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1. Introduction

In their groundbreaking paper [10] Kazhdan and Lusztig laid the groundwork for an 
approach to the representation theory of Hecke algebras. Since then this approach has 
been significantly developed, and is called Kazhdan-Lusztig theory. Of special importance 
are the W -graphs that encode representations of Hecke algebras in a combinatorial way. 
Those are certain directed graphs with additional data given at vertices and edges. 
Certain W -graphs arise from Kazhdan-Lusztig cells in a canonical way, to which we refer 
as Kazhdan-Lusztig W -graphs. Stembridge [20] has introduced a class of W -graphs called 
admissible, they include, but are not limited to, Kazhdan-Lusztig W -graphs. Giving an 
explicit elementary description of W -graphs in a conceptual way is an excruciatingly 
hard task, and constitutes one of the major problems in algebraic combinatorics and 
representation theory.

There are two kinds of edges in W -graphs: undirected and directed. It is easier to 
understand the undirected edges; one could say that this problem is tame. For example, 
in type A the undirected edges of Kazhdan-Lustig W -graphs are given by Knuth moves
[12] on permutations. If one restricts the information contained in a Kazhdan-Lusztig 
W -graph in type A to undirected edges, one obtains a dual equivalence graph of Haiman 
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[9]. The latter are well-understood; notably Assaf [2] has given a local characterization 
of dual equivalence graphs, similar to that of W -graphs by Stembridge [20].

On the other hand, understanding the directed edges appears to be a wild problem. 
Chmutov [4] has shown that in an admissible W -graph of an irreducible representation in 
type A the undirected edges must form one of the dual equivalence graphs, i.e. coincide 
with undirected edges of one of the Kazhdan-Lusztig W -graphs. Nguyen [16] further 
strengthened this to say that the directed edges must coincide with those of a Kazhdan-
Lusztig W -graph as well, i.e. that in type A all irreducible W -graphs are Kazhdan-
Lusztig. This was originally a conjecture by Stembridge; see [20]. Despite these strong 
results, in finite type A an explicit construction of W -graphs is known only for hook 
shapes [8] and two-row shapes; see [23] where it is attributed to Lascoux-Schutzenberger. 
In Section 7.4 we give an equivalent formulation of the latter construction in terms of 
tableaux, as opposed to strand diagrams.

As one passes to affine type A, a lot less is known. In this case Kazhdan-Lusztig cells 
are labeled by tabloids, as opposed to standard Young tableaux in finite type A. One 
can still restrict Kazhdan-Lustig W -graphs to undirected edges, connected components 
of the resulting graph being Kazhdan-Lusztig molecules in Stembridge’s terminology 
[21]. A comprehensive description of those was recently given by Chmutov, Yudovina, 
Lewis and the second coauthor [6,7]. The majority of Kazhdan-Lusztig molecules are 
infinite, and the majority of Kazhdan-Lusztig cells contain infinitely many molecules. 
This is in sharp contrast to type A, where each Kazhdan-Lusztig cell is unimolecular 
and finite.

Affine dual equivalence graphs were introduced in [7] as natural quotients of affine 
Kazhdan-Lusztig molecules (not to be confused with a similar notion introduced by 
Assaf and Billey in an unrelated context [1]). Unlike molecules, affine dual equivalence 
graphs are always finite. A natural question arises of whether affine dual equivalence 
graphs can be enriched by directed edges to obtain genuine W -graphs, and whether such 
enrichment is unique.

The first goal of this paper is to answer this affirmatively for two-row shapes. In 
Section 4.1 we give a concrete combinatorial rule for construction of the W -graphs the 
undirected part of which coincides with two-row affine dual equivalence graphs of [7]. 
This constitutes the first non-trivial family of purely combinatorial constructions of fi-
nite W -graphs in an affine type. (Other examples, based on representation theory, can 
be obtained from taking certain quotients of Lusztig’s periodic W -graphs [13,14]; see 
Section 10 for more details.) The resulting W -graphs have the property that when re-
stricted to a finite Hecke algebra, one obtains modules whose Frobenius character (in 
the sense of Ram [17]) is a Hall-Littlewood symmetric function.

The W -graphs constructed in this paper are manifestly non-bipartite. This is a strong 
indication that the bipartiteness condition often imposed in literature on W -graphs is 
not essential, and can be ignored. For example, it can be dropped from Stembridge’s def-
inition of admissible W -graphs, leaving the majority of the results unchanged. Similarly, 
recent impressive results of Nguyen [16] remain true if the bipartiteness requirement is 
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omitted. In all relevant cases the original proofs carry through essentially verbatim; see 
Section 7.2.

The second goal of the paper is to show uniqueness of our construction assuming 
admissibility (except bipartiteness) of W -graphs. In Section 8 we show that our con-
struction of W -graphs is unique for shapes (a, b), a �= b, and is almost unique for shapes 
(a, a).

Finally, we invoke the notion of periodic W -graphs introduced by Lusztig in [14] and 
how they are related to our construction. In general, periodic W -graphs are different from 
the usual Kazhdan-Lusztig W -graphs attached to cells and have periodicity as their name 
indicates. Under a certain finiteness assumption, which is proved by Varagnolo [22] for 
type A, one can take their quotients using this periodicity and obtain finite W -graphs of 
affine type. In this paper, we prove that our construction is isomorphic to such quotients 
of periodic W -graphs if we assume positivity of edge weights on the latter. We conjecture 
this to be true for all shapes, not just two-row ones.

We believe that our construction of W -graphs provides important and useful examples 
in terms of representation theory. Here we discuss some possible applications to Springer 
theory. Firstly, Fung [8] studied the connection between the components of Springer fibers 
and W -graphs for two-row and hook shapes (in which case the description of a W -graph 
is explicitly known). Likewise, one can consider the components of an affine Springer 
fiber, originally defined by Kazhdan-Lusztig [11], which is currently one of the central 
objects in geometric Langlands program. It is very interesting to ask if an analogous 
statement to Fung’s is valid for affine Springer fibers and W -graphs of affine type.

Furthermore, it is known that periodic W -graphs provide a certain “canonical basis” 
of the (equivariant) K-theory of Springer fibers [15], which is in deep connection with 
modular representation of reductive Lie algebras and noncommutative Springer resolu-
tion [3]. Even though the equivalence of our construction and the quotient of periodic 
W -graphs relies on the positivity conjecture which is still open as of now, we hope that 
the examples constructed in this paper are useful in practice when investigating such 
topics.

This paper is organized as follows. In Section 2, we introduce definitions and notations 
which are frequently used in this paper. In Section 3, we recall the notion of W -graphs 
and discuss their properties. In Section 4, we construct a graph Γλ for a two-row partition 
λ and study its properties. Here, we also state one of our main results that Γλ is actually 
a W -graph of affine type A, whose proof is completed in Section 5 and 6. In Section 7, we 
discuss the restriction of Γλ to the finite symmetric group. In Section 8 and 9, we prove 
that Γλ satisfies certain uniqueness statement. In Section 10, we recollect the notion of 
Lusztig’s periodic W -graphs and show how our construction of Γλ is related to his graph 
under certain positivity assumption.

Acknowledgment. The authors thank George Lusztig for his helpful comments on pe-
riodic W -graphs. They also wish to thank the anonymous referee for their detailed 
comments and suggestions on the draft of this paper.
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2. Definitions and notations

2.1. Symmetric groups

Throughout this paper we let n ≥ 3 be a given natural number. Define Sn to be the 
symmetric group permuting {1, 2, . . . , n}. We often regard it as a Coxeter group with the 
set of simple reflections I = {s1, s2, . . . , sn−1} where si is defined to be the transposition 
swapping i and i +1. We define Sn and S̃n to be the affine symmetric group and extended 
affine symmetric group, respectively. They are usually realized as

S̃n := {w ∈ Aut(Z) | w(i + n) = w(i) for any i ∈ Z},

Sn := {w ∈ S̃n |
n∑

i=1
w(i) = n(n + 1)/2}

where Aut(Z) is the set of permutations of Z. (Note that Sn is naturally identified 
with a subgroup of both Sn and S̃n consisting of the elements that preserve the set 
{1, 2, . . . , n}.) For w ∈ S̃n, its window notation is given by [w(1), w(2), . . . , w(n)]. 
It is clear that the window notation completely determines the element w. We also 
write w = [w(1), w(2), . . . , w(n)] to describe the element w. For example, we have 
id = [1, 2, . . . , n]. Note that Sn is a Coxeter group with the set of simple reflec-
tions I = {s0 = sn, s1, s2, . . . , sn−1} where si = [1, 2, . . . , i − 1, i + 1, i, i + 2, . . . , n]
for 1 ≤ i ≤ n − 1 and s0 = sn = [0, 2, . . . , n − 1, n + 1]. Define ω ∈ S̃n to be 
ω = [2, 3, . . . , n, n + 1], called the cyclic shift element. Then conjugation by ω defines an 
outer automorphism on Sn and we have S̃n = Sn � 〈ω〉.

2.2. Partitions

We say that λ is a partition of n if λ is a finite sequence of integers, i.e. λ =
(λ1, λ2, . . . , λl) where λ1, . . . , λl ∈ Z, which satisfies that λ1 ≥ λ2 ≥ · · ·λl > 0 and ∑l

i=1 λi = n. In this situation we also write λ � n and |λ| = n, and say that the size of 
λ is n. The length of λ, denoted l(λ), is its length considered as a sequence of (positive) 
integers. We usually identify a partition with its corresponding Young diagram (in terms 
of English convention) and thus its parts are often called rows.

2.3. Young tableaux

Let RSYT(n) (resp. SYT(n), SSYT(n)) be the set of row-standard (resp. standard, 
semistandard) Young tableaux of size n. Here we say that a Young tableau T is row-
standard if 1) each of 1, 2, . . . , n appears in T exactly once and 2) the entries of T
are increasing along rows (but not necessarily along columns). We also regard SYT(n)
naturally as a subset of RSYT(n). For a partition λ � n, we also let RSYT(λ) ⊂ RSYT(n)
(resp. SYT(λ) ⊂ SYT(n), SSYT(λ) ⊂ SSYT(n)) be the subset of such tableaux of shape 
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λ. In addition, for a sequence of positive integers μ = (μ1, . . . , μl) such that 
∑l

i=1 μi = n

(which is not necessarily a partition), we set SSYT(λ, μ) ⊂ SSYT(λ) to be the set of 
semistandard Young tableaux of shape λ and content μ.

For a tableau T , define Sh(T ) to be the shape of T . We often regard a tableau T as a 
sequence of integer sequences (T 1, T 2, . . . , T l(λ)) where each T a is the a-th row of T . For 
such T , we define the reading word of T to be the concatenation T l(λ) · · ·T 2T 1 (from 
bottom to top), considered either as a word or a sequence. Finally, for a tableau T we 
set T↓[1,i] to be the tableau obtained from T by removing boxes containing entries not 
in {1, 2, . . . , i}.

2.4. Robinson-Schensted-Knuth map on row-standard Young tableaux

We define the Robinson-Schensted-Knuth map on RSYT(n) as follows. For T ∈
RSYT(n), consider the two-line array whose second row is the reading word of T and 
whose first row records l(Sh(T )) + 1−(the row number) of corresponding entries. For 
example, the two-line array corresponding to

T =
2 4 5 7
3 6 9
1 8

is given by
(

1 1 2 2 2 3 3 3 3
1 8 3 6 9 2 4 5 7

)
.

We define RSK(T ) := (P (T ), Q(T )) to be the image of this two-line array under the usual 
Robinson-Schensted-Knuth correspondence; see [12, Section 3]. Thus in particular P (T )
is a standard Young tableaux and Q(T ) is a semistandard Young tableaux of content 
λop, where λop is obtained from reversing the sequence λ. For example, if T is as above 
then we have

P (T ) =
1 2 4 5 7
3 6 9
8

, Q(T ) =
1 1 2 2 3
2 3 3
3

.

We define FinSh(T ) to be the shape of P (T ). Note that FinSh(T ) ≥ Sh(T ) with respect 
to dominance order, and FinSh(T ) = Sh(T ) if and only if T is standard.

2.5. Residues and intervals

For k ∈ Z, we let k be the unique element in {1, 2, . . . , n} congruent to k modulo n. For 
example, we have −1 = n −1, 0 = n, etc. For a, b ∈ Z, we define [a, b] := {x ∈ Z | a ≤ x ≤
b}. Similarly, for a, b ∈ {1, 2, . . . , n} we define �a, b� := {a + x− 2 | 2 ≤ x ≤ b− a + 2}. 
For example, if n = 5 then �1, 5� = �2, 1� = ∅, �3, 3� = {3}, and �4, 2� = {4, 5, 1, 2}. 
(Note in particular that ∅ = �1, 5� �= [1, 5] = {1, 2, 3, 4, 5}. The reason for adopting such 
a convention for � , � will be apparent in Section 4.1.)
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2.6. Descents and Knuth moves

For T ∈ RSYT(λ) we define the (affine) descent set of T to be des(T ) := {i ∈ [1, n] |
i lies in a strictly higher row of T than i + 1} following [6, Definition 3.4]. Similarly, for 
T ∈ SYT(λ) we define the (finite) descent set of T to be des(T ) := des(T ) − {n}. For 
T, T ′ ∈ RSYT(λ), we say that T ′ is obtained from T by a Knuth move or T and T ′ are 
connected by a (single) Knuth move if des(T ) and des(T ′) are not comparable and T ′ is 
obtained from T by interchanging i and i + 1 for some i ∈ [1, n] (and reordering entries 
in each row if necessary).

Remark. If T, T ′ ∈ SYT(λ), one may be tempted to define a finite analogue, i.e. if des(T )
and des(T ′) are not comparable and T ′ is obtained from T by interchanging i and i + 1
for some i ∈ [1, n − 1] (without reordering rows after). However, one can easily check 
that if T, T ′ ∈ SYT(λ) then these two notions are in fact equivalent; thus there is no 
need to differentiate affine and finite Knuth moves.

3. W -graphs

Here we recall the notion of W -graphs. Basic references are [10] and [20].

3.1. I-labeled graphs

Suppose for now that W is a Coxeter group with the set of simple reflections I. We 
say that Γ = (V, m, τ) is an I-labeled graph if

(1) m is a map m : V × V → Z[q± 1
2 ].

(2) τ is a map τ : V → P(I), where P(I) is the power set of I.
(3) For each v ∈ V , {w ∈ V | m(v, w) �= 0 or m(w, v) �= 0} is a finite set.

Moreover, we say that Γ is finite if |V | < ∞. Conventionally, if m(u, v) �= 0 (resp. 
m(u, v) = 0) for u, v ∈ V then we say that there is an (directed) edge from u to v of 
weight m(u, v) (resp. there is no edge from u to v). In order to avoid confusion, we also 
write m(u � v) instead of m(u, v).

We say that Γ′ = (V ′, m′, τ ′) is a I-labeled subgraph (or simply subgraph) of Γ if 
V ′ ⊂ V , τ ′(v) = τ(v) for v ∈ V ′, and m′(u �v) ∈ {m(u �v), 0} for u, v ∈ V ′. Furthermore 
if m′(u � v) = m(u � v) for all u, v ∈ V ′, then we say that Γ′ is a full subgraph of Γ. For 
two I-labeled graphs Γ = (V, m, τ) and Γ′ = (V ′, m′, τ ′), an embedding f : Γ′ → Γ is 
a function f : V ′ → V such that there exists a subgraph Γ′′ of Γ and f restricts to an 
isomorphism f : Γ′ � Γ′′.

Remark. Note that our definition is weaker than that of [20, p. 347] as we allow (locally 
finite but) infinite W -graphs. Indeed, a (locally finite) W -graph with infinite vertices will 
naturally appear in our paper when we discuss periodic W -graphs.
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3.2. W -graphs

Let HW be the Iwahori-Hecke algebra of W over Z[q± 1
2 ], which is a quotient of the 

braid group of W with generators Ti for i ∈ I by quadratic relations (Ti−q)(Ti +1) = 0. 
An I-labeled graph Γ = (V, m, τ) is called a W -graph if the formula

Ti(u) =

⎧⎪⎨⎪⎩
qu if i /∈ τ(u)

− u + q
1
2

∑
v:i/∈τ(v)

m(u � v)v if i ∈ τ(u)

gives rise to a HW -module structure on 
⊕

v∈V Z[q± 1
2 ]v. Note that this is a transposed 

form compared to the original definition in [10] and coincides with the one in [20]. (Also 
see [14, A.3] for similar definition.)

3.3. Reduced I-labeled graphs

Suppose that Γ = (V, m, τ) is an I-labeled graph. We say that Γ is reduced if m(u �v) =
0 whenever τ(u) ⊂ τ(v). This notion is motivated from the fact that the values m(u � v)
when τ(u) ⊂ τ(v) do not appear in the above formula for Γ being a W -graph. In this 
paper we only deal with reduced I-labeled graphs.

3.4. Parabolic restriction of I-labeled graphs

For a subset J ⊂ I, the parabolic restriction of an I-labeled graph Γ = (V, m, τ), 
denoted Γ↓J = (V ′, m′, τ ′), is a J-labeled graph such that V ′ = V , τ ′(v) = τ(v) ∩J , and 
m′(u � v) = m(u � v) if τ ′(u) �⊂ τ ′(v) and m′(u � v) = 0 otherwise. Then Γ′ is clearly a 
J-labeled graph. Furthermore, if Γ is a (reduced) W -graph, then it is easy to show that 
Γ′ is a (reduced) WJ -graph where WJ ⊂ W is the parabolic subgroup generated by J . 
(cf. [20, 1.A])

3.5. (nb-)Admissible I-labeled graphs

For a I-labeled graph Γ = (V, m, τ), we say that Γ is admissible if imm ⊂ N =
{0, 1, 2, . . .}, m(u � v) = m(v �u) if τ(u) and τ(v) are not comparable, and Γ is bipartite. 
However, in our case it is crucial to consider W -graphs which are not necessarily bipartite. 
We say that Γ is nb-admissible if it is admissible but possibly not bipartite. Later we 
will see that dropping this assumption does not cause any problem for our argument.

3.6. Simple underlying graph

For an I-labeled graph Γ = (V, m, τ), we define its simple underlying graph U(Γ) =
(V ′, m′, τ ′) to be an I-labeled graph such that V ′ = V, τ ′ = τ , and m′(u �v) = m′(v�u) =
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1 if m(u � v) = m(v � u) = 1 and m′(u � v) = m′(v � u) = 0 otherwise. Note that U(Γ)
is canonically a subgraph of Γ obtained by removing “directed” and “non-simple” edges. 
Furthermore, U(Γ) is always a simple (I-labeled) graph.

3.7. (nb-)Admissible W -graphs and Stembridge’s theorem

For simplicity, from now on we assume that W is simply-laced. For a W -graph Γ =
(V, m, τ), we introduce four combinatorial rules that it should satisfy.

1. The Compatibility Rule. If m(u � v) �= 0 for u, v ∈ V , then any i ∈ τ(u) − τ(v) and 
any j ∈ τ(v) − τ(u) are adjacent in the Dynkin diagram of W .

2. The Simplicity Rule. If m(u � v) �= 0 for u, v ∈ V , then either [τ(u) ⊃ τ(v) and 
m(v � w) = 0] or [τ(u) and τ(v) are not comparable, and m(u � v) = m(v � u) = 1].

3. The Bonding Rule. For any i, j ∈ I adjacent in the Dynkin diagram of W , if u ∈ V

satisfies i ∈ τ(u) and j /∈ τ(u) then there exists a unique v ∈ V such that i /∈
τ(v), j ∈ τ(v), m(u � v) �= 0, and m(v � u) �= 0.

4. The Polygon Rule. For i, j ∈ I, we define Vi/j = {v ∈ V | i ∈ τ(v), j /∈ τ(v)}. For 
u, v ∈ V such that i, j ∈ τ(u) and i, j /∈ τ(v), set

N2
ij(Γ;u, v) =

∑
w∈Vi/j

m(u � w)m(w � v),

N3
ij(Γ;u, v) =

∑
w1∈Vi/j ,w2∈Vj/i

m(u � w1)m(w1 � w2)m(w2 � v).

(These sums are well-defined due to local finiteness assumption.) Then we have 
Nr

ij(Γ; u, v) = Nr
ji(Γ; u, v) for such u, v ∈ V and i, j ∈ J . Here r = 2 or r = 3, and 

the latter case is only considered when i and j are adjacent in the Dynkin diagram 
of W .

The main theorem of [20] is that these rules characterize the combinatorial properties of 
admissible I-labeled graphs being a W -graph. Here we generalize his theorem slightly as 
follows.

Theorem 3.1 (See [20, Theorem 4.9]). Let Γ be an nb-admissible (reduced) I-labeled 
graph. Then Γ is a W -graph if and only if it satisfies the four combinatorial rules above.

