Beyond the VPN: Practical Client Identity in an
Internet with Widespread IP Address Sharing

Yu Liu and Craig A. Shue
Worcester Polytechnic Institute
{yliu25, cshue}@wpi.edu

Abstract—To support remote employees, organizations often
use virtual private networks (VPNs) to provide confidential and
authenticated tunnels between the organization’s networks and
the employees’ systems. With widespread end-to-end application-
layer encryption and authentication, the cryptographic features
of VPNs are often redundant. However, many organizations still
rely upon VPNs. We examine the motivations and limitations
associated with VPNs and find that VPNs are often used to
simplify access control and filtering for enterprise services.

To avoid limitations associated with VPNs, we propose an
approach that allows straightforward filtering. Our approach
provides evidence a remote user belongs in a network, despite
the address sharing present in tools like Carrier-Grade Network
Address Translation. We preserve simple access control and
eliminate the need for VPN servers, redundant cryptography, and
VPN packet headers overheads. The approach is incrementally
deployable and provides a second factor for authenticating users
and systems while minimizing performance overheads.

Index Terms—Virtual private networks, access
software-defined networking, residential networks, NAT

control,

I. INTRODUCTION

Virtual private network (VPN) tools allow organizations to
manage remote users’ access as if they are local. VPN was
designed to ensure confidentiality, integrity, and authenticity
of remote user communication. However, in recent years, the
deployment of end-to-end cryptography has grown substan-
tially, with over 90% of web servers supporting TLS [8]. Since
confidentiality, integrity, and authenticity can be reasonably
assured at the application layer, the VPN’s cryptography may
often be redundant. Further, it comes at a cost: 1) VPN servers
act as an aggregation point that can become a bottleneck [4], 2)
a greater portion of each network packet is used for headers for
the cryptographic protocols, and 3) VPN licenses for remote
users can be expensive for organizations [3].

Enterprises are often motivated to deploy VPNs in order
to: 1) protect data confidentiality and authenticity, 2) manage
communication at the remote endpoint, and 3) simplify access
control. With redundant cryptography, the first goal is decreas-
ingly important. The second goal, as we discuss in Section III,
can be better achieved with endpoint filtering. We explore the
remaining goal, access control, in detail in this work.

Within the network, an organization may use network ad-
dress translation (NAT) to assign hosts and devices to private,
unroutable address space so that the infrastructure cannot be
reached by outsiders without going through NAT devices [22].
Such network addresses can be used as unique identifier in
allow-lists for intranet service management, like web, email

and firewalls [2], [18]. However, such address filtering is
impractical with remote users, since Internet Service Providers
(ISPs) often use dynamic addresses for their customers. Some
ISPs have adopted carrier-grade network address translation
“carrier-grade NAT” or CGN) to dynamically share limited
IPv4 address space. CGN was used in 92% of cellular net-
works [23] by 2016. Some providers estimate that 30 million
home networks will be affected by CGN with the deployment
of 5G networks.

While organizations may wish to use NAT with VPN servers
to enable address-based filter, the VPN overheads may be a
challenge. Ideally, organizations would have a network-level
identifier that would allow quick and easy validation of a
remotely-connecting end user. Such identifiers could serve
as a “first-factor” authenticator that provides evidence of the
connecting machine’s or network’s likely legitimacy. This
factor can then be combined with other robust authentication
factors, such as application-layer credentials, on the server
endpoint. Importantly, the end-user and the organization must
both assent to use of the identifier to avoid misuse.

In this work, we explore a practical and deployable approach
to allow end-users to create dynamic network-level factors for
access control. Our contributions include:

o Dynamic Identifier Insertion: Using software-defined
networking (SDN) techniques, we allow endpoints and
residential routers to insert authentication identifiers into
traffic in an application-agnostic manner. Organizations
may use these identifiers to for lightweight access control.

o Gateway and Endpoint Validation: Using iptables,
we allow organizations to deploy validater conveniently,
which provides functionality similar to a VPN without
creating unnecessary bottlenecks.

