Advances in Mathematics 370 (2020) 107207

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

www.elsevier.com /locate/aim

Two-row W-graphs in affine type A )

Check for
Updates

Dongkwan Kim *, Pavlo Pylyavskyy

School of Mathematics, University of Minnesota Twin Cities, Minneapolis,
MN 55455, USA

ARTICLE INFO ABSTRACT
Article history: For affine symmetric groups we construct finite W-graphs
Received 3 September 2019 corresponding to two-row shapes, and prove their uniqueness.

Received in revised form 22 April
2020
Accepted 24 April 2020

This gives the first non-trivial family of purely combinatorial
constructions of finite W-graphs in an affine type. We compare

Available online 13 May 2020 our construction with quotients of periodic W-graphs defined
Communicated by Roman by Lusztig. Under certain positivity assumption on the latter
Bezrukavnikov the two are shown to be isomorphic.

© 2020 Elsevier Inc. All rights reserved.
Keywords:
‘W-graph

Symmetric group

Contents
1. Introduction . ... . . . . .. 2
2. Definitions and notations . ... ... ... ... 5
3. WW-graphis . . . . . 7
4. Sp,-graph Ty for two-row partitions. . . ... .. ... ...t 10
5. Case 1: S and T differ by two elements . . . .. ... ... ... . . . 16
6. Case 2: S and T differ by four elements. . . ... ... ... ... ... L o o 27
7. Restriction of Ta t0 Sn v o o o o e e e e e 36
8. Uniqueness of T'y in unequal length cases . ... ............uuiiiiieiiiee. .. 41
9. Equal length cases . ... ... . 44

10.  Periodic W-graphs . . . . . . . 51

References . . . . . .o 60

* Corresponding author.
E-mail addresses: kim00657@Qumn.edu (D. Kim), ppylyavs@umn.edu (P. Pylyavskyy).

https://doi.org/10.1016/j.aim.2020.107207
0001-8708/© 2020 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aim.2020.107207
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2020.107207&domain=pdf
mailto:kim00657@umn.edu
mailto:ppylyavs@umn.edu
https://doi.org/10.1016/j.aim.2020.107207

2 D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207

_ - ’ \ S-a

N 1 | z
\\ i 1 //
N I | s
N [

N )/

[N s
[ s
I N ’ |
l’ [~ o " \\

I ~~~, \

1, ,v" ~"~~
! ‘¢' ~~~
|4 ‘,— ~~~

1. Introduction

In their groundbreaking paper [10] Kazhdan and Lusztig laid the groundwork for an
approach to the representation theory of Hecke algebras. Since then this approach has
been significantly developed, and is called Kazhdan-Lusztig theory. Of special importance
are the W-graphs that encode representations of Hecke algebras in a combinatorial way.
Those are certain directed graphs with additional data given at vertices and edges.
Certain W-graphs arise from Kazhdan-Lusztig cells in a canonical way, to which we refer
as Kazhdan-Lusztig W -graphs. Stembridge [20] has introduced a class of W-graphs called
admissible, they include, but are not limited to, Kazhdan-Lusztig W-graphs. Giving an
explicit elementary description of W-graphs in a conceptual way is an excruciatingly
hard task, and constitutes one of the major problems in algebraic combinatorics and
representation theory.

There are two kinds of edges in W-graphs: undirected and directed. It is easier to
understand the undirected edges; one could say that this problem is tame. For example,
in type A the undirected edges of Kazhdan-Lustig W-graphs are given by Knuth moves
[12] on permutations. If one restricts the information contained in a Kazhdan-Lusztig
W-graph in type A to undirected edges, one obtains a dual equivalence graph of Haiman
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[9]. The latter are well-understood; notably Assaf [2] has given a local characterization
of dual equivalence graphs, similar to that of W-graphs by Stembridge [20].

On the other hand, understanding the directed edges appears to be a wild problem.
Chmutov [4] has shown that in an admissible W-graph of an irreducible representation in
type A the undirected edges must form one of the dual equivalence graphs, i.e. coincide
with undirected edges of one of the Kazhdan-Lusztig W-graphs. Nguyen [16] further
strengthened this to say that the directed edges must coincide with those of a Kazhdan-
Lusztig W-graph as well, i.e. that in type A all irreducible W-graphs are Kazhdan-
Lusztig. This was originally a conjecture by Stembridge; see [20]. Despite these strong
results, in finite type A an explicit construction of W-graphs is known only for hook
shapes [8] and two-row shapes; see [23] where it is attributed to Lascoux-Schutzenberger.
In Section 7.4 we give an equivalent formulation of the latter construction in terms of
tableaux, as opposed to strand diagrams.

As one passes to affine type A, a lot less is known. In this case Kazhdan-Lusztig cells
are labeled by tabloids, as opposed to standard Young tableaux in finite type A. One
can still restrict Kazhdan-Lustig W-graphs to undirected edges, connected components
of the resulting graph being Kazhdan-Lusztig molecules in Stembridge’s terminology
[21]. A comprehensive description of those was recently given by Chmutov, Yudovina,
Lewis and the second coauthor [6,7]. The majority of Kazhdan-Lusztig molecules are
infinite, and the majority of Kazhdan-Lusztig cells contain infinitely many molecules.
This is in sharp contrast to type A, where each Kazhdan-Lusztig cell is unimolecular
and finite.

Affine dual equivalence graphs were introduced in [7] as natural quotients of affine
Kazhdan-Lusztig molecules (not to be confused with a similar notion introduced by
Assaf and Billey in an unrelated context [1]). Unlike molecules, affine dual equivalence
graphs are always finite. A natural question arises of whether affine dual equivalence
graphs can be enriched by directed edges to obtain genuine W-graphs, and whether such
enrichment is unique.

The first goal of this paper is to answer this affirmatively for two-row shapes. In
Section 4.1 we give a concrete combinatorial rule for construction of the W-graphs the
undirected part of which coincides with two-row affine dual equivalence graphs of [7].
This constitutes the first non-trivial family of purely combinatorial constructions of fi-
nite W-graphs in an affine type. (Other examples, based on representation theory, can
be obtained from taking certain quotients of Lusztig’s periodic W-graphs [13,14]; see
Section 10 for more details.) The resulting W-graphs have the property that when re-
stricted to a finite Hecke algebra, one obtains modules whose Frobenius character (in
the sense of Ram [17]) is a Hall-Littlewood symmetric function.

The W-graphs constructed in this paper are manifestly non-bipartite. This is a strong
indication that the bipartiteness condition often imposed in literature on W-graphs is
not essential, and can be ignored. For example, it can be dropped from Stembridge’s def-
inition of admissible W-graphs, leaving the majority of the results unchanged. Similarly,
recent impressive results of Nguyen [16] remain true if the bipartiteness requirement is
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omitted. In all relevant cases the original proofs carry through essentially verbatim; see
Section 7.2.

The second goal of the paper is to show uniqueness of our construction assuming
admissibility (except bipartiteness) of W-graphs. In Section 8 we show that our con-
struction of W-graphs is unique for shapes (a,b), a # b, and is almost unique for shapes
(a,a).

Finally, we invoke the notion of periodic W -graphs introduced by Lusztig in [14] and
how they are related to our construction. In general, periodic W-graphs are different from
the usual Kazhdan-Lusztig W-graphs attached to cells and have periodicity as their name
indicates. Under a certain finiteness assumption, which is proved by Varagnolo [22] for
type A, one can take their quotients using this periodicity and obtain finite W-graphs of
affine type. In this paper, we prove that our construction is isomorphic to such quotients
of periodic W-graphs if we assume positivity of edge weights on the latter. We conjecture
this to be true for all shapes, not just two-row ones.

We believe that our construction of W-graphs provides important and useful examples
in terms of representation theory. Here we discuss some possible applications to Springer
theory. Firstly, Fung [8] studied the connection between the components of Springer fibers
and W-graphs for two-row and hook shapes (in which case the description of a W-graph
is explicitly known). Likewise, one can consider the components of an affine Springer
fiber, originally defined by Kazhdan-Lusztig [11], which is currently one of the central
objects in geometric Langlands program. It is very interesting to ask if an analogous
statement to Fung’s is valid for affine Springer fibers and W-graphs of affine type.

Furthermore, it is known that periodic W-graphs provide a certain “canonical basis”
of the (equivariant) K-theory of Springer fibers [15], which is in deep connection with
modular representation of reductive Lie algebras and noncommutative Springer resolu-
tion [3]. Even though the equivalence of our construction and the quotient of periodic
W -graphs relies on the positivity conjecture which is still open as of now, we hope that
the examples constructed in this paper are useful in practice when investigating such
topics.

This paper is organized as follows. In Section 2, we introduce definitions and notations
which are frequently used in this paper. In Section 3, we recall the notion of W-graphs
and discuss their properties. In Section 4, we construct a graph Iy for a two-row partition
X and study its properties. Here, we also state one of our main results that T'y is actually
a W-graph of affine type A, whose proof is completed in Section 5 and 6. In Section 7, we
discuss the restriction of T'y to the finite symmetric group. In Section 8 and 9, we prove
that I'y satisfies certain uniqueness statement. In Section 10, we recollect the notion of
Lusztig’s periodic W-graphs and show how our construction of Ty is related to his graph
under certain positivity assumption.

Acknowledgment. The authors thank George Lusztig for his helpful comments on pe-
riodic W-graphs. They also wish to thank the anonymous referee for their detailed
comments and suggestions on the draft of this paper.
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2. Definitions and notations
2.1. Symmetric groups

Throughout this paper we let n > 3 be a given natural number. Define S,, to be the
symmetric group permuting {1,2,...,n}. We often regard it as a Coxeter group with the
set of simple reflections I = {s1, s2,..., 8,1} where s; is defined to be the transposition
swapping ¢ and i+ 1. We define S,, and ;S'; to be the affine symmetric group and extended
affine symmetric group, respectively. They are usually realized as

S, = {w € Aut(Z) | w(i +n) = w(i) for any i € Z},

Sy i={weds, | Zw(i) =n(n+1)/2}

where Aut(Z) is the set of permutations of Z. (Note that S, is naturally identified
with a subgroup of both S,, and :S-’vn consisting of the elements that preserve the set
{1,2,...,n}.) For w € S, its window notation is given by [w(l),w(2),...,w(n)].
It is clear that the window notation completely determines the element w. We also
write w = [w(1),w(2),...,w(n)] to describe the element w. For example, we have
id = [1,2,...,n]. Note that S, is a Coxeter group with the set of simple reflec-

I = {s0 = 5,,51,52,...,5,_1} where s; = [1,2,...,i — 1,3+ 1,4,i +2,...,n]
for1 <i<n-1and sp = s, = [0,2,...,n — 1,n + 1]. Define w € :Svn to be

outer automorphism on S,, and we have S,, = S,, ¥ (w).
2.2. Partitions

We say that A is a partition of n if A is a finite sequence of integers, i.e. A =
(M, Ag, ..., \;) where Aq,...,\; € Z, which satisfies that Ay > Ao > -+ A > 0 and
> i—1 Ai = n. In this situation we also write A - n and |\| = n, and say that the size of
A is n. The length of A, denoted I(\), is its length considered as a sequence of (positive)
integers. We usually identify a partition with its corresponding Young diagram (in terms
of English convention) and thus its parts are often called rows.

2.3. Young tableauz

Let RSYT(n) (resp. SYT(n), SSYT(n)) be the set of row-standard (resp. standard,
semistandard) Young tableaux of size n. Here we say that a Young tableau T is row-
standard if 1) each of 1,2,...,n appears in T exactly once and 2) the entries of T
are increasing along rows (but not necessarily along columns). We also regard SYT(n)
naturally as a subset of RSYT(n). For a partition A F n, we also let RSYT(\) C RSYT(n)
(resp. SYT(A) € SYT(n), SSYT(A) C SSYT(n)) be the subset of such tableaux of shape
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A. In addition, for a sequence of positive integers u = (1, ..., ;) such that Zlizl i =n
(which is not necessarily a partition), we set SSYT(\, ) C SSYT(A) to be the set of
semistandard Young tableaux of shape A and content .

For a tableau T, define Sh(T) to be the shape of T. We often regard a tableau T as a
sequence of integer sequences (T, T2, ... 7TZ(A)) where each T is the a-th row of T'. For
such T, we define the reading word of T to be the concatenation T} ... T2T! (from
bottom to top), considered either as a word or a sequence. Finally, for a tableau T' we
set T'l; ;) to be the tableau obtained from T by removing boxes containing entries not
in {1,2,...,4}.

2.4. Robinson-Schensted-Knuth map on row-standard Young tableaux

We define the Robinson-Schensted-Knuth map on RSYT(n) as follows. For T €
RSYT(n), consider the two-line array whose second row is the reading word of T and
whose first row records [(Sh(T')) + 1—(the row number) of corresponding entries. For
example, the two-line array corresponding to

7] 11

o 2 2 2 33 3 3
isgivenby (1 g 3 69 2 4 5 7)-

Nelidi

214
T=[3]6
1]8

We define RSK(T') := (P(T'), Q(T)) to be the image of this two-line array under the usual
Robinson-Schensted-Knuth correspondence; see [12, Section 3]. Thus in particular P(T)
is a standard Young tableaux and Q(T') is a semistandard Young tableaux of content
AP where A°P is obtained from reversing the sequence A. For example, if T is as above
then we have

2[4[5]7]

—_

23]

P(T) =

)

Ioooa»—n
(@]
Nel

—
Il

|OJ[\D»—I
w
w| Do

We define FinSh(T') to be the shape of P(T'). Note that FinSh(7") > Sh(T') with respect
to dominance order, and FinSh(7T') = Sh(T) if and only if T is standard.

2.5. Residues and intervals

For k € Z, we let k be the unique element in {1,2,...,n} congruent to £ modulo n. For
example, we have —1 = n—1,0 = n, etc. For a,b € Z, we define [a,b] :={x € Z |a < x <
b}. Similarly, for a,b € {1,2,...,n} we define "a,bu:={a+z—-2|2<z<b—a+2}.
For example, if n = 5 then 1,5, ="2,1, =0, 73,3, = {3}, and 74,2, = {4,5,1,2}.
(Note in particular that § = 1,5, # [1,5] = {1,2,3,4,5}. The reason for adopting such
a convention for ™ | 4 will be apparent in Section 4.1.)
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2.6. Descents and Knuth moves

For T € RSYT()) we define the (affine) descent set of T to be des(T) := {i € [1,n] |
i lies in a strictly higher row of T than i + 1} following [6, Definition 3.4]. Similarly, for
T € SYT()\) we define the (finite) descent set of T to be des(T) := des(T) — {n}. For
T,T7" € RSYT()), we say that T” is obtained from T by a Knuth move or T' and T” are
connected by a (single) Knuth move if des(7') and des(7") are not comparable and 7" is
obtained from T by interchanging i and i + 1 for some i € [1,n] (and reordering entries
in each row if necessary).

Remark. If T, 7" € SYT()), one may be tempted to define a finite analogue, i.e. if des(T')
and des(7T”) are not comparable and T" is obtained from T by interchanging 7 and 7 + 1
for some ¢ € [1,n — 1] (without reordering rows after). However, one can easily check
that if 7,7 € SYT(A) then these two notions are in fact equivalent; thus there is no
need to differentiate affine and finite Knuth moves.

3. W-graphs
Here we recall the notion of W-graphs. Basic references are [10] and [20].
3.1. I-labeled graphs

Suppose for now that W is a Coxeter group with the set of simple reflections I. We
say that I' = (V,;m,7) is an I-labeled graph if

(1) misamapm:V x V — Z[¢*2].
(2) T7isamap 7:V — P(I), where P(I) is the power set of I.
(3) For each v € V, {w € V | m(v,w) # 0 or m(w,v) # 0} is a finite set.

Moreover, we say that I' is finite if |V| < oo. Conventionally, if m(u,v) # 0 (resp.
m(u,v) = 0) for u,v € V then we say that there is an (directed) edge from u to v of
weight m(u,v) (resp. there is no edge from u to v). In order to avoid confusion, we also
write m(u > v) instead of m(u,v).

We say that IV = (V’',m/,7’) is a I-labeled subgraph (or simply subgraph) of T" if
V'V, (v) =7(v) for v e V', and m'(u>v) € {m(u>v),0} for u,v € V'. Furthermore
if m/(urv) =m(upwv) for all u,v € V', then we say that I' is a full subgraph of I". For
two I-labeled graphs ' = (V,m,7) and TV = (V/,m/,7’), an embedding f : I" — T is
a function f : V/ — V such that there exists a subgraph I'V of T" and f restricts to an
isomorphism f: IV ~T".

Remark. Note that our definition is weaker than that of [20, p. 347] as we allow (locally
finite but) infinite W-graphs. Indeed, a (locally finite) W-graph with infinite vertices will
naturally appear in our paper when we discuss periodic W-graphs.
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3.2. W-graphs

Let Hy be the Iwahori-Hecke algebra of W over Z[qi%}, which is a quotient of the
braid group of W with generators T; for ¢ € I by quadratic relations (T; — q)(T; +1) = 0.
An I-labeled graph I' = (V,m, 7) is called a W-graph if the formula

qu if i ¢ 7(u)

—u+tq? Z m(ub v if i € 7(u)
viigT(v)

Ti(u) =

vev Z[g*2]v. Note that this is a transposed
form compared to the original definition in [10] and coincides with the one in [20]. (Also
see [14, A.3] for similar definition.)

gives rise to a Hy-module structure on

3.3. Reduced I-labeled graphs

Suppose that T' = (V,m, 7) is an I-labeled graph. We say that T is reduced if m(ubv) =
0 whenever 7(u) C 7(v). This notion is motivated from the fact that the values m(uv)
when 7(u) C 7(v) do not appear in the above formula for I being a W-graph. In this
paper we only deal with reduced I-labeled graphs.