Proof. Indeed, the original proof of Stembridge does not use the bipartition assumption; 
thus his proof is directly applied to our case. �
3.8. Cells and simple components

For an I-labeled graph Γ = (V, m, τ), we define its cells to be its strongly connected 
components, which is naturally a full subgraph of Γ. Also, a simple component of Γ is 
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defined to be a full subgraph of Γ whose simple underlying graph is connected. Note 
that these two notions do not coincide for I-labeled graphs; each simple component is a 
subgraph of a cell but not vice versa in general.

4. Sn-graph Γλ for two-row partitions

4.1. Definition of Γλ

From now on, we set W = Sn and I = {s0 = sn, s1, . . . , sn−1}. We also identify I-
labeled graphs with [1, n]-labeled graphs in an obvious manner. Define the [1, n]-labeled 
graph Γλ = (V, m, τ) for the two-row partition λ as follows. Set V = RSYT(λ) and 
τ = des (see Section 2.6 for the definition of des). For any S, T ∈ RSYT(λ), m(S � T )
is equal to either 0 and 1. If m(S � T ) = 1, then we say that there is a move from (the 
source) S to (the target) T , which falls into one of the following cases.

1. (Move of the first kind) T is obtained from S by interchanging i and i + 1 when 
i ∈ S1 and i + 1 ∈ S2, i.e.

S =
· · · i · · ·
· · · i + 1 · · ·

→ T =
· · · i + 1 · · ·
· · · i · · ·

.

This move is denoted by i↖↘ i + 1 or i + 1↗↙ i.
2. (Move of the second kind) T is obtained from S by interchanging i and j when 

i ∈ S2, j ∈ S1, and i �= j + 1 (it becomes a move of the first kind if i = j + 1), i.e.

S =
· · · j · · ·
· · · i · · ·

→ T =
· · · i · · ·
· · · j · · ·

.

This move occurs if and only if the following conditions are satisfied:
(a) j − i is odd.
(b) i + 1 ∈ S1 and j − 1 ∈ S2.
(c) Either i− 1 ∈ S1 or j + 1 ∈ S2.
(d) #(S2 ∩ �j − 1 − 2k, j − 2�) ≥ k for k ∈ {1, 2, . . . , j−i−3

2 }.
(e) #(S2 ∩ �i + 2, j − 2�) = j−i−3

2 when j �= i + 1.
This move is denoted by j↖↘ i or i↗↙ j.

Remark. When j − i = 3, then �i + 2, j − 2� = �i + 2, i + 1� which is ∅ rather than [1, n]
in our convention. In such a case the condition (e) is trivially satisfied. This is the reason 
to set �a + 1, a� = ∅ for any a ∈ [1, n]; otherwise j − i = 3 case should be handled in a 
separate manner.
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1 2 3
4 5

2 3 4
1 5

3 4 5
1 2

1 4 5
2 3

1 2 5
3 4

1 2 4
3 5

2 3 5
1 4

1 3 4
2 5

2 4 5
1 3

1 3 5
2 4

Fig. 1. S5-graph Γ(3,2).

Example 4.1. Fig. 1 illustrates the S5-graph Γ(3,2). Here, des(T ) for each T ∈
RSYT((3, 2)) is given by bold numbers on the first row of T . Also bold bordered vertices 
and bold edges denote the S5-graph Γ(3,2) which will be defined in Section 7.1. For ex-

ample, consider its vertex S =
2 4 5
1 3

. Then by applying a move of the first kind for 

i = 2 we obtain an arrow pointing to vertex 
3 4 5
1 2

. We can also apply a move of the 

second kind for i = 1, j = 4. Indeed, 4 − 1 = 3 is odd, 3 ∈ S2, 2 ∈ S1, 1 − 1 = 5 ∈ S1, 
and the last two conditions are trivially true because j − i = 3. As a result, we get an 

arrow from S to the vertex 
1 2 5
3 4

.

Example 4.2. Fig. 2 illustrates the S6-graph Γ(4,2), similar to the previous example.

Example 4.3. Fig. 3 illustrates the S6-graph Γ(3,3), similar to the previous examples. 
Note that it is strongly connected, i.e. it consists of a single cell, but it contains two 
simple components. (cf. Section 3.8)
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1 2 3 5
4 6

1 2 4 6
3 5

1 3 5 6
2 4

2 4 5 6
1 3

1 3 4 5
2 6

2 3 4 6
1 5

1 2 3 4
5 6

1 2 3 6
4 5

1 2 5 6
3 4

1 4 5 6
2 3

3 4 5 6
1 2

2 3 4 5
1 6

1 3 4 6
2 5

2 3 5 6
1 4

1 2 4 5
3 6

Fig. 2. S6-graph Γ(4,2).

4.2. Properties of Γλ

Let us describe some properties of Γλ. First it is helpful to understand how moves 
change τ -values in each case as described in the lemma below.

Lemma 4.4.

(1) If S i↖↘ i+1−−−−−→ T is a move of the first kind, then des(S) − des(T ) = {i} and des(T ) −
des(S) ⊂ {i− 1, i + 1}.

(2) If S i↖↘ j−−−→ T is a move of the second kind, then
(a) des(S) − des(T ) is equal to one of {i− 1}, {j}, or {i− 1, j}.
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1 2 3
4 5 6

3 4 5
1 2 6

1 5 6
2 3 4

1 2 4
3 5 6

3 4 6
1 2 5

2 5 6
1 3 4

1 3 4
2 5 6

3 5 6
1 2 4

1 2 5
3 4 6

1 3 5
2 4 6

2 3 4
1 5 6

4 5 6
1 2 3

1 2 6
3 4 5

2 3 5
1 4 6

1 4 5
2 3 6

1 3 6
2 4 5

2 4 5
1 3 6

1 4 6
2 3 5

2 3 6
1 4 5

2 4 6
1 3 5

Fig. 3. S6-graph Γ(3,3).

(b) if j = i + 1, then des(T ) − des(S) = {i = j − 1}.
(c) if j �= i + 1, then des(T ) − des(S) = ∅.

Proof. This is clear from the definitions of the two moves. �
Lemma 4.5. Γλ = (RSYT(λ), m, des) is reduced and nb-admissible.

Proof. Suppose first that m(S � T ) �= 0 for some S, T ∈ RSYT(λ), i.e. there is a move 
form S to T . If it is of the first kind, then there exists i ∈ des(S) − des(T ). Otherwise, 
there exists either i− 1 ∈ des(S) −des(T ) or j ∈ des(S) −des(T ). In either case, we have 
des(S) �⊂ des(T ). This proves that Γλ is reduced.

On the other hand, it is clear that imm ∈ {0, 1}. Now suppose that des(S) and des(T )
are incomparable for some S, T ∈ RSYT(λ). If there is no move either from S to T or 
from T to S, then clearly m(S �T ) = m(T �S) = 0. Otherwise, without loss of generality 
we may assume that there is a move from S to T . If this is of the first kind, say i↖↘ i + 1, 
then one can easily check that there is a move of the second kind i↗↙ i + 1 from T to S. 
(The only nontrivial condition is that either i− 1 ∈ T 1 or i + 2 ∈ T 2, which is true since 
des(T ) �⊂ des(S).) If the move from S to T is of the second kind, then des(S) �⊃ des(T ) if 
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and only if it is i↗↙ i + 1 for some i ∈ [1, n]. Thus there is a move of the first kind from 
T to S as well. In sum, we have m(S � T ) = 1 if and only if m(T � S) = 1. This proves 
that Γλ is nb-admissible. �
Remark. The graph Γλ is not in general bipartite. For example, the S5-graph Γ(3,2) (see 
Fig. 1) cannot be bipartite even after removing all directed edges because a cycle of 
length 5 (a “star” in the figure) is embedded into Γ(3,2).

Recall the cyclic shift element ω = [2, 3, . . . , n, n + 1] ∈ S̃n. It acts naturally on 
{1, 2, . . . , n} by ω(i) = i + 1. Similarly we consider its action on RSYT(λ) by replacing 
each i with i + 1 and reordering entries of each row if necessary.

Lemma 4.6. The action of ω on RSYT(λ) induces that on Γλ.

Proof. It is clear that des(ω(T )) = ω(des(T )) = {i + 1 | i ∈ des(T )}. Furthermore, it 
is easy to check that the description of moves on Γλ is also “invariant under ω”, i.e. we 
have m(S � T ) = m(ω(S) � ω(T )). �
Example 4.7. In Fig. 1 ω acts as a (clockwise) rotation by 72◦. Similarly, in Fig. 2 ω acts 
a s (clockwise) rotation by 60◦ on the outer part and by 120◦ on the inner part. On the 
other hand, in Fig. 3 ω swaps two simple components and ω2 rotates each component 
by 120◦.

Remark. It can be proved that Γλ is also invariant under the affine evacuation defined 
in [5], but this fact will not be used in this paper.

It is desirable to understand the simple underlying graph U(Γλ) in terms of combi-
natorics of Young tableaux. Let Dλ = (V ′, m′, τ ′) be the Kazhdan-Lusztig affine dual 
equivalence graph of shape λ as in [6, Definition 3.21]. (Here we use the adjective “affine” 
to differentiate it from the “finite” one Dλ defined later in Section 7.1.) It is defined as 
V ′ = RSYT(λ), τ ′ = des, and for S, T ∈ RSYT(λ), m′(S � T ) = m′(T � S) = 1 if there 
exists a Knuth move connecting S and T and m′(S �T ) = m′(T �S) = 0 otherwise. (See 
Section 2.6 for the definition of Knuth moves.)

Proposition 4.8. U(Γλ) = Dλ as [1, n]-labeled graphs.

Proof. It is enough to show that m′(S �T ) = m(S �T ) if des(S) �⊃ des(T ). First suppose 
that there is a move from S to T , i.e. m(S�T ) = 1. As des(S) �⊃ des(T ), this move should 
be either i↖↘ i + 1 or i↗↙ i + 1 for some i ∈ [1, n]. In any case, one may check that this 
is a Knuth move so m′(S � T ) = 1 as well. The other direction is proved similarly. �

From this proposition, one may observe the following.
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Proposition 4.9. If λ is a partition of two unequal rows, then Γλ consists of one simple 
component. In particular, Γλ is strongly connected.

Proof. Dλ is connected for such λ by [6, Corollary 8.7], from which the result follows. �
Remark. On the other hand, if λ consists of two equal rows then Dλ has two simple 
components by [6, Theorem 8.6]. Still, Dλ is strongly connected in this case; see Propo-
sition 9.2.

4.3. Γλ is a Sn-graph

We are ready to state the first main theorem of this paper. Recall that Sn is an 
(non-extended) affine symmetric group.

Theorem 4.10. Γλ is a Sn-graph.

To this end, we use Theorem 3.1; our proof is purely combinatorial. Firstly, three out 
of four combinatorial rules of Stembridge are proved easily.

Lemma 4.11. Γλ satisfies the Compatibility Rule, the Simplicity Rule, and the Bonding 
Rule.

Proof. The first two rules follow directly from the description of moves. Also Γλ satisfies 
the Bonding Rule if and only if U(Γλ) = Dλ does, which follows from [5, Proposition 
3.5]. �

Thus it remains to show that Γλ satisfies the Polygon Rule, which is the most technical 
part of our proof. First note that it is not possible to have i, i + 1 ∈ des(T ) for any 
i ∈ [1, n] and any T ∈ RSYT(λ) since λ is assumed to be a two-row partition. Thus we 
only need to show that Nr

i,j(Γλ; S, T ) = Nr
j,i(Γλ; S, T ) where i and j are not adjacent in 

the Dynkin diagram of Sn (i.e. i /∈ {j − 1, j, j + 1}) and r = 2. In such cases, we usually 
omit Γλ and the superscript r = 2 from the notations, and simply write Ni,j(S, T ) and 
Nj,i(S, T ) instead.

Furthermore, if there is a move from S to T then it swaps an entry in S1 and another 
in S2, which means S and T differ by two elements. If Ni,j(S, T ) �= 0 then T is obtained 
from S by two sequential moves, from which it follows that it suffices to check the Polygon 
Rule when S and T differ by either two or four elements. In the next two sections we 
verify the Polygon Rule Ni,j(S, T ) = Nj,i(S, T ) for such S and T case-by-case.

Remark. The reader may ask why we prove our main theorem using Stembridge’s axioms 
rather than following the definition of W -graphs directly. The main reason is that there is 
indeed little difference between two proofs. Suppose that Γ = (V, m, τ) is an [1, n]-labeled 
graph, S ∈ V , and i, j ∈ τ(S) where i and j are not adjacent in the Dynkin diagram of 
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Sn. Then in order to verify that the braid relation is satisfied, one needs to show that 
(Ti ◦ Tj)(S) and (Tj ◦ Ti)(S) are equal. However, the coefficients of these expressions 
at T ∈ V are given by Ni,j(S, T ) and Nj,i(S, T ), respectively. Therefore, checking the 
Polygon Rule is, mutatis mutandis, the same as checking the braid relation.

5. Case 1: S and T differ by two elements

Here, we check the Polygon Rule Ni,j(S, T ) = Nj,i(S, T ) for i, j ∈ [1, n] where S =
(S1, S2) and T = (T 1, T 2) are row-standard Young tableaux which only differ by two 
elements. Let us denote by a ∈ [1, n] the unique element in S1 − T 1 = T 2 − S2 and 
by b ∈ [1, n] the unique element in S2 − T 2 = T 1 − S1. In other words, we are in the 
following situation:

S =
· · · a · · ·
· · · b · · ·

� M � T =
· · · b · · ·
· · · a · · ·

.

Note that Ni,j(S, T ) �= 0 only when i, j ∈ [1, n] satisfy i, j ∈ des(S) and i, j /∈ des(T ). 
It is only possible when a �= b− 1 and {i, j} = {a, b− 1}, which we assume from now 
on. Moreover, it also requires that a + 1 ∈ S2 and b− 1 ∈ S1. Therefore, it suffices only 
to consider the following case:

S =
· · · a b−1 · · ·
· · · a+1 b · · ·

� M � T =
· · · b−1 b · · ·
· · · a a+1 · · ·

.

We have following two possibilities to obtain T from S in two steps.

• For some element x ∈ S1−{a}, interchange x and b and then x and a, i.e. x ↖↘ b and 
a ↖↘x.

• For some element y ∈ S2 −{b}, interchange y and a and then y and b, i.e. a ↖↘ y and 
y↖↘ b.

From now on we divide the possibilities into two cases, depending on whether b = a− 1
(Section 5.1) or not (Section 5.2).

5.1. b = a− 1 case

If b = a− 1, then {i, j} = {a− 2, a} and we are in the following situation:

S =
· · · a−2 a · · ·
· · · a−1a+1 · · ·

� M � T =
· · · a−2a−1 · · ·
· · · a a+1 · · ·

.

By applying cyclic shift ω, we may assume that a = 3. Thus we have:
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S =
· · · 1 3 · · ·
· · · 2 4 · · ·

� M � T =
· · · 1 2 · · ·
· · · 3 4 · · ·

where a = 3, b = 2, and {i, j} = {1, 3}. Here we consider two possibilities of two-step 
moves mentioned above, i.e. x ↖↘ 2 and 3 ↖↘x for some x ∈ S1 − {3} or 3 ↖↘ y and y↖↘ 2
for some y ∈ S2 − {2}.

First, we consider the two-step move which performs x ↖↘ 2 and then 3 ↖↘x for some 
x ∈ S1 − {3}. If x = 1, then we have:

S =
· · · 1 3 · · ·
· · · 2 4 · · ·

� M =
· · · 2 3 · · ·
· · · 1 4 · · ·

� T =
· · · 1 2 · · ·
· · · 3 4 · · ·

.

Otherwise, we have:

S =
· · · 1 3 x · · ·
· · · 2 4 · · · · · ·

� M =
· · · 1 2 3 · · ·
· · · 4 x · · · · · ·

� T =
· · · 1 2 x · · ·
· · · 3 4 · · · · · ·

.

However, the second move 3 ↖↘x violates the condition (b) since 2 ∈ M1.
This time we consider the move which performs 3 ↖↘ y and then y↖↘ 2 for some y ∈

S2 − {2}. If y = 4, then we have:

S =
· · · 1 3 · · ·
· · · 2 4 · · ·

� M =
· · · 1 4 · · ·
· · · 2 3 · · ·

� T =
· · · 1 2 · · ·
· · · 3 4 · · ·

.

Otherwise, we have:

S =
· · · 1 3 · · · · · ·
· · · 2 4 y · · ·

� M =
· · · 1 y · · · · · ·
· · · 2 3 4 · · ·

� T =
· · · 1 2 · · · · · ·
· · · 3 4 y · · ·

.

However, the second move y↖↘ 2 violates the condition (b) since 3 ∈ M2.
Therefore, we conclude that Ni,j(S, T ) = Nj,i(S, T ) = 0.

5.2. b �= a− 1 case

Now let us assume that b �= a− 1. By applying cyclic shift ω if necessary, we may 
assume that a = 1, which implies that 4 ≤ b < n. Thus, {i, j} = {1, b − 1} and we are in 
the following situation:

S =
· · · 1 b−1 · · ·
· · · 2 b · · ·

� M � T =
· · · b−1 b · · ·
· · · 1 2 · · ·

.

From now on we divide all the possibilities of two-step moves into the following four 
cases.
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• (b − 1) ↖↘ b and 1 ↖↘(b − 1) (5.2.1)
• a ↖↘ 2 and 2 ↖↘ b (5.2.2)
• x ↖↘ b and 1 ↖↘x for some x �= b − 1 (5.2.3)
• a ↖↘ y and y↖↘ b for some y �= 2 (5.2.4)

5.2.1. (b − 1) ↖↘ b and 1 ↖↘(b − 1) case
First consider the case when we perform (b −1) ↖↘ b first and then 1 ↖↘(b −1). It looks 

like:

S =
· · · 1 b−1 · · ·
· · · 2 b · · ·

� M =
· · · 1 b · · ·
· · · 2 b−1 · · ·

� T =
· · · b−1 b · · ·
· · · 1 2 · · ·

.

Note that b − 1 �= 2 since they are in different rows in S. Thus the move 1 ↖↘(b − 1) is of 
the second kind and the following conditions in Section 4.1 are imposed:

(a) 1 − (b− 1) = 2 − b is odd, i.e. n − b is odd.
(b) (b ∈ M1 and) n ∈ M2, i.e. n ∈ S2 (note that n �= b− 1, b).
(c) (The third condition is satisfied since 2 ∈ M2.)
(d) #(M2 ∩ [n − 2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 }, or equivalently #(S2 ∩ [n −
2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 }.
(e) #(M2 ∩ [b + 1, n − 1]) = n−b−1

2 (note that b = (b− 1) + 1 �= 1), or equivalently 
#(S2 ∩ [b + 1, n − 1]) = n−b−1

2 .

By part (b), we have:

S =
· · · 1 b−1 · · · · · ·
· · · 2 b n · · ·

� M =
· · · 1 b · · · · · ·
· · · 2 b−1 n · · ·

� T =
· · · b−1 b · · · · · ·
· · · 1 2 n · · ·

.

Note that this path contributes 1 to N1,b−1(S, T ).
For later use, we set P := #(S2 ∩ [b + 1, n]). By (e) combined with the fact that 

n ∈ S2, it follows that P = n−b−1
2 + 1 = n−b+1

2 .

5.2.2. y = 2 case
Now we consider the move consisting of 1 ↖↘ 2 and then 2 ↖↘ b, i.e.

S =
· · · 1 b−1 · · ·
· · · 2 b · · ·

� M =
· · · 2 b−1 · · ·
· · · 1 b · · ·

� T =
· · · b−1 b · · ·
· · · 1 2 · · ·

.

Note that b �= 3 since b − 1 and 2 are in different rows of S. Thus the move 2 ↖↘ b is of 
the second kind and the following conditions in Section 4.1 are imposed:

(a) 2 − b is odd, i.e. n − b is odd.
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(b) b + 1 ∈ M1 (and 1 ∈ M2), i.e. b + 1 ∈ S1 (note that b + 1 �= 1, 2).
(c) (The third condition is satisfied since b − 1 ∈ M1.)
(d) #(M2 ∩ [n − 2k + 1, n]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 }, or equivalently #(S2 ∩ [n −
2k + 1, n]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 }.
(e) #(M2∩ [b +2, n]) = n−b−1

2 (note that b + 1 �= 2), or equivalently #(S2∩ [b +2, n]) =
n−b−1

2 .

