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Abstract. We study a simple geometric model for local transformations of bipartite
graphs. The state consists of a choice of a vector at each white vertex made in such
a way that the vectors neighboring each black vertex satisfy a linear relation. Evo-
lution for different choices of the graph coincides with many notable dynamical sys-
tems including the pentagram map, Q-nets, and discrete Darboux maps. On the other
hand, for plabic graphs we prove unique extendability of a configuration from the
boundary to the interior, an elegant illustration of the fact that Postnikov’s boundary
measurement map is invertible. In all cases there is a cluster algebra operating in the
background, resolving the open question for Q-nets of whether such a structure exists.
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1 Introduction

The dynamics of local transformations on weighted networks plays a central role in a
number of settings within algebra, combinatorics, and mathematical physics. In the
context of the dimer model on a torus, these local moves give rise to the discrete cluster
integrable systems of Goncharov and Kenyon [11]. Meanwhile, for plabic graphs in a
disk, Postnikov transformations relate different parametrizations of positroid cells [18]
which in turn define a stratification of the totally non-negative Grassmannian.

The dimer model also manifests itself in many geometrically defined dynamical sys-
tems. We focus on projective geometry and draw our initial motivation from the penta-
gram map. The pentagram map was defined by Schwartz [20] and related to coefficient-
type cluster algebra dynamics in [9]. Gekhtman, Shapiro, Tabachnikov, and Vainshtein
[7, 8] placed the pentagram map and certain generalizations in the context of weighted
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networks. Although considerable work in various directions of the subject has been
undertaken, most relevant to our work is a further generalization termed Y-meshes [10].

We propose a simple but versatile geometric model for the space of edge weights of
any bipartite graph modulo gauge equivalence. The induced dynamics of local transfor-
mations includes in special cases pentagram maps, Q-nets, and discrete Darboux maps.
This common generalization resolves a long standing question of how the pentagram
map and Q-nets relate. Moreover, our systems come with a cluster dynamics, which
is new in the Q-net case. Lastly, in the setting of plabic graphs we define a geometric
version of the boundary measurement map and its inverse. In this language, proper-
ties of the boundary measurement map imply unique solvability of a certain family of
geometric realization problems.

Let G be a planar bipartite graph with vertex set BUW. For b € B let N(b) C W
denotes its set of neighbors. Fix a vector space V. A circuit is a subset S C V such that S
is linearly dependent but each of its proper subsets is linearly independent.

Definition 1.1. A vector-relation configuration on G consists of choices of
e a nonzero vector vy, € V for each w € W and
e a non-trivial linear relation R, among the vectors {vy, : w € N(b)} for each b € B.

In particular, each set {vy, : w € N(b)} must be linearly dependent. If each set {v,, : w €
N(b)} is a circuit, say the configuration satisfies the circuit condition.

Definition 1.2. Consider a vector-relation configuration on a graph G as above and sup-
pose A # 0. The gauge transformation by A at a black vertex b € B scales the relation R,
by A (and keeps all other vectors and relations the same). The gauge transformation by A
at a white vertex w € W scales v, by 1/A and scales the coefficient of vy, by A in each
relation in which it appears to compensate. Two vector-relation configurations are called
gauge equivalent if they are related by a sequence of gauge transformations.

Gauge equivalence classes of vector-relation configurations serve as our main object
of study. For the remainder of the introduction, we define both local transformations
and a boundary measurement type map for such configurations, and present our main
results.

1.1 Local transformations

Goncharov and Kenyon [11] study line bundles with connection on bipartite graphs.
This model amounts to a choice of edge weights modulo a notion of gauge equivalence.
They also define local transformations of the graph and edge weights which are closely
related to Postnikov moves [18] in weighted directed networks.
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Let G = (BUW, E) be a planar bipartite graph. Let (v, R) be a vector-relation config-
uration on G. We can define edge weights

wt(bw) = £Kpy

where Ky, is the coefficient of v, in R, and the signs satisfy the Kasteleyn condition,
namely the product of signs on edges around each 2m-gon face equals (—1)""1. A
choice of Kasteleyn signs always exists and, in the plane, any two such choices are
gauge equivalent (see e.g. [12]).