3.4. Parabolic restriction of I-labeled graphs

For a subset J C I, the parabolic restriction of an I-labeled graph T' = (V,m, 1),
denoted '}, ; = (V',m’,7’), is a J-labeled graph such that V' =V, 7/(v) = 7(v) N J, and
m/(u>v) =m(ur o) if 7/(u) ¢ 7/(v) and m/(u>v) = 0 otherwise. Then I" is clearly a
J-labeled graph. Furthermore, if " is a (reduced) W-graph, then it is easy to show that
I is a (reduced) W;-graph where W; C W is the parabolic subgroup generated by J.
(cf. [20, 1.A))

3.5. (nb-)Admissible I-labeled graphs

For a I-labeled graph T' = (V,m, 1), we say that T is admissible if imm C N =
{0,1,2,...}, m(upv) = m(v>u) if 7(u) and 7(v) are not comparable, and T" is bipartite.
However, in our case it is crucial to consider W-graphs which are not necessarily bipartite.
We say that I' is nb-admissible if it is admissible but possibly not bipartite. Later we
will see that dropping this assumption does not cause any problem for our argument.

3.6. Simple underlying graph

For an I-labeled graph T' = (V,m,7), we define its simple underlying graph U(T") =
(V',m/, ") to be an I-labeled graph such that V/ =V, 7" = 7, and m/(ubv) = m/(vbu) =
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Lif m(u>v) =mv>u) =1and m/ (u>v) = m/'(v>u) = 0 otherwise. Note that U(T")
is canonically a subgraph of I' obtained by removing “directed” and “non-simple” edges.
Furthermore, U(T) is always a simple (I-labeled) graph.

3.7. (nb-)Admissible W -graphs and Stembridge’s theorem

For simplicity, from now on we assume that W is simply-laced. For a W-graph I' =
(V,m, 7), we introduce four combinatorial rules that it should satisfy.

1. The Compatibility Rule. If m(u > v) # 0 for u,v € V, then any i € 7(u) — 7(v) and
any j € 7(v) — 7(u) are adjacent in the Dynkin diagram of .

2. The Simplicity Rule. If m(u>v) # 0 for u,v € V, then either [r(u) D 7(v) and
m(ve>w) = 0] or [7(u) and 7(v) are not comparable, and m(u>v) = m(ve>u) = 1].

3. The Bonding Rule. For any i,j € I adjacent in the Dynkin diagram of W, if u € V
satisfies ¢ € 7(u) and j ¢ 7(u) then there exists a unique v € V such that ¢ ¢
T(v),j € T(v), m(u>v) # 0, and m(v>u) # 0.

4. The Polygon Rule. For i,j € I, we define V;/; = {v € V | i € 7(v),j & 7(v)}. For
u,v € V such that i,7 € 7(u) and 4,5 ¢ 7(v), set

Nz»zj(F;u,U)z Z m(ubw)m(wwv),
weViy;

ij(l";u,v) = Z m(u > wy)m(wy > wse)m(wg > v).
w1 €V 5,w2€V;

(These sums are well-defined due to local finiteness assumption.) Then we have
N{j(f‘;u,v) = Nfi(F;u,v) for such u,v € V and 4,5 € J. Here r = 2 or r = 3, and
the latter case is only considered when ¢ and j are adjacent in the Dynkin diagram
of W.

The main theorem of [20] is that these rules characterize the combinatorial properties of
admissible I-labeled graphs being a W-graph. Here we generalize his theorem slightly as
follows.

Theorem 3.1 (See [20, Theorem 4.9]). Let T be an nb-admissible (reduced) I-labeled
graph. Then T is a W-graph if and only if it satisfies the four combinatorial rules above.

Proof. Indeed, the original proof of Stembridge does not use the bipartition assumption;
thus his proof is directly applied to our case. O

3.8. Cells and simple components

For an I-labeled graph I' = (V,m, 7), we define its cells to be its strongly connected
components, which is naturally a full subgraph of I". Also, a simple component of I is
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defined to be a full subgraph of I' whose simple underlying graph is connected. Note
that these two notions do not coincide for I-labeled graphs; each simple component is a
subgraph of a cell but not vice versa in general.

4. S,,-graph T for two-row partitions
4.1. Definition of Ty

From now on, we set W = S,, and I = {so = 8,,,51,...,5,_1}. We also identify I-
labeled graphs with [1, n]-labeled graphs in an obvious manner. Define the [1, n]-labeled
graph Ty = (V,m,7) for the two-row partition X\ as follows. Set V = RSYT()) and
7 = des (see Section 2.6 for the definition of des). For any S,T € RSYT()), m(S > T)
is equal to either 0 and 1. If m(S>7T) = 1, then we say that there is a move from (the
source) S to (the target) T', which falls into one of the following cases.

1. (Move of the first kind) T is obtained from S by interchanging i and i + 1 when
ieStandi+1¢€ 52 ie

.
~.
. —|—
—_

.

+.
—

This move is denoted by 1’7+ 1 or 7 + 1 3.
2. (Move of the second kind) T is obtained from S by interchanging i and j when
i€ 5% 7€ 8 and i # j+ 1 (it becomes a move of the first kind if i = j + 1), i.e

SRR
S| =

This move occurs if and only if the following conditions are satisfied:
) j —iis odd.

(a

(b) i+1€ St and j— 1€ S
(c) Eitheri—1¢€ St orj+1¢€ 5%
(d) #(S?° N5 —1—2k,j—2.) >k for k € {1,2,..
(e) #(S*Nn Z—|—2j—2_1)_j1 when j # i + 1.
This move is denoted by j\i or i ,j.

N =
|
w

—

Remark. When j — i = 3, then "3 + 2, j — 21 = "i + 2,7 + 11 which is () rather than [1, 7]
in our convention. In such a case the condition (e) is trivially satisfied. This is the reason
to set "a + 1,a1 = () for any a € [1,n]; otherwise j — i = 3 case should be handled in a
separate manner.
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Fig. 1. Ss-graph T'(3 o).

Example 4.1. Fig. 1 illustrates the Ss-graph I'(30). Here, des(T) for each T €
RSYT((3,2)) is given by bold numbers on the first row of T'. Also bold bordered vertices
and bold edges denote the Ss-graph I'(3 2) which will be defined in Section 7.1. For ex-

2 4
ample, consider its vertex S = T 3 Then by applying a move of the first kind for
. : - 3 45
i = 2 we obtain an arrow pointing to vertex T3 We can also apply a move of the

second kind for i =1, j = 4. Indeed, —1 =3 isodd, 3€ 52,2 S, T—-1=5¢ S,
and the last two conditions are trivially true because j —i = 3. As a result, we get an
1 2 5

arrow from S to the vertex 1

Example 4.2. Fig. 2 illustrates the Sg-graph f(4’2), similar to the previous example.

Example 4.3. Fig. 3 illustrates the Sg-graph F(g)g), similar to the previous examples.
Note that it is strongly connected, i.e. it consists of a single cell, but it contains two

simple components. (cf. Section 3.8)
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S
[1]2]4]6]f "

Fig. 2. Sg-graph F(412).

4.2. Properties of T'y

Let us describe some properties of T'y. First it is helpful to understand how moves
change 7-values in each case as described in the lemma below.

Lemma 4.4.

(1) If S N 7 s o move of the first kind, then des(S) — des(T) = {i} and des(T) —
des(S)  {i — 1,7+ 1}.

(2) If S ™I T s 0 move of the second kind, then
(a) des(S) — des(T) is equal to one of {i — 1},{j}, or {i — 1,7}.
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Fig. 3. Sg-graph I'(3 3)
(b) if j =i+ 1, then des(T) — des(S) = {i = j — 1}.
c) i i+ 1, then des(T) —des(S) =0
J

Proof. This is clear from the definitions of the two moves. O
Lemma 4.5. Ty = (RSYT()\), m, des) is reduced and nb-admissible.

Proof. Suppose first that m(S>T) # 0 for some S,T € RSYT(A), i.e. there is a move
form S to T. If it is of the first kind, then there exists i € des(S) — des(T). Otherwise,
there exists either i — 1 € des(S) —des(T') or j € des(S) —des(T). In either case, we have
des(S) ¢ des(T). This proves that Ty is reduced.

On the other hand, it is clear that imm € {0, 1}. Now suppose that des(S) and des(T)
are incomparable for some S,T € RSYT(A). If there is no move either from S to T or
from T to S, then clearly m(S>T) = m(T>S) = 0. Otherwise, without loss of generality
we may assume that there is a move from S to 7T'. If this is of the first kind, say i’ \,7 + 1,
then one can easily check that there is a move of the second kind 7 /i + 1 from 7T to S.
(The only nontrivial condition is that either i — 1 € T" or 7 + 2 € T2, which is true since
des(T) ¢ des(S).) If the move from S to T is of the second kind, then des(S) 7 des(T) if
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and only if it is 7,7 + 1 for some i € [1,n]. Thus there is a move of the first kind from
T to S as well. In sum, we have m(S®>7T) = 1 if and only if m(T > S) = 1. This proves
that T'y is nb-admissible. O

Remark. The graph Ty is not in general bipartite. For example, the Ss-graph f(&g) (see
Fig. 1) cannot be bipartite even after removing all directed edges because a cycle of
length 5 (a “star” in the figure) is embedded into I3 o).

Recall the cyclic shift element w = [2,3,...,n,n + 1] € g; It acts naturally on
{1,2,...,n} by w(i) = i+ 1. Similarly we consider its action on RSYT()\) by replacing
each ¢ with 7 + 1 and reordering entries of each row if necessary.

Lemma 4.6. The action of w on RSYT()\) induces that on Ty.

Proof. It is clear that des(w(T)) = w(des(T)) = {i +1 | i € des(T)}. Furthermore, it
is easy to check that the description of moves on I'y is also “invariant under w?”, i.e. we
have m(S>T) = m(w(S)>w(T)). O

Example 4.7. In Fig. 1 w acts as a (clockwise) rotation by 72°. Similarly, in Fig. 2 w acts
a s (clockwise) rotation by 60° on the outer part and by 120° on the inner part. On the
other hand, in Fig. 3 w swaps two simple components and w? rotates each component
by 120°.

Remark. It can be proved that I'y is also invariant under the affine evacuation defined
in [5], but this fact will not be used in this paper.

It is desirable to understand the simple underlying graph U(T') in terms of combi-
natorics of Young tableaux. Let Dy = (V/,m/,7') be the Kazhdan-Lusztig affine dual
equivalence graph of shape X as in [6, Definition 3.21]. (Here we use the adjective “affine”
to differentiate it from the “finite” one D) defined later in Section 7.1.) It is defined as
V' = RSYT()), 7" = des, and for S,7 € RSYT(\), m/(StT) = m/(T>S) = 1 if there
exists a Knuth move connecting S and T and m/(S>T) = m/(T>S) = 0 otherwise. (See
Section 2.6 for the definition of Knuth moves.)

Proposition 4.8. U(T',) = Dy as [1, n]-labeled graphs.

Proof. It is enough to show that m/(S>T) = m(S>T) if des(S) 7 des(T). First suppose
that there is a move from S to T, i.e. m(S>T) = 1. As des(S) 7 des(T'), this move should
be either i i+ 1 or i + 1 for some i € [1,n]. In any case, one may check that this

is a Knuth move so m’(S>T) = 1 as well. The other direction is proved similarly. O

From this proposition, one may observe the following.
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Proposition 4.9. If X is a partition of two unequal rows, then T'y consists of one simple
component. In particular, Ty is strongly connected.

Proof. D, is connected for such A by [6, Corollary 8.7, from which the result follows. O

Remark. On the other hand, if A consists of two equal rows then Dy has two simple
components by [6, Theorem 8.6]. Still, Dy is strongly connected in this case; see Propo-
sition 9.2.

4.3. Ty is a S, -graph

We are ready to state the first main theorem of this paper. Recall that S, is an
(non-extended) affine symmetric group.

Theorem 4.10. Ty is a S,,-graph.

To this end, we use Theorem 3.1; our proof is purely combinatorial. Firstly, three out
of four combinatorial rules of Stembridge are proved easily.

Lemma 4.11. Ty satisfies the Compatibility Rule, the Simplicity Rule, and the Bonding
Rule.

Proof. The first two rules follow directly from the description of moves. Also I'y satisfies
the Bonding Rule if and only if U(T'y) = Dy does, which follows from [5, Proposition
3.5]. O

Thus it remains to show that I'y satisfies the Polygon Rule, which is the most technical
part of our proof. First note that it is not possible to have 7,7 + 1 € des(T) for any
i € [1,n] and any T' € RSYT(A) since A is assumed to be a two-row partition. Thus we
only need to show that N, (Tx; S, T) = Njfi(f,\; S,T) where ¢ and j are not adjacent in
the Dynkin diagram of S,, (i.e. i ¢ {j — 1,4,7 + 1}) and r = 2. In such cases, we usually
omit I'y and the superscript 7 = 2 from the notations, and simply write N; ;(S,T) and
N;i(S,T) instead.

Furthermore, if there is a move from S to 7" then it swaps an entry in S* and another
in 2, which means S and T differ by two elements. If N; ;(S,T) # 0 then T is obtained
from S by two sequential moves, from which it follows that it suffices to check the Polygon
Rule when S and T differ by either two or four elements. In the next two sections we
verify the Polygon Rule N; ;(S,T) = N;;(S,T) for such S and T case-by-case.

Remark. The reader may ask why we prove our main theorem using Stembridge’s axioms
rather than following the definition of W-graphs directly. The main reason is that there is
indeed little difference between two proofs. Suppose that I' = (V, m, 7) is an [1, n]-labeled
graph, S € V, and i,j € 7(5) where ¢ and j are not adjacent in the Dynkin diagram of
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S,.. Then in order to verify that the braid relation is satisfied, one needs to show that
(T; o T;)(S) and (Tj o T;)(S) are equal. However, the coefficients of these expressions
at T' € V are given by N; ;(S,T) and N;,(S,T), respectively. Therefore, checking the
Polygon Rule is, mutatis mutandis, the same as checking the braid relation.

5. Case 1: S and T differ by two elements

Here, we check the Polygon Rule NV; ;(S,T) = N;,;(S,T) for i,j € [1,n] where S =
(81,8%) and T = (T',T?) are row-standard Young tableaux which only differ by two
elements. Let us denote by a € [1,n] the unique element in S — T = T2 — S§2? and
by b € [1,n] the unique element in S? — T2 = T! — S'. In other words, we are in the

following situation:
- M e Tl

Note that N; ;(S,T) # 0 only when i,j € [1,n] satisfy 4,5 € des(S) and i, j ¢ des(T).
It is only possible when a # b — 1 and {4,j} = {a,b— 1}, which we assume from now

on. Moreover, it also requires that a + 1 € S? and b — 1 € S*. Therefore, it suffices only
to consider the following case:

oo @ b=1--- o1 b ---
S=—— ——— o M~ T=—
cova¥F 1 b - oo @ a¥1---

We have following two possibilities to obtain T" from S in two steps.

o For some element z € S* — {a}, interchange = and b and then = and a, i.e. ¥\ b and

a’N .
o For some element y € S? — {b}, interchange y and a and then y and b, i.e. a\ y and

YN b.

From now on we divide the possibilities into two cases, depending on whether b =a — 1
(Section 5.1) or not (Section 5.2).

5.1. b=a—1 case

If b=a—1, then {i,j} = {a — 2,a} and we are in the following situation:

.« .. 72 a e s q— a— .« ..
S=—— """ M~ T=—""""
... ailaJ’,l ... ... a a+1 ...

Q

By applying cyclic shift w, we may assume that a = 3. Thus we have:
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v 1 3 ... o1
e 2 4 .. i3 4 ...
where @ = 3,b = 2, and {4,j} = {1,3}. Here we consider two possibilities of two-step
moves mentioned above, i.e. 2’2 and 3~z for some € S1 — {3} or 3N,y and y\ 2
for some y € 5% — {2}.
First, we consider the two-step move which performs ™\ 2 and then 3,z for some
x € S* — {3}. If x = 1, then we have:

o1 3 .- . 92 3 ...
S:— ' M:— S T:—.
e 2 4 ... e 1 4 .- e 3 4 .-
Otherwise, we have:
i1 3 e o1 2 3 ... e 1 02 g o
U e o e e N

However, the second move 3N,z violates the condition (b) since 2 € M.
This time we consider the move which performs 3N,y and then y~N, 2 for some y €
S§2 — {2}. If y = 4, then we have:

i1 3 - e 1 4 - 1
A S e 2 3 ... ... 3

Otherwise, we have:

However, the second move y 2 violates the condition (b) since 3 € M?2.
Therefore, we conclude that N; ;(S,T) = N;;(S,T) = 0.

52. b#£a—1 case

Now let us assume that b # a — 1. By applying cyclic shift w if necessary, we may
assume that @ = 1, which implies that 4 < b < n. Thus, {i,j} = {1,b— 1} and we are in
the following situation:

oo 1 b1 oo bp—1 b -
S=—" """ oM~ T=—

From now on we divide all the possibilities of two-step moves into the following four
cases.
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o (b—1)Nband 1N(b—1) (5.2.1)

e a2 and 2Nb (5.2.2)

o zN(band 1N,z for some z # b—1 (5.2.3)
e aNyy and yN,b for some y # 2 (5.2.4)

5.2.1. (b—1)Nb and 1N(b—1) case
First consider the case when we perform (b—1)Nb first and then 1,(b—1). It looks
like:

P T R ... 1 b --- ceeb—1 b ---
o2 b ... e D pq .- o1 92 ...

