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Dynamic Low-light Imaging with
Quanta Image Sensors

Yiheng Chi, Abhiram Gnanasambandam, Vladlen Koltun, and Stanley H. Chan

Abstract—Imaging in low light is difficult because the number of photons arriving at the sensor is low. Imaging dynamic scenes in
low-light environments is even more difficult because as the scene moves, pixels in adjacent frames need to be aligned before they can
be denoised. Conventional CMOS image sensors (CIS) are at a particular disadvantage in dynamic low-light settings because the
exposure cannot be too short lest the read noise overwhelms the signal. We propose a solution using Quanta Image Sensors (QIS)
and present a new image reconstruction algorithm. QIS are single-photon image sensors with photon counting capabilities. Studies
over the past decade have confirmed the effectiveness of QIS for low-light imaging but reconstruction algorithms for dynamic scenes in
low light remain an open problem. We fill the gap by proposing a student-teacher training protocol that transfers knowledge from a
motion teacher and a denoising teacher to a student network. We show that dynamic scenes can be reconstructed from a burst of
frames at a photon level of 1 photon per pixel per frame. Experimental results confirm the advantages of the proposed method

compared to existing methods.

Index Terms—Quanta image sensors, single-photon imaging, low light, burst photography

1 INTRODUCTION

Imaging in photon-starved situations is one of the biggest
technological challenges for applications such as security,
robotics, autonomous cars, and health care. However, the
growing demand for higher resolution, smaller pixels, and
smaller form factors have limited the photon sensing area
of the sensors. This, in turn, puts a fundamental limit on
the signal-to-noise ratio that the sensors can achieve. Over
the past few years, there is an increasing amount of effort in
developing alternative sensors that have photon-counting
ability. Quanta Image Sensors (QIS) are one of these new
types of image sensors that can count individual photons at
a very high frame rate and have a high spatial resolution
[1], [2]. Various prototype QIS have been reported, and
numerous studies have confirmed their capability for high
speed imaging [3], high dynamic range imaging [4], [5],
color imaging [6], [7], and tracking [8].

Despite the increasing literature on QIS sensor devel-
opment [1], [2], [9] and signal processing algorithms [10],
[11], one of the most difficult problems in QIS is image
reconstruction for dynamic scenes. Image reconstruction for
dynamic scenes is important for broad adoption of QIS:
solving the problem can open the door to a wide range of
low-light applications such as videography, moving object
detection, non-stationary facial recognition, etc. However,
motion in low light is difficult because it must deal with
two types of distortions: low light causes shot noise which is
random and affects the entire image, whereas motion causes
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geometric warping which is often local. In this paper, we
address this problem with a new algorithm.

Figure 1 summarizes our objective. Figure 1(a) shows
real data captured by a conventional CMOS image sensor
(CIS). The photon level is 0.5 photons per pixel (ppp).
Figure 1(b) shows the data captured by a QIS at the same
photon level. To illustrate the effect of motion, we show the
average of 8 consecutive frames. Figure 1(c) shows the result
of the proposed image reconstruction algorithm applied to
the 8 QIS frames. Although the scene is in motion, the
presented approach recovers most of the image details. This
brings out the two contributions of this paper:

(i) We demonstrate low-light image reconstruction of dy-
namic scenes at a photon level of 1 photon per pixel
(ppp) per frame. This is lower than most of the results
reported in the computational photography literature.

(ii) We propose a student-teacher framework and show
that this training method is effective in handling noise
and motion simultaneously.

2 BACKGROUND
2.1 Quanta Image Sensors

Quanta Image Sensors (QIS) were originally proposed in
2005 as a candidate solution for the shrinking pixel problem
[12], [13]. The idea is to partition a CIS pixel into many
tiny cells called “jots” where each jot is a single-photon
detector. By oversampling the scene in space and time, the
underlying image can be recovered using a carefully de-
signed image reconstruction algorithm. Numerous studies
have analyzed the theoretical properties of these sensors,
including their performance limit [14], photon statistics [9],
threshold analysis [5], dynamic range [4], and color filter
array [7]. On the hardware side, a number of prototypes
have become available [1], [15], [16]. The prototype QIS we
use in this paper is based on [2].