By part (b), we have:

S =
· · · 1 b−1 b+1 · · ·
· · · 2 b · · · · · ·

� M =
· · · 2 b−1 b+1 · · ·
· · · 1 b · · · · · ·

� T =
· · · b−1 b b+1 · · ·
· · · 1 2 · · · · · ·

.

Note that this path contributes 1 to Nb−1,1(S, T ).
As before, we set P := #(S2 ∩ [b + 1, n]). Then by (e) combined with the fact that 

b + 1 ∈ S1, we have P = n−b−1
2 .

5.2.3. x �= b − 1 case
Let us now consider the case when we perform x ↖↘ b and then 1 ↖↘x for some x �= b −1. 

Thus we have:

S =
· · · 1 b−1 x · · ·
· · · 2 b · · · · · ·

� M =
· · · 1 b−1 b · · ·
· · · 2 x · · · · · ·

� T =
· · · b−1 b x · · ·
· · · 1 2 · · · · · ·

.

As x is neither equal to b − 1 nor 2, these two moves are both of the second kind. Thus 
the following conditions in Section 4.1 are required:

(a) x − b and 1 − x = n + 1 − x are both odd; thus in particular n − b is odd.
(b) b + 1 ∈ S1, x + 1 ∈ M1, x − 1 ∈ S2, n ∈ M2, which means:

• If x = b + 1 = n, then (1 ∈ S1, b = n − 1 ∈ S2, and) b + 1 = n ∈ S1.
• If x = b + 1 �= n, then (b ∈ S2 and) b + 1 ∈ S1, b + 2 ∈ S1, and n ∈ S2.
• If x = n �= b + 1, then (1 ∈ S1 and) b + 1 ∈ S1, n − 1 ∈ S2, and n ∈ S1.
• Otherwise, b + 1 ∈ S1, x + 1 ∈ S1, x − 1 ∈ S2, n ∈ S2.

(c) (The third condition is satisfied since b − 1 ∈ S1 and 2 ∈ M2.)
(d) #(S2∩[x −1 −2k, x −2]) ≥ k for k ∈ {1, 2, . . . , x−b−3

2 }, and #(M2∩[n −2k, n −1]) ≥ k

for k ∈ {1, 2, . . . , n−x−2
2 } which is equivalent to #(S2 ∩ [n − 2k, n − 1]) ≥ k for 

k ∈ {1, 2, . . . , n−x−2
2 }.

(e) #(S2 ∩ [b + 2, x − 2]) = x−b−3
2 if b + 1 �= x, and #(M2 ∩ [x + 2, n − 1]) = n−x−2

2 if 
x + 1 �= 1, i.e. x �= n which is equivalent to #(S2 ∩ [x + 2, n − 1]) = n−x−2

2 if x �= n.

We divide all the possibilities into the four cases below. By part (b), we are in the 
following situation in each case.
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• If x = b + 1 = n, then

S =
· · · 1 n−2 n · · ·
· · · 2 n−1 · · · · · ·

� M =
· · · 1 n−2n−1 · · ·
· · · 2 n · · · · · ·

� T =
· · · n−2n−1 n · · ·
· · · 1 2 · · · · · ·

.

• If x = b + 1 �= n, then

S =
· · · 1 b−1 b+1 b+2 · · ·
· · · 2 b n · · · · · ·

� M =
· · · 1 b−1 b b+2 · · ·
· · · 2 b+1 n · · · · · ·

�

T =
· · · b−1 b b+1 b+2 · · ·
· · · 1 2 n · · · · · ·

.

• If x = n �= b + 1, then

S =
· · · 1 b−1 b+1 n · · ·
· · · 2 b n−1 · · · · · ·

� M =
· · · 1 b−1 b b+1 · · ·
· · · 2 n−1 n · · · · · ·

�

T =
· · · b−1 b b+1 n · · ·
· · · 1 2 n−1 · · · · · ·

.

• Otherwise,

S =
· · · 1 b−1 b+1 x x+1 · · ·
· · · 2 b x−1 n · · · · · ·

� M =
· · · 1 b−1 b b+1x+1 · · ·
· · · 2 x−1 x n · · · · · ·

�

T =
· · · b−1 b b+1 x x+1 · · ·
· · · 1 2 x−1 n · · · · · ·

.

Also note that this path contributes 1 to N1,b−1(S, T ).
As before we set P := #(S2∩[b +1, n]) and prove that P = n−b−1

2 . Here our argument 
relies on part (e) and the description of each case above.

• If x = b + 1 = n, then obviously P = 0 = n−b−1
2 as n ∈ S1.

• If x = b +1 �= n, then since #(M2∩ [b +3, n −1]) = n−b−3
2 we have P = n−b−3

2 +1 =
n−b−1

2 .
• If x = n �= b +1, then since #(S2 ∩ [b +2, n − 2]) = n−b−3

2 we have P = n−b−3
2 +1 =

n−b−1
2 .

• Otherwise, since #(S2 ∩ [b + 2, n − 1]) = x−b−3
2 + n−x−2

2 + 1 = n−b−3
2 we have 

P = n−b−3 + 1 = n−b−1 .
2 2



D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207 21
5.2.4. y �= 2 case
Here we consider the remaining possibility, which is to perform 1 ↖↘ y and then y↖↘ b

for some y �= 2. Thus b < y ≤ n and we have:

S =
· · · 1 b−1 · · · · · ·
· · · 2 b y · · ·

� M =
· · · b−1 y · · · · · ·
· · · 1 2 b · · ·

� T =
· · · b−1 b · · · · · ·
· · · 1 2 y · · ·

.

As y is neither 2 nor b − 1, these two moves are both of the second kind. Thus the 
following conditions in Section 4.1 are imposed:

(a) 1 − y = n + 1 − y and y − b are both odd; thus in particular n − b is odd.
(b) y + 1 ∈ S1, b + 1 ∈ M1, n ∈ S2, and y − 1 ∈ M2, that is:

• If y = b + 1 = n, then (1 ∈ S1, b = n − 1 ∈ S2 and) b + 1 = n ∈ S2.
• if y = b + 1 �= n, then (b ∈ S2 and) b + 1 ∈ S2, b + 2 ∈ S1, and n ∈ S2.
• If y = n �= b + 1, then (1 ∈ S1 and) b + 1 ∈ S1, n − 1 ∈ S2, and n ∈ S2.
• Otherwise, y + 1 ∈ S1, b + 1 ∈ S1, n ∈ S2, and y − 1 ∈ S2.

(c) (The third condition is satisfied since 2 ∈ S2 and b − 1 ∈ M1.)
(d) #(S2∩[n −2k, n −1]) ≥ k for k ∈ {1, 2, . . . , n−y−2

2 }, and #(M2∩[y−1 −2k, y−2]) ≥ k

for k ∈ {1, 2, . . . , y−b−3
2 } which is equivalent to #(S2 ∩ [y − 1 − 2k, y − 2]) ≥ k for 

k ∈ {1, 2, . . . , y−b−3
2 }.

(e) #(S2 ∩ [y + 2, n − 1]) = n−y−2
2 if y �= n, and #(M2 ∩ [b + 2, y − 2]) = y−b−3

2 if 
y �= b + 1 which is equivalent to #(S2 ∩ [b + 2, y − 2]) = y−b−3

2 if y �= b + 1.

We divide all the possibilities into the four cases below. By part (b), we are in the 
following situation in each case.

• If y = b + 1 = n, then

S =
· · · 1 n−2 · · · · · ·
· · · 2 n−1 n · · ·

� M =
· · · n−2 n · · · · · ·
· · · 1 2 n−1 · · ·

� T =
· · · n−2n−1 · · · · · ·
· · · 1 2 n · · ·

.

• If y = b + 1 �= n, then

S =
· · · 1 b−1 b+2 · · · · · ·
· · · 2 b b+1 n · · ·

� M =
· · · b−1 b+1 b+2 · · · · · ·
· · · 1 2 b n · · ·

�

T =
· · · b−1 b b+2 · · · · · ·
· · · 1 2 b+1 n · · ·

.

• If y = n �= b + 1, then

S =
· · · 1 b−1 b+1 · · · · · ·
· · · 2 b n−1 n · · ·

� M =
· · · b−1 b+1 n · · · · · ·
· · · 1 2 b n−1 · · ·

�
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T =
· · · b−1 b b+1 · · · · · ·
· · · 1 2 n−1 n · · ·

.

• Otherwise,

S =
· · · 1 b−1 b+1 y+1 · · · · · ·
· · · 2 b y−1 y n · · ·

� M =
· · · b−1 b+1 y y+1 · · · · · ·
· · · 1 2 b y−1 n · · ·

�

T =
· · · b−1 b b+1 y+1 · · · · · ·
· · · 1 2 y−1 y n · · ·

.

Also note that this path contributes 1 to Nb−1,1(S, T ).
As before we set P := #(S2∩[b +1, n]) and prove that P = n−b+1

2 . Here, our argument 
relies on part (e) and description for each case above.

• If y = b + 1 = n, then obviously P = 1 = n−b+1
2 as n ∈ S2.

• If y = b +1 �= n, then since #(S2 ∩ [b +3, n − 1]) = n−b−3
2 we have P = n−b−3

2 +2 =
n−b+1

2 .
• If y = n �= b +1, then since #(S2 ∩ [b +2, n − 2]) = n−b−3

2 we have P = n−b−3
2 +2 =

n−b+1
2 .

• Otherwise, since #(S2 ∩ [b + 2, n − 1]) = y−b−3
2 + n−y−2

2 + 2 = n−b−1
2 we have 

P = n−b−1
2 + 1 = n−b+1

2 .

5.3. b �= a− 1 case: verification of the Polygon Rule

Now we summarize the discussion in Section 5.2 and verify that Ni,j(S, T ) = Nj,i(S, T )
for {i, j} = {a, b− 1}. As before it suffices to consider the case when a = 1, and thus we 
may assume that i = 1 and j = b − 1. First note that if n − b is even then the Polygon 
Rule is trivially satisfied since N1,b−1(S, T ) = Nb−1,1(S, T ) = 0. (See the condition (a) 
in each case.) Thus from now on we assume that n − b is odd. Also from the argument 
above if the value P = #(S2 ∩ [b + 1, n]) is not equal to n−b±1

2 then again we have 
N1,b−1(S, T ) = Nb−1,1(S, T ) = 0. Now we consider the case P = n−b+1

2 and P = n−b−1
2

separately.

5.3.1. P = n−b+1
2 case

It suffices only to consider 5.2.1 and 5.2.4. Then either N1,b−1(S, T ) or Nb−1,1(S, T )
is not zero only when n ∈ S2 (see condition (b)); thus we suppose that this is true. 
Here, N1,b−1(S, T ) is easier to calculate; it equals 1 if ({1, b − 1} ⊂ S1, {2, b} ⊂ S2 and) 
#(S2 ∩ [n − 2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 } and 0 otherwise.
On the other hand, we first show that Nb−1,1(S, T ) ≤ 1. For the sake of contradiction 

let us assume the contrary. Then there exist y, y′ ∈ S2 such that b < y′ < y ≤ n and 
there are two different two-step moves [1 ↖↘ y and then y↖↘ b] and [1 ↖↘ y′ and then y′↖↘ b] 



D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207 23
from S to T (cf. 5.2.4). First note that y′ �= b +1, since otherwise b +1 ∈ S2 which forces 
y = b + 1 by the condition (b) in 5.2.4, which is impossible.

We consider the case when y �= n. Then from the conditions in 5.2.4 we may derive 
that

#(S2 ∩ [y + 2, n− 1]) = n− y − 2
2 , #(S2 ∩ [y′ + 2, n− 1]) = n− y′ − 2

2 ,

and #(S2 ∩ [y′ + 1, y − 2]) ≥ y − y′ − 2
2 (note that y − y′ is even),

from which it also follows that #(S2∩[y′+2, y+1]) = y−y′

2 . However, as y′+1, y+1 ∈ S1

and y−1, y ∈ S2 from the description, this implies that #(S2∩[y′+1, y−2]) = y−y′

2 −2 <
y−y′−2

2 , which is contradiction. Now we suppose that y = n. We still have

#(S2 ∩ [y′ + 2, n− 1]) = n− y′ − 2
2 and #(S2 ∩ [y′ + 1, n− 2]) ≥ n− y′ − 2

2 ,

but this is impossible since y′+1 ∈ S1 and n −1 ∈ S2. This proves that Nb−1,1(S, T ) ≤ 1.
We are ready to prove that N1,b−1(S, T ) = Nb−1,1(S, T ). First suppose that 

N1,b−1(S, T ) = 1; thus in particular

#(S2 ∩ [n− 2k, n− 1]) ≥ k for k ∈
{

1, 2, . . . , n− b− 1
2

}
. (�)

Then as we proved that Nb−1,1(S, T ) ≤ 1, it suffices to show the existence of a two-step 
move corresponding to 5.2.4. First assume that b + 1 ∈ S2. Then we claim that there 
exists a two-step move consisting of 1 ↖↘(b + 1) and (b + 1) ↖↘ b. To this end, we check 
that the conditions in 5.2.4 are valid as follows.

– If b + 1 = n, then the only nontrivial part is (b), which holds since b + 1 = n ∈ S2.
– Otherwise, we still have b + 1, n ∈ S2. We also have that b + 2 ∈ S1 and thus part 

(b) holds; otherwise {b +1, b +2, n} ⊂ S2, which implies that #(S2∩ [b +3, n −1]) =
P − 3 = n−b−5

2 , contradicting (�) for k = n−b−3
2 . For part (d), we should have 

#(S2 ∩ [n − 2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−b−3
2 }, which follows from (�). For 

part (e), we should have #(S2 ∩ [b + 3, n − 1]) = n−b−3
2 , but it follows from the fact 

that P = n−b+1
2 together with part (b).

It remains to consider the case when b + 1 ∈ S1. Here we first set

T :=
{
z ∈ S2 | b+3 ≤ z ≤ n, n−z is even, z−1 ∈ S2,#(S2∩[b+2, z−2]) = z − b− 3

2

}
.

We claim that T �= ∅; otherwise, an inductive argument shows that n − 1 ∈ S1, n − 2 ∈
S2, n − 3 ∈ S1, . . . , b + 4 ∈ S1, b + 3 ∈ S2, b + 2 ∈ S1 which follows from (�) and 
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the assumption P = n−b+1
2 , but this contradicts the fact that b + 2 ∈ S2. Now we set 

y := minT. (Note that y �= b +1.) We claim that there exists a two-step move consisting 
of 1 ↖↘ y and y↖↘ b. To this end, again we check that the conditions in 5.2.4 hold as 
follows.

– If y = n, then part (b) holds since b + 1 ∈ S1, n ∈ S2, and n − 1 ∈ S2 by the 
definition of T. For part (d), we should have #(S2 ∩ [n − 1 − 2k, n − 2]) ≥ k for 
k ∈ {1, 2, . . . , n−b−3

2 }; thus suppose otherwise for contradiction and choose k ∈
{1, 2, . . . , n−b−3

2 } to be maximal which satisfies #(S2 ∩ [n − 1 − 2k, n − 2]) < k. By 
the definition of T, k < n−b−3

2 and we have #(S2 ∩ [n − 3 − 2k, n − 2]) ≥ k + 1 by 
maximality of k. This is only possible when #(S2 ∩ [n − 1 − 2k, n − 2]) = k − 1 and 
n − 2 − 2k, n − 3 − 2k ∈ S2. However, it means that

#(S2 ∩ [b + 2, n− 4 − 2k]) = P− #(S2 ∩ [n− 1 − 2k, n− 2]) − 4

= n− b + 1
2 − (k − 1) − 4 = n− 2k − b− 5

2 ,

which means that n − 2 − 2k ∈ T. It contradicts the assumption that n = minT; 
thus we conclude that part (d) holds. For part (e), we need to check that #(S2 ∩
[b + 2, n − 2]) = n−b−3

2 which follows from the assumption P = n−b+1
2 together with 

part (b).
– Otherwise, b + 1 ∈ S1, n ∈ S2, and y − 1 ∈ S2 by the definition of T; thus part (b) 

holds if y + 1 ∈ S1. However, if y + 1 ∈ S2 then by (�) we have

P = #(S2 ∩ [b + 1, y − 2]) + #(S2 ∩ [y + 2, n− 1]) + 4

≥ y − b− 3
2 + n− y − 2

2 + 4 = n− b + 3
2

which is a contradiction. Thus y+1 ∈ S1 and part (b) holds. Now we prove part (e), 
i.e. #(S2 ∩ [y + 2, n − 1]) = n−y−2

2 and #(S2 ∩ [b + 2, y − 2]) = y−b−3
2 . However the 

second equality follows from definition of T and the first one also follows since

#(S2 ∩ [y + 2, n− 1]) = P− #(S2 ∩ [b + 2, y − 2]) − 3 = n− b + 1
2 − y − b− 3

2 − 3

= n− y − 2
2 .

It remains to prove part (d). We should have #(S2 ∩ [n − 2k, n − 1]) ≥ k for k ∈
{1, 2, . . . , n−y−2

2 } and #(S2∩[y−1 −2k, y−2]) ≥ k for k ∈ {1, 2, . . . , y−b−3
2 }. The first 

inequality follows directly from (�); thus suppose that the second inequality does not 
hold and choose k ∈ {1, 2, . . . , y−b−3

2 } to be maximal which satisfies #(S2 ∩ [y− 1 −
2k, y−2]) < k. By the definition of T, k < y−b−3

2 and we have #(S2∩ [y−3 −2k, y−
2]) ≥ k+1 by maximality of k. This is only possible when #(S2∩ [y−1 −2k, y−2]) =
k − 1 and y − 2 − 2k, y − 3 − 2k ∈ S2. However, it means that
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#(S2 ∩ [b + 2, y − 4 − 2k]) = P− #(M2 ∩ [y − 1 − 2k, y − 2])

− #(M2 ∩ [y + 2, n− 1]) − 5

= n− b + 1
2 − (k − 1) − n− y − 2

2 − 5 = y − 2k − b− 5
2 ,

which implies that y − 2 − 2k ∈ T. This contradicts the assumption that y = minT; 
thus we conclude that part (d) holds.

We have covered all the possible cases and we conclude that N1,b−1(S, T ) = Nb−1,1(S,
T ) = 1.

Therefore, in order to prove that N1,b−1(S, T ) = Nb−1,1(S, T ) it remains to show 
that N1,b−1(S, T ) = 1 when there exists y such that the two-step move 1 ↖↘ y and then 
y↖↘ b is valid. If such y exists, then the conditions #(S2 ∩ [n − 2k, n − 1]) ≥ k for 
k ∈ {1, 2, . . . , n−y−2

2 } and #(S2 ∩ [y− 1 − 2k, y− 2]) ≥ k for k ∈ {1, 2, . . . , y−b−3
2 } imply 

that #(S2 ∩ [n − 2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−b−1
2 } as y − 1, y ∈ S2. Thus we see 

that N1,b−1(S, T ) = 1 and again N1,b−1(S, T ) = Nb−1,1(S, T ) = 1.
As a result, the Polygon Rule holds for (S, T ) when P = n−b+1

2 .

5.3.2. P = n−b−1
2 case

This case is totally analogous to the previous one. It suffices only to consider 5.2.2
and 5.2.3. Then either N1,b−1(S, T ) or Nb−1,1(S, T ) is not zero only when b + 1 ∈ S1; 
thus we suppose that this is true. Here, Nb−1,1(S, T ) is easier to calculate; it equals 1 if 
({1, b − 1} ⊂ S1, {2, b} ⊂ S2 and) #(S2 ∩ [n − 2k + 1, n]) ≥ k for k ∈ {1, 2, . . . , n−b−1

2 }
and 0 otherwise.

On the other hand, we first show that N1,b−1(S, T ) ≤ 1. For the sake of contradiction 
let us assume the contrary. Then there exist x, x′ ∈ S1 such that b < x′ < x ≤ n

and there are two different two-step moves [x ↖↘ b and then 1 ↖↘x] and [x′ ↖↘ b and then 
1 ↖↘x′] from S to T (cf. 5.2.3). Note that x �= n (and thus n ∈ S2), since otherwise 
n ∈ S1 and thus x′ = n by the description of S in 5.2.3. But it contradicts that x′ < x. 
Now from the conditions in 5.2.3 we may derive that

#(S2 ∩ [x, n− 1]) ≥ n− x

2 and #(S2 ∩ [x + 2, n− 1]) = n− x− 2
2

where the first condition comes from part (d) with respect to x′ (note that x′ < x). But 
this is impossible since x, x + 1 ∈ S1. This proves that N1,b−1(S, T ) ≤ 1.