Note that b — 1 # 2 since they are in different rows in S. Thus the move 1’(b— 1) is of
the second kind and the following conditions in Section 4.1 are imposed:

a) 1—(b—1)=2—bis odd, i.e. n — b is odd.

b) (b€ M! and) n € M? ie. n € S? (note that n # b — 1,b).

c¢) (The third condition is satisfied since 2 € M2.)

d) #(M?N[n—2kn—1]) >k for k € {1,2,..., 2=} or equivalently #(S*N [n —
2k,n —1]) > k for k € {1,2,...,2=2=1}.

(e) #(M2N b+ 1,n —1]) = 2=b=L (note that b = (b— 1) +1 # 1), or equivalently

#(S2N[b+1,n—1]) = 2=b=L,

By part (b), we have:

Note that this path contributes 1 to Ny —1(S,T).
For later use, we set B := #(S? N [b+ 1,n]). By (e) combined with the fact that
n € S2, it follows that = 2=2=1 1 = n=btl

5.2.2. y=2 case
Now we consider the move consisting of 1,2 and then 2N\, i.e.

PSP [ N cee D 1 ceeb—1 b ---
S:— % M:— s T:—.

Note that b # 3 since b — 1 and 2 are in different rows of S. Thus the move 2\ b is of
the second kind and the following conditions in Section 4.1 are imposed:

(a) 2 —bis odd, i.e. n — b is odd.
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(b) b+1€ M' (and 1 € M?),ie. b+ 1€ S! (note that b+ 1 # 1,2).
(c) (The third condition is satisfied since b — 1 € M*.)
(d) #(M?N[n—2k+1,n]) >k for k € {1,2,..., 2221} or equivalently #(S* N [n —
2k +1,n]) > k for k € {1,2,...,2=b=1}.
(e) #(M2N[b+2,n]) = 2=L=L (note that b+ 1 # 2), or equivalently #(S?N[b+2,n]) =
n—b—1
.

By part (b), we have:

oo 1 b—1b41 - oo 2 b—1b41 - oo b=1 b bt1 .-
e 2 b e -1 b - e 12 e

Note that this path contributes 1 to Ny_1,1(S5,T).
As before, we set B := #(S? N [b+ 1,n]). Then by (e) combined with the fact that
b+1€ St we have P = "_Tb_l.

5.2.3. x #b—1 case
Let us now consider the case when we perform x b and then 1\ x for some x # b—1.
Thus we have:

oo 1 b=1 & --- oo 1 b=1 b --- ceeb—1 b & ---
i D D e e D e R

As x is neither equal to b — 1 nor 2, these two moves are both of the second kind. Thus
the following conditions in Section 4.1 are required:

(a) z—band 1—z =n+ 1 — z are both odd; thus in particular n — b is odd.
(b)y b+1e St v +1e M, x—1¢€ 5% nec M? which means:
e fz=0b+1=n,then (1€ S,b=n—-1€ 5% and) b+1=n¢e Sh
e Ifz=0b+1%#n,then (b S?and) b+1¢€ S, b+2¢€ St and n € 52
e Ifz=n#b+1,then (1€ Stand)b+1€ S n—1€ 852 andn e S
o Otherwise, b+1€ 8, z+1e 8" 2 —1€ 82 neS?

(c) (The third condition is satisfied since b — 1 € S* and 2 € M?2.)

(d) #(S*N[z—1-2k,2—2]) > kfork € {1,2,..., 223} and #(M>N[n—2k,n—1]) > k
for k € {1,2,...,2=2=2} which is equivalent to #(S? N [n — 2k,n — 1]) > k for
ke{l,2,. .. 60=2=2}

(e) #(S*Nb+2,2—2))=2L3if b+ 1#z, and #(M?N [z +2,n— 1]) = 2=2=2 if
z+1# 1, ie x#n which is equivalent to #(S* N [ +2,n — 1]) = 2=2=2 if z # n.

v |l

We divide all the possibilities into the four cases below. By part (b), we are in the
following situation in each case.
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e Ifx =b+1=n, then

1 n—2n --- oo 1 n—2n—1--- ceem—2n—-1m ---

o If x =b+1%#n, then

w1 b—1bt1b42- - oo 1 -1 b b2
S: o M: RSN
e 2 b n ...... e 2b+1n ......

coob=1 b b1b42 -
T= .
e 1 02 ;e e

o Ifx=n#b+1, then

oo 1 b—1b+1 oo 1 b—1 b b1 ---
S: i i > M: * ~
cee 92 b n—1-++ .- e Dmm1mn e e
b—=1 b br1 n
T =
1 2 Y B
o Otherwise,
oo 1 b=1b oo 1 b=1 b b+1
S: 16+1 T z+1 — M= 1 +1lz+1 —-
DRI 2 briln ...... ... inlz n ......

“oob=1 b b+l X z41---
T:

1 2 g1 7 cevvne- ’

Also note that this path contributes 1 to Ny p—1(S,T).
As before we set P := #(S?N[b+1, n]) and prove that P8 = 2=2=1_ Here our argument
relies on part (e) and the description of each case above.

. Ifa::b—l—lzn,thenobviouslyﬁ)’.?zOz"‘Tb—lasnES’l.

. Ifmzb—l—l;én,thensince#(Mzﬂ[b+3,n—1]):”’Tb’g‘wehave‘B:”*TH+1:
n—b—1
==

o If z=n#b+1, thensince #(S?N[b+2,n—2]) = 2=L=3 we have P = 2=L=3 41 =
n—=b—1
5

o Otherwise, since #(S? N [b+2,n — 1]) = £=b=3 4 n=r=2 4 1 — 2=0=3 we have
gB — nfgfii 4+1= nfgfl.
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5.2.4. y#2 case
Here we consider the remaining possibility, which is to perform 1N,y and then y\ b
for some y # 2. Thus b < y < n and we have:

As y is neither 2 nor b — 1, these two moves are both of the second kind. Thus the
following conditions in Section 4.1 are imposed:

(a) T—y=mn+1—1y and y — b are both odd; thus in particular n — b is odd.
(b) y+1e€ St b+1€ M,ne S? and y —1 € M?, that is:
e Ify=b+1=mn,then (1€ S b=n—-1€S?and)b+1=nec S
o ify=>b+1%#mn,then (be S?and)b+1€S% b+2€ S and n e S2
e Ify=n#b+1,then (1€ S and) b+1€ S, n—1¢€ 52 andn € S2.
e Otherwise, y+1€ S',b+1€ S neS? andy—1¢€ 5%

(¢) (The third condition is satisfied since 2 € S% and b —1 € M1.)

(d) #(S?N[n—2k,n—1]) > kfork € {1,2,..., 42} and #(M>n[y—1-2k,y—2]) > k
for k € {1,2,...,y_g_3} which is equivalent to #(S? N[y — 1 — 2k,y — 2]) > k for
ke{l,2,..., =02

() #(S?Ny+2n—1]) = 222 if y # n, and #(M?2N b+ 2,y — 2]) = 23 if
y # b+ 1 which is equivalent to #(S?N[b+2,y —2]) = %H ify#b+1.

We divide all the possibilities into the four cases below. By part (b), we are in the
following situation in each case.

. Ify:b—i—l:n,then

. Ify:b+1§£n,then

oo 1l b—1b42 e e e b—1b [, B
g 1b6+2 — M = 1b+10+42 —
b=1 b bt2--- ---
T= .
-1 2 bt1n -

e Ify=n#b+1, then

oo 1l b—1b41 - - oo h—1btl M, e e
g — 10641 — M= b—1b+1 N —
e 2 bn—1n - o1 2 b n-1---
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b—1 b b1 -ve o
T =
1 2n-1n
e Otherwise,
oo 1 b—1b+1yt+1 e v e b—1b4+1l Y y+l e e
g — 1b4+1y+1 — M = 16+1 Y y+1 —
... 2 b y71 y n e ... 1 2 b y71 n ...

oo b—1 b bHly+l - ---
T:

1 2y 1y n -

Also note that this path contributes 1 to Ny_; 1(S,T).
As before we set P := #(S2N[b+1,n]) and prove that 5 = 2=2+L Here, our argument
relies on part (e) and description for each case above.

. Ify:b—l-lzn,thenobviously&B:l:"7Tb+1asnESQ.
o Ify=b+1#mn, then since #(S2N[b+3,n—1]) = 2=2=3 we have P = 2=0=3 1+ 2 =

2 2
n—b+1
5
o Ify=n+#b+1, then since #(S?N[b+2,n—2]) = 2=L=3 we have P = 2=2=3 4 2 =
n—b+1
R

o Otherwise, since #(S2N[b+2,n — 1)) = y_Tb_?’ + "_Ty_z +2 = "’TH we have
gB _ n—b—1 4 1= n—b+1
=2 =2 -

5.8. b# a—1 case: verification of the Polygon Rule

Now we summarize the discussion in Section 5.2 and verify that N; ;(S,T) = N; ;(S,T)
for {i,j} = {a,b — 1}. As before it suffices to consider the case when a = 1, and thus we
may assume that ¢ = 1 and j = b — 1. First note that if n — b is even then the Polygon
Rule is trivially satisfied since Ny 3—1(5,T) = Np—1,1(S,T) = 0. (See the condition (a)
in each case.) Thus from now on we assume that n — b is odd. Also from the argument
above if the value P = #(S? N [b + 1,n]) is not equal to 2=2EL then again we have
N1 p—1(S,T) = Np—1.1(S,T) = 0. Now we consider the case P = ”’TI’H and P = "’Tb’l
separately.

5.3.1. B = ”*TZ’H case

It suffices only to consider 5.2.1 and 5.2.4. Then either Ny ,_1(S,T) or Ny—1,1(S,T)
is not zero only when n € S? (see condition (b)); thus we suppose that this is true.
Here, N1 ;—1(S,T) is easier to calculate; it equals 1 if ({1,6— 1} C S*, {2,b} C S? and)
#(S?N[n—2k,n—1]) >k for k € {1,2,...,2=2=1} and 0 otherwise.

On the other hand, we first show that Ny_q 1(S,T) < 1. For the sake of contradiction
let us assume the contrary. Then there exist y,3’ € S? such that b < 3’ < y < n and
there are two different two-step moves [1\ y and then y ™\ b] and [1\, ¢ and then y’ N b]
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from S to T (cf. 5.2.4). First note that y’ # b+ 1, since otherwise b+ 1 € S? which forces
y = b+ 1 by the condition (b) in 5.2.4, which is impossible.

We consider the case when y # n. Then from the conditions in 5.2.4 we may derive
that

n—y —2

YR pstaly ron- )= "0

#(52Nly+ 20— 1) = 5=,

/

-2
and  #(S*N[y +1,y—2]) > % (note that y — ¢’ is even),

from which it also follows that #(S?N[y’ +2,y+1]) = y_Tyl However, as v/ +1,y+1 € S!
and y—1,y € S? from the description, this implies that #(S*N[y'+1,y—2]) = y%y -2<
y*%i, which is contradiction. Now we suppose that y = n. We still have

/

n—y —2 n—y —2
2

#(SPN[Y +2,n-1]) = and (SN +1n-2) > ——,
but this is impossible since y'+1 € S' and n—1 € S?. This proves that N, 1(S,T) < 1.

We are ready to prove that Nijp—1(S,T) = Np_1,1(S,T). First suppose that
Ni14-1(S,T) = 1; thus in particular

#(S2N[n—2k,n—1) >k for ke{m";l} (%)

Then as we proved that Ny_q1(S,T) < 1, it suffices to show the existence of a two-step
move corresponding to 5.2.4. First assume that b+ 1 € S2. Then we claim that there
exists a two-step move consisting of 1,(b+ 1) and (b+ 1),b. To this end, we check
that the conditions in 5.2.4 are valid as follows.

— If b+ 1 = n, then the only nontrivial part is (b), which holds since b +1 =n € S2.
— Otherwise, we still have b+ 1,n € S%. We also have that b+ 2 € S! and thus part
(b) holds; otherwise {b+1,b+2,n} C S?, which implies that #(S?N[b+3,n—1]) =
P — 3 = 2=L=2 contradicting (%) for k = 2=2=2_ For part (d), we should have

#(S?N[n—2kn—1]) >k for k € {1,2,..., "7373}, which follows from (). For

part (e), we should have #(52 N [b+3,n — 1]) = 2=2=3 but it follows from the fact
that 9 = 2=t together with part (b).

It remains to consider the case when b+ 1 € S'. Here we first set

T = {z €S%|b+3<z<n,n—ziseven, z—1¢€ 5% #(S*N[b+2,2-2]) = Z_—;)_S}

We claim that T # ); otherwise, an inductive argument shows that n —1 € S',n —2 €
S?2n—3e€Sh...,b+4e SLb+3 € S%b+2 e S which follows from (%) and
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the assumption P = "‘TI’H, but this contradicts the fact that b+ 2 € S2. Now we set
y := minT. (Note that y # b+ 1.) We claim that there exists a two-step move consisting
of 1N,y and y\,b. To this end, again we check that the conditions in 5.2.4 hold as
follows.

— If y = n, then part (b) holds since b+ 1 € St n € S? and n — 1 € S? by the
definition of T. For part (d), we should have #(S* N [n — 1 — 2k,n — 2]) > k for
ke {1,2,..., ”’TH}; thus suppose otherwise for contradiction and choose k €
{1,2,..., "’3’3} to be maximal which satisfies #(S? N [n — 1 —2k,n —2]) < k. By
the definition of T, k < 2=2=2 and we have #(S>N[n—3 —2k,n—2]) > k+1 by
maximality of k. This is only possible when #(S? N [n —1—2k,n —2]) =k — 1 and
n—2—2kn—3— 2k c S? However, it means that

#(SNb+2,n—4—-2k) =P —#(S*N[n—1-2kn—2])—4
n—>b+1 n—2k—b—5
S N P R B
AR —
which means that n — 2 — 2k € T. It contradicts the assumption that n = min %,
thus we conclude that part (d) holds. For part (e), we need to check that #(S? N
[b+2,n —2]) = 2==3 which follows from the assumption 9§ = 2=+ together with
part (b).
— Otherwise, b+ 1 € S',n € S% and y — 1 € S? by the definition of T; thus part (b)
holds if y + 1 € S'. However, if y + 1 € S? then by (%) we have

P=#S*Nb+1,y—2]) +#(S*Ny+2,n—1])+4

y—b—3 n—y—2 n—b+3
> 4=—"
- 2 + 2 + 2

which is a contradiction. Thus y+1 € S* and part (b) holds. Now we prove part (e),
ie. #(S%Ny+2,n—1]) = ”%H and #(S2Nb+2,y—2]) = y%H. However the
second equality follows from definition of ¥ and the first one also follows since

A Ayt 2 1) =P 4Nty —2) —3=""T11 VTIT3 g
n—y—2
_noy=2

It remains to prove part (d). We should have #(S? N [n — 2k,n —1]) > k for k €
{1,2,..., 222} and #(S?N[y—1-2k,y—2]) > kfork € {1,2,..., y712773}. The first
inequality follows directly from (5 ); thus suppose that the second inequality does not
hold and choose k € {1,2,..., %} to be maximal which satisfies #(S% N[y —1 —
2k,y—2]) < k. By the definition of ¥, k < y_Tb_?’ and we have #(S? N[y —3—2k,y—
2]) > k+1 by maximality of k. This is only possible when #(S?N[y—1—2k,y—2]) =

kE—1and y—2—2k,y— 3 — 2k € S. However, it means that




D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207 25

#(SPNb+2,y—4—2k)=P-#M>N[y—1-2k,y—2)
—#M*Ny+2,n—1]) =5
n—>b+1 n—y—2

=T k-1

y—2k—b—5
5:—
2

2 2 ’

which implies that y — 2 — 2k € ¥. This contradicts the assumption that y = min T
thus we conclude that part (d) holds.

We have covered all the possible cases and we conclude that Ny ,_1(S,T) = Np—1,1(S,
T)=1.

Therefore, in order to prove that Nyp_1(S,T) = Np_11(5,T) it remains to show
that N1p—1(S,T) = 1 when there exists y such that the two-step move 1N,y and then
y’\(b is valid. If such y exists, then the conditions #(S? N [n — 2k,n — 1]) > k for
ke {1,2,...,"_Ty_z} and #(S?N[y—1-2k,y—2]) >k for k€ {1,2,..., y_;’_3} imply
that #(52 N [n—2k,n—1]) > k for k € {1,2,...,2=2=2} as y — 1,y € S2. Thus we see
that Nl,b—l(S, T) =1and again N17b_1(5, T) = Nb_171(S, T) =1.

As a result, the Polygon Rule holds for (S,T) when P = ”‘TbH.

5.3.2. B = ”*S*I case

This case is totally analogous to the previous one. It suffices only to consider 5.2.2
and 5.2.3. Then either Ny ;,_1(S,T) or Np_1.1(S,T) is not zero only when b+ 1 € St;
thus we suppose that this is true. Here, Ny_11(S,T) is easier to calculate; it equals 1 if
({1,b—1} C S, {2,b} € S? and) #(S?N[n—2k+ 1,n]) > k for k € {1,2,..., 2=2=1}
and 0 otherwise.

