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Abstract

Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from

the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer

admit the spanner property, but this collateral damage is bounded by a fraction of the size of the

attack. It is known that Ω(n log n) edges are needed to achieve this strong property, where n is the

number of vertices in the network, even in one dimension. Constructions of reliable geometric (1 + ε)-

spanners, for n points in R
d, are known, where the resulting graph has O(n log n loglog6n) edges.

Here, we show randomized constructions of smaller size spanners that have the desired reliability

property in expectation or with good probability. The new construction is simple, and potentially

practical – replacing a hierarchical usage of expanders (which renders the previous constructions

impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that

has linear number of edges. Using this, we present a construction of a reliable spanner in R
d

with O(n loglog2n logloglog n) edges.
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1 Introduction

Geometric graphs are such that their vertices are points in the d-dimensional Euclidean

space R
d and edges are straight line segments. The quality or efficiency of a geometric graph

is often measured in terms of the ratio of shortest path distances and geometric distances

between its vertices. Let G = (P, E) be a geometric graph, where P ⊂ R
d is a set of n

points and E is the set of edges. The shortest path distance between two points p, q ∈ P in

the graph G is denoted by dG(p, q) (or just d(p, q)). The graph G is a t-spanner for some

constant t ≥ 1, if d(p, q) ≤ t · ‖p − q‖ holds for all pairs of points p, q ∈ P , where ‖p − q‖
stands for the Euclidean distance of p and q. The spanning ratio, stretch factor, or dilation

of a graph G is the minimum number t ≥ 1 for which G is a t-spanner. A path between p

and q is a t-path if its length is at most t · ‖p − q‖.
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27:2 Sometimes Reliable Spanners of Almost Linear Size

Table 1.1 Comparison of the size of constructions of reliable spanners and reliable spanners

in expectation. The reliability parameter is ϑ > 0, and, for dimensions d ≥ 2, the graphs are

(1 + ε)-spanners for ε > 0.

dim # edges constants

Reliable spanners

Buchin et al. [4]
d = 1 O(n log n) O

(

ϑ−6
)

d ≥ 2 O
(

n log n log log6 n
)

O
(

ε−7dϑ−6 log7 ε−1
)

Bose et al. [2] d ≥ 1 O
(

n log2 n log log n
)

?

Reliable spanners in expectation

New results
d = 1 O(n) O

(

ϑ−1 log ϑ−1
)

d ≥ 2 O(n log log2 n log log log n) O
(

ε−2dϑ−1 log3 ε−1 log ϑ−1
)

We focus our attention to construct spanners that can survive massive failures of vertices.

The most studied notion is fault tolerance [5, 7, 8, 9, 10], which provides a properly functioning

residual graph if there are no more failures than a predefined parameter k. It is clear, that a

k-fault tolerant spanner must have Ω(kn) edges to avoid small degree nodes, which can be

isolated by deleting their neighbors. Therefore, fault tolerant spanners must have quadratic

size to be able to survive a failure of a constant fraction of vertices. Another notion is

robustness [3], which gives more flexibility by allowing the loss of some additional nodes by

not guaranteeing t-paths for them. For a function f : N −→ R
+ a t-spanner G is f -robust, if

for any set of failed points B there is an extended set B+ with size at most f(|B|) such that

the residual graph G \ B has a t-path for any pair of points p, q ∈ P \ B+. The function f

controls the robustness of the graph - the slower the function grows the more robust the graph

is. The benefit of robustness is that a near linear number of edges are enough to achieve

it, even for the case when f is linear, there are constructions with nearly O(n log n) edges.

For ϑ ∈ (0, 1), a spanner that is f -robust with f(k) = (1 + ϑ)k is a ϑ-reliable spanner [4].

This is the strongest form of robustness, since the dilation can increase beyond t only for a

tiny additional fraction of points. The fraction is relative to the number of failed vertices

and controlled by the parameter ϑ.