(a) Real image by CIS
avg of 8 frames, 0.5 ppp

(b) Real image by QIS
avg of 8 frames, 0.5 ppp

(c) Our reconstruction
using 8 QIS frames

Fig. 1. Goal of this paper. The images above are the real captures by a CMOS Image Sensor (CIS) and a QIS prototype [6] at the same photon
level of 0.5 photons per pixel (ppp) per frame. The strong shot noise and read noise of CIS makes signal acquisition difficult, whereas the QIS can
obtain a better image. Using the proposed method, we are able to reconstruct images with dynamic content.

(a) CIS (real) (b) QIS (real) (c) Ideal sensor (d) ii.d. Gaussian
0.25 ppp 0.25 ppp 0.25 ppp o = 50/255
Fig. 2. Photon level and sensor limitations. (a) and (b) show a pair of real images captured by CIS and QIS at 0.25 ppp. (c) shows a simulated

image acquired by an “ideal sensor” which is free of read noise and dark current. The random shot noise in this ideal image suggests that although
QIS has higher sensitivity than CIS, image reconstruction algorithms still play a critical role because there is a fundamental limit due to the Poisson

statistics. (d) shows an image distorted by i.i.d. Gaussian noise of a strength o = 50/255, somewhat high in the denoising literature.

As photon counting devices, QIS share many similarities
with single-photon avalanche diodes (SPAD) [15]. However,
SPAD amplify signals using avalanche multiplication. This
requires a high electrical voltage (typically higher than 20V)
to accelerate the photoelectron. Because avalanche multipli-
cation requires space for electrons to multiply, SPAD have
high dark current (> 10e~ /pix/s), large pitch (> 5um), low
fill-factor (< 70%), and low quantum efficiency (< 50%). In
contrast, QIS do not require avalanche multiplication. They
have significantly better fill-factor, quantum efficiency, dark
current, and read noise. SPAD are excellent candidates for
resolving time-stamps, e.g., time-of-flight applications [17]-
[21], although new studies have shown other applications
[22]. QIS have higher resolution which makes them suitable
for low-light photography. Recent literature provides a more
detailed comparison [6].

2.2 How Dark is One Photon Per Pixel?

All photon levels in this paper are measured in terms of
photons per pixel (ppp). “Photons per pixel” is the average
number of photons a pixel detects during the exposure
period. We use photons per pixel as the metric because the
amount of photons detected by a sensor depends on the
exposure time and sensor size. A large sensor can collect
more photons, and longer exposure time would allow more
photons to arrive at the sensor. Therefore, even for the same
scene with the same illuminance (measured in lux), the

number of photons per pixel seen by two sensors can be
different. To give readers an idea of the amount of noise
we are dealing with in this paper, Figure 2(a,b) shows a
pair of real images captured by CIS and QIS at 0.25 ppp.
Note that the signal at this photon level is significantly
worse than what is commonly considered “heavy noise”
in the denoising literature, illustrated in Figure 2(d). We
should also highlight that while QIS is a better sensor, at
low light the signal-to-noise ratio is upper bounded by
the fundamental limit of the Poisson process. As shown in
Figure 2(c), an ideal sensor with zero read noise and zero
dark current will still produce an image contaminated by
shot noise. Therefore, reconstruction algorithms are needed
to recover the images even though QIS have higher photon
sensitivity than CIS.

2.3 Related Work

QIS Image Reconstruction. Image reconstruction for QIS is
challenging because of the unique Poisson-Gaussian statis-
tics of the sensor. Early reconstruction techniques are based
on solving maximum-likelihoods using gradient descent
[10], dynamic programming [23], and convex optimization
techniques [24], [25]. The first non-iterative algorithm for
QIS image reconstruction was proposed by Chan et al. [26].
It was shown that if one assumes spatial independence, then
the truncated Poisson likelihood can be simplified to Bino-
mial. Consequently, the Anscombe binomial transform can



be used to stabilize the variance, and off-the-shelf denoising
(e.g., BM3D [27]) can be used to denoise the image. Choi
et al. [28] followed the idea by replacing the denoiser with
a deep neural network. Alternative solutions using end-to-
end deep neural networks have also been proposed for QIS
[29] and SPAD [11]. To the best of our knowledge, ours is
the first dynamic scene reconstruction for QIS.