We are ready to prove that N1,b−1(S, T ) = Nb−1,1(S, T ). First suppose that 
Nb−1,1(S, T ) = 1; thus in particular

#(S2 ∩ [n− 2k + 1, n]) ≥ k for k ∈
{

1, 2, . . . , n− b− 1
2

}
. (♥)

Then as we proved that N1,b−1(S, T ) ≤ 1, it suffices to show the existence of a two-step 
move corresponding to 5.2.3. First assume that n ∈ S1. Then we claim that there exists 



26 D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207
a two-step move consisting of n ↖↘ b and then 1 ↖↘n. To this end, we check that the 
conditions in 5.2.3 are valid as follows.

– If b + 1 = n, then the only nontrivial part is (b), which holds since b + 1 = n ∈ S1.
– Otherwise, we still have b + 1 ∈ S1 and n ∈ S1. Also, #(S2 ∩ [n − 1, n]) ≥ 1 by 

(♥), which forces that n − 1 ∈ S2; thus part (b) holds. For part (d), we should have 
#(S2∩[n −1 −2k, n −2]) ≥ k for k ∈ {1, 2, . . . , n−b−3

2 }, which is true by (♥) together 
with part (b). For part (e), we require #(S2 ∩ [b + 2, n − 2]) = n−b−3

2 , which follows 
from the assumption that P = n−b−1

2 together with part (b).

It remains to consider the case when n ∈ S2. First note that b + 1 ∈ S1 and #(S2 ∩ [b +
2, n]) = n−b−1

2 because of the conditions P = n−b−1
2 and (♥) for k = n−b−1

2 . Now we 
set

T :=
{
z ∈ S1 | b+1 ≤ z < n, n−z is even, z+1 ∈ S1,#(S2∩[z+2, n−1]) = n− z − 2

2

}
.

We claim that T �= ∅; otherwise, an inductive argument shows that b + 2 ∈ S2, b + 3 ∈
S1, b + 4 ∈ S2, . . . , n − 2 ∈ S1, n − 1 ∈ S2 which follows from (♥) and the equation 
#(S2 ∩ [b + 2, n]) = n−b−1

2 , but it contradicts the fact that P = n−b−1
2 . Now we set 

x := maxT. (Note that x �= n.) We claim that there exists a two-step move consisting of 
x ↖↘ b and 1 ↖↘x. To this end, again we check that the conditions in 5.2.3 hold as follows.

– If x = b + 1, then part (b) holds since b + 1 ∈ S1, n ∈ S2, and b + 2 ∈ S1 by 
the definition of T. For part (d), we should have #(S2 ∩ [n − 2k, n − 1]) ≥ k for 
k ∈ {1, 2, . . . , n−b−3

2 }; thus suppose otherwise for contradiction and choose k ∈
{1, 2, . . . , n−b−3

2 } to be minimal which satisfies #(S2 ∩ [n − 2k, n − 1]) < k. (Note 
that this only happens when b + 1 < n − 2.) If k = 1, then the inequality says that 
n − 2, n − 1 ∈ S1 which implies n − 2 ∈ T, but this is impossible by the maximality 
of x = b + 1 in T. Thus k > 1 and by minimality of k we have #(S2 ∩ [n − 2k +
2, n − 1]) ≥ k − 1. This is only possible when #(S2 ∩ [n − 2k + 2, n − 1]) = k − 1
and n − 2k, n − 2k + 1 ∈ S1. However, it means that n − 2k ∈ T. It contradicts 
the assumption that b + 1 = maxT; thus we conclude that part (d) holds. For part 
(e), we need to check that #(S2 ∩ [b + 3, n − 1]) = n−b−3

2 , but this follows from the 
definition of T.

– Otherwise, b + 1 ∈ S1, n ∈ S2, and x + 1 ∈ S1 by the definition of T; thus part (b) 
holds if x − 1 ∈ S2. However, if x − 1 ∈ S1 then by (♥) we have

n− x + 2
2 ≤ #(S2 ∩ [x− 1, n]) = #(S2 ∩ [x + 2, n− 1]) + 1 = n− x

2 ,

which is absurd. Thus x − 1 ∈ S2 and part (b) holds. Now we prove part (e), i.e. 
#(S2 ∩ [b + 2, x − 2]) = x−b−3

2 and #(S2 ∩ [x + 2, n − 1]) = n−x−2
2 . However, the 

second equality follows from definition of T, and also
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#(S2 ∩ [b + 2, x− 2]) = P− #(S2 ∩ [x + 2, n− 1]) − 2 = n− b− 1
2 − n− x− 2

2 − 2

= x− b− 3
2 ,

thus the first equality holds. It remains to prove part (d), that is we should have 
#(S2∩[x −1 −2k, x −2]) ≥ k for k ∈ {1, 2, . . . , x−b−3

2 } and #(S2∩[n −2k, n −1]) ≥ k

for k ∈ {1, 2, . . . , n−x−2
2 }. By (♥), we have

#(S2 ∩ [x− 1 − 2k, x− 2]) = #(S2 ∩ [x− 1 − 2k, n]) − #(S2 ∩ [x + 2, n− 1]) − 2

≥ n− x + 2k + 2
2 − n− x− 2

2 − 2 = k,

from which the first inequality follows. Now for contradiction suppose that there 
exists k ∈ {1, 2, . . . , n−x−2

2 } such that #(S2 ∩ [n − 2k, n − 1]) < k and choose k to 
be minimal among such values. (Note that this implies 1 ≤ n−x−2

2 , i.e. x < n − 2.) 
If k = 1, then the inequality says n − 2, n − 1 ∈ S1 which implies n − 2 ∈ T, but 
this contradicts the maximality of x. Thus k > 1 and by minimality of k we have 
#(S2∩[n −2k+2, n −1]) ≥ k−1. This is only possible when #(S2∩[n −2k+2, n −1]) =
k− 1 and n − 2k + 1, n − 2k ∈ S1. However, this means that n − 2k ∈ T which again 
contradicts the assumption that x = maxT. Thus we conclude that part (d) holds.

We have covered all the possible cases and we conclude that N1,b−1(S, T ) = Nb−1,1(S,
T ) = 1.

Therefore, in order to prove that N1,b−1(S, T ) = Nb−1,1(S, T ) it remains to show 
that Nb−1,1(S, T ) = 1 when there exists x such that the two-step move x ↖↘ b and then 
1 ↖↘x is valid. If such x exists, then the conditions #(S2 ∩ [x − 1 − 2k, x − 2]) ≥ k for 
k ∈ {1, 2, . . . , x−b−3

2 } and #(S2 ∩ [n − 2k, n − 1]) ≥ k for k ∈ {1, 2, . . . , n−x−2
2 } imply 

#(S2 ∩ [n − 2k + 1, n]) ≥ k for k ∈ {1, 2, . . . , n−b−1
2 } (If x = n, then it follows since 

n − 1 ∈ S2. Otherwise, it follows since n, x − 1 ∈ S2.) Thus we see that N1,b−1(S, T ) = 1
and again N1,b−1(S, T ) = Nb−1,1(S, T ) = 1.

As a result, the Polygon Rule holds for (S, T ) when P = n−b−1
2 . This suffices for the 

proof.

6. Case 2: S and T differ by four elements

In this section we consider the case when S and T differ by four elements. Let us set 
{a, b} = S1 − T 1 and {c, d} = S2 − T 2. In other words, we have:

S =
· · · a b · · ·
· · · c d · · ·

� M � T =
· · · c d · · ·
· · · a b · · ·

.

Then we have the following four possibilities to obtain T from S in two steps.
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• Interchange a and c and then and interchange b and d, i.e. a ↖↘ c and b ↖↘ d.
• Interchange a and d and then and interchange b and c, i.e. a ↖↘ d and b ↖↘ c.
• Interchange b and c and then and interchange a and d, i.e. b ↖↘ c and a ↖↘ d.
• Interchange b and d and then and interchange a and c, i.e. b ↖↘ d and a ↖↘ c.

Define Na↖↘c,b↖↘d
i,j to be 1 if

– there exists M and a two-step move S
a↖↘ c−−−→ M and M

b↖↘ d−−−→ T from S to T ,
– i, j ∈ des(S), i, j /∈ des(T ), i ∈ des(M), and j /∈ des(M).

Otherwise we set Na↖↘c,b↖↘d
i,j to be 0. We also define Na↖↘d,b↖↘c

i,j , N b↖↘c,a↖↘d
i,j , and N b↖↘d,a↖↘c

i,j

analogously. Then it is clear that Ni,j(S, T ) = Na↖↘c,b↖↘d
i,j + Na↖↘d,b↖↘c

i,j + N b↖↘c,a↖↘d
i,j +

N b↖↘d,a↖↘c
i,j . From now on we calculate these numbers and check Ni,j(S, T ) = Nj,i(S, T )

for i, j ∈ [1, n] case-by-case.

6.1. {c, d} = {a + 1, b + 1} case

Without loss of generality, we set c = a + 1 and d = b + 1. We are in the following 
situation:

S =
· · · a b · · ·
· · · a+1 b+1 · · ·

� M � T =
· · · a+1 b+1 · · ·
· · · a b · · ·

.

If (i, j) satisfies i, j ∈ des(S) and i, j /∈ des(T ) then we have {i, j} = {a, b}. Thus, here 

it suffices to prove that N b↖↘b+1,a↖↘a+1
a,b = Na↖↘a+1,b↖↘b+1

b,a .
We first consider performing a ↖↘ a + 1 and then b ↖↘ b + 1. This is always possible:

S =
· · · a b · · ·
· · · a+1 b+1 · · ·

� M =
· · · a+1 b · · ·
· · · a b+1 · · ·

� T =
· · · a+1 b+1 · · ·
· · · a b · · ·

.

Similarly, consider performing b ↖↘ b + 1 and then a ↖↘ a + 1. This is also always possible:

S =
· · · a b · · ·
· · · a+1 b+1 · · ·

� M =
· · · a b+1 · · ·
· · · a+1 b · · ·

� T =
· · · a+1 b+1 · · ·
· · · a b · · ·

.

To summarize, in this case we have Na↖↘a+1,b↖↘b+1
b,a = N b↖↘b+1,a↖↘a+1

a,b = 1,
Na↖↘b+1,b↖↘a+1

i,j = N b↖↘a+1,a↖↘b+1
i,j = 0 for {i, j} = {a, b}. Thus Na,b(S, T ) = 1 =

Nb,a(S, T ) as desired.
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6.2. |{c, d} ∩ {a + 1, b + 1}| = 1 case

Without loss of generality, we set c = a + 1 and d �= b + 1. We are in the following 
situation:

S =
· · · a b · · ·
· · · a+1 d · · ·

� M � T =
· · · a+1 d · · ·
· · · a b · · ·

.

If (i, j) satisfies i, j ∈ des(S) and i, j /∈ des(T ) then {i, j} is equal to one of {a, d− 1}, 
{a, b}, or {b, d− 1}. Thus in order to check Ni,j(S, T ) = Nj,i(S, T ), after removing trivial 
terms it suffices to verify the following:

• If {i, j} = {a, d− 1}, then N b↖↘d,a↖↘a+1
a,d−1 = Na↖↘a+1,b↖↘d

d−1,a + N b↖↘a+1,a↖↘d

d−1,a .

• If {i, j} = {a, b}, then N b↖↘d,a↖↘a+1
a,b = Na↖↘a+1,b↖↘d

b,a + Na↖↘d,b↖↘a+1
b,a .

• If {i, j} = {b, d− 1}, then Na↖↘d,b↖↘a+1
b,d−1 = N b↖↘a+1,a↖↘d

d−1,b .

From now on, let us refer to the case b /∈ {a− 1, a + 2, d + 1} and d /∈ {a− 1, a + 2} as 
the generic case, and otherwise as the special case.

6.2.1. Generic case, a ∈ �d, b�
First we claim that Na↖↘d,b↖↘a+1

b,d−1 = N b↖↘a+1,a↖↘d

d−1,b . Indeed, the two moves a ↖↘ d and 

b ↖↘ a + 1 are independent of each other, i.e. the conditions in Section 4.1 are not affected 
by which moves are performed first because a ∈ �d, b�. Thus we see that the two-step 

move S
a↖↘ d−−−→ M

b↖↘ a+1−−−−−→ T is valid if and only if so is S b↖↘ a+1−−−−−→ M
a↖↘ d−−−→ T , from 

which the result follows.
From now on we suppose that {i, j} is equal to either {a, d− 1} or {a, b}. We claim 

that N b↖↘d,a↖↘a+1
i,j − Na↖↘a+1,b↖↘d

j,i ∈ {0, 1}. (Note that N b↖↘d,a↖↘a+1
i,j = Na↖↘a+1,b↖↘d

j,i = 0
unless (i, j) is either (a, d− 1) or (a, b) by the descent condition.) To this end, it suffices 
to show that if the following sequence of moves is possible:

S =
· · · a b · · ·
· · · d a+1 · · ·

� M =
· · · a+1 b · · ·
· · · d a · · ·

� T =
· · · d a+1 · · ·
· · · a b · · ·

,

then so is

S =
· · · a b · · ·
· · · d a+1 · · ·

� M =
· · · d a · · ·
· · · a+1 b · · ·

� T =
· · · d a+1 · · ·
· · · a b · · ·

.

Indeed, first we see that S a↖↘ a+1−−−−−→ M in the former and M
a↖↘ a+1−−−−−→ T in the latter are 

always possible since they are moves of the first kind. Now if M b↖↘ d−−−→ T in the former 
is allowed, then the following conditions should be satisfied:
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(a) b− d is odd.
(b) d + 1 ∈ M1 and b− 1 ∈ M2, i.e. d + 1 ∈ S1 and b− 1 ∈ S2.
(c) Either d− 1 ∈ M1 or b + 1 ∈ M2, i.e. either d− 1 ∈ S1 or b + 1 ∈ S2 (since we are 

in the generic case).
(d) #(M2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−d−3

2 }.
(e) #(M2 ∩ �d + 2, b− 2�) = b−d−3

2 i.e. #(S2 ∩ �d + 2, b− 2�) = b−d−3
2 (since a �=

d + 1, b− 2).

Also part (d) implies that #(S2∩�b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−d−3
2 } since 

a �= b− 2. However, this means that S b↖↘ d−−−→ M in the latter is also allowed, from which 
the assertion follows.

Therefore, the equality Ni,j(S, T ) = Nj,i(S, T ) for {i, j} = {a, d− 1} or {i, j} = {a, b}
is equivalent to the following statements:

(1) N b↖↘a+1,a↖↘d

d−1,a = 1 if and only if N b↖↘d,a↖↘a+1
a,d−1 −Na↖↘a+1,b↖↘d

d−1,a = 1.

(2) Na↖↘d,b↖↘a+1
b,a = 1 if and only if N b↖↘d,a↖↘a+1

a,b −Na↖↘a+1,b↖↘d
b,a = 1.

Here we only prove the first case; the second case is essentially verbatim after replacing 
d− 1 ∈ S1 with b + 1 ∈ S2. From now on let us assume that d− 1 ∈ S1 since otherwise 
both expressions above are zero by the descent condition.

As observed above, we have N b↖↘d,a↖↘a+1
a,d−1 −Na↖↘a+1,b↖↘d

d−1,a = 1 if and only if the following 
conditions hold:

(a) b− d is odd.
(b) b− 1 ∈ S2, d + 1 ∈ S1.
(c) (This is trivially satisfied since we already have d− 1 ∈ S1.)
(d) #(S2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−d−3

2 }.
(e) #(S2 ∩ �d + 2, b− 2�) = b−d−3

2 .
(f) b− a is even and #(S2 ∩ �a + 1, b− 2�) = b−a−2

2 .

The last one comes from the fact that the condition 2.(d) in Section 4.1 has to fail after 
we swap a ∈ S1 and a + 1 ∈ S2. Schematically, the two-step move S

b↖↘ d−−−→ M
a↖↘ a+1−−−−−→ T

which contributes to N b↖↘d,a↖↘a+1
a,d−1 looks as follows:

S =
· · · d−1d+1 a a+2 b · · ·
· · · d a−1a+1 b−1 · · · · · ·

� M =
· · · d−1 d d+1 a a+2 · · ·
· · · a−1a+1 b−1 b · · · · · ·

�

T =
· · · d−1 d d+1a+1a+2 · · ·
· · · a−1 a b−1 b · · · · · ·

.
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On the other hand, we have N b↖↘a+1,a↖↘d

d−1,a = 1 if and only if the following conditions 
of Section 4.1 hold:

(a’) b− a is even and a− d is odd.
(b’) b− 1 ∈ S2, a + 2 ∈ S1, a− 1 ∈ S2, and d + 1 ∈ S1.
(c’) (This is trivially satisfied since we already have a, d− 1 ∈ S1.)
(d’) #(S2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−a−1−3

2 } and
#(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , a−d−3

2 }.
(e’) #(S2 ∩ �a + 3, b− 2�) = b−a−1−3

2 and #(S2 ∩ �d + 2, a− 2�) = a−d−3
2 .

Schematically, the two-step move S
b↖↘ a+1−−−−−→ M

a↖↘ d−−−→ T which contributes to 
N b↖↘a+1,a↖↘d

d−1,a looks as follows:

S =
· · · d−1d+1 a a+2 b · · ·
· · · d a−1a+1 b−1 · · · · · ·

� M =
· · · d−1d+1 a a+1a+2 · · ·
· · · d a−1 b−1 b · · · · · ·

�

T =
· · · d−1 d d+1a+1a+2 · · ·
· · · a−1 a b−1 b · · · · · ·

.

Now we observe the following. The parity part of claims (a) and (f) is equivalent to 
claim (a’). Claim (b’) is implied by (b) as well as (d), (f). Indeed, a + 2 ∈ S1 is implied by 
(f) and (d) for k = b−a−1−3

2 , while a− 1 ∈ S2 is implied by (f) and (d) for k = b−a−1+1
2 . 

Claim (d’) is implied by (d) and (f), while (e’) is implied by (e) and (f). Claim (b) is 
trivially implied by (b’). Claim (d) is implied by (d’) and the part of (b’) that refers to 
a− 1 and a + 2. Similarly, (e) and (f) are implied by (e’) and the part of (b’) that refers 
to a− 1 and a + 2. Therefore, we see that the conditions (a)–(f) are satisfied if and only 
if so are the conditions (a’)–(e’), from which the claim follows.

6.2.2. Generic case, a /∈ �d, b�
Due to our assumption a /∈ {b + 1, d− 2}, in this case the conditions for the move b ↖↘ d

are not affected by whether or not we perform a ↖↘ a + 1 beforehand. Thus N b↖↘d,a↖↘a+1
i,j =

Na↖↘a+1,b↖↘d
j,i for any i, j. Thus it remains to show that Na↖↘d,b↖↘a+1

i,j = N b↖↘a+1,a↖↘d
j,i when 

(i, j) is one of (a, d− 1), (b, a), or (b, d− 1).
Consider first the case (i, j) = (a, d− 1), in which case it suffices to assume d− 1 ∈ S1. 

We need to argue that N b↖↘a+1,a↖↘d

d−1,a = 0. If we assume otherwise, i.e. N b↖↘a+1,a↖↘d

d−1,a = 1, 
then one can conclude, repeatedly using condition (b), that the moves look as follows:

S =
· · · d−1d+1 b a · · ·
· · · d b−1a−1a+1 · · ·

� M =
· · · d−1d+1 a a+1 · · ·
· · · d b−1 b a−1 · · ·

�

T =
· · · d−1 d d+1a+1a+2 · · ·
· · · a−1 a b−1 b · · · · · ·

.
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By condition (a) we know that a− d is odd; let a− d = 2m + 1. The following two 
conditions hold:

(d) #(M2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1},
(e) #(M2 ∩ �d + 2, a− 2�) = m − 1.

Assume b− d is odd, say b− d = 2� + 1. Then taking k = m − � − 1 we see that 
#(M2 ∩ �b + 1, a− 2�) ≥ m − � − 1. This implies that #(M2 ∩ �d + 2, b�) ≤ �, which 
in turn means that #(S2 ∩ �d + 2, b− 2�) ≤ � − 2. This is impossible however by the 
k = � − 1 case of the condition

(d) #(S2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−a−1−3
2 }.

Now assume b− d is even, say b− d = 2�. Then taking k = m − � we see that 
#(M2 ∩ �b, a− 2�) ≥ m − �. This implies that #(S2 ∩ [d + 2, b− 1]) ≤ � − 1, which 
in turn means that #(S2 ∩ �d + 1, b− 2�) ≤ � − 2. This is impossible however by the 
k = � − 1 case of the condition (d) above.

Consider now the case (i, j) = (b, a), in which case we may assume that b + 1 ∈ S2. 
We need to argue that Na↖↘d,b↖↘a+1

b,a = 0. If we assume otherwise, i.e. Na↖↘d,b↖↘a+1
b,a = 1, 

then one can conclude, repeatedly using condition (b), that the moves look as follows:

S =
· · · d+1 b a a+2 · · · · · ·
· · · d b−1 b+1 a−1a+1 · · ·

� M =
· · · d d+1 b a+2 · · · · · ·
· · · b−1 b+1 a−1 a a+1 · · ·

�

T =
· · · d d+1a+1a+2 · · · · · ·
· · · b−1 b b+1 a−1 a · · ·

.