Theorem 1.3. The above associates a line bundle with connection on G to each gauge class
of vector-relation configurations satisfying the circuit condition. Moreover, the classical local
transformations can be implemented on the vector-relation level via local geometric rules.

In Section 2, we define these local rules and also give geometric definitions of face
weights which are the main gauge-invariant coordinates. We also explain the sense in
which our model is a common generalization of the pentagram map and Q-nets.

1.2 Configurations on plabic graphs

Plabic graphs are a family of finite planar graphs widely used in the study of positroids
and the totally non-negative Grassmannian. Restricted to this case, our model provides
a new take on plabic graphs and much of the surrounding theory.

A plabic graph is a finite planar graph G = (BU W, E) embedded in a disk with the
vertices all colored black or white. We assume throughout that G is in fact bipartite and
that all of its boundary vertices are colored white. An almost perfect matching of G is a
matching that uses all internal vertices (and some boundary vertices). Assume always
that G has at least one almost perfect matching.

Fix for the moment a plabic graph G = (BUW,E). Let M = |B|, N = |W/|, and let
n be the number of boundary vertices. As all boundary vertices are white that leaves
N — n internal white vertices. Number the elements of B and W respectively 1 through
M and 1 through N in such a way that the boundary (white) vertices are numbered
1 through 7 in clockwise order. We will sometimes use these numbers in place of the
vertices, e.g. writing v; for the vector of a configuration at the white vertex numbered i.
Let k = N — M. Each almost perfect matching uses exactly n — k boundary vertices.

We make some modifications to our model to better cater to plabic graphs and related
geometry. First, the natural ambient dimension is k = N — M so we simply fix as our
vector space V = CX. We also require that the boundary vertices v;,...,v, span V.
The main result given these assumptions, which in isolation is rather striking, is that a
configuration is uniquely determined up to gauge by its boundary vectors. Moreover,
the boundary vectors can be viewed as columns of a k X n matrix [v; - --v,]| and the
subset of the Grassmannian arising this way is dense in the associated positroid variety.
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Figure 1: A plabic graph corresponding to the open cell in Gr(3,6)

Theorem 1.4. Fix a plabic graph G with all the preceding conventions and notation.

1. If (v,R) is a vector-relation configuration on G satisfying the circuit condition then A =
[01 - - - vy] lies in the positroid variety 11 g where M is the positroid of G.

2. Suppose G is reduced. For generic A € 11y, the columns vy, ...,v, of A can be extended
to a vector-relation configuration on G that is unique up to gauge at internal vertices. In
particular, each internal vector is determined up to scale.

In Section 3.1 we review the definitions of the positroid M, the variety ITys C Gry,,
and the reducedness condition for plabic graphs.

Example 1.5. Consider the plabic graph G in Figure 1. It has k = 3 and n = 6. In fact, the
associated positroid is the uniform matroid, meaning all 3 element subsets of {1,...,6}
are included. So the positroid variety is the whole Grassmannian Gr3¢. In short, the
boundary vectors vy,...vs € C3 of a configuration can be generic.

Now suppose v, ...v € C are given and consider the possibilities for the internal
vector u. The lower black vertex forces u,v;,v, to be dependent while the top black
vertex forces u,v4,vs5 to be dependent. If the v; are generic then u must lie on the line
of intersection of the planes (v1,vp) and (v4,v5). Hence u is determined up to scale.
The other two black vertices have degree 4. It is always possible to find a linear relation
among 4 vectors in C3, so there are no added conditions imposed on .

1.3 Relation to previous work

Our model of vector-relation configurations has substantial precedent in the literature.
In fact, a main selling point of our specific formulation is that it is versatile enough to
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tie into previously studied ideas in a variety of areas. We outline some of the relevant
previous work here for the interested reader’s convenience.