Low-light Denoising. The majority of existing denois-
ing algorithms are designed for CIS. Single-frame image
denoising methods are abundant, e.g., non-local means [32],
BM3D [27], Poisson denoising [33], and many others [34]-
[37]. On the deep neural network side, there are numer-
ous networks dedicated to single-image denoising [38]-[41].
However, recent benchmark experiments found that BM3D
is often better than deep learning methods for real sensor
data [42], [43]. Specific to low-light imaging, Chen et al.
[44], [45] observed that by modeling the entire image and
signal processing pipeline using an end-to-end network,
better reconstruction results can be obtained from the raw
sensor data. However, since the images are still captured by
CIS, the photon levels are much higher than what we study
in this paper.

For dynamic scenes, extensions of the static methods to
videos are available, e.g., based on non-local means [46]-
[48], optical flow [49]-[51], and sparse representation [52],
[53]. The most relevant approach for this paper is the burst
photography technique [54], which can be traced back to
earlier methods based on optical flow [49], [51], [55]. Recent
reports on burst photography have focused on using deep
neural networks [56]-[59]. Among these, the kernel predic-
tion network (KPN) by Mildenhall et al. [30] is the most
relevant work for us. However, as we will demonstrate later
in the paper, the performance of KPN is not as satisfactory
in the extreme noise conditions we deal with.

3 METHOD

The proposed method consists of the QIS and a new image
reconstruction algorithm. Before we discuss the algorithm,
we first discuss how images are formed on QIS, as well as
the challenges of imaging dynamic scenes in low-light. After
that, we discuss the proposed solution using student-teacher
learning, and the intuitions behind the method.

3.1 QIS Imaging Model

We now present the image formation model. Our model
is based on the prototype QIS reported in [2] and is more
detailed than the models used in existing literature such as
[14], [26].

As light travels from the scene to the sensor, the main
mathematical model is the Poisson process which describes
how photons arrive. However, due to various sources of
distortions, the measured QIS signal, zgis, is given by

Tos = ADC{ Poisson @ -~ (Torge + - - -
observed photon arrival sensor gain scene
+ MNdc )) + N, } (1)
~—~ ~—
dark current read noise
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Here we assume that the sensor is monochromatic be-
cause the real data reported in this paper are based on a
monochromatic prototype QIS. To simulate color data we
need to include a sub-sampling step to model the color filter
array. 1y, denotes the dark current and 7, denotes the read
noise arising from the read-out circuit. The analog-to-digital
converter (ADC) describes the sensor output. In single-bit
QIS, the output is a binary signal obtained by thresholding
the Poisson count [5]. In multi-bit QIS, the output is the
Poisson count clipped to the maximum number of bits. To
image a dynamic scene, we use QIS to collect a stack of
short-exposure frames. Akin to previous work [14], [26], we
assume that noise is independent over time.

For the prototype sensor we use in this paper, the
dark current 14 in Equation (1) has an average value of
0.0068¢~ /pix/s and the read noise 7, takes the value of
0.25e~ /pix [2]. The sensor gain o controls the exposure time
and the dynamic range, which changes from scene to scene.
For all experiments we conduct in this paper, the analog-
to-digital conversion is 3-bit. The spatial resolution of the
sensor is 1024 x 1024, although we typically crop regions of
the image for analysis.

3.2 The Dilemma of Noise and Motion

At the heart of dynamic image reconstruction is the coex-
istence of noise and motion. The dilemma here is that they
are intertwined. To remove noise in a dynamic scene, we
often need to either align the frames or construct a steerable
kernel over the space-time volume. The alignment step is
roughly equivalent to estimating optical flow [60], whereas
constructing the steerable kernel is equivalent to non-local
means [47], [48] or kernel prediction [30]. However, if the
images are contaminated by noise, then both optical flow
and kernel prediction will fail. When this step fails, denois-
ing will be difficult because we will not be able to easily find
neighboring patches for filtering.