By condition (a) we know that a− d is odd; let a− d = 2m + 1. The following two 
conditions hold:

(d) #(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1},
(e) #(S2 ∩ �d + 2, a− 2�) = m − 1.

Assume b− d is odd, say b− d = 2� + 1. Then taking k = m − � − 1 we see that 
#(S2 ∩ �b + 1, a− 2�) ≥ m − � − 1. This implies that #(S2 ∩ �d + 2, b�) ≤ �, which in 
turn means that #(M2 ∩ �d, b− 2�) ≤ � − 1. This is impossible however by the k = �

case of the condition

(d) #(M2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , b−a−1−3
2 }.

Now assume b− d is even, say b− d = 2�. Then taking k = m − � we see that 
#(S2 ∩ �b, a− 2�) ≥ m − �. This implies that #(S2 ∩ �d + 2, b− 1�) ≤ � − 1, which 
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in turn means that #(M2 ∩ �d + 1, b− 2�) ≤ � − 2. This is impossible however by the 
k = � − 1 case of the condition (d) above.

Finally, consider the case (i, j) = (b, d− 1), in which case we may assume that d− 1 ∈
S1 and b + 1 ∈ S2. In this case we claim that Na↖↘d,b↖↘a+1

i,j = N b↖↘a+1,a↖↘d
j,i = 0. The 

argument for Na↖↘d,b↖↘a+1
i,j = 0 coincides verbatim with the argument in the case {i, j} =

{a, b}, while the argument for N b↖↘a+1,a↖↘d
j,i = 0 coincides verbatim with the argument 

in the case {i, j} = {a, d− 1}.

6.2.3. Special cases
In the d = a + 2 case the same argument works verbatim as in the generic, a /∈ �d, b�, 

{i, j} = {a, b} case. In the d = a− 1 case the same argument works verbatim as in the 
generic, a ∈ �d, b� case. In the b = a− 1 case the same argument works verbatim as in 
the generic, a /∈ �d, b�, {i, j} = {a, d− 1} case. In the b = a + 2 case the same argument 
works verbatim as in the generic, a ∈ �d, b� case.

Finally, consider the b = d + 1 case. Then {i, j} is one of {a, d + 1}, {a, d− 1}, or 
{d− 1, d + 1}. In the first two cases Na↖↘a+1,d+1↖↘d

d±1,a = Nd+1↖↘d,a↖↘a+1
a,d±1 = 1. Also in all 

the three cases Na↖↘d,d+1↖↘a+1
i,j = Nd+1↖↘a+1,a↖↘d

i,j = 0 because condition (b) is violated 
in the second move of each one. The claim follows.

6.3. |{c, d} ∩ {a + 1, b + 1}| = 0 case

If (i, j) satisfies i, j ∈ des(S) and i, j /∈ des(T ) then we have {i, j} ⊂ {a, b, c− 1, d− 1}. 
We divide it into two cases: the case when #(�a, b� ∩ {c, d}) = 1, which we call the 
interlacing case, and the other case called the non-interlacing case. Let us list all the 
possibilities and the equalities needed to be proved:

• If {i, j} = {a, b}, then N b↖↘c,a↖↘d
a,b + N b↖↘d,a↖↘c

a,b = Na↖↘c,b↖↘d
b,a + Na↖↘d,b↖↘c

b,a .
• If {i, j} = {a, c− 1}, then N b↖↘c,a↖↘d

a,c−1 = Na↖↘d,b↖↘c

c−1,a .
• If {i, j} = {a, d− 1}, then N b↖↘d,a↖↘c

a,d−1 = Na↖↘c,b↖↘d

d−1,a .
• If {i, j} = {b, c− 1}, then Na↖↘c,b↖↘d

b,c−1 = N b↖↘d,a↖↘c

c−1,b .
• If {i, j} = {b, d− 1}, then Na↖↘d,b↖↘c

b,d−1 = N b↖↘c,a↖↘d

d−1,b .
• If {i, j} = {c− 1, d− 1}, then Na↖↘d,b↖↘c

c−1,d−1 + N b↖↘d,a↖↘c

c−1,d−1 = Na↖↘c,b↖↘d

d−1,c−1 + N b↖↘c,a↖↘d

d−1,c−1 .

6.3.1. Non-interlacing case
Without loss of generality we may set 1 ≤ c < d < a < b ≤ n. Here it suffices to prove 

that Na↖↘d,b↖↘c
i,j = N b↖↘c,a↖↘d

j,i and Na↖↘c,b↖↘d
i,j = N b↖↘d,a↖↘c

j,i for any i, j.
Let us start with the first equality Na↖↘d,b↖↘c

i,j = N b↖↘c,a↖↘d
j,i . Note that Na↖↘d,b↖↘c

i,j = 1
for i ∈ {b, c− 1} and j ∈ {a, d− 1} if and only if the following conditions hold:

(a) a − d and b − c are odd, say b − c = 2m + 1, a − d = 2� + 1.
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(b) a− 1, b− 1 ∈ S2 and c + 1, d + 1 ∈ S1.
(c) One out of two conditions holds: d− 1 ∈ S1, a + 1 ∈ S2, and also one of the two 

conditions holds: c− 1 ∈ S1, b + 1 ∈ S2.
(d) #(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , � − 1} and

#(M2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1}.
(e) #(S2 ∩ �d + 2, a− 2�) = � − 1 and #(M2 ∩ �c + 2, b− 2�) = m − 1.

Here M is the one obtained from S by interchanging a ∈ S1 and d ∈ S2. On the other 
hand, N b↖↘c,a↖↘d

j,i = 1 for i ∈ {b, c− 1} and j ∈ {a, d− 1} if and only if the following 
conditions hold:

(a’) a − d and b − c are odd, say b − c = 2m + 1, a − d = 2� + 1.
(b’) a− 1, b− 1 ∈ S2 and c + 1, d + 1 ∈ S1.
(c’) One out of two conditions holds: d− 1 ∈ S1, a + 1 ∈ S2, and also one of the two 

conditions holds: c− 1 ∈ S1, b + 1 ∈ S2.
(d’) #(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , � − 1} and

#(S2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1}.
(e’) #(S2 ∩ �d + 2, a− 2�) = � − 1 and #(S2 ∩ �c + 2, b− 2�) = m − 1.

It is clear that we need to show equivalence between (d), (e) on one hand and (d’), 
(e’) on the other. Assume first that b − a is even. It is easy to see that for any k ∈
{1, 2, . . . , m − 1} we have

#(S2 ∩ �b− 1 − 2k, b− 2�) = #(M2 ∩ �b− 1 − 2k, b− 2�),

where we assume that M is obtained from S by swapping a and d. Indeed, in each pair 
{d, d + 1} and {a− 1, a} exactly one element belongs to S2 and M2, and thus the overall 
counts are the same no matter what k is. All other conditions needed for the equivalence 
are also clear.

Assume now that b − a is odd, say b − a = 2p + 1. Recall that S and M differ by 
a ∈ S1, d ∈ S2, while a ∈ M2, d ∈ M1. Thus (d’) implies (d) as c < d < a < b. 
Furthermore, (e’) implies (e) since otherwise we should have c + 1 = d or b = a− 1, 
which is absurd as b, c + 1 ∈ S1 and a− 1, d ∈ S2. In the opposite direction, there is only 
one thing that could go wrong; namely, it is possible that #(S2 ∩ �a, b− 2�) < p while 
at the same time #(M2 ∩ [a, b− 2]) = p. Thanks to the condition (e) this implies that 
#(M2∩�d + 1, b− 2�) = � +p. Then the only way one can have #(M2∩ [d− 1, b− 2]) ≥
� +p +1 is when d− 1 ∈ S2. By (c) this means that a + 1 ∈ S2. This however contradicts 
the fact that #(S2 ∩ [a, b− 2]) < p, since we also know #(S2 ∩ �a + 2, b− 2�) ≥ p − 1. 
Thus our assumption was wrong and (d’) holds. The desired equivalence is now clear.

Now we will prove that Na↖↘c,b↖↘d
i,j = N b↖↘d,a↖↘c

j,i = 0 for any i, j. Indeed, assume 

Na↖↘c,b↖↘d
i,j = 1 for some i, j. Then the following conditions hold:
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(a) a − c and b − d are odd, say a − c = 2m + 1, b − d = 2� + 1.
(b) a− 1, b− 1 ∈ S2 and c + 1, d + 1 ∈ S1.
(c) One out of two conditions holds: c− 1 ∈ S1, a + 1 ∈ S2, and also one of the two 

conditions holds: d− 1 ∈ S1, b + 1 ∈ S2.
(d) #(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1} and

#(M2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , � − 1}.
(e) #(S2 ∩ �c + 2, a− 2�) = m − 1 and #(M2 ∩ �d + 2, b− 2�) = � − 1.

Here M is the one obtained from S by interchanging a ∈ S1 and c ∈ S2.
Assume b − a is even, say b − a = 2p. Then combining #(M2 ∩ �a + 1, b− 2�) ≥ p − 1

with #(M2 ∩ �d + 2, a− 2�) = #(S2 ∩ �d + 2, a− 2�) ≥ � − p − 1 and a− 1, a ∈ M2, we 
see that #(M2 ∩ �d + 2, b− 2�) ≥ � − p − 1 + p − 1 + 2 = �, which contradicts (e). Now 
assume b − a is odd, say b − a = 2p + 1. Then combining #(M2 ∩ �a, b− 2�) ≥ p with 
#(M2∩�d + 1, a− 2�) = #(S2∩�d + 1, a− 2�) ≥ � −p −1 and a− 1 ∈ M2, d + 1 /∈ M2

we see that #(M2 ∩ �d + 2, b− 2�) ≥ � − p − 1 + p + 1 = �, which contradicts (e). These 
contradictions show that Na↖↘c,b↖↘d

i,j = 0 for any i, j.
Finally, assume N b↖↘d,a↖↘c

j,i = 1 for some i, j. Then the following conditions hold:

(a) a − c and b − d are odd, say a − c = 2m + 1, b − d = 2� + 1.
(b) a− 1, b− 1 ∈ S2 and c + 1, d + 1 ∈ S1.
(c) One out of two conditions holds: c− 1 ∈ S1, a + 1 ∈ S2, and also one of the two 

conditions holds: d− 1 ∈ S1, b + 1 ∈ S2.
(d) #(M2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1} and

#(S2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , � − 1}.
(e) #(M2 ∩ �c + 2, a− 2�) = m − 1 and #(S2 ∩ �d + 2, b− 2�) = � − 1.

Here M is the one obtained from S by interchanging b ∈ S1 and d ∈ S2.
Assume b −a is even, say b −a = 2p. Then the conditions #(S2∩�a + 1, b− 2�) ≥ p −1, 

a− 1 ∈ S2, a /∈ S2, and #(S2∩�d + 2, b− 2�) = � −1 imply that #(S2∩�d + 2, a− 2�) ≤
� − p − 1. However, since d, d + 1 /∈ M2, this implies #(M2 ∩ �d, a− 2�) ≤ � − p − 1, 
which contradicts (d). Now assume b − a is odd, say b − a = 2p + 1. Then the conditions 
#(M2 ∩ �a, b− 2�) ≥ p, a− 1 ∈ S2, and #(S2 ∩ �d + 2, b− 2�) = � − 1 imply that 
#(M2 ∩ �d + 1, a− 2�) ≤ � − p − 2, which contradicts (d). These contradictions show 
that N b↖↘d,a↖↘c

j,i = 0 for any i, j.

6.3.2. Interlacing case
Without loss of generality we may set 1 ≤ c < a < d < b ≤ n. Similar to above, in 

this case it suffices to prove that Na↖↘d,b↖↘c
i,j = N b↖↘c,a↖↘d

j,i and Na↖↘c,b↖↘d
i,j = N b↖↘d,a↖↘c

j,i for 
any i, j. The equality Na↖↘c,b↖↘d

i,j = N b↖↘d,a↖↘c
j,i is self-evident because of our assumptions 

d �= a + 1, c �= b + 1. Thus it suffices to show that Na↖↘d,b↖↘c
i,j = N b↖↘c,a↖↘d

j,i = 0. Due to 
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circular symmetry it is enough just to argue one of those, say Na↖↘d,b↖↘c
i,j = 0. Assume 

otherwise, i.e. Na↖↘d,b↖↘c
i,j = 1. Then the following conditions hold:

(1) b − c and a − d are odd, say b − c = 2m + 1, a − d = 2� + 1.
(2) a− 1, b− 1 ∈ S2 and c + 1, d + 1 ∈ S1.
(3) One out of two conditions holds: c− 1 ∈ S1, b + 1 ∈ S2, and also one of the two 

conditions holds: d− 1 ∈ S1, a + 1 ∈ S2.
(4) #(S2 ∩ �a− 1 − 2k, a− 2�) ≥ k for k ∈ {1, 2, . . . , � − 1} and

#(M2 ∩ �b− 1 − 2k, b− 2�) ≥ k for k ∈ {1, 2, . . . , m − 1}.
(5) #(S2 ∩ �d + 2, a− 2�) = � − 1 and #(M2 ∩ �c + 2, b− 2�) = m − 1.

Here M is the one obtained from S by interchanging a ∈ S1 and d ∈ S2.
Assume a − b is even, say a − b = 2p. Then #(S2 ∩ �b + 1, a− 2�) ≥ p − 1, which 

together with b− 1 ∈ S2, b /∈ S2, and #(S2∩�d + 2, a− 2�) = � −1, implies that #(S2∩
�d + 2, b− 2�) ≤ � − p − 1. Since d, d + 1 ∈ M1, this implies that #(M2 ∩ �d, b− 2�) ≤
� − p − 1, which contradicts (d). Now assume a − b is odd, say a − b = 2p + 1. Then 
#(S2∩�b, a− 2�) ≥ p, which together with b− 1 ∈ S2 and #(S2∩�d + 2, a− 2�) = � −1, 
implies that #(S2 ∩ �d + 2, b− 2�) ≤ � − p − 2. Since d + 1 /∈ M2, this in turn implies 
that #(M2 ∩ �d + 1, b− 2�) ≤ � − p − 2, which contradicts (d). The proof is complete.

7. Restriction of Γλ to Sn

Here we discuss the parabolic restriction of Γλ to the maximal parabolic subgroup 
Sn of Sn when λ is a two-row partition. (However, many parts in this section are still 
valid for general λ when the existence of Γλ is not needed.) As a result, for a two-row 
partition λ we obtain an explicit description of a Sn-graph Γλ which is a finite analogue 
of Γλ.

7.1. Left cells of Sn and Sn-graphs

Suppose that W is a Coxeter group. In [10], a W -graph is attached to each left cell 
of W . Furthermore, when W = Sn it is essentially proved by [10, Theorem 1.4] that the 
isomorphism class of such a Sn-graph depends only on the two-sided cell containing the 
corresponding left cell. Recall that two-sided cells of Sn are parametrized by partitions 
of n; let cλ be such a cell parametrized by λ. Here we adopt the convention that if w ∈ cλ
then the image of w under the usual Robinson-Schensted map is a pair of elements in 
SYT(λ). We define Γλ to be the Sn-graph attached to a left cell contained in cλ.

Remark. To be precise, the Sn-graph Γλ constructed in [10] is not reduced but m(u �v) =
m(v�u) for any vertices u and v. Here, we modify Γλ to be reduced by setting m(u �v) = 0
whenever τ(u) ⊂ τ(v).
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Recall the definition of a Kazhdan-Lusztig affine dual equivalence graph Dλ. Then 
clearly Dλ↓[1,n−1] is a [1, n − 1]-labeled graph, and we set Dλ to be its full subgraph 
whose vertices are standard Young tableaux of shape λ. In other words, Dλ = (V, m, τ)
is a [1, n − 1]-labeled graph such that V = SYT(λ), τ = des, m(S � T ) = m(T �S) = 1 if 
S and T are connected by a Knuth move, and m(S � T ) = m(T � S) = 0 otherwise. (See 
Section 2.6 for the definition of des and Knuth moves, and also the remark thereafter.) 
The graph Dλ is called a Kazhdan-Lusztig (finite) dual equivalence graph of shape λ. 
Then it is known that U(Γλ) � Dλ; e.g. see [4, 3.5].

7.2. (nb-)Admissible Sn-graphs

Here we discuss some properties of nb-admissible Sn-graphs. Recall that in general, 
cells and simple components of W -graphs may differ; we already observed such a phe-
nomenon in Example 4.3 (see Fig. 3). However, such situations do not arise for Sn-graphs 
as the following result shows.

Theorem 7.1 ([4]). If Γ is an nb-admissible Sn-graph, then each cell consists of a simple 
component. Moreover, the simple underlying graph of each cell is isomorphic to Dμ for 
some μ � n.

Proof. The result of Chmutov is stated for admissible Sn-graphs. However, his proof does 
not exploit the bipartition property and thus the statement is still valid for nb-admissible 
setting. �

In fact, more is true; the following theorem was a conjecture of Stembridge [20, Ques-
tion 2.8].

Theorem 7.2 ([16]). If Γ is an nb-admissible Sn-graph, then each cell is isomorphic to 
Γμ for some μ � n.

Proof. Again, the proof of Nguyen is still applicable to our setting as his proof does not 
use the bipartition property of admissible Sn-graphs. �

To this end, Nguyen studied some property of (nb-)admissible Sn-graphs called or-
deredness, which we now explain. Suppose that Γ is an (nb-)admissible Sn-graph and let 
Γ′, Γ′′ be (possibly identical) cells of Γ. Then by the theorem above, there exist μ, ν � n

such that Γ′ � Γμ and Γ′′ � Γν (or equivalently U(Γ′) � Dμ and U(Γ′′) � Dν). Let 
u ∈ Γ′ and v ∈ Γ′′. Then under the previous isomorphisms, u and v corresponds to 
Tu ∈ SYT(μ) and Tv ∈ SYT(ν). We say that Γ is ordered if m(u � v) �= 0 for such u, v
then either [Tu < Tv] or [Γ′ = Γ′′, Tu > Tv, and Tu is obtained from Tv by switching i
and i + 1 for some i ∈ [1, n − 1]]. Here for two tableaux T, T ′ ∈ SYT(n) we write T ≤ T ′

if Sh(T↓[1,i]) is less than or equal to Sh(T ′↓[1,i]) with respect to dominance order for all 
i ∈ [1, n]. (See [16] for the actual statement.) Now we have:



38 D. Kim, P. Pylyavskyy / Advances in Mathematics 370 (2020) 107207
Theorem 7.3 ([16, Theorem 8.1.]). Every nb-admissible Sn-graph is ordered.

Proof. Similar to the theorems above, the proof of [16] is still valid in our case as it does 
not use the bipartition assumption. �
7.3. Description of Γλ↓[1,n−1]

As Γλ is a Sn-graph, its restriction Γλ↓[1,n−1] is a Sn-graph where Sn is considered as 
a parabolic subgroup of Sn generated by {s1, s2, . . . , sn−1}. Let us investigate each cell 
of Γλ↓[1,n−1]. We start with the following proposition.

Proposition 7.4. Let μ be a partition of n. Recall the Robinson-Schensted-Knuth map 
RSK : T �→ (P (T ), Q(T )) defined on RSYT(n).

(1) For T ∈ RSYT(n), we have des(T ) − {n} = des(T ) = des(P (T )).
(2) For T ∈ RSYT(μ), we have FinSh(T ) = μ if and only if T is standard if and only if 

T = P (T ).
(3) If des(T ) and des(T ′) are not comparable, then T, T ′ ∈ RSYT(n) are connected by 

a dual Knuth move if and only if P (T ) and P (T ′) are connected by a Knuth move 
and Q(T ) = Q(T ′).

Proof. (1) holds since the reading words of T and P (T ) are Knuth equivalent. For 
(2), first it is clear from the construction that T is standard only if T = P (T ) only 
if FinSh(T ) = μ. Now observe that FinSh(T ) = μ if and only if Q(T ) is the unique 
standard Young tableaux of shape μ and content μop. Therefore, (2) follows from the 
fact that RSK is an injective map. For (3), we set T̃ (resp. T̃ ′) to be the standard Young 
tableau of some skew-shape which is obtained from pushing each row of T (resp. T ′) to 
the right so that no two boxes are in the same column. Then it is clear that T̃ and P (T )
(resp. T̃ ′ and P (T ′) are jeu-de-taquin equivalent, and also T and T ′ are connected by a 
dual Knuth move if and only if T̃ and T̃ ′ are. Now the result follows from [9, Lemma 
2.3]. �

As Γλ is nb-admissible, so is Γλ↓[1,n−1], which means that we may apply Theorems 7.1, 
7.2, and 7.3. In particular, each cell of Γλ↓[1,n−1] is a simple component and isomorphic 
to Dμ for some μ � n. Therefore, if u, v ∈ Γλ↓[1,n−1] are in the same cell then they are 
linked by undirected edges, which means that Q(u) = Q(v) by the preceding proposition. 
Conversely, if Q(u) = Q(v) for some u, v then it is clear that P (u) and P (v) are linked 
by a series of Knuth moves, which means that u and v are in the same cell of Γλ↓[1,n−1]
again by the preceding proposition.