On the other hand, we first show that Ny ;,_1(S,T) < 1. For the sake of contradiction
let us assume the contrary. Then there exist xz,2' € S' such that b < 2’ < 2z < n
and there are two different two-step moves [x'\(b and then 1~ z] and [z'N\b and then
1N 2'] from S to T (cf. 5.2.3). Note that & # n (and thus n € S?), since otherwise
n € S and thus 2’ = n by the description of S in 5.2.3. But it contradicts that 2’ < x.
Now from the conditions in 5.2.3 we may derive that

n— n—x—2

2

#(S*Nz,n—1]) > and  #(S*N[z+2,n—1]) =
where the first condition comes from part (d) with respect to 2’ (note that 2’ < z). But
this is impossible since x,z + 1 € S'. This proves that Nip—1(S,T) < 1.

We are ready to prove that Nip—1(S,T) = Ny_1,1(S,T). First suppose that
Ny—11(S,T) = 1; thus in particular

#(S*N[n—2k+1,n)) >k for ke{lQn_Tb_l} ()

Then as we proved that Ny ;—1(S,T) < 1, it suffices to show the existence of a two-step
move corresponding to 5.2.3. First assume that n € S*. Then we claim that there exists
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a two-step move consisting of n’\(b and then 1, n. To this end, we check that the
conditions in 5.2.3 are valid as follows.

— If b+ 1 = n, then the only nontrivial part is (b), which holds since b + 1 =n € S*.

— Otherwise, we still have b +1 € S! and n € S*. Also, #(S?* N [n — 1,n]) > 1 by
(¥), which forces that n — 1 € S2; thus part (b) holds. For part (d), we should have
#(S?Nn—1-2k,n—2]) > kfor k € {1,2,..., 2=2=3} which is true by (¥) together

with part (b). For part (e), we require #(S% N [b+2,n — 2]) = 2=2=3 which follows

from the assumption that 3 = ”_Tb_l together with part (b).

It remains to consider the case when n € S2. First note that b+ 1 € S* and #(S?N[b+
2,n]) = 2=2=1 because of the conditions = 2=t=1 and (¥) for k = 2==1. Now we
set

%= {z €S| b+1<z<n,n—ziseven, z+1 € S*, #(S*N[z+2,n—1]) = n—Tz—Q}
We claim that T # (); otherwise, an inductive argument shows that b +2 € S2,b+ 3 €
Slb+4¢€ 8% ... ,n—2¢c 8" n—1¢€ S? which follows from (%) and the equation
#(S2N[b+2,n]) = ==L but it contradicts the fact that P = 2=2=L. Now we set
2 :=max T. (Note that z # n.) We claim that there exists a two-step move consisting of
(b and 1N z. To this end, again we check that the conditions in 5.2.3 hold as follows.

— If 2 = b+ 1, then part (b) holds since b+ 1 € St',n € S% and b+ 2 € S by
the definition of T. For part (d), we should have #(S? N [n — 2k,n — 1]) > k for
E e {1,2,..., "’Tb’s}, thus suppose otherwise for contradiction and choose k €
{1,2,...,2==3} to be minimal which satisfies #(S% N [n — 2k,n — 1]) < k. (Note
that this only happens when b+ 1 < n — 2.) If k = 1, then the inequality says that
n—2,n —1 € S! which implies n — 2 € T, but this is impossible by the maximality
of x =b+1in T. Thus k > 1 and by minimality of k we have #(S% N [n — 2k +
2,n — 1]) > k — 1. This is only possible when #(S* N [n —2k +2,n—1]) =k — 1
and n — 2k,n — 2k + 1 € S'. However, it means that n — 2k € T. It contradicts
the assumption that b + 1 = max T; thus we conclude that part (d) holds. For part
(e), we need to check that #(S? N [b+ 3,n — 1]) = 2=2=2_ but this follows from the
definition of ¥.

— Otherwise, b+ 1 € St,n € S?, and z + 1 € S! by the definition of T; thus part (b)
holds if  — 1 € S%. However, if x — 1 € S! then by (%) we have

n—+ 2

5 <SHS*Nr—1,n) =#(S*N[z+2,n—1]) +1= ,

which is absurd. Thus # — 1 € S? and part (b) holds. Now we prove part (e), i.e.
#(2Nb+2,2—2)) = 2=L=3 and #(S* N[z + 2,n — 1]) = 2=2=2. However, the
second equality follows from definition of ¥, and also
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n—-b—1 n—x-—2

#(STNb+22-2) =P-#(SNlr+2n-1)-2=— i
_x—b-3
R

thus the first equality holds. It remains to prove part (d), that is we should have
#(S?Nz—1-2k,2—2]) > kfork € {1,2,..., Z=2=2} and #(S’N[n—2k,n—1]) > k
for k € {1,2,...,2=2=2} By (¥), we have

#(SPN[r—1—-2k,x—2))=#(S* N[z —1—-2kn]) —#(S*Nx+2,n—1]) —2

>nfx+2k+2 n—x—2
- 2 2

—2=F,

from which the first inequality follows. Now for contradiction suppose that there
exists k € {1,2,..., 2=2=2} such that #(5? N [n — 2k,n — 1]) < k and choose k to
be minimal among such values. (Note that this implies 1 < ”’TH, ie.x <n-—2)
If £ = 1, then the inequality says n — 2,n — 1 € S! which implies n — 2 € T, but
this contradicts the maximality of x. Thus k£ > 1 and by minimality of £ we have
#(S%N[n—2k+2,n—1]) > k—1. This is only possible when #(S?N[n—2k+2,n—1]) =
k—1and n—2k+1,n—2k € S*. However, this means that n — 2k € T which again
contradicts the assumption that « = max T. Thus we conclude that part (d) holds.

We have covered all the possible cases and we conclude that Ny p_1(S,T) = Np—_1,1(S,
T)=1.

Therefore, in order to prove that Nj;_1(S,T) = Np—11(S,T) it remains to show
that Ny—_11(S,T) = 1 when there exists = such that the two-step move b and then
1N,z is valid. If such z exists, then the conditions #(S? N [x — 1 — 2k, x — 2]) > k for
ke{l2,..., 1"’3*3} and #(S2N[n —2k,n—1]) >k for k € {1,2,..., "7;’72} imply
#(S?N[n—2k+1,n]) >k for k € {1,2,..., 222} (If z = n, then it follows since
n—1 € S2. Otherwise, it follows since n,z —1 € S2.) Thus we see that Ny ,_1(S9,T) =1
and again N1 5-1(S,T) = Np—11(5,T) = 1.

As a result, the Polygon Rule holds for (S,T") when P = "‘Tb_l. This suffices for the

proof.

6. Case 2: S and T differ by four elements

In this section we consider the case when S and T differ by four elements. Let us set
{a,b} = S —T" and {c,d} = S? — T?. In other words, we have:

G M Tl

Then we have the following four possibilities to obtain 7" from S in two steps.
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o Interchange a and ¢ and then and interchange b and d, i.e. a’\(c and b\, d.
¢ Interchange a and d and then and interchange b and ¢, i.e. a’\(d and b\ c.
¢ Interchange b and ¢ and then and interchange a and d, i.e. b\ c and a’\,d.
Interchange b and d and then and interchange a and ¢, i.e. b\ d and a™\,c.

Define NZ;\‘C’b\d to be 1 if

— there exists M and a two-step move S SN and M 2% T from S to T,
— 4,5 €des(S), 1,5 ¢ des(T), i € des(M), and j ¢ des(M).

Otherwise we set N“\C ™ 6 be 0. We also define Na\d P Nb}‘c @™ and Nb}‘d ate
analogously. Then it is clear that N;;(S,T) = Na’\C O N“x‘d e Nb’\c Oy
NZ?d’“\‘c. From now on we calculate these numbers and check NM(S, T) = N,;(S,T)
for i,j € [1,n] case-by-case.

6.1. {c,d} ={a+1,b+1} case

Without loss of generality, we set ¢ = a+ 1 and d = b+ 1. We are in the following
situation:

If (i,7) satisfies 4,5 € E(S)Eld i,7 ¢ des(T) then we have {i,j} = {a,b}. Thus, here
it suffices to prove that Né’}‘b“’a\a“ = Ng}“"’l’b’\bﬂ.

We first consider performing a\,a + 1 and then b’N,b + 1. This is always possible:

e am... e b

Similarly, consider performing b b 4+ 1 and then a\,a + 1. This is also always possible:

. . . TbNGb+1 bRDF1 i
To summarize, in this case we have N;:}’” ORGHL _ Na’}+ atetl

NESPHLINGET — NPSaFLeNIFL g for (4,5} = {a,b}. Thus Nop(S,T) = 1 =

Np,o(S,T) as desired.
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6.2. {e,d}n{a+1,b+1} =1 case

Without loss of generality, we set ¢ = a4+ 1 and d # b+ 1. We are in the following
situation:
- a b --- cevaxi d o

cova¥1 d - .-a b ---

If (i,7) satisfies i,j € des(S) and 4,5 ¢ des(T) then {4,5} is equal to one of {a,d — 1},

{a, b}, or {b,d — 1}. Thus in order to check N; ;(S,T) = N;;(S,T), after removing trivial
terms it suffices to verify the following:

o -— bR d,a a1 at1,b5d bR+ 1,ad
o Tf {i,j} = {a,d— 1}, then NNl — NabO LN o NP,

e If {i,j} = {a,b}, then NYp®*™eFT = NoSatTLbSd 4 yaisd bt

oo - aNd,bNa+1 bNa+1,aNd
o If {i,j} = {b,d — 1}, then Nb’%\t :N%,: N

From now on, let us refer to the case b ¢ {a —1,a+2,d+ 1} and d ¢ {a — 1,a + 2} as
the generic case, and otherwise as the special case.

6.2.1. Generic case, a € "d, b,

First we claim that N’ ’d\idl’b\m = N%T’a’\d. Indeed, the two moves a’\,d and

b\ a + 1 are independent of each other, i.e. the conditions in Section 4.1 are not affected

by which moves are performed first because a € "d, bi. Thus we see that the two-step
move S aNd M bNa+1 bNa+1 M aNd

which the result follows.

T is valid if and only if so is S T, from

From now on we suppose that {i,j} is equal to either {a,d — 1} or {a,b}. We claim
that N @™+t NONHLING € {0 1} (Note that N @™+ = NEMFLINE — g
unless (7, j) is either (a,d — 1) or (a,b) by the descent condition.) To this end, it suffices
to show that if the following sequence of moves is possible:

b ... cera¥ 1 b - oo d aFT -
S:a— ~ M:L ~ T:—H’

da—+1 d a ‘- e Q b

then so is

DR a b ... ... d a DRI .. da+1
S=—— s M=———— s T=

oo d ¥ 1 cevaF1 b .- ..o a b

aN a+1 aNa+1

Indeed, first we see that S ——— M in the former and M ——— T in the latter are
always possible since they are moves of the first kind. Now if M %4 1 in the former
is allowed, then the following conditions should be satisfied:
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(a) b—d is odd.

(b) d+1e M andb—1€ M? ie.d+1€ St andb—1€ S%

(c) Eitherd — 1€ M' or b+1¢€ M2, ie. eitherd—1€ S or b+ 1€ S? (since we are
in the generic case).

(d) #(M2N"b—1—2k,b—2.) >k for k € {1,2,...,2=9=3},

(e) #(M?>NTd+2,b—21) = Q*S ie. #(52NTd+2,b—21) = bfg*?’ (since a #
d+1,0-2).

Also part (d) implies that #(S2N™b — 1 — 2k, b —21) > k for k € {1,2,..., b?%} since
a # b — 2. However, this means that S 254 0 f in the latter is also allowed, from which
the assertion follows.

Therefore, the equality N; ;(S,T) = N;;(S,T) for {i,j} = {a,d — 1} or {3, j} = {a, b}
is equivalent to the following statements:

(1) NOSOFLAND g 4 only if Ns%‘l\‘a"'l NI g

d—1l,a d-1.a
(2) Ny>EPSTE 1 if and only if NJp®@™eFT — Npisetbisd —

Here we only prove the first case; the second case is essentially verbatim after replacing
d—1¢€ S' with b+ 1 € S2. From now on let us assume that d — 1 € S* since otherwise

both expressions above are zero by the descent condition.
Nb\‘d,a\(a_ﬂiNa\a_H,b\d o
d—1 d—1,a o

As observed above, we have 1 if and only if the following

conditions hold:

(a) b—d is odd.
(b)y b—1€ 5% d+1eSh

(c) (This is trivially satisfied since we already have d — 1 € S*.)

(d) #(S2NTb—1—-2k,b—2.) >k for k € {1,2,...,2=9=3},
d7

() #(S2NTd+2,b—2.) = b=4=3

)
(f) b—ais even and #(S?>N"a+ 1,b—21) = b—gfz.

The last one comes from the fact that the condition 2.(d) in Section 4.1 has to fail after
s bNd M a~N a+1 T

weswapa € S'anda+ 1€ S ziSchematically, the two-step move
which contributes to Nf%a\“ﬂ looks as follows:
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On the other hand, we have N%?’ar\"d = 1 if and only if the following conditions
of Section 4.1 hold: 7

a’) b—ais even and a — d is odd.
b)b—1€8% a+2cS,a—1€8% andd+1€ S
c’)

)

(This is trivially satisfied since we already have a,d — 1 € S'.)

d) #(S?NTb—1—-2k,b—2.) >k for k€ {1,2,..., 22513} and
#(S?2NTa—1-2k,a—21) >k for ke {1,2,...,“75‘173 .

() #(S?NTa+3,b—2.) =213 and #(S? N"d + 2,0 — 2.) = 2=3=2,

S bR a+1 M aNd

Schematically, the two-step move T which contributes to

N%T’a\d looks as follows:

-d=1d+1 a a2 b --- <o d=1d¥1 @ a¥lad2---

S = ~ M = ~
oo od GZTaF1b—T1 - - oo d a=1b=1 b -+ .-
---d=1 d d¥la+lat

T = —
ceea—1ab=1b ...

Now we observe the following. The parity part of claims (a) and (f) is equivalent to
claim (a’). Claim (b’) is implied by (b) as well as (d), (f). Indeed, a + 2 € S* is implied by
(f) and (d) for k = 2=2-1=3 'while a — I € S? is implied by (f) and (d) for k = 2=2-1+1,
Claim (d’) is implied by (d) and (f), while (¢’) is implied by (e) and (f). Claim (b) is
trivially implied by (b’). Claim (d) is implied by (d’) and the part of (b’) that refers to
a — 1 and a + 2. Similarly, (e) and (f) are implied by (e’) and the part of (b’) that refers
to a — 1 and a + 2. Therefore, we see that the conditions (a)—(f) are satisfied if and only

if so are the conditions (a’)—(e’), from which the claim follows.

6.2.2. Generic case, a ¢ "d, b

Due to our assumption a ¢ {b+ 1,d — 2}, in this case the conditions for the move b\, d
are not affected by whether or not we perform a’\,a + 1 beforehand. Thus Nib}‘d’“\“H =
Nj‘fi\‘a_ﬂ’b\‘d for any 4, j. Thus it remains to show that fo;\‘d’br\‘a_ﬂ = N;}‘a—H’axd
(,4) is one of (a,d — 1), (b,a), or (b,d —1).

Consider first the case (i, j) = (a,d — 1), in which case it suffices to assume d — 1 € S.
We need to argue that N;’T\l‘lH’a\‘d 0. If we assume otherwise, i.e. N;’\la:l N

then one can conclude, repezitedly using condition (b), that the moves look as follows:

when

IS
+\

g = 1d+1 a WM: cd— a a+1
oo d b=1a—la¥i--- oo d =1 b a=1---

Q
=
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By condition (a) we know that a —d is odd; let a —d = 2m + 1. The following two
conditions hold:

(d) #(M?*NTa—1-2k,a—21) >k for ke {1,2,...,m — 1},
(e) #(M*NTd+2,a—2.1) =m — 1.

Assume b — d is odd, say b —d = 2¢ 4 1. Then taking k = m — £ — 1 we see that
H#(M?>N"b+1,a—21) > m — £ — 1. This implies that #(M? N "d+ 2,b1) < ¢, which
in turn means that #(S? N"d +2,b — 2.) < ¢ — 2. This is impossible however by the
k = ¢ — 1 case of the condition

(d) #(S2NTb—1— 2k, b—2.) > kfor ke {1,2,..., =013},

Now assume b—d is even, say b —d = 2¢. Then taking k¥ = m — ¢ we see that
#(M?> N "b,a—21) > m — £. This implies that #(S? N [d+2,b—1]) < ¢ — 1, which
in turn means that #(S? N "d+ 1,b — 24) < £ — 2. This is impossible however by the
k = ¢ —1 case of the condition (d) above.

Consider now the case (i,j) = (b,a), in which case we may assume that EE 52,
We need to argue that Ni}‘d’b\"aﬂ = 0. If we assume otherwise, i.e. Nl;l,’a\“i’br\“a+1 =1,

then one can conclude, repeatedly using condition (b), that the moves look as follows:

By condition (a) we know that a —d is odd; let a —d = 2m + 1. The following two
conditions hold:

(d) #(5*2N"a—1-2k,a—21)>kforke{1,2,...,m—1},
(e) #(S°NTd+2,a—21)=m— 1.