Existing algorithms in the denoising literature can usu-
ally only handle one of the two situations. For example, the
kernel prediction network (KPN) [30] can extract motion
information from a dynamic scene but its performance
drops when noise becomes heavy. Similarly, the residual
encoder-decoder networks REDNet [31] and DnCNN [39]
are designed for static scenes. In Figure 3, we show the
results of a synthetic experiment. The results illustrate the
limitations of the motion-based KPN [30] and the single-
frame REDNet (sRED) [31]. Our goal is to leverage the
strengths of both.

3.3 Student-Teacher Learning

If a kernel prediction network can handle clean image
sequences well and a denoising network can handle static
image sequences well, is there a way we can leverage their
strengths to address the dynamic low-light setting? Our
solution is to develop a training scheme using the concept
of student-teacher learning.

Figure 4 describes our method. There are three players in
this training protocol: a teacher for motion (based on kernel
prediction), a teacher for denoising (based on image de-
noiser networks), and a student which is the network we are
going to use eventually. The two teachers are individually



(a) IS raw ata

8-frame avg

(b) KPN [30]
23.09 dB

(c) sRED [31]
17.74 dB

(d) Ours
26.74 dB

Fig. 3. The dilemma of noise and motion. (a) A simulated QIS sequence at 2 ppp, averaged over 8 frames. (b) Result of Kernel Prediction Network
(KPN) [30], a burst photography method that handles motion. (c) Result of a single-frame image denoiser sRED [31] applied to the 8-frame avg. (d)

Result of our proposed method.
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Fig. 4. Overview of the proposed method. The proposed student-teacher setup consists of two teachers and a student. The motion teacher
shares motion features, whereas the denoising teacher shares denoising features. To compare the respective feature differences, perceptual losses
Lnoise @nd Lmotion are defined. The student network has two encoders and one decoder. The final estimates are compared with the ground truth

using the MSE loss Lysk.-

pretrained using their respective imaging conditions. For
example, the motion teacher is trained using sequences of
clean and dynamic contents, whereas the denoising teacher
is trained using sequences of noisy but static contents.
During the training step, the teachers will transfer their
knowledge to the student. During testing, only the student
is used.

To transfer knowledge from the two teachers to the stu-
dent, the student is first designed to have two branches, one
branch duplicating the architecture of the motion teacher
and another branch duplicating the architecture of the de-
noising teacher. When training the student, we generate
three versions of the training samples. The motion teacher
sees training samples that are clean and only contain mo-
tion, Tmotion. The denoising teacher sees a training sample
containing no motion but corrupted by noise, ®noise. The
student sees the noisy dynamic sequence is.

Because the student has identical branches to the teach-

ers, we can compare the features extracted by the teachers
and the student. Specifically, if we denote ¢() as the feature
extraction performed by the motion teacher, ¢(-) the student
motion branch, ¢(:) the denoising teacher, and $(-) the
student denoising branch, then we can define a pair of
perceptual similarities: the motion similarity

- (b(wmotion) ||2 (2)
—_——

motion teacher

Emonon = || (mQIS)
——

motion student

and the denoising similarity

Lnoise = || @(les) -
———

denoising student

(P(wnoise) H2 (3)
N——
denoising teacher

Intuitively, what this pair of equations does is ensure that
the features extracted by the student branches are similar
to those extracted by the respective teachers, which are
features that can be extracted in good conditions. If this



can be achieved, then we will have a good representation
of the noisy dynamic sample and hence we can do a better
reconstruction.

The two student branches can be considered as two
autoencoders which convert the input images to codewords.
As shown on the right side of Figure 4, we have a “decoder”
which translates the concatenated codewords back to an
image. The loss function of the decoder is given by the
standard mean squared error (MSE) loss:

Lvse = || f(@ais) — Tervel|?, 4)

where f is the student network and so f(xqis) denotes the
estimated image. The overall loss function is the sum of
these losses:

Eoverall = EMSE + )\1 Emotion + /\2 Enoisea (5)

where A1 and \q are tunable parameters. Training the net-

work is equivalent to finding the encoders ¢ and $, and the
decoder f.

3.4 Choice of Teacher and Student Networks

The proposed student-teacher framework is quite general.
Specific to this paper, the two teachers and the student are
chosen as follows.