Recall that the τ -function of Γλ↓[1,n−1] is obtained from that of Γλ by removing n
from the image of each v ∈ Γλ. Therefore, if we regard v ∈ Γλ as an element in RSYT(λ)
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Fig. 4. Parabolic restriction Γ(3,2)↓[1,4].

then its τ value in Γλ↓[1,n−1] is equal to τ(P (v)) by the preceding proposition. Together 
with the paragraph above, we proved the following proposition:

Proposition 7.5. Cells of Γλ↓[1,n−1] are parametrized by �μ�n SSYT(μ, λop). If C ⊂
Γλ↓[1,n−1] is a cell parametrized by Q, then C is isomorphic to ΓSh(Q). In particular, 
there exists a unique cell which is isomorphic to Γλ and it is parametrized by the unique 
element of SSYT(λ, λop).

Example 7.6. Fig. 4 illustrates the parabolic restriction Γ(3,2)↓[1,4]. Here, thick edges 
are the ones between vertices in the same cell. Compared to Fig. 1, there are less di-
rected edges and also some undirected edges become directed. It consists of three cells 
isomorphic to Γ(3,2), Γ(4,1), and Γ(5), respectively, as indicated in the figure.

7.4. Description of Γλ

From now on we enforce that λ is a two-row partition and identify Γλ with the 
full subgraph of Γλ↓[1,n−1] isomorphic to it. Then similar to Γλ it is possible to give 
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a simple combinatorial description of Γλ. (Note that the description of Γλ can also be 
given in terms of the language of Temperley-Lieb algebras; see [23].) First we observe 
the following.

Lemma 7.7. Let S, T ∈ Γλ and suppose that we have an edge S
j ↖↘ i−−−→ T in Γλ ⊂ Γλ↓[1,n−1]

for some 1 ≤ i, j ≤ n. Then we have j ≥ i − 1, i.e. either j = i − 1 (a move of the first 
kind) or i < j (a move of the second kind).

Proof. For contradiction suppose that j < i − 1. Then j cannot be 1 since j ∈ T 2 and 
T is standard. Thus j − 1 ≥ 1 and we require that j − 1 ∈ S2. Since T is standard and 
j − 1, j ∈ T 2, it implies that #(S2 ∩ [1, j − 2]) + 2 ≤ #(S1 ∩ [1, j − 2]), or equivalently 
#(S2 ∩ [2, j − 2]) + 1 ≤ #(S1 ∩ [2, j − 2]) as 1 ∈ S1. But this violates the inequality of 
part 2.(d) in Section 4.1; thus the result follows. �
Theorem 7.8. Let λ � n be a two-row partition. Then the weight function m of Γλ =
(SYT(λ), m, des) is defined as follows.

1) (Move of the first kind) m(S�T ) = 1 if T is obtained from S by interchanging i ∈ S1

and i + 1 ∈ S2 for some 1 ≤ i ≤ n − 1, i.e.

S =
· · · i · · ·
· · · i + 1 · · ·

→ T =
· · · i + 1 · · ·
· · · i · · ·

.

2) (Move of the second kind) m(S � T ) = 1 if T is obtained from S by interchanging 
i ∈ S2 and j ∈ S1, i.e.

S =
· · · j · · ·
· · · i · · ·

→ T =
· · · i · · ·
· · · j · · ·

where the following conditions hold:
(a) 1 < i < j ≤ n and j − i is odd.
(b) i + 1 ∈ S1 and j − 1 ∈ S2.
(c) Either i − 1 ∈ S1 or j + 1 ∈ S2. (If j = n, then j + 1 /∈ S2 by convention.)
(d) #(S2 ∩ [j − 1 − 2m, j − 2]) ≥ m for m ∈ [1, j−i−3

2 ].
(e) #(S2 ∩ [i + 2, j − 2]) = j−i−3

2 when j �= i + 1.
3) Otherwise, m(S � T ) = 0.

Proof. This directly follows from the lemma above together with the definition of Γλ in 
Section 4.1. �
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8. Uniqueness of Γλ in unequal length cases

In this section, λ is a partition of n consisting of two rows of unequal lengths. The 
main goal here is to show that Γλ is the unique nb-admissible Sn-graph (up to isomor-
phism) such that U(Γλ) � Dλ. In equal length cases, i.e. if λ = (a, a) for some a, the 
corresponding nb-admissible Sn-graph is not unique — it is discussed in the next section.

8.1. Robinson-Schensted-Knuth and ω

First we consider the action of ω ∈ S̃n on RSYT(n) by changing each entry i to i + 1
(and reordering entries in each row if necessary). Here we describe RSK(ω(T )) in terms 
of RSK(T ).

Lemma 8.1. Suppose that T ∈ RSYT(n) and set RSK(T ) = (P, Q). From these we 
construct P ′ and Q′ as follows.

• Find the position of a corner box of P containing n (which is unique since P is 
standard).

• Apply the inverse of the bumping process to Q starting from the corner box of Q
at the position found above. Denote the result tableau by Q̃ and the entry which is 
bumped out from the process by x.

• Column-bump x into Q̃ and let Q′ be its result. Or equivalently, insert x to the 
transpose of Q̃ using the “dual” bumping process and let Q′ be the transpose of its 
result. (See [12, Section 5] or [19, Chapter 7.14] for the definition of dual bumping 
process.)

• Let P̃ be the unique tableau such that Sh(P̃ ) = Sh(Q′) and P̃↓[1,n−1] = P↓[1,n−1]. In 
other words, P̃ is obtained from P by moving a box containing n if necessary so that 
Sh(P̃ ) = Sh(Q′). (In particular, if Sh(Q) = Sh(Q′) then P̃ = P .)

• Do the inverse of the promotion operator on P̃ with respect to n, and define P ′ to 
be its result. (See [18, Section 7] for the definition of the promotion operator.)

Then we have RSK(ω(T )) = (P ′, Q′).

Example 8.2. Suppose that T =
2 4 5 7
3 6 9
1 8

so that P =
1 2 4 5 7
3 6 9
8

and Q =
1 1 2 2 3
2 3 3
3

. 

Then we obtain (P ′, Q′) from (P, Q) as follows:

• The corner box of P that contains n = 9 is the last box of the second row.
• Apply the inverse bumping to Q with the corner box found above. In our case we 

have Q̃ =
1 1 2 3 3
2 3
3

and x = 2.

• Column-bump x = 2 into Q̃ and get Q′ =
1 1 2 3 3
2 2 3 .

3
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• In our case ShQ = ShQ′, thus P̃ = P .

• Apply the inverse of the promotion operator to P̃ and get P ′ =
1 3 5 6 8
2 4 7
9

.

Now the above theorem shows that RSK(ω(T )) = (P ′, Q′) where ω(T ) =
3 5 6 8
1 4 7
2 9

.

Proof. Let A be the two-line array corresponding to T , and Ã be the one obtained from 
A by switching the first and the second rows and reordering the entries if necessary so 

that the first row becomes 1, 2, . . . , n. For example, if T =
2 4 5 7
3 6 9
1 8

, then

A =
(

1 1 2 2 2 3 3 3 3
1 8 3 6 9 2 4 5 7

)
and Ã =

(
1 2 3 4 5 6 7 8 9
1 3 2 3 3 2 3 1 2

)
.

It is clear that the image of Ã under RSK is equal to (Q, P ). Also, for T ′ = ω(T ) we 

similarly define A ′ and Ã ′. For example, if T is as above then T ′ =
3 5 6 8
1 4 7
2 9

and

A ′ =
(

1 1 2 2 2 3 3 3 3
2 9 1 4 7 3 5 6 8

)
and Ã ′ =

(
1 2 3 4 5 6 7 8 9
2 1 3 2 3 3 2 3 1

)
.

Note that Ã ′ is obtained from Ã by applying cyclic shift on the second row. Under this 
description, the Q part of the claim is well-known; here Q (resp. P ) is considered as an 
insertion tableau (resp. a recording tableau) of Ã under RSK.

On the other hand, P ′ is the unique standard Young tableau which satisfies that 
Sh(P ′) = Sh(Q′) and that the reading word of P ′|[2,n] is Knuth equivalent to that 
of ω(T )|[2,n] = ω(T |[1,n−1]), which follows from the definition of (the inverse of) the 
promotion operator in terms of jeu-de-taquin procedure. Therefore the P part of the 
claim also follows. �

From the lemma above, it follows that either FinSh(T ) and FinSh(ω(T )) coincide or 
differ by one box. The next lemma shows how FinSh(ω(T )) differs from FinSh(T ) in 
(possibly equal) two-row cases.

Lemma 8.3. Assume that λ = (λ1, λ2) � n, T ∈ RSYT(λ), and RSK(T ) = (P, Q).

(1) Suppose that FinSh(T ) = (a, b) is not the same as λ or (n). If n ∈ P 1, then 
FinSh(ω(T )) = (a − 1, b + 1). If n ∈ P 2, then FinSh(ω(T )) = (a + 1, b − 1).

(2) Suppose that FinSh(v) = λ. If n ∈ P 1, then FinSh(ω(T )) = FinSh(v) = λ. If 
n ∈ P 2, then FinSh(ω(T )) = (λ1 + 1, λ2 − 1).

(3) Suppose that FinSh(T ) = (n). Then (always n ∈ P 1 and) FinSh(ω(T )) = (n − 1, 1).

In particular, FinSh(T ) = FinSh(ω(T )) only when T and ω(T ) are both standard.
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Proof. Since #SSYT(μ, λop) ≤ 1 for any μ � n, it follows that Q is uniquely deter-
mined by its shape FinSh(T ). Now the lemma follows from Lemma 8.1 by case-by-case 
analysis. �
Remark. Note that n ∈ P 1 if and only if n is not bumped under the RSK insertion 
process with input T if and only if n ∈ T 1. Therefore, Lemma 8.3 remains valid if one 
replaces “n ∈ P 1” and “n ∈ P 2” therein with “n ∈ T 1” and “n ∈ T 2”, respectively.

If λ consists of two unequal rows, the previous lemma implies the following statement. 
Also one can easily observe that its proof is not valid for equal length cases.

Lemma 8.4. Suppose that λ = (λ1, λ2) where λ1 > λ2. Then for any T ∈ RSYT(λ), there 
exists k ∈ [1, n] such that ωk(T ) and ωk+1(T ) are both standard.

Proof. Suppose that the claim is false. Then Lemma 8.3 and its remark shows that if 
n ∈ T 1 (resp. n ∈ T 2) then FinSh(ω(T ))1 = FinSh(T )1 − 1 (resp. FinSh(ω(T ))1 =
FinSh(T )1 + 1). As ωn(T ) = T , this means that we have FinSh(T ) = FinSh(ωn(T )) =
(λ1 + (λ2 − λ1), λ2 + (λ1 − λ2)) = (λ2, λ1), which is impossible. �

As a result, we have the following property that is our main tool for the uniqueness 
statement.

Proposition 8.5. Let λ = (λ1, λ2) � n where λ1 > λ2 and assume that S, T ∈ RSYT(λ)
where des(S) � des(T ). Then there exists k ∈ [1, n] such that des(ωk(S)) − {k} �

des(ωk(T )) − {k} and FinSh(ωk(S)) ≥ FinSh(ωk(T )) = λ with respect to dominance 
order.

Proof. By Lemma 8.4, there exist at least two k ∈ [1, n] such that ωk(T ) is standard, 
in which case we have FinSh(ωk(S)) ≥ FinSh(ωk(T )) = λ. As des(S) � des(T ), at 
least one of such k should satisfy des(ωk(S)) − {k} � des(ωk(T )) − {k}; thus the result 
follows. �
8.2. Uniqueness of Γλ in unequal length cases

We are ready to prove the uniqueness statement of Γλ for λ = (λ1, λ2) such that 
λ1 > λ2. We start with the following lemma.

Lemma 8.6. Suppose that Γ is an nb-admissible Sn-graph such that U(Γ) � Dλ for some 
λ � n. Let u and v be two vertices in Γ which correspond to Tu, Tv ∈ RSYT(λ), respec-
tively, under this isomorphism. Assume that m(u � v) �= 0 and m(v � u) = 0, i.e. there 
exists a directed edge from u to v in Γ. If this edge survives in Γ↓[1,n−1] after parabolic 
restriction to [1, n − 1], then we have FinSh(Tu) ≤ FinSh(Tv) in terms of dominance 
order.
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Proof. This follows directly from Theorem 7.3. �
Theorem 8.7. Let Γ, Γ′ be nb-admissible Sn-graphs such that U(Γ) � U(Γ′) � Dλ. Then 
Γ � Γ′ as Sn-graphs. As a result, they are also isomorphic to Γλ.

Proof. By assumption, we may identify U(Γ) and U(Γ′) with Dλ. Since Γ and Γ′ are 
nb-admissible, it means that they may differ only by directed edges. Now suppose that 
there is a directed edge S → T of weight p > 0 in Γ. Then it suffices to show that the 
same directed edge appears in Γ′. By Proposition 8.5, there exists k ∈ [1, n] such that 
this edge survives in Γ↓�k+1,k−1� and ωk(T ) is standard. Using the cyclic symmetry of 
Sn, we may assume that k = n which means that this edge survives in Γ↓[1,n−1] and 
that T is standard. Now by Lemma 8.6, it forces that FinSh(S) = FinSh(T ) = λ, i.e. S
and T are both standard. However, it means that both S and T are in the same cell of 
Γ isomorphic to Γλ; thus by Theorem 7.1 and 7.2 this directed edge should appear in Γ′

with the same weight p as well. �
Remark. In the proof we do not assume that Γ is ω-invariant. However, as a result of 
the theorem such graphs should be ω-invariant since so is Γλ.

9. Equal length cases

The uniqueness statement of the previous section does not hold in equal length cases, 
i.e. when λ = (a, a) for some a ∈ Z>0. In fact, there are more than one (up to isomor-
phism) whose undirected part is isomorphic to Dλ. Let us start with finding another 
such Sn-graph. Everywhere in this section we assume that λ = (a, a) is a partition of 
two rows of the same length.

9.1. Sn-graph Γ′
λ

Let D0
λ and D1

λ be the full subgraphs of Dλ whose sets of vertices are

{T ∈ RSYT(λ) | FinSh(T ) ∈ {(a, a), (a + 2, a− 2), (a + 4, a− 4), . . .}} and

{T ∈ RSYT(λ) | FinSh(T ) ∈ {(a + 1, a− 1), (a + 3, a− 3), (a + 5, a− 5), . . .}},

respectively. Then we have:

Lemma 9.1. The graph Dλ consists of two connected components D0
λ and D1

λ.

Proof. By [6, Theorem 8.6], there are two connected components in Dλ and each compo-
nent consists of row-standard Young tableaux of shape λ with the same “charge” modulo 
2, where the charge statistic is defined as in [6, Definition 8.3]. However, it is easily proved 
using the definition of Robinson-Schensted correspondence that in our case the charge 
of T ∈ RSYT(λ) is equal to the length of the second row of FinSh(T ). �
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Fig. 5. S6-graph Γ′
(3,3).

This lemma has a following bi-product.

Proposition 9.2. Γλ is strongly connected.

Proof. By Lemma 8.3 and the description of D0
λ and D1

λ above, ω swaps two simple 
components of Γλ. Therefore, if Γλ is not strongly connected then by symmetry there 
should not be any directed edge between these two simple components. However, there 

always exists a directed edge from 
1 3 5 · · · n−3n−1

2 4 6 · · · n−2 n
∈ D0

λ to 
1 3 5 · · · n−3 n

2 4 6 · · · n−2n−1
∈

D1
λ (a move of the first kind), so the claim follows. �
Let us define Γ′

λ to be the subgraph of Γλ obtained by removing all the directed edges 
connecting D0

λ and D1
λ. In other words, Γ′

λ is a (disjoint) union of two simple components 
of Γλ.

Example 9.3. Fig. 5 illustrates the S6-graph Γ′
(3,3). (Compare with Γ(3,3) in Example 4.3.)
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We show that Γ′
λ is also a Sn-graph. First, the following lemma is a substitute of 

Lemma 8.4 in equal length cases.

Lemma 9.4. Suppose that T ∈ RSYT(λ). Then there exists k ∈ [1, n] such that ωk(T ) is 
standard.

Proof. We use induction on n. Choose i ∈ [1, n] such that i ∈ T 1 and i + 1 ∈ T 2, 
which always exists. Let us regard the rows of T as words with alphabets in [1, n], and 
let w1, w2, w3, w4 be words such that T 1 = w1iw2 and T 2 = w3i + 1w4. By induction 
hypothesis, replacing T with ωk(T ) for some k if necessary, we may assume that T̃ =
(w1w2, w3w4) is standard. Furthermore, if i = n then we apply ω to T which changes n
to 1 but keeps T̃ to be standard. Thus it suffices to consider the case when 1 ≤ i ≤ n −1. 
Now since entries in w1 and w3 are smaller than i and those in w2 and w4 are larger 
than i + 1, it follows that T̃ is standard only when the length of w1 is not smaller than 
that of w2. From this it is easy to see that T is also standard. �
Lemma 9.5. Suppose that S and T are in different simple components of Γλ and there 
exists an (necessarily directed) edge S → T . Then,

(1) the move from S to T is of the first kind, and
(2) if FinSh(S) ≥ FinSh(T ) with respect to dominance order then FinSh(S) = (a +1, a −

1), FinSh(T ) = (a, a) = λ, and the move S → T is n ↖↘ 1.

Proof. We prove (1). Note that des(S) ⊃ des(T ) as S → T is a directed edge. By 
Lemma 9.4, we may assume that T is standard. (Here we use the fact that the move 
S → T is of the first kind if and only if so is ω(S) → ω(T ).) As FinSh(S) cannot be 
equal to FinSh(T ) by assumption, we should have FinSh(S) > FinSh(T ). Therefore, 
Theorem 7.3 implies that the edge S → T must be deleted in the parabolic restriction 
Γλ↓[1,n−1]. This means that des(S) = des(T ) � {n} and thus 1 ∈ S2 and n ∈ S1. Since 
1 ∈ T 1 and n ∈ T 2 (T is standard), (1) follows.

Now we prove (2). As FinSh(S) �= FinSh(T ) we should have FinSh(S) > FinSh(T ), 
which means that this directed edge should be deleted in the parabolic restriction 
Γλ↓[1,n−1] by Theorem 7.3. Thus des(S) = des(T ) � {n}, and n ↖↘ 1 is the only possible 
move of the first kind from S to T . Now if FinSh(S) > (a + 1, a − 1), then direct calcu-
lation shows that FinSh(S) = (FinSh(T )1 + 2, FinSh(T )2 − 2), which contradicts that S
and T are in different simple components. Thus we should have FinSh(S) = (a +1, a −1)
and FinSh(T ) = (a, a) as desired. �
Theorem 9.6. Γ′

λ is a Sn-graph.

Proof. We use Theorem 3.1. It is clear from the definition that Γ′
λ satisfies the Compati-

bility Rule, the Simplicity Rule, and the Bonding Rule. Thus we only need to check that 
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Ni,j(Γ
′
λ; S, T ) = Nj,i(Γ

′
λ; S, T ) for i, j ∈ [1, n] not adjacent to each other in the Dynkin 

diagram of Sn and for S, T ∈ Γ′
λ. If S and T are in different connected components then 

clearly Ni,j(Γ
′
λ; S, T ) = Nj,i(Γ

′
λ; S, T ) = 0; thus we only need to consider the case when 

they are in the same component. As we already proved Ni,j(Γλ; S, T ) = Nj,i(Γλ; S, T ), 
it suffices to show that Ni,j(Γ

′
λ; S, T ) = Ni,j(Γλ; S, T ).