Assume b —d is odd, say b—d = 2¢ 4+ 1. Then taking k = m — £ — 1 we see that
#(S?2NTb+1,a —21) > m — £ — 1. This implies that #(S? N"d + 2,b1) < £, which in
turn means that #(M2 N "d,b— 21) < £ — 1. This is impossible however by the k = ¢
case of the condition

(d) #(M?N"b—1—2k,b—2)>kfor k€ {1,2,...,=21=3},

Now assume b —d is even, say b —d = 2¢. Then taking k = m — £ we see that
#(S?2 N"b,a —21) > m — £. This implies that #(S? N "d+2,b— 11) < ¢ — 1, which
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in turn means that #(M? N"d+ 1,b — 21) < £ — 2. This is impossible however by the
k = ¢ — 1 case of the condition (d) above.
Finally, consider the case (i,7) = (b,d — 1), in which case we may assume that d — 1 €

St and b+1 € S2 In this case we claim that Ni‘f;\d’b\a_“ = N;’;\a_ﬂ’a\d = 0. The

argument for Nf’j\d’bxm = 0 coincides verbatim with the argument in the case {7, j} =
{a,b}, while the argument for N ;’}‘aﬂﬂ\d = 0 coincides verbatim with the argument
in the case {i,j} = {a,d — 1}.

6.2.3. Special cases

In the d = a + 2 case the same argument works verbatim as in the generic, a ¢ d, b,
{i,7} = {a,b} case. In the d = a — 1 case the same argument works verbatim as in the
generic, a € "d, b case. In the b = a — 1 case the same argument works verbatim as in
the generic, a ¢ "d, bs, {i,j} = {a,d — 1} case. In the b = a + 2 case the same argument
works verbatim as in the generic, a € "d, b case.

Finally, consider the b = d + 1 case. Then {i,j} is one of {a,d + 1}, {a,d — 1}, or
{d—1,d+1}. In the first two cases Nox@THAdTINd — NdtIndafatl _ g - Algo in all

d+1,a a,d+1
pfa\‘d,d+1\a+1 o d+1Na+1,axNd
0,J = N; J

the three cases = 0 because condition (b) is violated

in the second move of each one. The7claim follows.
6.5. [{c,d}n{a+1,b+1} =0 case

If (4, ) satisfies i, j € des(S) and 4, j ¢ des(T) then we have {i, j} C {a,b,c — 1,d — 1}.
We divide it into two cases: the case when #("a,bs N {¢,d}) = 1, which we call the
interlacing case, and the other case called the non-interlacing case. Let us list all the
possibilities and the equalities needed to be proved:

o If {i,j} = {a,b}, then NJ o™ 4 NIUuba™C = NpiseOd  Noosd e,
o If {i,j} = {a,c = T}, then N, >e™ = N“’\d Pe

1 {51) = (0T, o NS NN
o If {i,j} = {b,c =T}, then Na\c b _ — NP
o If {i,j} = {b,d — 1}, then N“Nd - Ns_’\f)})a’\d_
¢ I i) = (T T) then N NS = NS

6.3.1. Non-interlacing case
Without loss of generality we may set 1 < ¢ < d < a < b < n. Here it suffices to prove
that Nax‘d e = Nb\‘c N and NGNC Nl Nbx‘d N for any i, j.

Let us start w1th the first equahty Na\‘d e Nb’\*‘C @4 Note that Na\‘d e = q

for i € {b,c — 1} and j € {a,d — 1} if and only if the followmg conditions hold.

(a) a—dand b—careodd, sayb—c=2m+1,a—d =20+ 1.
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(b)a—1,b—1e€S?andc+1,d+1€eS"

(c) One out of two conditions holds: d — 1 € S, a+1 € S?, and also one of the two
conditions holds: ¢ — 1 € S, b+ 1 € S2.

(d) #(5*N"a—1-2k,a—2.)>kforke{1,2,...,£—1} and
#M?*NTb—1—-2k,b—2.) > kfor ke {l,2,...,m—1}.

(e) #(S?2NTd+2,a—20)=¢—Tand #(M?>N"c+2,b—21) =m — 1.

Here M is the one obtained from S by interchanging a € S and d € S%. On the other

bNe,aNd . D . - - . .
hand, Nj:i\ ~— 1 for i € {bc—1} and j € {a,d— 1} if and only if the following
conditions hold:

(') a—dand b—careodd,sayb—c=2m+1,a—d=2(+ 1.

W)a—1,b—1cS?andc+1,d+1eS.

(¢’) One out of two conditions holds: d — 1 € S, a+1 € S?, and also one of the two
conditions holds: c — 1 € S*, b+ 1 € S2.

(d) #(8?2NTa—1-2k,a—21) >k for ke {1,2,...,/—1} and
#(S?°N"b—1—2k,b—21) >k forke{1,2,...,m—1}.

() #(8?NTd+2,a—21)=L—1and #(S>N"c+2,b—21) =m — 1.

It is clear that we need to show equivalence between (d), (e) on one hand and (d’),
(¢’) on the other. Assume first that b — a is even. It is easy to see that for any k €
{1,2,...,m — 1} we have

#(S2N™b—1—2k,b—22) =#(M*N"b—1—2k,b—2.),

where we assume that M is obtained from S by swapping a and d. Indeed, in each pair
{d,d + 1} and {a — 1,a} exactly one element belongs to S? and M?, and thus the overall
counts are the same no matter what k is. All other conditions needed for the equivalence
are also clear.

Assume now that b — a is odd, say b — a = 2p + 1. Recall that S and M differ by
a € S, d e S% while a € M%, d € M!. Thus (d’) implies (d) as ¢ < d < a < b.
Furthermore, (e’) implies (e) since otherwise we should have c+1 =d or b = a — 1,
which is absurd as b,c + 1 € S' and a — 1,d € S?. In the opposite direction, there is only
one thing that could go wrong; namely, it is possible that #(S%? N"a,b — 21) < p while
at the same time #(M? N [a,b — 2]) = p. Thanks to the condition (e) this implies that
#(M?N"d +1,b — 21) = £+p. Then the only way one can have #(M?N[d — 1,b —2]) >
{+p+1iswhen d— 1 € 5% By (c) this means that a + 1 € S2. This however contradicts
the fact that #(S% N [a,b — 2]) < p, since we also know #(S? N"a + 2,b—2.) > p — 1.
Thus our assumption was wrong and (d’) holds. The desired equivalence is now clear.

Now we will prove that Nﬁ;\c’b\‘d = N;}‘d’a\c = 0 for any 4,j. Indeed, assume
Nz;\c,b’\d

=1 for some i, j. Then the following conditions hold:
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(a) a—cand b—dareodd, saya—c=2m+1,b—d=20+1.

b)ya—1,b—1€S?andc+1,d+1¢eS

(c) One out of two conditions holds: c—1 € S, a+1 € S2, and also one of the two
conditions holds: d —1 € S', b+ 1 € §2.

(d) #(S*N"a—1—2k,a—2.) >kfor ke {l1,2,...,m—1} and
H#(M?>N"b—1—2k,b—21) >k forke{l1,2,...,0—1}.

(e) #(S?°N"c+2,a—2.)=m—Tland #(M?>N"d+2,b—2.) =~ 1.

Here M is the one obtained from S by interchanging a € S and ¢ € S2.

Assume b — a is even, say b —a = 2p. Then combining #(M?N"a + 1,b—2.) > p—1
with #(M?N"d+2,a — 21) = #(S?°N"d+2,a—2,) >/ —p—1landa— 1,a € M?, we
see that #(M2?N"d+2,b—2,) > ¢ —p—1+p—1+2 = ¢, which contradicts (e). Now
assume b — a is odd, say b — a = 2p + 1. Then combining #(M? N "a,b — 21) > p with
#M?N"d+1,a—22) =#(S’N"d+1,a—2s) >f—p—landa— 1€ M2 d+1¢ M?
we see that #(M2N"d+2,b—21) > ¢ —p—1+p+1 = £, which contradicts (e). These
contradictions show that Ni(f’j\c’b\‘d =0 for any ¢, .

Finally, assume N ;}*d’ax‘c =1 for some i, j. Then the following conditions hold:

(a) a—cand b—dareodd, saya—c=2m+1,b—d =20+ 1.

b)a—I,b—1cS?andc+1,d+1¢eS

(c) One out of two conditions holds: c — 1 € S*, a+ 1 € S2, and also one of the two
conditions holds: d —1 € S, b+ 1 € S2.

(d) #(M?*N"a—1-2k,a—21) >k for ke {1,2,...,m — 1} and
#(S?°NTb—1—2k,b—21) >k for ke {l1,2,...,0—1}.

(e) #(M*NTc+2,a—2)=m—1and #(S>N"d+2,b—2.) =/¢—1.

Here M is the one obtained from S by interchanging b € S* and d € S2.

Assume b—a is even, say b—a = 2p. Then the conditions #(S?N"a + 1,b — 21) > p—1,
a—1€5%a¢S? and #(S°N"d + 2,b — 21) = {—1 imply that #(S*N"d + 2,a — 21) <
¢ — p — 1. However, since d,d + 1 ¢ M?, this implies #(M? N "d,a —21) < —p — 1,
which contradicts (d). Now assume b — a is odd, say b —a = 2p + 1. Then the conditions
#(M?>NTa,b—21) > p,a—1 € 8% and #(S?N"d+2,b—2.1) = £ — 1 imply that
#(M?*N"d+1,a—21) < £ —p— 2, which contradicts (d). These contradictions show
that Nf}‘d’a\c = 0 for any ¢, .

6.3.2. Interlacing case
Without loss of generality we may set 1 < ¢ < a < d < b < n. Similar to above, in
Nia;\d,b’\c _ N]b’}c,a\d and Nz;\c,b\d _ N]{t’i\(d,a\c

this case it suffices to prove that for

any i, j. The equality N’ ;-\‘c’bx‘d =N ;i\‘d’a)\c is self-evident because of our assumptions
d# a+1,¢c# b+ 1. Thus it suffices to show that sz\‘d’b\‘c = N;i\‘c’a\‘d = 0. Due to
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NZ;\‘d’b\c = 0. Assume

circular symmetry it is enough just to argue one of those, say
otherwise, i.e. Nia’jx‘d’b\‘c = 1. Then the following conditions hold:

(1) b—canda—dareodd,sayb—c=2m+1,a—d =20+ 1.

(2) a—1,b—1€S%andc+1,d+1eS"

(3) One out of two conditions holds: c—1 € S, b+ 1 € S?, and also one of the two
conditions holds: d — 1 € S*, a + 1 € S2.

(4) #(S°NTa—1—2k,a—21) >k for k€ {1,2,...,£—1} and
H#M?*NTb—1—-2k,b—21)>kforke{l1,2,....,m—1}.

(5) #(52NTd+2,a—21)=f—Tand #(M?>N"c+2,b—21) =m — 1.

Here M is the one obtained from S by interchanging a € S! and d € S2.

Assume a — b is even, say a — b = 2p. Then #(S>N"b+1,a — 21) > p — 1, which
together with b — 1 € S, b ¢ S?, and #(S?N"d + 2,a — 21) = £ —1, implies that #(S%N
Td+2,b—21) <{—p—1.Since d,d+ 1 € M*, this implies that #(M? N"d,b— 2.) <
¢ —p — 1, which contradicts (d). Now assume a — b is odd, say a — b = 2p + 1. Then
#(S?N"b,a — 21) > p, which together with b — 1 € S? and #(5%2N"d + 2,a — 21) = {—1,
implies that #(S2N"d +2,b—2.) < ¢ —p — 2. Since d + 1 ¢ M?, this in turn implies
that #(M2?N"d+ 1,b— 21) < £ — p — 2, which contradicts (d). The proof is complete.

7. Restriction of Ty to S,,

Here we discuss the parabolic restriction of T'y to the maximal parabolic subgroup
S, of S, when ) is a two-row partition. (However, many parts in this section are still
valid for general A\ when the existence of T'y is not needed.) As a result, for a two-row
partition A we obtain an explicit description of a S,-graph I'y which is a finite analogue
of 1—‘)\.

7.1. Left cells of S,, and S, -graphs

Suppose that W is a Coxeter group. In [10], a W-graph is attached to each left cell
of W. Furthermore, when W = S, it is essentially proved by [10, Theorem 1.4] that the
isomorphism class of such a S,-graph depends only on the two-sided cell containing the
corresponding left cell. Recall that two-sided cells of S,, are parametrized by partitions
of n; let ¢, be such a cell parametrized by A. Here we adopt the convention that if w € ¢,
then the image of w under the usual Robinson-Schensted map is a pair of elements in
SYT(X). We define Ty to be the S,,-graph attached to a left cell contained in c,.

Remark. To be precise, the S,-graph I'y constructed in [10] is not reduced but m(ubv) =
m(v>u) for any vertices u and v. Here, we modify I"y to be reduced by setting m(u>v) = 0
whenever 7(u) C 7(v).
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Recall the definition of a Kazhdan-Lusztig affine dual equivalence graph Dy. Then
clearly 5>\¢[1’n711 is a [1,n — 1]-labeled graph, and we set D) to be its full subgraph
whose vertices are standard Young tableaux of shape A. In other words, Dy = (V,m, 1)
is a [1,n — 1]-labeled graph such that V' = SYT(X), 7 = des, m(S>T) = m(T>S) = 1if
S and T are connected by a Knuth move, and m(S>T) = m(T>.S) = 0 otherwise. (See
Section 2.6 for the definition of des and Knuth moves, and also the remark thereafter.)
The graph D, is called a Kazhdan-Lusztig (finite) dual equivalence graph of shape .
Then it is known that U(T'y) ~ Djy; e.g. see [4, 3.5].

7.2. (nb-)Admissible S, -graphs

Here we discuss some properties of nb-admissible S,-graphs. Recall that in general,
cells and simple components of W-graphs may differ; we already observed such a phe-
nomenon in Example 4.3 (see Fig. 3). However, such situations do not arise for S,,-graphs
as the following result shows.

Theorem 7.1 ([4]). If T is an nb-admissible S,,-graph, then each cell consists of a simple
component. Moreover, the simple underlying graph of each cell is isomorphic to D,, for
some p - n.

Proof. The result of Chmutov is stated for admissible S,,-graphs. However, his proof does
not exploit the bipartition property and thus the statement is still valid for nb-admissible
setting. O

In fact, more is true; the following theorem was a conjecture of Stembridge [20, Ques-
tion 2.8].

Theorem 7.2 ([16]). If T' is an nb-admissible S,,-graph, then each cell is isomorphic to
I, for some ptn.

Proof. Again, the proof of Nguyen is still applicable to our setting as his proof does not
use the bipartition property of admissible S,,-graphs. O

To this end, Nguyen studied some property of (nb-)admissible S,-graphs called or-
deredness, which we now explain. Suppose that I" is an (nb-)admissible S,-graph and let
T’, T be (possibly identical) cells of T'. Then by the theorem above, there exist p,vFn
such that I ~ T', and 'V ~ T', (or equivalently U(I") ~ D, and U(I") ~ D,). Let
u € TV and v € T”. Then under the previous isomorphisms, u and v corresponds to
T, € SYT () and T,, € SYT(v). We say that I' is ordered if m(u>v) # 0 for such u, v
then either [T, < Tp] or IV =T, T,, > Ty, and T,, is obtained from T, by switching ¢
and i+ 1 for some ¢ € [1,n — 1]]. Here for two tableaux T, T" € SYT(n) we write T < T"
if Sh(T'l}; ;1) is less than or equal to Sh(T"|}; ;) with respect to dominance order for all
i € [1,n]. (See [16] for the actual statement.) Now we have:
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Theorem 7.3 ([16, Theorem 8.1.]). Every nb-admissible Sy,-graph is ordered.

Proof. Similar to the theorems above, the proof of [16] is still valid in our case as it does
not use the bipartition assumption. O

7.3. Description OffAi[an]

As T, is a S,-graph, its restriction F/\i[l,nfl] is a S,-graph where S, is considered as
a parabolic subgroup of S,, generated by {s1, s2,...,5,_1}. Let us investigate each cell
of Fki[l,nfl]' We start with the following proposition.

Proposition 7.4. Let p be a partition of n. Recall the Robinson-Schensted-Knuth map
RSK: T — (P(T),Q(T)) defined on RSYT(n).

(1) For T € RSYT(n), we have des(T) — {n} = des(T) = des(P(T)).

(2) ForT € RSYT(u), we have FinSh(T') = p if and only if T is standard if and only if
T =P(T).

(8) If des(T") and des(T") are not comparable, then T,T’ € RSYT(n) are connected by
a dual Knuth move if and only if P(T) and P(T') are connected by a Knuth move

and Q(T) = Q(T").

Proof. (1) holds since the reading words of 7' and P(T) are Knuth equivalent. For
(2), first it is clear from the construction that T is standard only if T = P(T) only
if FinSh(T") = p. Now observe that FinSh(7T') = p if and only if Q(T') is the unique
standard Young tableaux of shape u and content p°f. Therefore, (2) follows from the
fact that RSK is an injective map. For (3), we set 1" (resp. 7”) to be the standard Young
tableau of some skew-shape which is obtained from pushing each row of T' (resp. T”) to
the right so that no two boxes are in the same column. Then it is clear that T and P(T)
(resp. T’ and P(T") are jeu-de-taquin equivalent, and also 7" and T" are connected by a
dual Knuth move if and only if 7" and 7" are. Now the result follows from [9, Lemma
2.3]. O

As Ty is nb-admissible, so is fA\L[l,n—lh which means that we may apply Theorems 7.1,
7.2, and 7.3. In particular, each cell of F)\i[l’n_l] is a simple component and isomorphic
to Dy, for some p t n. Therefore, if u,v € I'x]; ,_q) are in the same cell then they are
linked by undirected edges, which means that Q(u) = Q(v) by the preceding proposition.
Conversely, if Q(u) = Q(v) for some u,v then it is clear that P(u) and P(v) are linked
by a series of Knuth moves, which means that v and v are in the same cell of FA\I/[I,nfl]
again by the preceding proposition.