The motion teacher is the kernel prediction network
(KPN) [30]. We modify it by removing the skip connections
to maintain the information kept by the encoder. In addition,
we remove the pooling layers and the bilinear upsampling
layers to maximize the amount of information being fed to
the feature layer. With these changes, the KPN becomes a
fully convolutional-deconvolutional network.

The denoising teacher we use is a modified version of
REDNet [31], which is also used in another QIS reconstruc-
tion method [28]. To differentiate this single-frame RED-
Net and another modified version (to be discussed in the
experiment section), we refer to this single-frame REDNet
denoising teacher as sRED. Like the motion teacher, we
remove the residual connections since they have a negative
impact on the feature transfer in student-teacher learning.

The student network has two encoders and a decoder.
The encoders have exactly the same architectures as the
teachers. The decoder is a stack of 15 layers where each
layer is a 128-channel up-convolution. The entrance layer is
used to concatenate the motion and denoising features.

4 EXPERIMENTS
4.1 Experiment Settings

Training Data. The training data consists of two parts. The
first part is for global motion. We use the Pascal VOC 2008
dataset [61] which contains 2000 training images. The sec-
ond part is for local motion. We use the Stanford Background
Dataset [62] which contains 715 images with segmentation.
For both datasets, we randomly crop patches of size 64 x 64
from the images to serve as ground truth. An additional 500
images are used for validation. To create global motion, we
shift the patches according to a random continuous camera
motion where the number of pixels traveled by the camera
range from 7 to 35 across 8 consecutive frames. This is ap-
proximately 1 m/s. For local motion, we fix the background
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and shift the foreground using translations and rotations.
The implementation of the translation is the same as that
of the global motion but applied to foreground objects. The
rotation is implemented by rotating the object with an angle
ranging from 0 to 15 degrees.

Training the Teachers. The motion teacher is trained
using a set of noise-free and dynamic sequences. The loss
function is the mean squared error (MSE) loss suggested
by [30]. The network is trained for 200 epochs using the
dataset described above. The denoising teacher is trained
using a set of noisy but static images. Therefore, for every
ground-truth sequence we generate a triplet of sequences: A
noise-free dynamic sequence for the motion teacher, a noisy
static image for the denoising teacher, and a noisy dynamic
sequence for the student. We remark that such a data synthe-
sis approach works for our problem because the simulated
QIS data matches the statistics of real measurements.

Baselines. We compare the proposed methods with three
existing dynamic scene reconstruction methods: (i) BM4D
[63], (ii) Kernel Prediction Network (KPN) [30], and (iii) a
modified version of REDNet [31]. Our modification gener-
alizes REDNet to multi-frame inputs, by introducing a 3D
convolution at the input layer to pool the features. We refer
to the modified version as multi-frame RED (mRED). Note
that mRED has residual connections while sRED (denoising
teacher) does not. We consider mRED a more fair baseline
since it takes an input of 8 consecutive frames rather than a
single frame. For KPN, the original method [30] suggested
using a fixed kernel size of K = 5; we modify the setting by
defining K as the maximum number of pixels traveled by
the motion.

Implementation. All networks are implemented using
Keras [64] and TensorFlow [65]. The student-teacher train-
ing is done using a semi-annealing process. Specifically, the
regularization parameters A\; and A are updated once every
25 epochs such that A; and A2 decay exponentially for the
first 100 epochs. For the next 100 epochs, A\; and A, are set
to 0 and the overall loss function becomes Lqveran = L£MSE-

4.2 Synthetic Experiments

We begin by conducting synthetic experiments. We first
visually compare the reconstructed images of the proposed
method and the competing methods. Figure 5 shows some
results using global translation. The motion magnitude is
28 pixels across 8 frames, at 2 ppp. Figure 6 shows some
results using arbitrary global motion, at 4 ppp. The motion
trajectory is shown in the inset in the figure. Figure 7 shows
some results of local motion. We simulate QIS data with
a real motion video of 30 fps. The photon level is 1.5
ppp. The average inference time of KPN on a 512 x 512
patch is 0.0886 seconds using an NVIDIA GeForce RTX
2080 Ti graphics card. For the same testing setting, mRED
takes 0.0653 seconds, and the proposed method takes 0.1943
seconds. The average time for BM4D (MATLAB version) is
23.6985 seconds.