If Ni,j(Γ
′
λ; S, T ) �= Ni,j(Γλ; S, T ) then there exist M ∈ Γλ and directed edges S → M , 

M → T in Γλ such that i, j ∈ des(S), {i, j} ∩ des(T ) = ∅, i ∈ des(M), j /∈ des(M), 
and M is in the different simple component of Γλ from that of S and T . By applying 
ω repeatedly if necessary, we may assume that T is standard (Lemma 9.4). Then by 
Lemma 9.5 we have FinSh(M) = (a + 1, a − 1), FinSh(T ) = λ, the move from M
to T is 1 ↗↙n, and the move from S to M is of the first kind. In particular, we have 
1 ∈ M2 and n ∈ M1. However, in such a case there is no standard tableau S from 
which M is obtained by a move of the first kind, which is a contradiction. It follows that 
Ni,j(Γ

′
λ; S, T ) = Ni,j(Γλ; S, T ) which implies the claim. �

9.2. Minimality of Γ′
λ

Here we prove the minimality of Γ′
λ. More precisely, we have the following theorem.

Theorem 9.7. Suppose that Γ, Γ′ are two nb-admissible Sn-graphs such that U(Γ) �
U(Γ′) � Dλ. If Γ is disconnected, then there exists an embedding from Γ to Γ′.

Proof. Let us identify U(Γ) and U(Γ′) with Dλ. It suffices to show that if there exists 
an edge S → T of weight p > 0 in Γ then the same edge exists in Γ′. To this end we 
choose k, l ∈ [1, n] such that ωk(S) and ωl(T ) are standard, which exist by Lemma 9.4. 
Note that S and T are in the same component of Dλ � U(Γ) as Γ is disconnected.

First suppose that ωl(S) is also standard. In our situation, Lemma 8.3 implies that 
FinSh(X)2 and FinSh(ω(X))2 always differ by 1 for any X ∈ RSYT(λ). (Note that if X
is standard then n ∈ X2 as we consider equal length cases.) Therefore, FinSh(ωl(S)) =
FinSh(ωl(T )) = λ = (a, a) and FinSh(ωl±1(S)) = FinSh(ωl±1(T )) = (a +1, a −1). If we 
identify Sn with the finite maximal parabolic subgroup of Sn generated by I − {st} for 
each t ∈ {l − 1, l, l + 1}, then S and T are in the same simple component of Γ↓�t+1,t−1�
and there exists at least one t such that the edge S → T of weight p survives in the 
parabolic restriction, i.e. des(S) − {t} � des(T ) − {t}. Now by Theorem 7.2, this edge 
should also appear in Γ′ with weight p as desired.

Now assume that ωl(S) is not standard. Since S and T are in the same connected 
component of Dλ, we have FinSh(S)2 ≡ FinSh(T )2 (mod 2). Therefore, there exists 
t ∈ [1, n] different from l such that FinSh(ωt(S)) = FinSh(ωt(T )). On the other hand, 
by Theorem 7.3 the edge S → T vanishes on the parabolic restriction Γ↓�l+1,l−1�, which 
means that des(S) = des(T ) � {l}. Thus des(S) − {t} � des(T ) − {t} and this edge 
survives in Γ↓�t+1,t−1�. Again by Theorem 7.2, this edge should also appear in Γ′ with 
weight p as needed. �
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Remark. Note that we do not assume that Γ is stable under the action of ω in the proof 
of the above theorem. Instead, we choose a maximal parabolic subgroup of Sn which 
may be different from the conventional choice and apply Theorem 7.3 with respect to 
this parabolic subgroup.

Corollary 9.8. If Γ is an nb-admissible Sn-graph such that U(Γ) � Dλ, then there exists 
an embedding from Γ′

λ to Γ. In other words, Γ′
λ is (up to isomorphism) the unique 

minimal Sn-graph such that Γ′
λ � Dλ.

Proof. It is clear from the theorem above. �
Remark. There are more than two Sn-graphs, Γ′

λ and Γλ, whose simple underlying graph 
is isomorphic to Dλ. For example, if we remove the directed edges from D0

λ to D1
λ but 

keeps the ones from D1
λ to D0

λ in Γλ, then it is easy to show that this is also a Sn-graph 
which is “between Γ′

λ and Γλ”. This graph is not ω-invariant as ω swaps two simple 
components.

9.3. Maximality of Γλ

Here we prove the maximality of Γλ. To this end, first we recall the notion of arc 
transport in [4].

Lemma 9.9 ([4, 2.3, Lemma 1]). Let W be a Coxeter group whose Dynkin diagram is 
simply-laced, Γ = (V, m, τ) be an nb-admissible W -graph, and x, y, x′, y′ ∈ Γ. Suppose 
that i, j, k are simple reflections of W such that k ∈ (τ(x) ∩ τ(x′)) − (τ(y) ∪ τ(y′)), 
i ∈ (τ(x) ∩ τ(y)) − (τ(x′) ∪ τ(y′)), and j ∈ (τ(x′) ∩ τ(y′)) − (τ(x) ∪ τ(y)). (Thus in 
particular i and j are adjacent in the Dynkin diagram of W by the Compatibility Rule.) 
If m(x, x′) = m(x′, x) = m(y, y′) = m(y′, y) = 1, then m(x, y) = m(x′, y′). Pictorially, 
we have:

k,i
x

k,j
x′

i
y

j
y′

m(x,y) m(x′,y′)

Proof. Again, the proof of [4, 2.3, Lemma 1] does not use the bipartition property; thus 
it applies to our setting. Also, [4, 2.3, Lemma 1] only assumes that Γ is a “W -molecular” 
graph which is weaker than being a W -graph. �
Lemma 9.10. Let Γ = (V, m, τ) be an nb-admissible Sn-graph such that U(Γ) � Dλ. 
(Thus in particular we may set V = RSYT(λ) and τ = des.) Suppose that S and T are 
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in different simple components of Γ, there exists a directed edge S → T of weight p > 0
in Γ, and T is standard. Then it is a move of the first kind (of weight p) and p is equal 

to the weight of the edge from 
2 4 · · · n−4n−2 n

1 3 5 · · · n−3n−1
to 

1 2 4 · · · n−4n−2

3 5 · · · n−3n−1 n
.

Proof. First note that FinSh(S) �= FinSh(T ) by assumption; thus by Theorem 7.3 we 
have des(S) = des(T ) � {n}. On the other hand, if FinSh(S) ≥ (a + 3, a − 3), then 
FinSh(ω(S)) > FinSh(ω(T )) which means that the edge S → T is removed in the 
parabolic restriction Γ↓[2,n] again by Theorem 7.3. However, this contradicts the fact 
that des(S) = des(T ) �{n}; thus we should have FinSh(S) = (a +1, a − 1). (FinSh(S) �=
(a + 2, a − 2) since S and T are in different simple components.)

Furthermore, n ∈ des(S) if and only if 1 ∈ S2 and n ∈ S1; thus n − 1, 1 /∈ des(T ) ⊂
des(S). As 1 ∈ T 1 (T is standard), this means that 2 ∈ T 1 as well. Also, if 2 ∈ S2 then 
direct calculation shows that FinSh(S) ≥ (a +2, a −2); thus we should have 2 ∈ S1. Now 
let x ∈ [2, n −1] be the smallest entry of des(T ). Then [2, x] ⊂ S1∩T 1 and x +1 ∈ S2∩T 2, 
i.e. we have

S =
2 · · · x · · ·
1 x+1 · · · · · ·

� T =
1 2 · · · x · · ·

x+1 · · · · · · · · · · · ·
.

Suppose that x > 2. Then we set S′ (resp, T ′) to be the tableau obtained from S
(resp. T ) by swapping x and x + 1. Then these are allowed moves in Section 4.1 of 
the first kind and also des(S) and des(S′) (resp. des(T ) and des(T ′)) are incomparable; 
thus there exist undirected edges S − S′ and T − T ′. Now we use Lemma 9.9 with 
(i, j, k) = (x − 1, x, n) and thus we have m(S′ � T ′) = m(S � T ) = p. Furthermore, it 
is clear that FinSh(S) = FinSh(S′), FinSh(T ) = FinSh(T ′), and S → T is a move of 
the first kind if and only if S′ → T ′ is a move of the first kind. Thus by iterating this 
process, we only need to consider the case when 2 ∈ des(T ), i.e. we have:

S =
2 · · · · · ·
1 3 · · ·

� T =
1 2 · · ·
3 · · · · · ·

.

By direct calculation, FinSh(S) = (a + 1, a − 1) implies that 4 ∈ S1. If n = 4, then 
4 ∈ T 2 and we are done. Otherwise, if 4 ∈ T 2 then let us set S′ (resp. T ′) to be the 
tableau obtained from S (resp. T ) by swapping 3 and 4 (resp. 2 and 3). These are allowed 
moves in Section 4.1 and des(S) and des(S′) (resp. des(T ) and des(T ′)) are incomparable; 
thus there exist undirected edge S − S′ and T − T ′. Pictorially, we have:
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S =
2 4 · · ·
1 3 · · ·

T =
1 2 · · ·
3 4 · · ·

S′ =
2 3 · · ·
1 4 · · ·

T ′ =
1 3 · · ·
2 4 · · ·

Thus by Lemma 9.9 with (i, j, k) = (2, 3, n), we should have m(S′ � T ′) = m(S � T ) =
p > 0. However, this is impossible as 1 ∈ des(T ′) − des(S′). It follows that 4 ∈ T 1, i.e. 
we have

S =
2 4 · · ·
1 3 · · ·

� T =
1 2 4 · · ·
3 · · · · · · · · ·

.

Now we choose x ∈ [4, n −1] to be the smallest entry of des(T ). By the same argument 
as above, it suffices to consider the case when x = 4. Then 5 ∈ S2 ∩ T 2 and 6 ∈ S1 as 
FinSh(S) = (a + 1, a − 1). Now if n = 6 then 6 ∈ T 2 and we are done. Otherwise, we 
iterate the argument above, and eventually we only need to consider the case when

S =
2 4 · · · n−4n−2 n

1 3 5 · · · n−3n−1
� T =

1 2 4 · · · n−4n−2

3 5 · · · n−3n−1 n
.

Now the statement follows from the fact that S → T is a move of the first kind n ↖↘ 1. �
From the lemma above we deduce the maximality of Γλ.

Theorem 9.11. If Γ is an nb-admissible Sn-graph such that U(Γ) � Dλ and there exists 
an embedding from Γλ to Γ, then this embedding is an isomorphism.

Proof. It suffices to show that if there exists a directed edge S → T of weight p > 0 in Γ
then the same edge appears in Γλ. If S and T are in the same simple component, then 
it follows from the proof of Theorem 9.7. Otherwise if S and T are in different simple 
components, then by Lemma 9.10 this is a move of the first kind and also p is equal to 
the weight of the directed edge

ωk

(
2 4 · · · n−4n−2 n

1 3 5 · · · n−3n−1

)
→ ωk

(
1 2 4 · · · n−4n−2

3 5 · · · n−3n−1 n

)
,

for some k ∈ [1, n], which is always 1 by assumption. (The existence of k is guaranteed 
by Lemma 9.10.) Thus the edge S → T is already contained in the image of Γλ with the 
same weight p = 1, which implies the statement. �
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Fig. 6. S4-graph Γp,q
(2,2).

Remark. Unlike Γ′
λ which is the unique minimal one (up to isomorphism) among the 

nb-admissible Sn-graphs Γ such that U(Γ) � Dλ, Γλ is not the unique maximal one. 
Indeed, for p, q ∈ N define Γp,q

λ to be the I-labeled graph obtained from Γλ by changing 
the weight of every directed edge from D0

λ to D1
λ (resp. from D1

λ to D0
λ) to p (resp. q). 

(An example is given in Fig. 6.) If p = 0 (resp. q = 0), then it means that we delete 
every directed edge from D0

λ to D1
λ (resp. from D1

λ to D0
λ) in Γλ. Then one can prove 

that Γp,q

λ is an nb-admissible Sn-graph such that U(Γp,q

λ ) = Dλ. (Note that Γ0,0
λ = Γ′

λ

and Γ1,1
λ = Γλ.) It is clear that Γp,q

λ and Γλ are comparable only when p, q ∈ {0, 1}, in 
which case there exists an embedding Γp,q

λ → Γλ. On the other hand, if there exists an 
embedding from Γλ to Γp,q

λ then we should have p = q = 1 and this is an isomorphism 
as expected by Theorem 9.11.

10. Periodic W -graphs

Here, we discuss how Γλ is related to a periodic W -graph originally defined by Lusztig. 
To this end, first we recollect the notion of a periodic W -graph focusing on affine type 
A. For reference see [14] and [22].

10.1. Periodic W -graph

We recall the root system of type An−1. Let E be an (n − 1)-dimensional real vector 
space equipped with an inner product ( , ) : E×E → R. Let Π := {α1, . . . , αn−1} ⊂ E be 
a fixed set of simple positive roots such that (αi, αi) = 2 for 1 ≤ i ≤ n −1, (αi, αi+1) = −1
for 1 ≤ i ≤ n − 2, and (αi, αj) = 0 if |i − j| > 1. Then the set of roots R ⊂ E and 
positive roots R+ ⊂ R are well-defined. Let P be a root lattice, i.e. a free abelian 
group generated by Π as a subgroup of E. Usually we realize this root system by letting 
E = {(x1, . . . , xn) ⊂ Rn |

∑
xi = 0}, Π = {e1 − e2, . . . , en−1 − en}, etc.

We set Fα,k := {v ∈ E | (α, v) = k} and F := {Fα,k | α ∈ R, k ∈ Z}. (As we only deal 
with type A root system, we do not differentiate a root and its corresponding coroot.) 
Let A be the set of all the connected components of E −∪F∈FF , each of which is called 
an alcove. Let Aid ∈ A be the unique alcove which is in the dominant chamber and whose 
closure contains 0 ∈ E.
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For a partition λ � n, we let Πλ := {αi ∈ Π | i �= n −
∑k

j=1 λj for all 1 ≤ k ≤ l(λ) −1}. 
(The reason for adopting this definition rather than “the opposite one” will become clear 
as we proceed our argument.) Also let Rλ (resp. R+

λ ) be the intersection of R (resp. R+) 
with the Z-span of Πλ. Define Fλ := {Fα,k ∈ F | α ∈ Rλ}. Then there exists a unique 
connected component of E −∪F∈Fλ

F which contains Aid; v ∈ E is in this component if 
and only if 0 < (α, v) < 1 for all α ∈ R+

λ . Let Aλ ⊂ A be the set of alcoves contained in 
this connected component. This will become a set of vertices of a periodic Sn-graph we 
construct.

For F ∈ F, let rF : E → E be the reflection along F . We identify Sn with the group 
generated by rF for F ∈ F. Under this correspondence, each si for 1 ≤ i ≤ n − 1 is 
assigned to rFαi,0

, and s0 is assigned to rFα̃,1 where α̃ := α1 +α2 + · · ·+αn−1 ∈ R is the 
highest root. We regard Sn as acting on the right of E, A, F, etc. For v ∈ P , we define 
tv : E → E to be the translation by v, which is naturally an element of Sn.

Note that Sn acts simply on F and {Fα1,0, Fα2,0, . . . , Fαn−1,0, Fα̃,1} is the set of rep-
resentatives of orbits. We say that F ∈ F is of type si for 1 ≤ i ≤ n − 1 (resp. of type 
s0) if F is in the orbit of Fαi,0 (resp. Fα̃,1). For each A ∈ A and each simple reflection s, 
there exists a unique F ∈ F of type s which is adjacent to A.

Let Sλop be the subgroup of Sn generated by reflections along F ∈ Fλ, which is 
isomorphic to and often identified with Sλl(λ) ×· · ·×Sλ2 ×Sλ1 . Then Sλop acts simply on 
A and each orbit meets Aλ exactly once; thus Aλ is the set of representatives of A/Sλop . 
Let T := {tv ∈ Sn | v ∈ P} and define Tλ to be the subgroup of T generated by the 
translations by αi ∈ Πλ. Note that Tλ = T ∩ Sλop where the intersection is taken inside 
Sn.

There is another (left) action of Sn on A described as follows. Recall that for any 
A ∈ A and a simple reflection s ∈ Sn, there exists a unique hyperplane F adjacent to A
which is of type s. We define s · A := A · rF to be the image of A under the reflection 
along F . It generates a well-defined left Sn-action on A which commutes with the right 
Sn-action described above; indeed, it is not hard to show that w · Aid = Aid · w for any 
w ∈ Sn. Furthermore, if we set Aw := w ·Aid = Aid ·w, then the map Sn → A : w �→ Aw

is a bijection. (This is not the same convention as in [14, 1.1] but is the same as the one 
in [14, 13.12].)

For each F ∈ F, there are two connected components of E − F . We denote one of 
these by E+

F (resp. E−
F ) where there exists t ∈ T such that E+

F · t contains the dominant 
Weyl chamber (resp. there does not exist such t ∈ T ). We also call E+

F (resp. E−
F ) the 

positive (resp. negative) upper half-space with respect to F . Now for A, B ∈ A, we define 
d(A, B) by

d(A,B) =

⎛⎝ ∑
F∈F,A∈E−

F ,B∈E+
F

1

⎞⎠−

⎛⎝ ∑
F∈F,A∈E+

F ,B∈E−
F

1

⎞⎠ .

Note that each sum in the formula is finite and thus it is well-defined. Furthermore, it 
satisfies that d(A, B) + d(B, C) + d(C, A) = 0 for any A, B, C ∈ A. Now we define an 
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order ≤ on A as follows. For A, B ∈ A, we write A ≤ B if there exists A0, A1, . . . , Ak ∈ A

such that A0 = A, Ak = B, d(Ai, Ai+1) = 1, and Ai+1 is the image of Ai under reflection 
along some hyperplane in F for 0 ≤ i ≤ k − 1. Clearly A < B implies d(A, B) > 0, but 
not vice versa.

In [14, Section 11], for any alcove A ∈ Aλ a corresponding “canonical basis” A� is 
introduced which is an element of Z[q±1][Aλ] where q is an indeterminate. (The element 
A� is originally defined to be contained in a certain completion of Z[q±1][Aλ]. For type 
A, it was proved later by [22] that this is indeed an element of Z[q±1][Aλ].) It can be 
written as

B� =
∑

A∈Aλ,A≤B

pA,BA,

where pA,B is a polynomial in q−1. Furthermore, it is known that pA,A = 1 and pA,B ∈
q−1Z[q−1] if A �= B.

For A ∈ Aλ, we let I(A) be the set of simple reflections s such that sA ∈ Aλ and 
sA > A. Now for A, B ∈ Aλ such that I(A) �⊂ I(B), we define μ(A, B) = μ(A �B) to be

μ(A,B) =

⎡⎢⎢⎣
the coefficient of q−1 in pA,B if A ≤ B,

1 if B < A = sB for some simple reflection s,

0 otherwise.

If I(A) ⊂ I(B), we set μ(A, B) = μ(A � B) = 0. Let Γper
λ := (Aλ, μ, I) be the corre-

sponding [1, n]-graph, where we identify the set of simple reflections of Sn with [1, n]. 
Then it is proved that Γper

λ is a Sn-graph, conventionally called a periodic W -graph.

Remark. There are two twists in this definition compared to the original one [14, 11.13]. 
First, this definition is taken from [14, 12.3], which is a W -graph complementary (in the 
sense of [14, A.6]) to [14, 11.13]. In particular, the τ -function I here is not the same as 
I but Ĩ therein. On the other hand, our definition of μ(A, B) is the same as that of [14, 
11.13] instead of [14, 12.3]. This is because the definition of a W -graph in [14, A.2] is 
the transpose of our convention. (cf. [20, Remark 1.1(a)])

10.2. Action of T on Γper
λ

We recall the result in [14, 2.12]. The action of T permutes Sλop-orbits in A. Thus 
there is a well-defined action of T on A/Sλop , and under the identification A/Sλop � Aλ

we regard it as an action on Aλ. For t ∈ T , we write γ(t) : Aλ → Aλ to denote such an 
action. (Note that this is in general different from the (right or left) action of t on A.) 
Then the kernel of this action is Tλ. Furthermore, if we let Dλ be the set of alcoves in 
Aλ adjacent to 0 ∈ E, then Dλ is the set of representatives of such T /Tλ-orbits. (This 
follows from [14, 2.12(f)].)
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For αi ∈ Π −Πλ, we describe γ(tαi
) : Aλ → Aλ explicitly as follows. According to [14, 

2.12], there exists a unique w ∈ Sλop (which depends on αi) such that A · (tαi
w) ∈ Aλ

for any A ∈ Aλ, in which case we have γ(tαi
)(A) = A · (tαi

w) by the definition of γ. 
Thus it suffices to find w ∈ Sλop such that Aid · (tαi

w) ∈ Aλ. To this end, let ρ ∈ E be 
the sum of fundamental weights, i.e. ρ =

∑n−1
i=1

i(n−i)
2 αi. Then ρ

n ∈ Aid; thus it suffices 
to find w ∈ Sλop such that (αi + ρ

n ) · w ∈
⋃

A∈Aλ
A, i.e. 0 < (α, (αi + ρ

n ) · w) < 1
for all α ∈ R+

λ . Let j, k ∈ [0, n] be such that αj , αk /∈ Πλ, j < i < k, and αl ∈ Πλ

if j < l < k and l �= i. (Here we adopt the convention that α0, αn /∈ Πλ.) In other 
words, if i = n −

∑a
x=1 λx then j = n −

∑a+1
x=1 λx and k = n −

∑a−1
x=1 λx. We claim that 

w = (si−1 · · · sj+1)(si+1 · · · sk−1) = (si+1 · · · sk−1)(si−1 · · · sj+1). Indeed, if αl ∈ Πλ then 
direct calculation shows that

(
(αi + ρ

n
) · w,αl

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n− i + j

n
if l = j + 1,

n− k + i

n
if l = k − 1,

1
n

otherwise.