II. BACKGROUND AND RELATED WORK

We provide background on CGN, software-defined network-
ing, user identity, and identifier encoding.

A. Carrier-Grade NAT (CGN) and Address Sharing

To help with the scarcity of IPv4 addresses, providers use
CGN to share addresses across users [23]. CGN typically
combines network addresses and transport layer ports to map
traffic to the appropriate end-user. Some guides recommend
30,517 public IP address for every 1,000,000 subscribers [20].
Richter et al. [23] found that while only 13.3% of non-cellular
ASes use CGNs, 92% of cellular networks use them [23]. In

Original Packet

Link Layer Outer IP |Transport Layer Data
Header Header Header
1 RN T~
~ ~
1 1 ~o ~o
1 : : 1 ~o ~o
Packet with Shim ~o ~o
Link Layer Outer IP Inner IP q Transport Layer
Header Header Header (Options Header Data
Fig. 1. IP-in-IP packet format.

their 5G cellular deployment plans, some providers estimate
they will serve 30 million home networks [24]. Address
sharing is widespread on the Internet and is expected to grow.

B. Software-Defined Networking (SDN)

The SDN paradigm uses a centralized controller to separate
the data plane and control plane of network traffic. The
OpenFlow protocol [17] allows the controller to alter data
structures in switches and routers to enable inspection and
arbitrary forwarding of packets. OpenFlow can be enabled
in software bridges on endpoints via Open vSwitch [15].
With OpenFlow, a controller can typically inspect or alter the
first few packets in a network flow and then order switches
to cache appropriate rules through a FLOW_MOD order for
handling subsequent packets in a flow. This can minimize the
performance overheads.

C. IP Addresses and Host Identity

Address sharing affects a wide range of public IP address-
based applications, such as firewall policies. IP reputation is
used by major email providers, in tools such as Microsoft’s
SmartScreen [18], to assess risk associated with incoming
email messages [1]. Such tools may mistakenly assume that IP
addresses change infrequently and are unlikely to be shared.
This leads to false negatives when attackers move across IP
addresses and false positives when innocent people happen to
use an IP address previously involved in an attack [9].

Komu et al. [14] surveyed Internet architecture efforts
that aim to split the “locator” functionality from network
addresses from the “identifier” associated with the system.
Methods like HIP [19] and MILSA [21] propose to assign
persistent identities to each host and use network address
solely for routing and forwarding. The required mapping
between identifiers and addresses requires infrastructure or
OS changes, which complicate deployment. Further, ISPs have
used “super cookies” for persistent identity [6] at the cost of
user privacy [12].

D. Mechanisms to Encode Application-Agnostic Identifiers

We use an IP-in-IP shim to add options in a backwards-
compatible, standardized manner, as shown in Figure 1. We
insert a second IP header in front of the original transport
layer header. The outer IP address is used as the locator and
the inner IP header conveys identifier data. While we could
re-purpose header fields inside the inner IP header to encode
identifiers, this may cause intermediate routers that inspect

the inner header to drop the packets if they are considered
malformed. We thus leave these fields unchanged.

III. MOTIVATIONS FOR VPN DEPLOYMENTS

Organization commonly use VPNs with their employees to:
1) protect packet confidentiality, integrity, and authenticity via
cryptography, 2) control communication to remote systems,
and 3) simplify access control by signalling a host’s “insider”
status [11], [16].

Web protocols make up the majority of Internet traffic,
and recent surveys show that over 90% of web traffic is
now protected by TLS [5]. TLS is common in business
application communication, including web and email traffic.
Other protocols, such as remote desktop tools, file transfer,
secure shell and network printing, commonly use application-
layer cryptography. A significant portion of communication
between remote users and an organization’s network already
have application-layer security assurances.

Some legacy protocols or devices may not support cryp-
tography. However, organizations may use the reverse proxy
model [7] to protect such devices without requiring VPNs.

IV. APPROACH: INDICATING AUTHENTICITY VALIDATION

Inspired by Kerberos [13] and HTTP cookies, we explore
a token-based design to provide evidence showing a client is
likely an authenticated user in the system.