In the plabic graph setting, Lam’s relation space [16, Section 14] is in a sense dual to our
model. In light of this connection, Lam’s main result [16, Theorem 14.6] demonstrates
that the operation of boundary restriction as in our Theorem 1.4 agrees up to sign with
the boundary measurement map [18]. Our only claims to originality in Theorem 1.4 are
the elegance and the elementary geometric nature both of the formulation and of our
proofs. Another related model is provided by Postnikov [19]. Both [16, Section 14] and
[19] are attempts to put on more mathematical footing on-shell diagrams [2], and in fact
physicists have informed us that vector-relation configurations are one way they think
about said diagrams.

In the case of the dimer model on the torus, special cases and other hints of vector-
relation configurations appear in the following settings: higher pentagram maps [7, 8],
discrete differential geometry [3], and the inverse spectral transform [14, 5]. We close this
section by noting that the full version [1] of this extended abstract contains full proofs of
all results as well as investigations in a number of related directions.

2 Vector-relation configurations

In this section we develop the theory of vector-relation configurations on general planar
bipartite graphs as in Definitions 1.1 and 1.2. To that end, let G = (BUW,E) be a
planar bipartite graph. We will denote a vector-relation configuration on G by (v, R) (or
sometimes just v for short) where v = (vy)yew and R = (Ry)pep-

For each w € W, let P, denote the projection of v, € V to the corresponding projec-
tive space PV.

Proposition 2.1. If (v,R) satisfies the circuit condition then the points (Py)pew uniquely
determine the gauge class of the configuration.

We work on the level of the point configurations (Py)y,ecw for the remainder of this
section. They are characterized by the property that for each b € B the set {P, : w €
N(b)} is a circuit in projective space (e.g. 4 coplanar points, no 3 of which are collinear).
Note that for any partition of a circuit into two subsets, there is a unique point on the
intersection of the affine hulls of the subsets. Fix b € B. Let F be a face containing b and
let wy, w; be the neighbors of b along F. Define P(F, b) to be the point

P(F,b) = (Puy, Pup) N ({Po : w € N(b) \ {wy, w2}}) (21)

where (-) denotes an affine span.
Figure 2 depicts the local transformations that we consider on bipartite graphs and
sets notation for some of the graphs’ vertices. We extend each transformation to a map-
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Figure 2: Combinatorial local moves on planar bipartite graphs.

ping of point configurations. The first move is urban renewal which operates on a quadri-
lateral face F of the original graph. Define points at the new white vertices w}, w) to
be P, =P (F,by) and Py, =P (F,by). The other two moves split a vertex into two new
vertices of the same color, which are then attached by a new degree two vertex of the
opposite color. If the vertex being split is a white vertex w, them put the same point
Py, = Py, = Py at each new white vertex. Lastly, if the vertex being split is black there
is a new degree two white vertex w’. Put

Pw/ — <Pw1,...,Pwk>m(Pwk+1...Pwk+l>.

Proposition 2.2. The above definitions yield valid point configurations on the graph resulting
from each move.

It is a direct verification that the dynamics on the points P, correspond to classical
local transformations on edge weights as claimed by Theorem 1.3.

For a line bundle with connection on G, the basic gauge invariant functions are the
monodromies around individual faces. These face weights evolve under local transforma-
tions via Y-pattern dynamics [6] of the cluster algebra associated to the dual quiver. As



Vector-relation configurations and plabic graphs 7

Ag
5

As 0

S Ay

o 3 e °
Ay As

Figure 3: A portion of the bipartite graph whose vector-relation dynamics coincide
with the pentagram map.

such, the same formulas apply to our geometrically defined systems. Moreover, the face
weights have simple projectively invariant formulas.

Suppose points Py, ..., Py in an affine space are given with the triples {P;, P, P},
{P5,Py,Ps}, ..., {Po_1, Py, P1 } all collinear. The multi-ratio (called a cross ratio for k = 2
and a triple ratio for k = 3) of the points is

Py —P,P3—Py  Py_q— Py
P, — P3Py — Ps Py — Py

Py,..., Pyl =

Each individual fraction involves 3 points on a line and is interpreted as a ratio of signed
distances.