To quantitatively analyze the performance, we use the
linear global motion to plot two sets of curves as shown in
Figure 8. In the first plot, we show PSNR as a function of the
motion magnitude. The magnitude of the motion is defined
as the number of pixels traveled along the dominant direc-
tion, over 8 consecutive frames. As shown in Figure 8(a), the



(a) QIS raw data, 1 frame (b) Avg of (c) BM4D (d) KPN (e) mRED (f) Ours (g) Ground
8 frames 23.04 dB 25.45 dB 26.42 dB 29.39 dB Truth

Fig. 5. Simulated QIS data with linear global motion. (a) The raw QIS image is simulated at 2 ppp, with a global motion of 28 pixels uniformly
spaced across 8 frames. (b) An average 8 QIS raw frames. (c) BM4D [63] (d) KPN [30]. (¢) mRED, a modification of REDNet [31]. (f) Proposed
method. (g) Ground truth.

(a) QIS raw (b) avg 8 frames (c) Ours (d) Ground truth

Fig. 6. Simulated QIS data with arbitrary global motion. (a) QIS raw data simulated at 4 ppp. The motion trajectory is shown in the insect. (b)
Average of 8 frames. (c) Proposed method. (d) Ground truth.
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(c) Ours (d) Ground truth

Fig. 7. Simulated QIS data with local motion. In this example, only the car moves. The background is static. (a) Raw QIS frame assuming 1.5
ppp. (b) The average of 8 QIS frames. (c) Proposed algorithm. (d) Ground truth.
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Fig. 8. Quantitative analysis using synthetic data. (a) PSNR as a function of the motion magnitude, at a photon level of 2 ppp. The magnitude of
the motion is defined as the number of pixels traveled along the dominant direction, over 8 consecutive frames. (b) PSNR as a function of photon
level. The motion magnitude is fixed at 4 pixels, but the photon level changes. Notice the consistent performance improvement of our method

compared to BM4D [63], KPN [30] and mRED (a modified version of [31]).

proposed method has a consistently higher PSNR compared
to the three competing methods, ranging from 1.5 dB to
3 dB. This suggests that the presence of both teachers has
provided a positive impact on solving the motion and noise
dilemmma, which is difficult for both KPN and mRED. The
second set of curves is shown in Figure 8(b) and reports
PSNR as a function of the photon level. The curves in
Figure 8(b) suggest that for the photon levels we have tested,
the performance gap between the proposed method and the
competing methods is consistent. This provides additional
evidence of the effectiveness of the proposed method.

4.3 Real Experiments

We verify the results using real QIS data. The real data is
collected using a prototype Gigajot PathFinder camera [2].
The camera has a spatial resolution of 1024 x 1024. The
integration time of each frame is 75 us. Each reconstruction
is based on 8 consecutive QIS frames. At the time this
experiment is conducted, the readout circuit of this camera
is still a prototype that is not optimized for speed. Thus, in-
stead of demonstrating a real high-speed video, we capture

a slowly moving real dynamic scene where the motion is
continuous but slow. We make the exposure period short so
that it is equivalent to a high-speed video. We expect that
the problem will be solved in the next generation of QIS.

The physical setup of the experiment is shown in Fig-
ure 9(a). We put the camera approximately 1 meter away
from the objects. The photon level is controlled by a
light source. To create motion, the objects are mounted on
an Ashanks SmoothONE C300S motorized camera slider,
which allows us to control the location of the objects
remotely. The “ground truth” (reference images) in this
experiment is obtained by capturing a static scene via 8
consecutive QIS frames. Since these static images are noisy
(due to photon shot noise), we apply mRED to denoise the
images before using them as the references.

A visual comparison for this experiment is shown in
Figure 10. The quantitative analysis is shown in Figure 9(b),
where we plot the PSNR curves as functions of the number
of pixels traveled by the object. As we can see, the perfor-
mance of the proposed method and the competing methods
are similar to those reported in the synthetic experiments.
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Fig. 9. (a) Setup of QIS data collection. The QIS camera is placed 1 meter from the object which is attached to a motorized slider. The horizontal
field of view (FOV) of the lens is 96.8°. The motion is continuous but slow. (b) Quantitative analysis on real data. The plot shows the PSNR values
as a function of the motion magnitude, under a photon level of 0.5 ppp. The “reference” in this experiment is determined by reconstructing an image
using a stack of static frames of the same scene. The reconstruction method is based on [28].