Recall that the 7-function of FAi[l,nfl] is obtained from that of I'y by removing n
from the image of each v € I'. Therefore, if we regard v € T'y as an element in RSYT())
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L)

L)

INER))

Fig. 4. Parabolic restriction f(3,2),l,[1‘4].

then its 7 value in F/\\L[l,nfl] is equal to 7(P(v)) by the preceding proposition. Together
with the paragraph above, we proved the following proposition:

Proposition 7.5. Cells of f,\i[l’nfu are parametrized by ||, SSYT(u, A\P). If C C
f,\i[lm_l} is a cell parametrized by Q, then C is isomorphic to U'syq). In particular,

there exists a unique cell which is isomorphic to 'y and it is parametrized by the unique
element of SSYT (A, A°P).

Example 7.6. Fig. 4 illustrates the parabolic restriction f(372)¢[1,4]. Here, thick edges
are the ones between vertices in the same cell. Compared to Fig. 1, there are less di-
rected edges and also some undirected edges become directed. It consists of three cells
isomorphic to I'(32), I'(4,1), and I'5), respectively, as indicated in the figure.

7.4. Description of Ty

From now on we enforce that A is a two-row partition and identify I'y with the
full subgraph of f)\*lf[l,n—l] isomorphic to it. Then similar to I'y it is possible to give
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a simple combinatorial description of I'y. (Note that the description of I'y can also be
given in terms of the language of Temperley-Lieb algebras; see [23].) First we observe
the following.

Lemma 7.7. Let S, T € Ty and suppose that we have an edge S M TinT)y C Fkiu,nq]
for some 1 < i,5 <n. Then we have j > i — 1, i.e. either j =i —1 (a move of the first
kind) ori < j (a move of the second kind).

Proof. For contradiction suppose that j < i — 1. Then j cannot be 1 since j € T2 and
T is standard. Thus j — 1 > 1 and we require that j — 1 € S2. Since T is standard and
j— 1,7 € T? it implies that #(S? N [1,5 —2]) +2 < #(S' N [1,5 — 2]), or equivalently
#(52N[2,5—2]) +1 < #(S'N[2,j —2]) as 1 € S'. But this violates the inequality of
part 2.(d) in Section 4.1; thus the result follows. O

Theorem 7.8. Let A\ - n be a two-row partition. Then the weight function m of T'y =
(SYT(N), m, des) is defined as follows.

1) (Move of the first kind) m(S>T) = 1 if T is obtained from S by interchanging i € S*
and i+ 1€ 82 for somel <i<n-—1, ie.

i R |
i+l .. i

2) (Move of the second kind) m(Sv>T) = 1 if T is obtained from S by interchanging
i€ S%andje St ie.

where the following conditions hold:
(a) 1 <i<j<mnandj—iis odd.
(b) i+1€ St and j—1€ S2.
(c) Eitheri—1¢€ S' orj+1¢€ 82 (If j =n, then j +1 ¢ S? by convention.)
(d) #(S*N[j—1—2m,j—2]) >m form € [1,#]
(e) #(S*N[i+2,j —2]) = &=4=2 when j #i+ 1.
3) Otherwise, m(S>T) = 0.

Proof. This directly follows from the lemma above together with the definition of T'y in
Section 4.1. O
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8. Uniqueness of T'y in unequal length cases

In this section, A is a partition of n consisting of two rows of unequal lengths. The
main goal here is to show that I'y is the unique nb-admissible S,,-graph (up to isomor-
phism) such that U(Ty) ~ D,. In equal length cases, i.e. if A = (a,a) for some a, the
corresponding nb-admissible S,,-graph is not unique — it is discussed in the next section.

8.1. Robinson-Schensted-Knuth and w

First we consider the action of w € S,, on RSYT (n) by changing each entry i to 7 + 1
(and reordering entries in each row if necessary). Here we describe RSK(w(T')) in terms
of RSK(T).

Lemma 8.1. Suppose that T € RSYT(n) and set RSK(T) = (P,Q). From these we
construct P' and Q' as follows.

o Find the position of a corner box of P containing n (which is unique since P is
standard).

o Apply the inverse of the bumping process to Q starting from the corner box of Q
at the position found above. Denote the result tableau by Q and the entry which is
bumped out from the process by x.

o Column-bump z into Q and let Q' be its result. Or equivalently, insert x to the
transpose of Q using the “dual” bumping process and let Q' be the transpose of its
result. (See [12, Section 5] or [19, Chapter 7.14] for the definition of dual bumping
process. )

o Let P be the unique tableau such that Sh(P) = Sh(Q') and ]5¢[17n71] =Plypq-In
other words, P is obtained from P by moving a box containing n if necessary so that
Sh(P) = Sh(Q"). (In particular, if Sh(Q) = Sh(Q’) then P = P.)

e Do the inverse of the promotion operator on P with respect to n, and define P’ to
be its result. (See [18, Section 7] for the definition of the promotion operator.)

Then we have RSK(w(T)) = (P, Q).

7

O

5 2]4]5]7] 1]2]2]3]
9 | .

1 i
so that P = [3]6]9] and Q = [2[3]3
8 3

W

Example 8.2. Suppose that T =

—
o]

Then we obtain (P’,Q’) from (P, Q) as follows:

e The corner box of P that contains n = 9 is the last box of the second row.

e Apply the inverse bumping to @) with the corner box found above. In our case we
N 1]2]3]3]

have Q = [2]3] and z = 2.

3

—

- 1]1]2]3]3]
e Column-bump z = 2 into @ and get Q' =[2[2]3]
3
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e In our case ShQ = ShQ’, thus P = P.

N 1[3[5[6[3]
o Apply the inverse of the promotion operator to P and get P’ = [2[4]7]
9
3568
Now the above theorem shows that RSK(w(T)) = (P’, Q') where w(T) =147
2 9

Proof. Let &7 be the two-line array corresponding to 7', and 4 be the one obtained from

&/ by switching the first and the second rows and reordering the entries if necessary so
2457
that the first row becomes 1,2, ..., n. For example, if T =36 9 , then

138
112223333 (1
JZ{_<183692457)5““1”‘2‘7_(1

It is clear that the image of &/ under RSK is equal to (Q, P). Also, for T" = w(T) we

w N

34 5 6 7 8 9
23 3 2 31 2/

similarly define &7’ and «/’. For example, if T is as above then 7/ = 14 7  and

, (112 2 2 3 3 3 3 5 (1 2 3 456 7 89
%_<291473568>and£{_(213233231)'

Note that <7’ is obtained from &7 by applying cyclic shift on the second row. Under this

description, the @ part of the claim is well-known; here @ (resp. P) is considered as an
insertion tableau (resp. a recording tableau) of o/ under RSK.

On the other hand, P’ is the unique standard Young tableau which satisfies that
Sh(P’) = Sh(Q’) and that the reading word of P’|j3, is Knuth equivalent to that
of w(T)|j2,n) = W(T|{1,n—1]), which follows from the definition of (the inverse of) the
promotion operator in terms of jeu-de-taquin procedure. Therefore the P part of the
claim also follows. 0O

From the lemma above, it follows that either FinSh(T") and FinSh(w(T)) coincide or
differ by one box. The next lemma shows how FinSh(w(T)) differs from FinSh(T) in
(possibly equal) two-row cases.

Lemma 8.3. Assume that A = (A1, A2) Fn, T € RSYT()\), and RSK(T) = (P, Q).

(1) Suppose that FinSh(T) = (a,b) is not the same as X\ or (n). If n € Pl, then
FinSh(w(T)) = (a — 1,b+ 1). If n € P?, then FinSh(w(T)) = (a + 1,b — 1).

(2) Suppose that FinSh(v) = X. If n € P!, then FinSh(w(T)) = FinSh(v) = \. If
n € P2, then FinSh(w(T)) = (A1 + 1,2 — 1).

(3) Suppose that FinSh(T') = (n). Then (always n € P' and) FinSh(w(T)) = (n—1,1).

In particular, FinSh(T) = FinSh(w(T")) only when T and w(T) are both standard.
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Proof. Since #SSYT(u, A°?) < 1 for any p F n, it follows that @ is uniquely deter-
mined by its shape FinSh(T). Now the lemma follows from Lemma 8.1 by case-by-case
analysis. O

Remark. Note that n € P! if and only if n is not bumped under the RSK insertion
process with input 7 if and only if n € T". Therefore, Lemma 8.3 remains valid if one
replaces “n € P17 and “n € P?” therein with “n € T'” and “n € T2”, respectively.

If X\ consists of two unequal rows, the previous lemma implies the following statement.
Also one can easily observe that its proof is not valid for equal length cases.

Lemma 8.4. Suppose that A = (A1, A2) where Ay > Aa. Then for any T € RSYT(N), there
exists k € [1,n] such that w*(T) and w**1(T) are both standard.

Proof. Suppose that the claim is false. Then Lemma 8.3 and its remark shows that if
n € T (resp. n € T?) then FinSh(w(T)); = FinSh(T); — 1 (resp. FinSh(w(T)); =
FinSh(T); +1). As w™(T') = T, this means that we have FinSh(T') = FinSh(w™(T)) =
(M + (A2 = A1), A2+ (A1 — A2)) = (A2, A1), which is impossible. O

As a result, we have the following property that is our main tool for the uniqueness
statement.

Proposition 8.5. Let A = (A1, A2) F n where Ay > X2 and assume that S,T € RSYT(N)
where des(S) 2 des(T). Then there exists k € [1,n] such that des(w®(S)) — {k} 2
des(w®(T)) — {k} and FinSh(w*(S)) > FinSh(w”(T)) = \ with respect to dominance
order.

Proof. By Lemma 8.4, there exist at least two k € [1,n] such that w®(T) is standard,
in which case we have FinSh(w*(S)) > FinSh(w*(T)) = A. As des(S) 2 des(T), at
least one of such k should satisfy des(w”*(S)) — {k} 2 des(w*(T')) — {k}; thus the result
follows. O

8.2. Uniqueness of I'y in unequal length cases

We are ready to prove the uniqueness statement of T'y for A = (Ay, \2) such that
A1 > Ao. We start with the following lemma.

Lemma 8.6. Suppose that T is an nb-admissible S,,-graph such that U(T) ~ Dy for some
AbEn. Let u and v be two vertices in T' which correspond to T,,T, € RSYT(A), respec-
tively, under this isomorphism. Assume that m(u>v) # 0 and m(v>u) = 0, i.e. there
exists a directed edge from u to v in I'. If this edge survives in Il ,_q) after parabolic
restriction to [1,n — 1], then we have FinSh(Ty,) < FinSh(T,) in terms of dominance
order.
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Proof. This follows directly from Theorem 7.3. O

Theorem 8.7. Let T',T' be nb-admissible S, -graphs such that U(T) ~ U(I") ~ Dy. Then
I ~T' as S, -graphs. As a result, they are also isomorphic to Ty.

Proof. By assumption, we may identify U(T) and U(I') with D,. Since I' and I are
nb-admissible, it means that they may differ only by directed edges. Now suppose that
there is a directed edge S — T of weight p > 0 in I'. Then it suffices to show that the
same directed edge appears in IV. By Proposition 8.5, there exists k € [1,n] such that
this edge survives in I'|z77 z=7, and wk(T) is standard. Using the cyclic symmetry of
Sn, we may assume that k = n which means that this edge survives in I'lj; ,,_4; and
that T is standard. Now by Lemma 8.6, it forces that FinSh(S) = FinSh(T) = A, i.e. S
and T are both standard. However, it means that both S and T are in the same cell of
I isomorphic to I'y; thus by Theorem 7.1 and 7.2 this directed edge should appear in I
with the same weight p as well. O

Remark. In the proof we do not assume that I' is w-invariant. However, as a result of
the theorem such graphs should be w-invariant since so is T'y.

9. Equal length cases

The uniqueness statement of the previous section does not hold in equal length cases,
i.e. when A = (a,a) for some a € Z~q. In fact, there are more than one (up to isomor-
phism) whose undirected part is isomorphic to Dy. Let us start with finding another
such S,-graph. Everywhere in this section we assume that A\ = (a,a) is a partition of
two rows of the same length.

9.1. S,-graph f;\
Let ﬁi and fi\ be the full subgraphs of D, whose sets of vertices are

{T € RSYT()) | FinSh(T) € {(a,a), (a +2,a—2),(a+4,a—4),...}} and
{T € RSYT(\) | FinSh(T) € {(a + 1,a —1),(a +3,a — 3),(a + 5,a —5),...}},

respectively. Then we have:
Lemma 9.1. The graph Dy consists of two connected components 5())\ and 5;\.

Proof. By [6, Theorem 8.6], there are two connected components in Dy and each compo-
nent consists of row-standard Young tableaux of shape A with the same “charge” modulo
2, where the charge statistic is defined as in [6, Definition 8.3]. However, it is easily proved
using the definition of Robinson-Schensted correspondence that in our case the charge
of T € RSYT()\) is equal to the length of the second row of FinSh(7"). O
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Fig. 5. Sg-graph f23,3)'

This lemma has a following bi-product.
Proposition 9.2. T'y is strongly connected.

Proof. By Lemma 8.3 and the description of 5(;\ and 51\ above, w swaps two simple

components of I'y. Therefore, if Ty is not strongly connected then by symmetry there

should not be any directed edge between these two simple components. However, there
3 5 ---n-3n-1 _g 1 3 5 - n-3n

always exists a directed edge from € D, to €
2 4 6 ---n—2n 2 4 6 ---n-—2n-1

5}\ (a move of the first kind), so the claim follows. O

Let us define F/A to be the subgraph of I'y obtained by removing all the directed edges
. =0 =1 = . s . .
connecting Dy and D,. In other words, I'y is a (disjoint) union of two simple components
of F,\.

Example 9.3. Fig. 5 illustrates the Sg-graph fl(g)?)). (Compare with f(s’g) in Example 4.3.)
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We show that fl)\ is also a S,-graph. First, the following lemma is a substitute of
Lemma 8.4 in equal length cases.

Lemma 9.4. Suppose that T € RSYT()). Then there exists k € [1,n] such that w*(T) is
standard.

Proof. We use induction on n. Choose i € [1,n] such that i € T' and i +1 € T?,
which always exists. Let us regard the rows of T' as words with alphabets in [1,n], and
let w1, ws, ws, ws be words such that T! = wiiwy and T? = wsi + lw,. By induction
hypothesis, replacing T with w*(T') for some k if necessary, we may assume that T =
(wiws, w3wy) is standard. Furthermore, if 7 = n then we apply w to T which changes n
to 1 but keeps T to be standard. Thus it suffices to consider the case when 1 <i<n-1.
Now since entries in w; and ws are smaller than 7 and those in wy and w, are larger
than 7 + 1, it follows that T is standard only when the length of w; is not smaller than
that of wy. From this it is easy to see that T is also standard. O

Lemma 9.5. Suppose that S and T are in different simple components of T'x and there
exists an (necessarily directed) edge S — T. Then,

(1) the move from S to T is of the first kind, and
(2) if FinSh(S) > FinSh(T) with respect to dominance order then FinSh(S) = (a+1,a—
1), FinSh(T) = (a,a) = A, and the move S — T is n’\(1.

Proof. We prove (1). Note that des(S) D des(T) as S — T is a directed edge. By
Lemma 9.4, we may assume that T is standard. (Here we use the fact that the move
S — T is of the first kind if and only if so is w(S) — w(T).) As FinSh(S) cannot be
equal to FinSh(T') by assumption, we should have FinSh(S) > FinSh(T'). Therefore,
Theorem 7.3 implies that the edge S — T must be deleted in the parabolic restriction
fki[l,n—l]- This means that des(S) = des(T) U {n} and thus 1 € S? and n € S!. Since
1 €T and n € T? (T is standard), (1) follows.

Now we prove (2). As FinSh(S) # FinSh(T") we should have FinSh(S) > FinSh(T),
which means that this directed edge should be deleted in the parabolic restriction
fki[l,nfl] by Theorem 7.3. Thus des(S) = des(T") U {n}, and n\1 is the only possible
move of the first kind from S to T'. Now if FinSh(S) > (a + 1,a — 1), then direct calcu-
lation shows that FinSh(S) = (FinSh(T); + 2, FinSh(T')2 — 2), which contradicts that S
and T are in different simple components. Thus we should have FinSh(S) = (a+1,a—1)
and FinSh(T') = (a,a) as desired. O

Theorem 9.6. fl)\ is a Sy,-graph.

Proof. We use Theorem 3.1. It is clear from the definition that f;\ satisfies the Compati-
bility Rule, the Simplicity Rule, and the Bonding Rule. Thus we only need to check that
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N ; (f;; S, T) = Nj’i(fl)\; S,T) for i,j € [1,n] not adjacent to each other in the Dynkin
diagram of S,, and for S, T € T'y. If S and T are in different connected components then
clearly N ; (f//\; S, T) = Njyi(f;; S,T) = 0; thus we only need to consider the case when
they are in the same component. As we already proved N; ;(Tx;S,T) = N, :(Tx; S, T),
it suffices to show that Ni7j(fi\; S,T) = N, j(Tx; S, T).