Proposition 2.3. Let F be a face with boundary cycle wq, by, wo, by, ..., Wy, by in clockwise
order. In terms of the points Py, the face weight of F equals

Yr = (=1)""Y[Py,, P(F,by), Pu,, P(F,b2),...,Py,, P(F,by)] .

Example 2.4. The pentagram map [20] inputs a polygon in the plane with vertices A; and
outputs the polygon with vertices B; = (A;_1, Ai11) N (A;, Air2). Let G be an infinite
square grid and associate an A; to each white vertex of G in the manner suggested by
Figure 3. The two new points produced by urban renewal at F are precisely B3 and By.
In fact, urban renewal at half the faces (in a checkerboard pattern) followed by some
degree 2 vertex removals results in a full application of the pentagram map.

Example 2.5. A Q-net [4] is a map from Z? to 3-space such that each primitive square
maps to four coplanar points. Sufficient initial data for a Q-net lives on a so-called
stepped surface which when projected to a plane looks like an infinite tiling by regular
rhombi. A point of the Q-net lives at each vertex of the tiling and the four points
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associated to each rhombus are coplanar. This setup can be modeled by a bipartite
graph G with a white vertex at each vertex of the tiling, a black vertex in the center of
each rhombus, and edges connecting them in the natural way. A certain sequence of
four urban renewals studied in [13] realizes one step of Q-net dynamics which on the
tiling level amounts to flipping three rhombi inside a regular hexagon.

3 Configurations on plabic graphs

3.1 Background on positroid varieties

We now return to the plabic graph case. The proof of Theorem 1.4 utilizes a significant
amount of the theory of positroid varieties. We begin by reviewing the relevant material,
generally following [17] and [16].

Given a k x n matrix A, and | C {1,...,n} of size k, let Aj(A) denote the maximal
minor of A using column set J. The totally nonnegative Grassmannian is the set of
A € Gr(k,n) for which Aj(A) is real and nonnegative for all J. The matroid of any
A € Gr(k,n) is

M ={]:A;(A) #0}.

A positroid is a set of k-element subsets of {1,...,n} that arises as the matroid of a point
in the totally nonnegative Grassmannian. We also denote a positroid by M even though
this is a more restrictive notion than a matroid.

Let M be a positroid. For j = 1,...,n, consider the column order j < j+1 < ... <
n<1<...<j—1 LetlI;be the lexicographically minimal element of M relative to
this order. The collection of sets (I, ..., I,) is called the Grassmann necklace of M. The
positroids index a decomposition of the complex Grassmannian by open positroid varieties
[T, defined as intersections of cyclic shifts of Schubert cells encoded by (L,...,I;). The
positroid variety 11,4 is defined to be the Zariski closure of 1T} ;. In order to give quicker
definitions, we fall back on the literature.

Theorem 3.1 (Knutson-Lam-Speyer [15]). The positroid variety 114 is a closed irreducible
variety defined in the Grassmannian by

Iy ={A € Grip: Aj(A) =0forall | ¢ M}.

Let G = (BUW,E) be a plabic graph. Following our conventions, all boundary
vertices are white. Let n be the number of boundary vertices and k = |W| — |B|. An
almost perfect matching is a matching in G that uses all internal vertices. Hence it is a
matching of B with W\ | where | C {1,...,n} (identified with the boundary vertices)
and |J| = k. The positroid of G, denoted Mg is the set of | that arise this way as the
unused vertices of an almost perfect matching.
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Figure 4: The alternating strand diagram for a plabic graph (left) and the associated
labeling by sets of the faces and vertices of the graph (right)

An arc in a plabic graph is a direct path connecting the midpoints of two edges
which meet at a vertex and are also part of a common face. The arc looks something
like a circular arc centered at the common vertex, and it is oriented clockwise (resp.
counterclockwise) if the vertex is white (resp. black). Near a boundary vertex an arc is
also allowed to begin or end at a nearby boundary point. A strand is a maximal oriented
path that decomposes into arcs. The collection of strands together is called the alternating
strand diagram of the graph. One example of such a diagram is given in Figure 4.