A. Design Goal: Evidence Supporting Legitimacy

Our goal is to re-create the weak connection evidence for
an organization’s servers in a lighter weight manner. We
want to present the server with evidence that an end-user
interacted with an authentication server at the organization and
is likely to be legitimate. We aim to simplify first-pass network
connection filtering through a simple authentication token,
while leaving robust user identification to the application layer.

Our approach is designed to be effective against “off-path”
adversaries, such as other clients that happen to share a CGN
gateway and are multiplexed onto the same IP address. The
authenticator value is constructed to make it difficult for
an adversary to guess the value and impersonate the client.
However, the approach is not designed to be robust against
an “on-path” adversary, such as a network provider. Such an
adversary would be able to inspect or alter the IP-in-IP shim
layer and discover the identifiers. Further, the shim is only
inserted in the first packet in the flow, so an on-path adversary
could simply hijack the flow for malicious purposes after the
initial verification. However, this threat model is consistent
with our design goals of keeping robust authentication at the
application layer.

B. Leveraging Authentication Servers

As shown in Figure 2, when the client initiates an authen-
tication request, the first packet of the flow is elevated to the
SDN controller. The controller learns about the authentication
server and its support of our protocol through DNS records,
which are configured by the organization. The controller

3. Add Shim to Indicate
support of the protocol

8. Store
the clientKey

6. Validate data login, generate
and send clientKey

Controller

4. Return modified
packet

A
2. Elevate

Authentication
packet

1. Send t
end reques v

WL—_)[OVS Switch

7. Elevate
response

Application
Server

Fig. 2. The key transfer from the authentication server to the OpenFlow
controller.

3. Examine destination, find

stored keys, craft IP-in-IP

ke i he tok
packet and insert the token Controller
2. EIevaieA 4. Send modified Authenticati
packet packet u seenn::f fon
1. Send request \ 2 5. Send

[Laptop]Z[ovs Switch

8. Receive response

6. Verify the token in iptables
module, allowif it is valid

Application
Server

The process for the client to authenticate to the application server.

packet m

7. Send response

i

Fig. 3.

signals the client’s support via an IP-in-IP shim. When the
authentication server replies, it includes a client key that the
client can use to authenticate itself using an HMAC derived
using a pre-shared secret between the authentication server and
application server.

The authentication server communicates the key and iden-
tifier by crafting an IP-in-IP packet. The inner IP header
includes an option field in which both the client key and a
unique identifier are encoded. The OpenFlow switch simply
elevates any packet with IP-in-IP shims to the controller for
review, allowing the controller to obtain the key and identifier.

C. Using OpenFlow to Manage Tokens

As shown in Figure 3, when a client initiates a query to the
application server, the OpenFlow switch elevates the request to
the OpenFlow controller. The controller consults its database
and user preferences, determines that a token is needed. Then
the controller creates an IP-in-IP shim. In the inner header, it
creates an IP option that contains a token that is an HMAC
derived from the unique identifier, client key, and a nonce. The
controller sends this modified packet back to the switch for
transmission using an OpenFlow PACKET_OUT message.

The application server parses the IP-in-IP message, vali-
dates the token, and removes it before delivering it to the
actual destination application. To do this, we develop open
source iptables modules using the Xtables-Addons frame-
work [10]. We develop a match module to intercept the
packets of our protocol and verify the token. If the result is
positive, the second target module removes the inner IP
header and decapsulates the IP-in-IP packet so the application
can process it. With these modules, any network flows with
unverified tokens will be denied access.

Controller
floodlight + our modules

External Network I

Home Network [

TP-Link Archer C7 Router
OpenWrt + Open vSwitch

Thinpad S3 Laptop Mac OSX Laptop
Client JAuthentication || Application
Machine Server Server

Fig. 4.

Our experiment architecture.

V. IMPLEMENTATION

We implement our system in a home network, shown
in Figure 4, to evaluate its security and performance. We
examine the required modifications for a regular client, an
authentication server (e.g., an identity provider), an application
server (e.g., a relying party), and an SDN controller.