If Nm(fl)\; S,T) # N; j(Tx; S,T) then there exist M € 'y and directed edges S — M,
M — T in Ty such that i,j € des(S), {i,7} Ndes(T) = 0, i € des(M), j ¢ des(M),
and M is in the different simple component of T'y from that of S and T. By applying
w repeatedly if necessary, we may assume that 7' is standard (Lemma 9.4). Then by
Lemma 9.5 we have FinSh(M) = (a + 1,a — 1), FinSh(T) = A, the move from M
to T is 1,"n, and the move from S to M is of the first kind. In particular, we have
1 € M? and n € M"'. However, in such a case there is no standard tableau S from
which M is obtained by a move of the first kind, which is a contradiction. It follows that
Nij (T;\; S,T) = N; j(Tx; S,T) which implies the claim. O

9.2. Minimality of f;\
Here we prove the minimality of fl)\. More precisely, we have the following theorem.

Theorem 9.7. Suppose that T', T/ are two nb-admissible S, -graphs such that U(T') ~
U") ~Dy. If T is disconnected, then there exists an embedding from T to I'.

Proof. Let us identify U(I") and U(T’) with Djy. It suffices to show that if there exists
an edge S — T of weight p > 0 in ' then the same edge exists in IV. To this end we
choose k,1 € [1,n] such that w*(S) and w!(T) are standard, which exist by Lemma 9.4.
Note that S and T are in the same component of Dy ~ U(T') as I is disconnected.
First suppose that w!(S9) is also standard. In our situation, Lemma 8.3 implies that
FinSh(X), and FinSh(w(X))2 always differ by 1 for any X € RSYT(A). (Note that if X
is standard then n € X2 as we consider equal length cases.) Therefore, FinSh(w!(9)) =
FinSh(w!(T)) = A = (a,a) and FinSh(w'*!(9)) = FinSh(w'*}(T)) = (a+1,a—1). If we
identify S,, with the finite maximal parabolic subgroup of S,, generated by I — {s;} for

each t € {I —1,1,1 + 1}, then S and T are in the same simple component of R e
and there exists at least one ¢ such that the edge S — T of weight p survives in the
parabolic restriction, i.e. des(S) — {f} 2 des(T) — {#}. Now by Theorem 7.2, this edge
should also appear in IV with weight p as desired.

Now assume that w!(S) is not standard. Since S and T are in the same connected
component of Dy, we have FinSh(S), = FinSh(T)y (mod 2). Therefore, there exists
t € [1,n] different from [ such that FinSh(w!(S)) = FinSh(w’(T')). On the other hand,
by Theorem 7.3 the edge S — T vanishes on the parabolic restriction I')ri51 7=1,, Which
means that des(S) = des(T) U {l}. Thus des(S) — {t} 2 des(T) — {t} and this edge
survives in I'| 557 7=7,. Again by Theorem 7.2, this edge should also appear in I with
weight p as needed. 0O
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Remark. Note that we do not assume that I is stable under the action of w in the proof
of the above theorem. Instead, we choose a maximal parabolic subgroup of S, which
may be different from the conventional choice and apply Theorem 7.3 with respect to
this parabolic subgroup.

Corollary 9.8. If I is an nb-admissible S,,-graph such that U(I') ~ Dy, then there exists
an embe@ng from fl)\ to Il./[n o_ther words, f;\ is (up to isomorphism) the unique
manimal Sy,-graph such that I'y ~ Dj.

Proof. It is clear from the theorem above. 0O

Remark. There are more than two S,-graphs, F/A and I'y, whose simple undeglying graph
is isomorphic to Dy. For example, if we remove the directed edges from D, to D, but
keeps the ones from 5; to 52 in Ty, then it is easy to show that this is also a S,-graph
which is “between f; and T'y”. This graph is not w-invariant as w swaps two simple
components.

9.3. Magzimality of Ty

Here we prove the maximality of I'y. To this end, first we recall the notion of arc
transport in [4].

Lemma 9.9 (//, 2.3, Lemma 1]). Let W be a Cozeter group whose Dynkin diagram is
simply-laced, T = (V,m,T) be an nb-admissible W-graph, and z,y,z',y" € T'. Suppose
that i,j,k are simple reflections of W such that k € (7(z) N 7(z")) — (7(y) U T(¥)),
i € (r(&) N7(y) — (&) U (), and j € (r(&’) 0 () — (r(x) Ur(y)). (Thus in
particular i and j are adjacent in the Dynkin diagram of W by the Compatibility Rule.)
If m(z,2’) = m(a’,2) = m(y,y') = m(y',y) = 1, then m(x,y) = m(z',y’). Pictorially,
we have:

Proof. Again, the proof of [4, 2.3, Lemma 1] does not use the bipartition property; thus
it applies to our setting. Also, [4, 2.3, Lemma 1] only assumes that T is a “W-molecular”
graph which is weaker than being a W-graph. O

Lemma 9.10. Let I' = (V,m,7) be an nb-admissible S, -graph such that U(T) ~ Djy.
(Thus in particular we may set V.= RSYT(A) and 7 = des.) Suppose that S and T are
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in different simple components of ', there exists a directed edge S — T of weight p > 0
in T, and T is standard. Then it is a move of the first kind (of weight p) and p is equal

2 4 - p—dn-2n 1 2 4 -+ -n—4an-2
to the weight of the edge from to .
1 3 5 ---n-3n-1 3 5 --+n-3n-1n

Proof. First note that FinSh(S) # FinSh(7T") by assumption; thus by Theorem 7.3 we
have des(S) = des(T) U {n}. On the other hand, if FinSh(S) > (a + 3,a — 3), then
FinSh(w(S)) > FinSh(w(T)) which means that the edge S — T is removed in the
parabolic restriction I'|[, ,,; again by Theorem 7.3. However, this contradicts the fact
that des(S) = des(T") U {n}; thus we should have FinSh(S) = (a4 1,a —1). (FinSh(S) #
(a4 2,a —2) since S and T are in different simple components.)

Furthermore, n € des(S) if and only if 1 € S? and n € S'; thus n — 1,1 ¢ des(T) C
des(S). As 1 € T' (T is standard), this means that 2 € T as well. Also, if 2 € S? then
direct calculation shows that FinSh(S) > (a+2, a —2); thus we should have 2 € S*. Now
let z € [2,n—1] be the smallest entry of des(T). Then [2,z] C S*NT! and z+1 € S2NT?,
i.e. we have

Suppose that > 2. Then we set S’ (resp, T”) to be the tableau obtained from S
(resp. T') by swapping = and x 4+ 1. Then these are allowed moves in Section 4.1 of
the first kind and also des(S) and des(S’) (resp. des(T) and des(1")) are incomparable;
thus there exist undirected edges S — S’ and T — T’. Now we use Lemma 9.9 with
(i,7,k) = (x — 1,2,n) and thus we have m(S'>T’) = m(S>T) = p. Furthermore, it
is clear that FinSh(S) = FinSh(S’), FinSh(T') = FinSh(T"”), and S — T is a move of
the first kind if and only if S’ — T’ is a move of the first kind. Thus by iterating this
process, we only need to consider the case when 2 € des(T), i.e. we have:

By direct calculation, FinSh(S) = (a + 1,a — 1) implies that 4 € S*. If n = 4, then
4 € T? and we are done. Otherwise, if 4 € T? then let us set S’ (resp. T”) to be the
tableau obtained from S (resp. T') by swapping 3 and 4 (resp. 2 and 3). These are allowed
moves in Section 4.1 and des(S) and des(S’) (resp. des(T') and des(T")) are incomparable;
thus there exist undirected edge S — S’ and T — T". Pictorially, we have:
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2 .
S = s T =
3
1 3 .
S = s T =
1 4 - 2 4

Thus by Lemma 9.9 with (¢, 4, k) = (2,3,n), we should have m(S'>T') = m(S>T) =
p > 0. However, this is impossible as 1 € des(T”) — des(S’). It follows that 4 € T, i.e.
we have

2 4 ...
S:— g T:
1 3 ...

Now we choose x € [4,1—1] to be the smallest entry of des(7’). By the same argument
as above, it suffices to consider the case when = 4. Then 5 € S2N T2 and 6 € S! as
FinSh(S) = (a + 1,a — 1). Now if n = 6 then 6 € T? and we are done. Otherwise, we
iterate the argument above, and eventually we only need to consider the case when

2 4 ---n—4n—2mn 1 2 4 ---n—dan-2
1 3 5 ---n-3n-1 3 5 ---n-3n—-1n

Now the statement follows from the fact that S — T is a move of the first kind n (1. O
From the lemma above we deduce the maximality of Ty.

Theorem 9.11. If T is an nb-admissible S,,-graph such that U(T') ~ Dy and there exists
an embedding from Ty to T, then this embedding is an isomorphism.

Proof. It suffices to show that if there exists a directed edge S — T of weight p > 0in T’
then the same edge appears in I'y. If S and T are in the same simple component, then
it follows from the proof of Theorem 9.7. Otherwise if S and T are in different simple
components, then by Lemma 9.10 this is a move of the first kind and also p is equal to
the weight of the directed edge

k 2 4 ---pn—dn—2n k 1 2 4 ---n—an—2
w - w ,
1 3 5 ---n-3n-1 3 5 ---n-3n—-1n
for some k € [1,n], which is always 1 by assumption. (The existence of k is guaranteed

by Lemma 9.10.) Thus the edge S — T is already contained in the image of I'y with the
same weight p = 1, which implies the statement. 0O
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Fig. 6. S;-graph f&’g).

Remark. Unlike fl)\ which is the unique minimal one (up to isomorphism) among the
nb-admissible S,,-graphs I' such that U(T') ~ Dy, T is not the unique maximal one.
Indeed, for p,q € N define f];’q to be the I-labeled graph obtained from I'y by changing
the weight of every directed edge from Dy to Dy (resp. from Dy to Dy) to p (resp. q).
(An example is given in Fig. 6.) If p = 0 (resp. ¢ = 0), then it means that we delete
every directed edge from 52 to 5}\ (resp. from 5; to 52\) in Ty. Then one can prove
that T3 " is an nb-admissible S,-graph such that U(TY") = Dy. (Note that fi’o = f;\
and f;’l =T,.) It is clear that fi’q and 'y are comparable only when p,q € {0,1}, in
which case there exists an embedding Ty © — T'x. On the other hand, if there exists an
embedding from T'y to Fi’q then we should have p = ¢ = 1 and this is an isomorphism
as expected by Theorem 9.11.

10. Periodic W-graphs

Here, we discuss how Iy is related to a periodic W-graph originally defined by Lusztig.
To this end, first we recollect the notion of a periodic W-graph focusing on affine type
A. For reference see [14] and [22].

10.1. Periodic W -graph

We recall the root system of type A, _;. Let E be an (n — 1)-dimensional real vector
space equipped with an inner product (, ) : EXE — R. Let IT := {a1,...,a,-1} C E be
a fixed set of simple positive roots such that («;, a;) = 2for 1 <i <n—1, (o, @j41) = —1
for 1 <4 <n-—2, and (a4,a;) = 01if |¢ — j| > 1. Then the set of roots R C E and
positive roots RT C R are well-defined. Let P be a root lattice, i.e. a free abelian
group generated by II as a subgroup of E. Usually we realize this root system by letting
E={(x1,...,2n) CR" | > 2; =0}, I ={e; —ea,...,en_1 — €y}, etc.

Weset Fpp:={veE|(a,v) =k} and §F:={Fur|a€ R,k eZ} (Aswe only deal
with type A root system, we do not differentiate a root and its corresponding coroot.)
Let A be the set of all the connected components of E — UpegF, each of which is called
an alcove. Let A;4 € 2 be the unique alcove which is in the dominant chamber and whose
closure contains 0 € E.
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For a partition A F n, we let II\ := {a; € IT | ¢ # n—2§:1 Aj forall 1 <k <I(A\)—1}.
(The reason for adopting this definition rather than “the opposite one” will become clear
as we proceed our argument.) Also let Ry (resp. RY) be the intersection of R (resp. RT)
with the Z-span of ITy. Define §y := {Fa i € § | @ € Ry}. Then there exists a unique
connected component of E — Upeg, F' which contains A;4; v € E is in this component if
and only if 0 < (a,v) < 1 for all @ € Rf. Let 2, C 2 be the set of alcoves contained in
this connected component. This will become a set of vertices of a periodic S,,-graph we
construct.

For F € §, let rp : E — E be the reflection along F. We identify S,, with the group
generated by rg for FF € §. Under this correspondence, each s; for 1 < i < n —11is
assigned to TF,, 05 and s is assigned to rg, , where & := a3 +as+---+a,—1 € Ris the
highest root. We regard S,, as acting on the right of E,2,§, etc. For v € P, we define
t, : E — E to be the translation by v, which is naturally an element of S,,.

Note that S,, acts simply on § and {F., .0, Fas.0,---» Fa, 1.0, Fa.1} is the set of rep-
resentatives of orbits. We say that F' € § is of type s; for 1 < i < n — 1 (resp. of type
o) if F' is in the orbit of F, o (resp. F5 1). For each A € 2 and each simple reflection s,
there exists a unique F' € § of type s which is adjacent to A.

Let Syor be the subgroup of S, generated by reflections along F € F», which is
isomorphic to and often identified with m X -+ x 8y, XxSy,. Then Syor acts simply on
2 and each orbit meets 2 exactly once; thus 2, is the set of representatives of 2/Syop.
Let T := {t, € S, | v € P} and define T, to be the subgroup of T generated by the
translations by a; € II. Note that 7y = 7 N Syer where the intersection is taken inside
Sy

There is another (left) action of S,, on 2 described as follows. Recall that for any
A € 2 and a simple reflection s € S,,, there exists a unique hyperplane F adjacent to A
which is of type s. We define s- A := A -rpg to be the image of A under the reflection
along F. It generates a well-defined left S,-action on 2 which commutes with the right
Sp-action described above; indeed, it is not hard to show that w - A;g = A;q - w for any
w € S,,. Furthermore, if we set A, = w- Ajq = A;q-w, then the map S,, = A : w — A,
is a bijection. (This is not the same convention as in [14, 1.1] but is the same as the one
n [14, 13.12].)

For each F' € §, there are two connected components of £ — F. We denote one of
these by E} (resp. E) where there exists t € T such that E}. -t contains the dominant
Weyl chamber (resp. there does not exist such t € T). We also call Ef. (resp. E) the
positive (resp. negative) upper half-space with respect to F'. Now for A, B € 2, we define
d(A, B) by

d(A,B) = > 1] - > 1

Fc3,ACER ,BEEL FcF,ACE} ,BEEL

Note that each sum in the formula is finite and thus it is well-defined. Furthermore, it
satisfies that d(A, B) + d(B,C) + d(C,A) = 0 for any A, B,C € . Now we define an
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order < on 2 as follows. For A, B € 2, we write A < B if there exists Ag, A1,..., A €U
such that Ag = A, Ay, = B, d(A;, A;y1) = 1, and A;44 is the image of A; under reflection
along some hyperplane in § for 0 < i < k — 1. Clearly A < B implies d(A, B) > 0, but
not vice versa.

In [14, Section 11], for any alcove A € 2 a corresponding “canonical basis” A° is
introduced which is an element of Z[gT!][2,] where ¢ is an indeterminate. (The element
AP is originally defined to be contained in a certain completion of Z[g*'][2y]. For type
A, it was proved later by [22] that this is indeed an element of Z[g*!][A,].) It can be
written as

B'= > papA,

A€y, A<B

where pa p is a polynomial in ¢~!. Furthermore, it is known that pa 4 = 1 and pa g €
q 'Z[g7] if A+# B.

For A € 2y, we let J(A) be the set of simple reflections s such that sA € A, and
sA > A. Now for A, B € A such that J(A) ¢ J(B), we define u(A4, B) = u(Awv B) to be

the coefficient of ¢~ in papif A< B,
w(A,B) = |1 if B < A = sB for some simple reflection s,

0 otherwise.

If 3(A) € J(B), we set (A, B) = u(A> B) = 0. Let Ty := (Ax, 11, J) be the corre-
sponding [1,n]-graph, where we identify the set of simple reflections of S,, with [1,n].
Then it is proved that fier is a S,,-graph, conventionally called a periodic W-graph.

Remark. There are two twists in this definition compared to the original one [14, 11.13].
First, this definition is taken from [14, 12.3], which is a W-graph complementary (in the
sense of [14, A.6]) to [14, 11.13]. In particular, the 7-function J here is not the same as
J but J therein. On the other hand, our definition of ;(A, B) is the same as that of [14,
11.13] instead of [14, 12.3]. This is because the definition of a W-graph in [14, A.2] is
the transpose of our convention. (cf. [20, Remark 1.1(a)])

10.2. Action of T on Ts

We recall the result in [14, 2.12]. The action of 7 permutes Syop-orbits in 2. Thus
there is a well-defined action of 7 on 2/Syor, and under the identification A/Syer ~ A
we regard it as an action on 2. For t € T, we write v(t) : 2, — 2 to denote such an
action. (Note that this is in general different from the (right or left) action of t on 2L.)
Then the kernel of this action is 7. Furthermore, if we let ©, be the set of alcoves in
A, adjacent to 0 € E, then D) is the set of representatives of such 7 /7-orbits. (This
follows from [14, 2.12(f)].)
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For o; € I —1IIy, we describe v(t,,) : 2\ — 2y explicitly as follows. According to [14,
2.12], there exists a unique w € Syor (Which depends on ;) such that A - (tq,w) € Ay
for any A € 2y, in which case we have y(to,)(A) = A - (to,w) by the definition of ~.
Thus it suffices to find w € Syor such that A;q - (to,w) € Ax. To this end, let p € E be
the sum of fundamental weights, i.e. p = 22:11 @ai. Then % € A;q; thus it suffices
to find w € Sxor such that (a; + £2) - w € Uyeq, 4, ie. 0 < (o, (o + 2) - w) < 1
for all @ € RY. Let j,k € [0,n] be such that aj,ay ¢ Iy, j < i < k, and oy € II,
if j <1 < kand! # i. (Here we adopt the convention that ag,a;, ¢ IIx.) In other
words, if i =n — 3%, A, then j =n — 3971 A, and k = n — 327 A,. We claim that
W= (Si—1 - 8j41)(Sit1 - Sk—1) = (Sit1 - Sk—1)(Si—1 -+ - 8j41). Indeed, if oy € IIy then
direct calculation shows that

DR Gy,
n

((aiJrB)'w,al): 7n—k—|—z ifl=FkK—1,
n n

1
— otherwise.
n

From this it easily follows that 0 < ((a; + £) - w,a) < 1 for all a € RY.
10.5. A bijection between Dy and RSYT(A)

Let Sﬁl C S, be the set of minimal coset representatives of S, /Sxor, where Syop =
Sy, oy X Sy, X Sy, naturally considered as a parabolic subgroup of S,,. Then it is easy
to show that ®, = {A,, | w € S)}. Using this, we define a bijection T : Dy — RSYT())
to be T(Ay,) = w- T where T°*" = T{*" is the unique row-standard Young tableau of
shape A whose reading word is [1,2, ..., n] and S, acts on RSYT()) by simply permuting
entries (and reordering entries in each row if necessary). Since the stabilizer of T°*" in
Sy, is Syop, this is indeed a bijection. Now we prove the following.