From this it easily follows that 0 < ((αi + ρ
n ) · w, α) < 1 for all α ∈ R+

λ .

10.3. A bijection between Dλ and RSYT(λ)

Let Sλ
n ⊂ Sn be the set of minimal coset representatives of Sn/Sλop , where Sλop =

Sλl(λ) · · · ×Sλ2 ×Sλ1 naturally considered as a parabolic subgroup of Sn. Then it is easy 
to show that Dλ = {Aw | w ∈ Sλ

n}. Using this, we define a bijection Υ : Dλ → RSYT(λ)
to be Υ(Aw) = w ·T can where T can = T can

λ is the unique row-standard Young tableau of 
shape λ whose reading word is [1, 2, . . . , n] and Sn acts on RSYT(λ) by simply permuting 
entries (and reordering entries in each row if necessary). Since the stabilizer of T can in 
Sn is Sλop , this is indeed a bijection. Now we prove the following.

Lemma 10.1. i ∈ des(Υ(Aw)) if and only if si ∈ I(Aw), i.e. Υ “preserves the τ -invariant”.

Proof. Let us first show that I(Aw) ∩ {s1, . . . , sn−1} = {si | i ∈ des(Υ(Aw))}. If s = si
for some 1 ≤ i ≤ n − 1, then s ∈ I(Aw) if and only if sAw = Asw ∈ Aλ and Aw < Asw. 
However, as Asw and Aw are both in D(1n) = {Aw | w ∈ Sn = S(1n)

n }, Aw < Asw if 
and only if w > sw with respect to the usual Bruhat order on Sn. Also if w > sw then 
w ∈ Sλ

n implies sw ∈ Sλ
n . Therefore, we see that s ∈ I(Aw) if and only if w > sw if 

and only if s is in the left descent set L(w) of w. On the other hand, the reading word 
of w · T can is equal to [w(1), w(2), . . . , w(n)] by definition (no reordering is necessary as 
w ∈ Sλ

n), which means that i ∈ des(w · T can) if and only if si ∈ L(w) for 1 ≤ i ≤ n − 1.
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It remains to show that sn ∈ I(Aw) if and only if n ∈ des(w · T can). Let ρ ∈ E be 
the sum of fundamental weights. Then ρ

n ∈ Aid; thus ρ
n · w ∈ Aw and ρ

n · s0w ∈ As0w. 
Therefore, s0 ∈ I(Aw) if and only if

• s0 ·Aw ∈ Aλ, i.e. 0 < ( ρ
n · s0w, α) < 1 for α ∈ R+

λ , and
• As0w > Aw, i.e. ρn · s0w − ρ

n · w = 2
n α̃ · w ∈ Q>0 · α for some α ∈ R+ where α̃ ∈ R+

is the highest root.

By direct calculation, we see that the first condition is satisfied if and only if there is no 
t such that 

∑l
k=t+1 λk < w−1(1), w−1(n) ≤

∑l
k=t λj , which is equivalent to that 1 and 

n are not in the same row of w · T can. Moreover, the second condition is satisfied if and 
only if w−1(1) < w−1(n). Thus w satisfies both conditions if and only if 1 is in the lower 
row than n in w · T can, which is also equivalent to n ∈ des(w · T can). �

Let us extend Υ to Υ : Aλ → RSYT(λ) in a way that for any t ∈ T and w ∈ Sλ
n we 

have Υ(γ(t)(Aw)) := Υ(Aw). This is well-defined since Dλ is the set of representatives 
of the γ-action of T on Aλ. On the other hand, we may also extend the action of Sn on 
RSYT(λ) to Sn where s0 acts on RSYT(λ) by switching 1 and n and reordering entries 
of each row if necessary. (This action is well-defined.) Then we have the following.

Lemma 10.2. For any w ∈ Sn such that Aw ∈ Aλ, we have Υ(Aw) = w · T can.

Proof. It is apparent when w ∈ Sλ
n (or Aw ∈ Dλ) by the definition of Υ. First we consider 

the situation when Aw = γ(tαi
)(Aw′) for some i ∈ [1, n − 1] and w′ ∈ Sλ

n and prove 
Υ(Aw) = w · T can. Since γ(tαi

) is trivial when αi ∈ Tλ, it suffices to assume otherwise. 
(The argument below also works, mutatis mutandis, for the Aw = γ(t−αi

)(Aw′) case.)
By direct calculation, we have tαi

= si · (si−1 · · · s1) · (si+1 · · · sn−1) · s0 · (s1 · · · si−1) ·
(sn−1 · · · si+1) as an element in Sn. Therefore, from the result in Section 10.2 we deduce 
that γ(tαi

)(Aw′) = Aw′ ·si ·(si−1 · · · s1) ·(si+1 · · · sn−1) ·s0 ·(s1 · · · sj) ·(sn−1 · · · sk), where 
j, k ∈ [0, n] are chosen such that if i = n −

∑a
x=1 λx for some a then j = n −

∑a+1
x=1 λx

and k = n −
∑a−1

x=1 λx. Thus for the claim it suffices to show that w′ · (si · (si−1 · · · s1) ·
(si+1 · · · sn−1) · s0 · (s1 · · · sj) · (sn−1 · · · sk)) · T can = w′ · T can, i.e. si · (si−1 · · · s1) ·
(si+1 · · · sn−1) · s0 · (s1 · · · sj) · (sn−1 · · · sk) · T can = T can or equivalently s0 · (s1 · · · sj) ·
(sn−1 · · · sk) · T can = (si · (si−1 · · · s1) · (si+1 · · · sn−1))−1 · T can.

It is easy to show that (s1 · · · sj) · (sn−1 · · · sk) = [2, 3, . . . , j + 1, 1, j + 2, . . . , k −
1, n, k, . . . , n − 1] and (si · (si−1 · · · s1) · (si+1 · · · sn−1))−1 = [2, 3, . . . , j + 1, j +
2, . . . , i, n, 1, i + 1, . . . , k − 1, k, . . . , n − 1]. Therefore, (s1 · · · sj) · (sn−1 · · · sk) · T can and 
(si · (si−1 · · · s1) · (si+1 · · · sn−1))−1 · T can are the same except two rows {i + 1, . . . , k −
1, n}, {1, j+2, . . . , i} in the former and {1, i +1, . . . , k−1}, {j+2, . . . , i, n} in the latter. 
Now it is clear that s0 interchanges these two tableaux, which implies the claim.

Let us now consider a general case, i.e. when Aw = γ(t)(Aw′) for some w′ ∈ Sλ
n

and t ∈ T . As T is a free abelian group generated by tαi
for i ∈ [1, n − 1], we may 
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write t =
∑n−1

i=1 citαi
for some ci ∈ Z. Then the statement follows from induction on ∑n−1

i=1 |ci|. �
10.4. Lusztig’s conjecture

Here we prove [14, Conjecture 13.13(b)] for type A, one of the conjectures of Lusztig 
relating periodic W -graphs and left cells of W , using affine matrix-ball construction ([6], 
[7]). For a partition λ, we set T as = T as

λ to be the standard Young tableau obtained from 
T can by flipping it along the horizontal axis and pushing boxes up so that the shape 

becomes λ again. For example, we have T as
(4,3,1) =

1 3 4 8
2 6 7
5

.

For 1 ≤ i ≤ l(λ), define ri(id) to be an element in S̃n whose window notation is 
[1, 2, . . . , s − 1, s + 1, . . . , t − 1, t, s + n, t + 1, . . . , n] where s = 1 +

∑l(λ)
j=i+1 λj and t =∑l(λ)

j=i λj . In other words, ri(id) sends s, s +1, . . . , t −1 to s +1, s +2, . . . , t respectively, and 

t to s +n. Now we set ri : S̃n → S̃n to be ri(w) = w·ri(id). (As a result, the two definitions 
of ri(id) coincide.) If Tw is a Young tableau of shape λ whose reading word is the same 
as [w(1), w(2), . . . , w(n)] for some w ∈ S̃n, then the action ri corresponds to replacing 
the i-th row of Tw, say (a1, a2, . . . , ak), with (a2, . . . , ak, a1 + n). Also, the γ-action of 
T /Tλ on Aλ is equivalent to the action of {a1r1 + · · · + al(λ)rl(λ) | a1 + · · · + al(λ) = 0}
on {w ∈ Sn | Aw ∈ Aλ}.

Note that u ∈ Sλ
n if and only if u ∈ Sn and u(i) < u(j) for any i, j such that ∑l(λ)

k=t+1 λk < i < j ≤
∑l(λ)

k=t λj for some t ∈ [1, l(λ)]. Set w ∈ S̃n to be w = (a1r1 + · · ·+
al(λ)rl(λ)) ·u for some a1, . . . , al(λ). (Here we allow w to be in S̃n−Sn.) Let Tw be a Young 
tableau whose reading word is the same as the window notation [w(1), w(2), . . . , w(n)]
of w. Then entries of Tw are increasing along rows, if a, b are entries of Tw contained in 
the same row then |a − b| < n, and the residues modulo n of the entries of the i-th row 
of Tw are the same as those of Υ(Au), since these properties are preserved by the action 
of ri for any i ∈ [1, l(λ)]. (When w ∈ Sn we also have Aw ∈ Aλ and Υ(Aw) = Υ(Au).) 
Now we prove the following theorem.

Theorem 10.3. Suppose that the entries of Tw are also increasing along columns. If 
(P, Q, #»ρ ) is the image of w under affine matrix-ball construction (defined in [6], [7]), 
then P = Υ(Au), Q = T as, and #»ρ = (a1, a2, . . . , al(λ)).

Proof. As entries of Tw are increasing along columns, it is easy to show that if b is on 
the lower row than a in Tw then b + n > a (regardless of the columns in which a and 
b are contained). Now let us consider the asymptotic realization of affine matrix-ball 
construction [7, Section 7] and note that P can be obtained by taking the (asymptotic) 
residue modulo n of the insertion tableau of the infinite sequence (w(1), w(2), . . .) under 
the usual Robinson-Schensted correspondence. However, the observation above implies 
that if �i/n� < �j/n� then w(j) does not bump w(i) in the column insertion process. 
(Here, �α� is the smallest integer which is not smaller than α.) Therefore, the input 
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of each period (w(an + 1), w(an + 2), . . . , w(an + n − 1)) for any a ∈ N under column 
insertion becomes the same as Tw shifted by an, i.e. an + Tw. By [7, Corollary 7.5], this 
means that P and Tw have the same residues modulo n in each row and thus P = Υ(Au).

We argue similarly for the Q part. Remark ([7, Remark 7.7]) that Q can be obtained by 
taking the (asymptotic) residue modulo n of the insertion tableau under the Robinson-
Schensted correspondence, say Q̃, of the infinite sequence (w−1(x), w−1(x + 1), . . .) for 
any x ∈ Z, or more precisely the two-line array(

x x + 1 x + 2 x + 3 · · ·
w−1(x) w−1(x + 1) w−1(x + 2) w−1(x + 3) · · ·

)
.

Choose x such that {w−1(x), w−1(x + 1), . . . , } ⊃ Z>0 (which is true for any sufficiently 
small x). Then by flipping the array above and reordering if necessary so that the first 
row becomes increasing, we see that all but a finite number of entries of Q̃ are the same 
as those of the recording tableau of the two-row array(

1 2 3 4 · · ·
w(1) w(2) w(3) w(4) · · ·

)
.

It follows that Q is obtained by taking the (asymptotic) residue module n of the recording 
tableau of (w(1), w(2), . . .). Then one can show that Q = T as using the argument similar 
to the P part as above. (Note that T as = T as

λ is the recording tableau of the reading word 
of any tableau of shape λ whose entries are increasing along both rows and columns.)

It remains to discuss the #»ρ part. To this end we freely use notations and results 
in [7]. From the assumptions on w, we see that {(x, w(x)) | n − λ1 < x ≤ n} and 
its translates by Z · (n, n) in Z × Z are the southwest channel of w and each zigzag 
consists of balls corresponding to each column of Tw and its translates by Z · (n, n). 
This means that the window notation of fw(w) is obtained from inserting some ∅ in the 
sequence (w(1), w(2), . . . , w(n −λ1)). Thus we may use induction on the number of rows 
to conclude that #»ρ = (y, a2, . . . , al(λ)) for some y ∈ Z. Now by [7, Lemma 10.6] and 

the comment thereof we have y+
∑l(λ)

i=2 ai = 1
n

∑n
j=1(w(j) − j), where the latter term is 

equal to 
∑l(λ)

i=1 ai. (The action of each ri increases 1
n

∑n
j=1(w(j) − j) exactly by 1.) Thus 

y = a1 and the result follows. �
Remark. This confirms [14, Conjecture 13.13(b)] for type A. Indeed, t ∈ T is “large” as 
described therein if and only if a1 � a2 � · · · � al(λ), which implies that entries of Tw

are increasing along columns.

10.5. Quotient of Γper
λ by γ(T )

Here we construct the quotient of Γper
λ = (Aλ, μ, I) by the action of γ(T ), de-

noted by Γquot
λ . To this end, first observe that (the complementary version of) 
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[14, Proposition 11.15] shows that μ(A, B) = μ(γ(t)(A), γ(t)(B)) for any t ∈ T and 
A, B ∈ Aλ. Also, we need the following lemma.

Lemma 10.4. For t ∈ T and A ∈ Aλ we have I(A) = I(γ(t)(A)).

Proof. Recall that I(A) is the set of simple reflections s such that s · A ∈ Aλ and 
s · A > A. By symmetry, it suffices to show that if s ∈ I(A) then s ∈ I(γ(t)(A)), i.e. 
s ·γ(t)(A) ∈ Aλ and s ·γ(t)(A) > γ(t)(A). First, note that s ·γ(t)(A) = γ(t)(s ·A) (when 
s · A ∈ Aλ) since γ-action is defined in terms of the right action of Sn. Thus the first 
part is clear. For the second part, it suffices to show that γ-action preserves the order ≥
on Aλ. From the definition of ≥, it suffices to show that γ-action preserves the function 
d : Aλ × Aλ → Z. But this follows from [14, 2.12(c)]. �

We are ready to define Γquot
λ = (V, m, τ) as follows. First we set V = RSYT(λ) which 

is identified with the γ(T )-orbits of Aλ under the bijection Aλ/γ(T ) � Dλ
Υ−→ RSYT(λ). 

We also set τ = des. Then for any A ∈ Aλ in the γ(T )-orbit parametrized by T , we have 
si ∈ I(A) if and only if i ∈ des(T ) by Lemma 10.1 and 10.4. Finally, for T, T ′ ∈ RSYT(λ)
we define m(T, T ′) =

∑
B μ(A, B), where A is an element in the γ-orbit parametrized by 

T and the sum is over all B in the γ-orbit parametrized by T ′. We claim that this is well-
defined. Indeed, even if each γ-orbit contains infinitely many alcoves in general, μ(A, B)
is zero for all but finitely many B because of the result of [22] and [14, Consequence 
13.8]. Furthermore, as μ : Aλ × Aλ → Z is invariant under γ-action, m(T, T ′) does not 
depend on the choice of A.

It is not hard to show that Γquot
λ satisfies the defining conditions of a Sn-graph de-

scribed in Section 3.2 provided that so does Γper
λ . Thus Γquot

λ is a Sn-graph. Also, it 
defines a finite-dimensional representation of the Hecke algebra of Sn constructed in [14, 
0.3] where the homomorphism Z[q± 1

2 ][T ] → K therein (K is a field of characteristic 0) 
corresponds to the trivial representation of T .

10.6. Properties of Γquot
λ under nonnegativity assumption on μ

It is conjectured [14, Conjecture 13.16] that coefficients of pA,B are nonnegative inte-
gers for any A, B ∈ Aλ, which in particular implies that μ(A, B) ≥ 0. (To the authors’ 
best knowledge it is still open.) Here, we assume the nonnegativity of μ-function and 
discuss some properties of Γper

λ and Γquot
λ .

Lemma 10.5. Suppose that μ(A, B) ≥ 0 for any A, B ∈ Aλ. Then Γper
λ = (Aλ, μ, I) is 

admissible and Γquot
λ = (RSYT(λ), m, des) is nb-admissible.

Proof. First imμ ⊂ N by assumption, which also implies that imm ⊂ N. Also, Γper
λ

(resp. Γquot
λ ) satisfies the Simplicity Rule by [20, Remark 4.3], which implies that 

μ(A, B) = μ(B, A) (resp. m(T, T ′) = m(T ′, T )) whenever I(A) and I(B) (resp. des(T )
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and des(T ′)) are not comparable. Finally, Γper
λ is bipartite as a result of [14, Proposition 

11.12]; one may choose the color of each vertex A ∈ Aλ to be the residue of d(A, Aid)
modulo 2. �

The next proposition describes the simple underlying graph of Γquot
λ .

Proposition 10.6. Suppose that μ(A, B) ≥ 0 for any A, B ∈ Aλ. Then U(Γquot
λ ) � Dλ.

Proof. Suppose we are given T, T ′ ∈ RSYT(λ) and let OT and OT ′ be γ-orbits in Aλ

parametrized by T and T ′ respectively. If there exists an undirected edge between T and 
T ′ in Γquot

λ , or m(T, T ′) = m(T ′, T ) = 1, then 
∑

B∈OT ′ μ(A0, B) =
∑

A∈OT
μ(B0, A) = 1

where A0 ∈ OT and B0 ∈ OT ′ are arbitrary. Also des(T ) and des(T ′) are incomparable, 
or equivalently I(A) and I(B) are incomparable for any A ∈ OT and B ∈ OT ′ . Since 
imμ ⊂ N, there exists a unique B ∈ OT ′ such that μ(A0, B) = 1, which we may set 
to be B0. Then as Γper

λ is admissible we have μ(B0, A0) = 1 as well, i.e. there exists an 
undirected edge between A0 and B0 in Γper

λ . From the definition of μ, this is only possible 
if there exists a simple reflection s ∈ Sn such that B0 = s · A0. Thus by Lemma 10.2 it 
follows that T and T ′ are connected by a single Knuth move.

Conversely, this time let us assume that T, T ′ ∈ RSYT(λ) are connected by a sin-
gle Knuth move. Then for any A ∈ OT , there exists a simple reflection s ∈ Sn such 
that s · A ∈ OT ′ again by Lemma 10.2. Thus by [14, Corollary 11.7] together with the 
fact that Γper

λ satisfies the Simplicity Rule, we have μ(A, B) = μ(B, A) = 1. It follows 
that m(T, T ′), m(T ′, T ) ≥ 1 by the nonnegativity assumption of μ, which implies that 
m(T, T ′) = m(T ′, T ) = 1 as Γquot

λ satisfies the Simplicity Rule. �
Now the following theorem is a natural consequence.

Theorem 10.7. Suppose that μ(A, B) ≥ 0 for any A, B ∈ Aλ. Then for any two-row 
partition λ, we have Γλ � Γquot

λ .

Proof. If λ consists of two rows of unequal length, then it follows from Theorem 8.7. 
Thus suppose that λ consists of two equal rows. By Theorem 9.11, it suffices to show 
that there exists an embedding Γλ → Γquot

λ . By Corollary 9.8, it suffices to show that 
if there exists a directed edge T → T ′ (of weight 1) in Γλ for T and T ′ in different 
simple components then the same directed edge appears in Γquot

λ (with weight 1). To 
this end, let OT and OT ′ be the γ-orbits in Aλ parametrized by T and T ′ respectively. 
As T → T ′ is always a move of the first kind by Lemma 9.10, there exists a simple 
reflection s ∈ Sn such that T ′ = s · T . This means that for any A ∈ OT we have 
s ∈ I(A) and s · A ∈ OT ′ . Now [14, Corollary 11.7] and [14, Lemma 11.9] imply that 
m(T, T ′) =

∑
B∈O μ(A, B) = μ(A, s ·A) = 1; thus the result follows. �
T ′
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