We create our client host in a virtual machine (VM) on a
physical machine. On a different physical machine, we run the
application server and the authentication server as VMs. For
our SDN gateway, we use a TP-Link Archer C7 router running
OpenWrt and an Open vSwitch module. The two physical
machines are connected via two LAN ports of the router. The
VMs bridge their network interfaces and receive their DHCP
leases from the router. The router and two physical machines
are located in a residential LAN. The controller runs on a
remote university campus server, emulating the use of a remote
third-party SDN service provider. We implement our SDN
controller and module using the Floodlight SDN framework.

VI. EVALUATION: SECURITY AND PERFORMANCE

To evaluate the security of the approach, we create new
connections from the client machine to the application server.
The application server runs our iptables modules locally
to allow validated packets with a default deny rule to drop any
new flows that are not approved by our match module.

In our first scenario, we disable the OpenFlow controller
module, causing the client to send packets without a token.
All such attempts were blocked by the default deny rule. We
further enable our OpenFlow module that intercepted only the
first packet in each flow to insert the properly constructed
header but with an invalid token. Likewise, all such flows were
properly blocked. Finally, when we use the OpenFlow module
to construct a proper header and a valid token value all such
flows were properly matched and authorized. In each scenario,
we ran 20 trials.

To evaluate the performance of our key transfer module, we
transmit a TCP SYN packet to a port without an associated
application server, resulting in a TCP RST packet that refuses
the connection. This simple exchange allows us to monitor
any overheads at the OpenFlow controller and iptables
modules to signal support for the protocol, encode keys into
packets, and extract those keys.

Percentage of Trials
g

Baseline (2 RTTS to Controller) —s— -
Pro Forma OpenFlow Elevations —s—
Full Implementation ——

50 120

60 70 80 90 100 110
RTT of Key Transfer, OpenFlow Agent on Physical Router (ms)

Fig. 5. Key transfer between client and authentication server across 1,000
trials, with the TP-Link router executing the OpenFlow agent.

100

Percentage of Trials
g

Baseline (2 RTTs to Controller) —s— -
Pro Forma OpenFlow Elevations —s—
ull Implementafion ——

50 110 120

60 70 80 % 100
RTT with Application Server, OpenFlow Agent on Physical Router (ms)

Fig. 6. In key validation, the client interact with application server in 1,000
trials. The OpenFlow agent runs on the physical TP-Link router.

During the key transfer at the authentication server, the
client sends 1,000 TCP requests and measures the round-trip
time (RTT) that includes all the overheads. Two elevations to
the OpenFlow controller are required. In Figure 5, the leftmost
(green) line indicates baseline of two RTTs with the controller.
The 90th percentile is 83ms. The middle (blue) line shows the
measured end-to-end RTT for the client to the server using
pro forma OpenFlow elevations that omit alterations. The 90th
percentile of the RTT is 86ms. The 90th percentile of our full
implementation (the rightmost, red line) rises to 87ms.

To measure the performance evaluation of the key validation
associated with the application server, the client sends a
UDP packet and measures the RTT in 1000 trials. In each
trial, the packet is elevated to the controller twice: once to
perform the IP-in-IP encapsulation and once to handle the
UDP server’s response. In Figure 6, the baseline of two RTTs
with the controller remains the same (green, leftmost line)
with a 90th percentile RTT of 83ms. In the pro forma scenario
(blue, middle line), the 90th percentile RTT is 90ms. In the
full implementation scenario (rightmost, red line), the 90th
percentile RTT is 93m:s.

VII. CONCLUSION

We explore an alternative to VPNs for simplified access
control filtering using a shared identifier. This allows end-
point servers to pre-filter traffic, achieving the same goals
while reducing bottlenecks, extra server infrastructure, redun-
dant cryptography, packet header overheads, and complexity.
We proposed an SDN-based architecture to facilitate user-

controlled persistent identity. We used iptables modules to
implement the approach and the results show that our method
is effective, lightweight, and incrementally deployable.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1651540.