Recently, Buchin et al. [4] showed a construction of reliable 1-spanners of size O(n log n) in

one dimension, and of reliable (1+ε)-spanners of size O
(

n log n loglog6n
)

in higher dimensions

(the constant in the O depends on the dimension, ε, and the reliability parameter). An

alternative construction, with slightly worse bounds, was given by Bose et al. [2].

Limitations of previous constructions. The construction of Buchin et al. [4] (and also

the construction of Bose et al. [2]) relies on using expanders to get a 1-spanner for points

on the line, and then extending it to higher dimensions. The spanner (in one dimension)

has O(n log n) edges. Unfortunately, even in one dimension, such a reliable spanner re-

quires Ω(n log n) edges, as shown by Bose et al. [3]. Furthermore, the constants involved in

these constructions [2, 4] are quite bad, because of the usage of expanders. See Table 1.1 for

a summary of the sizes of different constructions (together with the new results).

The problem. As such, the question is whether one can come up with simple and practical

constructions of spanners that have linear or near linear size, while still possessing some

reliability guarantee – either in expectation or with good probability.
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Some definitions. Given a graph G, an attack B ⊆ V (G) is a set of vertices that are being

removed. The damaged set B+, is the set of all the vertices which are no longer connected to

the rest the graph, or are badly connected to the rest of the graph – that is, these vertices no

longer have the desired spanning property. The loss caused by B, is the quantity |B+ \ B|
(where we take the minimal damaged set). The loss rate of B is λ(G, B) = |B+ \ B| / |B|. A

graph G is ϑ-reliable if for any attack B, the loss rate λ(G, B) is at most ϑ.

Randomness and obliviousness. As mentioned above, reliable spanners must have size

Ω(n log n). A natural way to get a smaller spanner, is to consider randomized constructions,

and require that the reliability holds in expectation (or with good probability). Randomized

constructions are (usually) still sensitive to adversarial attacks, if the adversary is allowed to

pick the attack set after the construction is completed (and it is allowed to inspect it). A

natural way to deal with this issue is to restrict the attacks to be oblivious – that is, the

attack set is chosen before the graph is constructed (or without any knowledge of the edges).

In such an oblivious model, the loss rate is a random variable (for a fixed attack B). It

is thus natural to construct the graph G randomly, in such a way that E[λ(G, B)] ≤ ϑ, or

alternatively, that the probability P[λ(G, B) ≥ ϑ] is small.

1-spanner. Surprisingly, the one-dimensional problem is the key for building reliable span-

ners. Here, the graph G is constructed over the set of vertices [n] = {1, . . . , n}. An attack

is a subset B ⊆ [n]. Given an attack B, the requirement is that for all i, j ∈ [n] \ B+, such

that i < j, there is a monotonically increasing path from i to j in G \ B – here, the length of

the path between i and j is exactly j − i. Since there is no distortion in the length of the

path, such graphs are 1-spanners.

Our results. We give a randomized construction of a 1-spanner in one dimension, that is

ϑ-reliable in expectation, and has size O(n). Formally, the construction has the property

that E[λ(G, B)] ≤ ϑ. This construction can also be modified so that λ(G, B) ≤ ϑ holds with

some desired probability. This is the main technical contribution of this work.

Next, following in the footsteps of the construction of reliable spanners, we use the

one-dimensional construction to get (1 + ε)-spanners that are ϑ-reliable either in expectation

or with good probability. The new constructions have size roughly O
(

n loglog2n
)

.

Main idea. We borrow the notion of shadow from the work of Buchin et al. [4]. A point p

is in the α-shadow if there is a neighborhood of p, such that an α-fraction of it belongs to

the attack set. One can think about the maximum α such that p is in the α-shadow of B

as the depth of p (here, the depth is in the range [0, 1]). A point with depth close to one,

are intuitively surrounded by failed points, and have little hope of remaining well connected.

Fortunately, only a few points have depth truly close to one 1. The flip side is that the

attack has little impact on shallow points (i.e., points with depth close to 0). Similar to

people, shallow points are surrounded by shallow points. As such, only a small fraction of

the shallow points needs to be strongly connected to other points in the graph, as paths from

(shallow) points around them can then travel via these hub points.

