercookies/354297/, 2011.

[7] F5, Inc., “What is a reverse proxy server?” https://www.nginx.com/
resources/glossary/reverse-proxy-server/.

[8] Google, “Https usage in chrome worldwide,” https://transparencyreport.
google.com/https/overview?hl=en&time os region=chrome-usage:
1;series:time;groupby:os&lu=load os region&load os region=chrome-
usage:1;series:page-load;groupby:os, 2020.

[9] K. Hill, “Cloudflare blocking my IP?” https://community.cloudflare.com/
t/cloudflare-blocking-my-ip/65453, 2019.

[10] N. Jamili, “xtables-addons,” https://github.com/nawawi/xtables-addons,
2020.

[11] A. G. Johansen, “10 benefits of VPN you might not know about,” https:
//us.norton.com/internetsecurity-privacy-benefits-of-vpn.html, 2020.

[12] J. Kastrenakes, “FCC fines verizon 1.35 million over ’supercookie’
tracking,” https://www.theverge.com/2016/3/7/11173010/verizon-
supercookie-fine-1-3-million-fcc, 2016.

[13] J. Kohl and C. Neuman, “The Kerberos network authentication service
(V5),” IETF RFC 1510, 1993.

[14] M. Komu, M. Sethi, and N. Beijar, “A survey of identifier–locator split
addressing architectures,” Computer Science Review, vol. 17, pp. 25–42,
2015.

[15] Linux Foundation, “Open vSwitch,” https://www.openvswitch.org, 2016.
[16] T. McCue, “Benefits of a VPN,” https://www.forbes.com/sites/tjmccue/

2019/06/20/benefits-of-a-vpn/#149611632466, 2019.
[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[18] Microsoft Corporation, “Troubleshooting,” https://sendersupport.olc.
protection.outlook.com/pm/troubleshooting.aspx, 2018.

[19] R. Moskowitz, P. Nikander, P. Jokela et al., “Host identity protocol (HIP)
architecture,” IETF RFC 4423, 2006.

[20] K. Nishizuka, “Carrier-grade-NAT (CGN) deployment considerations,”
IETF Draft, https://tools.ietf.org/id/draft-nishizuka-cgn-deployment-
considerations-00.html, 2013.

[21] J. Pan, S. Paul, R. Jain, and M. Bowman, “MILSA: a mobility and
multihoming supporting identifier locator split architecture for naming
in the next generation internet,” in IEEE GLOBECOM, 2008.

[22] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot, “Address
allocation for private internets,” IETF RFC 1597 https://tools.ietf.org/
html/rfc1597, 1995.

[23] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush,
A. Feldmann, C. Kreibich, N. Weaver, and V. Paxson, “A multi-
perspective analysis of carrier-grade NAT deployment,” in Internet

Measurement Conference. ACM, 2016, pp. 215–229.
[24] B. Varettoni, “Verizon to launch 5G residential broadband services in

up to 5 markets in 2018,” https://www.verizon.com/about/news/verizon-
launch-5g-residential-broadband-services-5-markets-2018, 2017.