Say a plabic graph G is reduced if its alternating strand diagram has the following
properties:

e All strands start and end at the boundary.

e No strand has a self intersection unless it corresponds to a degree 1 boundary
vertex whose neighbor is also degree 1.

e No pair of strands have a pair of intersections that they encounter in the same
order.

If G is reduced then there are exactly n strands, one starting near each boundary
vertex. Call j the number of the strand starting near vertex j. The strands divide the
disk into regions. For each j, add a label of j to each region lying to the left of strand
number j as it is traversed. Each region corresponds naturally to a white vertex, black
vertex, or face of G. Use the notations S, S, and Sr to denote the set of labels received
by the region in the strand diagram associated to w, b, or F (see the right of Figure 4 for
an example).
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Proposition 3.2. Let F be a face of G, b € B, and w € W.
o |Sp| =k, [Sw| =k—1,and |Sy| = k+ 1.

e If b and w are on the boundary of F then Sy, C Sp C S,

3.2 Recasting the main result

The remainder of this section is devoted to outlining the proof of Theorem 1.4, and we
begin by reformulating this result. Let G = (BU W, E) be a plabic graph with all the
notation of Section 1.2. Recall in this setting we only allow gauge transformations at the
internal vertices. Let C2 denote the space of gauge equivalence classes of vector-relation
configurations on G satisfying the circuit condition modulo the action of GL(C).

If (v,R) € Cg then by assumption vy, ...,v, span V = Ck. The v; are defined up to a
common change of basis so A = [v; - - - v,] is a well-defined point of Gry ,. We use P to
denote the map ® : CZ — Gry, taking (v,R) to A, and we call ® the boundary restriction
map. In this language Theorem 1.4 can be stated as follows.

Theorem 3.3. Let G be a reduced plabic graph.
1. The map ® is injective.

2. The Zariski closure of the image of ® is the positroid variety ITy,.

3.3 The reconstruction map

In this subsection, we discuss the proof of Theorem 3.3. Specifically, we define a rational
map Y : 1y, — Cg which turns out to be the inverse of ®. As ¥ has the effect of
reconstructing the entire configuration from just the boundary vectors, we term it the
reconstruction map.

Fix A € IIp and in fact fix a particular matrix representative so that the columns
v1,...,0n of Aalllivein V. Let H; C V denote the linear span of {v; : i € I;\ {j}}. For
each w € W, define

Lo = () H; (3.1)
j€Sw

Lemma 3.4. For generic A € I py:
1. Each Hj is a hyperplane.
2. The set {H; : j € S} of k hyperplanes are in general position for each face F.

3. Each Ly, is a line.
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Proposition 3.5. Let b € B and choose nonzero vectors vy, € Ly, for each neighbor w of b. Then
these vy, satisfy a unique linear relation up to scale, and this relation has all coefficients nonzero.

Proposition 3.6. Let A € Il be generic. Then there exists a unique configuration (v,R) € Cg
such that ®(v,R) = A and vy, € Ly, forallw € W.

We now have our definition of the reconstruction map ¥ : Tg — C¢g, namely it maps
A to the configuration given by Proposition 3.6. Clearly ® o ¥ is the identity. In plainer
terms we have existence of an extension of generic A € I1y, to a full configuration. The
following result establishes uniqueness.

Proposition 3.7. Let (v,R) € Cg and suppose A = ®(v). Then (v,R) = ¥Y(A).

Example 3.8. Consider the plabic graph G in Figure 4. As previously discussed, G cor-
responds to the uniform matroid in Grse, and it follows that I; = {j,j +1,j + 2} with
indices modulo 6. Given A = [v;---vg| then, H; = (v;11,7vi42). The unique internal
white vertex w has Sy, = {3,6}, so

Ly = H3 N Hg = (v4,v5) N (01, 02).

One obtains a full configuration ¥(A) by picking v, € L. On the other hand, Exam-
ple 1.5 explains that any extension must have v, on this line verifying Proposition 3.7 in
this case.
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