To this end, similar in spirit to skip lists, we define a random gradation of the points

P = P0 ⊇ P1 ⊇ . . . ⊇ Plog n, where |Pi| = n/2i – this is done via a random tournament tree.

In each level, each point of Pi is connected to all its neighbors within a certain distance (which

increases as i increases). Intuitively, because of the improved connectivity, the probability

that a point is well-connected (after the attack) increases if they belong to higher level of the

ESA 2020
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gradation. Thus, the probability of a shallow point to remain well connected is, intuitively,

good. Specifically, we can quantify the probability of a vertex to lose its connectivity as a

function of its depth. Combining this with bounds on the number of points of certain depths,

results in bounds on the expected size of the damaged set.

Reliable skip lists. Our construction can be interpreted as a reliable construction of skip

lists. Here, an attack removes certain cells in the skip list, which are no longer available.

This can happen, for example, if the skip list is stored in a distributed fashion in a network,

and certain nodes of the network are down. Our construction implies that one can withstand

an attack with small expected loss. The previous work on skip graphs [1], or [4], presented

constructions of variants of skip lists with somewhat similar properties, but using O(n log n)

pointers. The current construction requires only O(n) pointers.

Comparison to previous work. While we borrow some components of Buchin et al. [4], the

basic scheme in the one-dimensional case, is new, and significantly different – the previous

construction used expanders in a hierarchical way. The new construction requires different

analysis and ideas. The extension to higher dimension is relatively straightforward and

follows the ideas of Buchin et al. [4], although some modifications and care are necessary.

Paper organization. We review some necessary machinery in Section 2. The one-dimensio-

nal construction is described in Section 3. We describe the extension to higher dimensions in

Section 4.

2 Preliminaries

Let G = (P, E) be a t-spanner for some t ≥ 1. An attack on G is a set of vertices B that

fail, and no longer can be used. An attack is oblivious, if the set B is picked without any

knowledge of E.

◮ Definition 1 (Reliable spanner). Let G = (P, E) be a t-spanner for some t ≥ 1 constructed

by a (possibly) randomized algorithm. Given an attack B, its damaged set B+ is a smallest

set, such that for any pair of vertices u, v ∈ P \ B+, we have

dG\B(u, v) ≤ t · ‖u − v‖ ,

that is, t-paths are preserved for all pairs of points not contained in B+. The quantity |B+ \ B|
is the loss of G under the attack B. The loss rate of G is λ(G, B) = |B+ \ B| / |B|. For

ϑ ∈ (0, 1), the graph G is ϑ-reliable if λ(G, B) ≤ ϑ holds for any attack B ⊆ P .

Further, we say that the random graph G is ϑ-reliable in expectation if E[λ(G, B)] ≤ ϑ

holds for any oblivious attack B ⊆ P . For ϑ, ρ ∈ (0, 1), we say that the graph G is ϑ-reliable

with probability 1 − ρ if P[λ(G, B) ≤ ϑ] ≥ 1 − ρ holds for any oblivious attack B ⊆ P .

◮ Remark 2. We emphasize that in the latter case the graph is random and the expectation

and the probability is taken with respect to the distribution of graphs.

Another remark is that the set B+ is not unique, since one can (possibly) choose the

point to include in B+ for a pair that does not have a t-path in G \ B. However, this does

not cause a problem in defining the loss rate.

◮ Definition 3. Let [n] denote the interval {1, . . . , n}. Similarly, for x and y, let [x . . . y]

denote the interval {x, x + 1, . . . , y}.
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We use the shadow notion as it was introduced by Buchin et al. [4].

◮ Definition 4. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number i

is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that
∣

∣[i . . . j] ∩ B
∣

∣ ≥ α
∣

∣[i . . . j]
∣

∣ . Similarly, i is in the right α-shadow of B, if and only if

there exists an integer h, such that h ≤ i and |[h . . . i] ∩ B| ≥ α |[h . . . i]| . The left and right

α-shadow of B is denoted by S→(α, B) and S←(α, B), respectively. The combined shadow is

denoted by S(α, B) = S→(α, B) ∪ S←(α, B).