Lemma 10.1. i € des(Y(A,)) if and only if s; € J(Ay,), i.e. T “preserves the T-invariant”.

Proof. Let us first show that J(A,) N {s1,...,sn—1} = {s; | i € des(T(4Ay))}. If s = s;
for some 1 <i <n—1, then s € J(A4,) if and only if sA4,, = A, € Ay and A, < Agy.
However, as Ay, and A, are both in Dyny = {Ay |w € S, = 87(11")}, Ay < Agy if
and only if w > sw with respect to the usual Bruhat order on S,. Also if w > sw then
w € S implies sw € S). Therefore, we see that s € J(A,) if and only if w > sw if
and only if s is in the left descent set L(w) of w. On the other hand, the reading word
of w-T" is equal to [w(1l),w(2),...,w(n)] by definition (no reordering is necessary as
w € S7), which means that i € des(w - T°*") if and only if s; € L(w) for 1 <i <n — 1.
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It remains to show that s, € J(A,) if and only if n € des(w - T°*"). Let p € E be
the sum of fundamental weights. Then £ € A;4; thus 2 - w € A, and £ - sow € Agpp.
Therefore, sg € J(Ay,) if and only if

o 50 Ay €Ay, ie. 0< (2 sow,a) < 1 for a € RY, and
26w € Qs - for some a € Rt where @ € R

n

o Aspw > Ay, ie £osow— 2w =
is the highest root.

By direct calculation, we see that the first condition is satisfied if and only if there is no
t such that Zéc:tJrl A < w™ (1), w (n) < Zizt Aj, which is equivalent to that 1 and
n are not in the same row of w - T°". Moreover, the second condition is satisfied if and
only if w™1(1) < w™!(n). Thus w satisfies both conditions if and only if 1 is in the lower
row than n in w - 7", which is also equivalent to n € des(w - T°*"). 0O

Let us extend Y to Y : Ay, — RSYT()) in a way that for any t € 7 and w € S} we
have Y(v(t)(Ay)) := YT(Ay). This is well-defined since D is the set of representatives
of the y-action of T on 2. On the other hand, we may also extend the action of S,, on
RSYT()) to S,, where sq acts on RSYT()) by switching 1 and n and reordering entries
of each row if necessary. (This action is well-defined.) Then we have the following.

Lemma 10.2. For any w € S,, such that A,, € Ay, we have T(A,) = w - T,

Proof. It is apparent when w € S (or A,, € D)) by the definition of Y. First we consider
the situation when A, = y(ta,)(Ay) for some i € [1,n — 1] and w’ € S} and prove
T(A,) = w-T". Since y(tq,) is trivial when «; € Ty, it suffices to assume otherwise.
(The argument below also works, mutatis mutandis, for the A,, = y(t_,,) (A ) case.)

By direct calculation, we have t,, = $; - ($;—1-+-81) (Sit1 " Sn—1) S0 (81" Si—1)"
(Sp—1---Si+1) as an element in S,,. Therefore, from the result in Section 10.2 we deduce
that y(ta,)(Aw) = Aw -Si-(Si—1---51) - (Sit1 -+ Sn—1)-S0-(S1---8j)-(Sp—1 - - - Sk), where
j,k € [0,n] are chosen such that if i = n — 3.%_, A, for some a then j =n — 3%F1 ),
and k =n — ZZ;} Az. Thus for the claim it suffices to show that w’ - (s; - (s;_1--51) -
(Si41 " Sn_1) - S0« (517 8;) « (Sne1--sp)) - T = w' - TN ie. s+ (si1- - 51) -
(Sit1--Sn—1) - S0 (s1---85) - (Sp—1---8k) - T = T or equivalently s¢ - (s1---s;) -
(St sp) - T = (8; - (851~ 51)  (Sit1 -~ Sn_1))~L - T,

It is easy to show that (sy---s;) - (sp—1---sk) = [2,3,...,7+ 1,1, +2,....k —

Ln,k,....,n — 1] and (s; - (si_1---51) * (Siz1--8n_1))"F = [2,3,...,5 + 1,j +
2,...,4,n,1,9+1,...,k—1,k,...,n — 1]. Therefore, (s1---5;) - (Sn—1---8k) - T°*" and
(si(8i—1++-81) (Siz1-+8p_1)) "L+ T are the same except two rows {i + 1,...,k —

1,n},{1,7+2,...,i} in the former and {1,i+1,...,k—1},{j+2,...,i,n} in the latter.
Now it is clear that sy interchanges these two tableaux, which implies the claim.

Let us now consider a general case, i.e. when A, = 7(t)(A,) for some w’ € S
and t € T. As T is a free abelian group generated by t,, for i € [1,n — 1], we may
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write t = Z?;ll city, for some ¢; € Z. Then the statement follows from induction on
-1
Yoy el D

10.4. Lusztig’s conjecture

Here we prove [14, Conjecture 13.13(b)] for type A, one of the conjectures of Lusztig
relating periodic W-graphs and left cells of W, using affine matrix-ball construction ([6],
[7]). For a partition A, we set 7% = T to be the standard Young tableau obtained from

T by flipping it along the horizontal axis and pushing boxes up so that the shape
1[3[4[8]
becomes A again. For example, we have T&S 31) = 2 6]7]

13, =

For 1 < ¢ < I(\), define r;(id) to be an element in S, whose window notation is
1,2,....,s—1,s+1,...,t — 1,t,s + n,t + 1,...,n] where s = 1+Z§.(:)‘2+1)\j and t =
Zi(:)\z) Aj. In other words, 7;(id) sends s, s+1,...,t—1to s+1,s+2,...,t respectively, and
tto s+n. Now we set 7; : S, — Sy, to be ri(w) = w-r;(id). (As a result, the two definitions
of r;(id) coincide.) If T, is a Young tableau of shape A whose reading word is the same
as [w(1),w(2),...,w(n)] for some w € S,, then the action r; corresponds to replacing
the i-th row of Ty, say (a1,as,...,ax), with (as,...,ar,a; + n). Also, the y-action of
T /Tx on 2y is equivalent to the action of {ai171 4 --- + ay\ryn) | @1 + -+ + a0y = 0}
on {w €S, | A, € Ay}

Note that u € S; if and only if u € S, and u(i) < u(j) for any 4,j such that
ZL@:H A <i<j< Zﬁc(;\,)t ); for some t € [1,1(\)]. Set w € S,, to be w = (ayry + -~ +
ainTi(ny) -u for some ay, ..., ay(yy. (Here we allow w to be in ;S'\;fS_n) Let T, be a Young
tableau whose reading word is the same as the window notation [w(1),w(2),...,w(n)]
of w. Then entries of T, are increasing along rows, if a,b are entries of T}, contained in
the same row then |a — b| < n, and the residues modulo n of the entries of the i-th row
of T, are the same as those of T(A,), since these properties are preserved by the action
of r; for any i € [1,I(\)]. (When w € S,, we also have A,, € Ay and Y(4,) = T(A,).)
Now we prove the following theorem.

Theorem 10.3. Suppose that the entries of Ty, are also increasing along columns. If
(P,Q, 7) is the image of w under affine matriz-ball construction (defined in [6], [7]),
then P =T(Ay), Q =T, and B = (a1, az,...,a,)).

Proof. As entries of T, are increasing along columns, it is easy to show that if b is on
the lower row than a in Ty, then b+ n > a (regardless of the columns in which a and
b are contained). Now let us consider the asymptotic realization of affine matrix-ball
construction [7, Section 7] and note that P can be obtained by taking the (asymptotic)
residue modulo n of the insertion tableau of the infinite sequence (w(1),w(2),...) under
the usual Robinson-Schensted correspondence. However, the observation above implies
that if [i/n] < [j/n] then w(j) does not bump w(i) in the column insertion process.
(Here, [a] is the smallest integer which is not smaller than «.) Therefore, the input
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of each period (w(an + 1), w(an + 2),...,w(an + n — 1)) for any a € N under column
insertion becomes the same as T, shifted by an, i.e. an + T,,. By [7, Corollary 7.5], this
means that P and T, have the same residues modulo n in each row and thus P = T(4,,).

We argue similarly for the @ part. Remark ([7, Remark 7.7]) that Q can be obtained by
taking the (asymptotic) residue modulo n of the insertion tableau under the Robinson-
Schensted correspondence, say Q, of the infinite sequence (w="(z),w!(x + 1),...) for
any x € Z, or more precisely the two-line array

( T z+1 T+ 2 z+3 )
wiz) wilz+1) wiz+2) wi(z+3) :

Choose z such that {w=(z),w ™ (x +1),...,} D Zso (which is true for any sufficiently
small z). Then by flipping the array above and reordering if necessary so that the first
row becomes increasing, we see that all but a finite number of entries of Q are the same
as those of the recording tableau of the two-row array

( 1 2 3 4 - )
w(l) w(2) w3) wi@) ---)°
It follows that @ is obtained by taking the (asymptotic) residue module n of the recording
tableau of (w(1),w(2),...). Then one can show that @) = T2° using the argument similar
to the P part as above. (Note that 7% = T%" is the recording tableau of the reading word
of any tableau of shape A\ whose entries are increasing along both rows and columns.)
It remains to discuss the 7 part. To this end we freely use notations and results
in [7]. From the assumptions on w, we see that {(z,w(z)) | n — A\ < = < n} and
its translates by Z - (n,n) in Z x Z are the southwest channel of w and each zigzag
consists of balls corresponding to each column of T, and its translates by Z - (n,n).
This means that the window notation of fw(w) is obtained from inserting some {) in the
sequence (w(1),w(2),...,w(n—Ap)). Thus we may use induction on the number of rows
to conclude that 7 = (y,as,...,a;)) for some y € Z. Now by [7, Lemma 10.6] and

the comment thereof we have y + Zi(:’\% a; =1 Z;‘:l(w( j) —Jj), where the latter term is

equal to Zi(_j‘l) a;. (The action of each r; increases 1 Z?:I(w(j) — j) exactly by 1.) Thus

y = a1 and the result follows. 0O

Remark. This confirms [14, Conjecture 13.13(b)] for type A. Indeed, t € T is “large” as
described therein if and only if a; < az < -+ < a(»), which implies that entries of Ty,
are increasing along columns.

10.5. Quotient offier by v(T)

Here we construct the quotient of Ty = (A, u,J) by the action of (7T), de-
noted by fium. To this end, first observe that (the complementary version of)
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[14, Proposition 11.15] shows that u(4,B) = u(y(t)(A),v(t)(B)) for any t € T and
A, B € 2. Also, we need the following lemma.

Lemma 10.4. For t € T and A € Ay we have J(A) = T(y(t)(A)).

Proof. Recall that J(A) is the set of simple reflections s such that s- A € A, and
s+ A > A. By symmetry, it suffices to show that if s € J(A) then s € J(y(t)(4)), i.e.
s-y(t)(A) € Ay and s-y(t)(A) > v(t)(A). First, note that s-v(t)(A) = y(t)(s- A) (when
s- A € 2,) since y-action is defined in terms of the right action of S,. Thus the first
part is clear. For the second part, it suffices to show that y-action preserves the order >
on 2Ay. From the definition of >, it suffices to show that y-action preserves the function
d: Ay x Ay — Z. But this follows from [14, 2.12(c)]. O

We are ready to define fium = (V,m, 1) as follows. First we set V"= RSYT()\) which
is identified with the v(7)-orbits of 2 under the bijection 2 /v(T) ~ D RN RSYT(A).
We also set 7 = des. Then for any A € 2 in the v(7)-orbit parametrized by 7', we have
s; € J(A) if and only if i € des(T) by Lemma 10.1 and 10.4. Finally, for T, 7" € RSYT())
we define m(T,T") = > 5 11(A, B), where A is an element in the y-orbit parametrized by
T and the sum is over all B in the y-orbit parametrized by T”. We claim that this is well-
defined. Indeed, even if each y-orbit contains infinitely many alcoves in general, (A, B)
is zero for all but finitely many B because of the result of [22] and [14, Consequence
13.8]. Furthermore, as p : Ay x Ay — Z is invariant under vy-action, m(7T,T") does not
depend on the choice of A.

It is not hard to show that fint satisfies the defining conditions of a S,-graph de-
scribed in Section 3.2 provided that so does ficr. Thus Fium is a S,-graph. Also, it
defines a finite-dimensional representation of the Hecke algebra of S,, constructed in [14,
0.3] where the homomorphism Z[¢*2][T] — K therein (K is a field of characteristic 0)
corresponds to the trivial representation of 7.

10.6. Properties of fium under nonnegativity assumption on

It is conjectured [14, Conjecture 13.16] that coefficients of p4 p are nonnegative inte-
gers for any A, B € 2, which in particular implies that pu(A, B) > 0. (To the authors’
best knowledge it is still open.) Here, we assume the nonnegativity of u-function and

. . —=per —=quot
discuss some properties of I'y ~ and I'y

Lemma 10.5. Suppose that u(A,B) > 0 for any A, B € Ax. Then fier = Ay, 1, T3) is
—=quot

admissible and Ty = (RSYT(\), m,des) is nb-admissible.

Proof. First impu C N by assumption, which also implies that imm C N. Also, fier
(resp. fint) satisfies the Simplicity Rule by [20, Remark 4.3], which implies that
(A, B) = u(B, A) (vesp. m(T,T') = m(T',T)) whenever J(A) and J3(B) (resp. des(T)
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and des(T”)) are not comparable. Finally, T - is bipartite as a result of [14, Proposition
11.12]; one may choose the color of each vertex A € 2, to be the residue of d(A, A;q)
modulo 2. O

The next proposition describes the simple underlying graph of fint

Proposition 10.6. Suppose that u(A, B) > 0 for any A, B € ). Then U(fium)

~ Dy.
Proof. Suppose we are given T,T" € RSYT()\) and let Or and O be ~-orbits in 2
parametrized by T and T” respectively. If there exists an undirected edge between T and
T in T3, or m(T, T') = m(T',T) = 1, then 3" pe oo, #(A0, B) = Y 4c o, #(Bo, A) = 1
where Ay € Or and By € Op are arbitrary. Also des(T") and des(7”) are incomparable,
or equivalently J(A) and J(B) are incomparable for any A € Or and B € Op. Since
imp C N, there exists a unique B € Ops such that u(Ag, B) = 1, which we may set
to be By. Then as fier is admissible we have u(By, Ag) = 1 as well, i.e. there exists an
undirected edge between Ag and By in fier. From the definition of y, this is only possible
if there exists a simple reflection s € S,, such that By = s - Ag. Thus by Lemma 10.2 it
follows that T and T are connected by a single Knuth move.

Conversely, this time let us assume that T,7' € RSYT()A) are connected by a sin-
gle Knuth move. Then for any A € Op, there exists a simple reflection s € S, such
that s- A € Op again by Lemma 10.2. Thus by [14, Corollary 11.7] together with the
fact that T satisfies the Simplicity Rule, we have u(A4, B) = u(B, A) = 1. It follows
that m(T,T"),m(T’,T) > 1 by the nonnegativity assumption of u, which implies that
m(T,T") = m(T",T) = 1 as T1"*" satisfies the Simplicity Rule. O

Now the following theorem is a natural consequence.

Theorem 10.7. Suppose that u(A,B) > 0 for any A,B € . Then for any two-row
partition \, we have T'y ~ fium

Proof. If A\ consists of two rows of unequal length, then it follows from Theorem 8.7.
Thus suppose that A\ consists of two equal rows. By Theorem 9.11, it suffices to show
that there exists an embedding I'y — fint. By Corollary 9.8, it suffices to show that
if there exists a directed edge T — T’ (of weight 1) in Ty for T and T" in different
simple components then the same directed edge appears in fint (with weight 1). To
this end, let O and O/ be the y-orbits in A, parametrized by T and T" respectively.
As T — T’ is always a move of the first kind by Lemma 9.10, there exists a simple
reflection s € S, such that 7' = s - T. This means that for any A € Or we have
s € J(A) and s- A € Op:. Now [14, Corollary 11.7] and [14, Lemma 11.9] imply that
m(T,T") =3 peo,, MA,B) = u(A,s- A) = 1; thus the result follows. O
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