REFERENCES

[1] Amazon, Inc., “Amazon SES IP blocklist FAQs,” https://docs.aws.
amazon.com/ses/latest/DeveloperGuide/blocklists.html, 2019.

[2] Apache, “Access control,” https:/httpd.apache.org/docs/2.4/howto/
access.html, 2020.

[3] D. Athow, “7 best business VPN solutions 2020,” https://www.techradar.
com/news/best-vpn-for-business-our-5-top-choices, 2020.

[4] M. Cooney, “Coronavirus challenges remote networking,”
https://www.networkworld.com/article/3532440/coronavirus-
challenges-remote-networking.html, 2020.

[5] C. Cullen, “Sandvine releases 2019 global internet phenomena re-
port,” https://www.sandvine.com/press-releases/sandvine-releases-2019-
global-internet-phenomena-report, 2019.

[6] A. C. Estes, “The dangers of supercookies,” https://www.theatlantic.com/
technology/archive/2011/08/dangers- supercookies/354297/, 2011.

[7]1 F5, Inc., “What is a reverse proxy server?” https://www.nginx.com/
resources/glossary/reverse- proxy-server/.

[8] Google, “Https usage in chrome worldwide,” https://transparencyreport.
google.com/https/overview ?hl=en&time_os_region=chrome-usage:
1;series:time;groupby:os&lu=load_os_region&load_os_region=chrome-
usage: 1;series:page-load;groupby:os, 2020.

[9] K. Hill, “Cloudflare blocking my IP?” https://community.cloudflare.com/
t/cloudflare-blocking-my-ip/65453, 2019.

[10] N. Jamili, “xtables-addons,” https://github.com/nawawi/xtables-addons,
2020.

[11] A. G. Johansen, “10 benefits of VPN you might not know about,” https:
/lus.norton.com/internetsecurity-privacy-benefits-of-vpn.html, 2020.

[12] J. Kastrenakes, “FCC fines verizon 1.35 million over ’supercookie’
tracking,” https://www.theverge.com/2016/3/7/11173010/verizon-
supercookie-fine- 1-3-million-fcc, 2016.

[13] J. Kohl and C. Neuman, “The Kerberos network authentication service
(V5),” IETF RFC 1510, 1993.

[14] M. Komu, M. Sethi, and N. Beijar, “A survey of identifier—locator split
addressing architectures,” Computer Science Review, vol. 17, pp. 25-42,
2015.

[15] Linux Foundation, “Open vSwitch,” https://www.openvswitch.org, 2016.

[16] T. McCue, “Benefits of a VPN,” https://www.forbes.com/sites/tjmccue/
2019/06/20/benefits-of-a-vpn/#149611632466, 2019.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[18] Microsoft Corporation, “Troubleshooting,” https://sendersupport.olc.
protection.outlook.com/pm/troubleshooting.aspx, 2018.

[19] R. Moskowitz, P. Nikander, P. Jokela et al., “Host identity protocol (HIP)
architecture,” IETF RFC 4423, 2006.

[20] K. Nishizuka, “Carrier-grade-NAT (CGN) deployment considerations,”
IETF Draft, https://tools.ietf.org/id/draft-nishizuka-cgn-deployment-
considerations-00.html, 2013.

[21] J. Pan, S. Paul, R. Jain, and M. Bowman, “MILSA: a mobility and
multihoming supporting identifier locator split architecture for naming
in the next generation internet,” in JEEE GLOBECOM, 2008.

[22] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot, “Address
allocation for private internets,” IETF RFC 1597 https://tools.ietf.org/
html/rfc1597, 1995.

[23] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush,
A. Feldmann, C. Kreibich, N. Weaver, and V. Paxson, “A multi-
perspective analysis of carrier-grade NAT deployment,” in Internet
Measurement Conference. ACM, 2016, pp. 215-229.

[24] B. Varettoni, “Verizon to launch 5G residential broadband services in
up to 5 markets in 2018,” https://www.verizon.com/about/news/verizon-
launch-5g-residential-broadband-services- 5-markets-2018, 2017.