(a) QIS raw
1 frame

(c) KPN
25.08 dB

(b) Average
8 frames
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A

f) Reference

(d) mRED
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(e) Ours
30.97 dB

Fig. 10. Real QIS data. (a) A snapshot of a real QIS frame captured at 2 ppp per frame. The number of pixels traveled by the object over the 8
frames is 28 pixels. (b) The average of 8 QIS frames. Notice the blur in the image. (c) Reconstruction result of KPN [30]. (d) Reconstruction result
of mRED, a modification of [31]. (e) Our proposed method. (f) Reference image is a static scene denoised using mRED.

The gap appears to be consistent with the synthetic ex-
periments. An additional real data experiment is shown in
Figure 11, where we use QIS to capture a rotating fan scene.

4.4 Ablation Study

We conduct an ablation study to evaluate the significance
of the proposed student-teacher training protocol. Figure 12
summarizes the 5 configurations we study. Config A is a

vanilla baseline where the denoising and motion teachers
are pretrained. Config B uses a single encoder instead of
two encoders. Ours-I uses a student-teacher setup to train
the denoising encoder. Ours-II is similar to Ours-I, but we
use the motion teacher in lieu of the denoising teacher. Ours-
full uses both teachers. All networks are trained using the
same set of noisy and dynamic sequences. The experiments
are conducted using synthetic data, at a photon level of 1



(a) Real image by QIS
1 frame, 1.5 ppp

(b) Real image by QIS
avg of 8 frames, 1.5 ppp

(c) Our reconstruction
using 8 QIS frames

Fig. 11. Real QIS data with rotational motion. The image is captured at 1.5 ppp. Notice the rotation blur in the 8-frame average, and the

reconstructed result.
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Fig. 12. Configurations for ablation study. (a) Config-A: Uses pre-trained teachers. (b) Config-B: Uses a single encoder instead of two smaller
encoders. (c) Ours-l: Uses denoising teacher only. (d) Ours-1l: Uses motion teacher only. (e) Our-full: The complete model. In this figure, blue

colored layers are pre-traiend and fixed. Orange layers are trainable.

ppp and motion of 28 pixels across 8 frames. The results are
summarized in Table 1.

Is student-teacher training necessary? Configurations
A and B do not use any teacher. Comparing with Ours-full,
the PSNR values of Config A and Config B are worse by
more than 1dB. Even if we compare with a single teacher,
e.g., Ours-, it is still 0.8dB ahead of Config B. Therefore, the
student-teacher training protocol has a positive impact on
performance.

Do teacher encoders extract meaningful information?
Config A uses two pretrained encoders and a trainable
decoder. The network achieves 21.51dB, which means that
some features are useful for reconstruction. However, when
comparing with Ours-full, it is substantially worse (23.87dB
compared to 21.51dB). Since the network architectures are
identical, the performance gap is likely caused by the train-
ing protocol. This indicates that the student-teacher setup
is a better way to transfer knowledge from teachers to a
student network.

Which teacher to use? Ours-I and Ours-II both use
one teacher. The results suggest that if we only use one
teacher, the motion teacher has a small gain (0.1dB) over the
denoising teacher. However, if we use both teachers as in the
proposed method, we observe another 0.2dB improvement.
Thus, the presence of both teachers is helpful.

5 CONCLUSION

Dynamic low-light imaging is an important capability in ap-
plication such as autonomous driving, security, and health
care. CMOS image sensors (CIS) have fundamental limita-
tions due to their inability to count photons. This paper
considers Quanta Image Sensors (QIS) as an alternative
solution. By developing a deep neural network using a new
student-teacher training protocol, we demonstrated the ef-
fectiveness of transferring knowledge from a motion teacher
and a denoising teacher to the student network. Experimen-
tal results indicate that the proposed method outperforms
existing solutions trained under the same conditions. The
proposed student-teacher protocol can also be applied to
CIS problems. However, at a photon level of 1 photon per
pixel or lower, QIS are necessary. Future work will focus on
generalizing the reconstruction to more complex motions.
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