◮ Lemma 5 ([4]). For any set B ⊆ [n], and α ∈ (0, 1), we have that |S(α, B)| ≤
(

1 +

2 ⌈1/α⌉
)

|B|. Further, if α ∈ (2/3, 1), we have that |S(α, B)| ≤ |B| /(2α − 1).

◮ Definition 6. Given a graph G over [n], a monotone path between i, j ∈ [n], such that

i < j, is a sequence of vertices i = i1 < i2 < · · · < ik = j, such that iℓ−1iℓ ∈ E(G), for

ℓ = 2, . . . , k.

A monotone path between i and j has length |j − i|. Throughout the paper we use log x

and ln x to denote the base 2 and natural base logarithm of x, respectively. For any set A ⊆ P ,

let Ac = P \ A denote the complement of A. For two integers x, y > 0, let x↑y = ⌈x/y⌉ y.

3 Reliable spanners in one dimension

We show how to build a random graph on [n] that still has monotone paths almost for all

vertices that are not directly attacked. First, in Section 3.2, we show that our construction

is ϑ-reliable in expectation. Then, in Section 3.3, we show how to modify the construction to

obtain a 1-spanner that is ϑ-reliable with probability 1 − ρ.

3.1 Construction

The input consists of a parameter ϑ > 0 and the point set P = [n] = {1, . . . , n}. The

backbone of the construction is a random elimination tournament. We assume that n is a

power of 2 as otherwise one can construct the graph for the next power of two, and then

throw away the unneeded vertices.

The tournament is a full binary tree, with the leafs storing the values from 1 to n, say

from left to right. The value of a node is computed randomly and recursively. For a node,

once the values of the nodes were computed for both children, it randomly copies the value

of one of its children, with equal probability to choose either child. Let Pi be the values

stored in the ith bottom level of the tree. As such, P0 = P , and Plog n is a singleton. Each

set Pi can be interpreted as an ordered set (from left to right, or equivalently, by value).

Let

α = 1 − ϑ

8
and ε =

8(1 − α)

c ln ϑ−1
=

ϑ

c ln ϑ−1
, (3.1)

where c > 1 is a sufficiently large constant. Let M be the smallest integer for which

|PM | ≤ 2M/2/ε holds (i.e., M = ⌈(2/3) log(εn)⌉). For i = 0, 1, . . . , M , and for all p ∈ Pi

connect p with the first

ℓ(i) =

⌈

2i/2

ε

⌉

(3.2)

successors (and hence predecessors) of p in Pi. Let Ei be the set of all edges in level i. The

graph G on P is defined as the union of all edges over all levels – that is, E(G) = ∪M
i=0Ei.

Note, that top level of the graph G is a clique.

ESA 2020
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◮ Remark 7. Before dwelling on the correctness of the construction, note that the obliviousness

of the attack is critical. Indeed, it is quite easy to design an attack if the structure of G

is known. To this end, let Bi be the set of ℓ(M) = O(n1/3/ε) values of Pi closest to n/2

– namely, we are taking out the middle-part of the graph, that belongs to the ith level.

Consider the attack B = ∪Bi. It is easy to verify that this attack breaks G into at least two

disconnected graphs, each of size at least n/2 − O(n1/3ε−1 log n).

3.2 Analysis

◮ Lemma 8. The graph G has O
(

nϑ−1 log ϑ−1
)

edges.

Proof. The number of edges contributed by a point in Pi is at most ℓ(i) at level i, and

|Pi| = n/2i. Thus, we have

|E(G)| ≤
M
∑

i=0

|Pi| · ℓ(i) ≤
M
∑

i=0

n

2i
·
⌈

2i/2

ε

⌉

≤
M
∑

i=0

n

2i
· 2 · 2i/2

ε
≤ n

ε
·
∞
∑

i=0

2

2i/2
= O

(n

ε

)

. ◭

Fix an attack B ⊆ P . The high-level idea is to show that if a point p ∈ P \ B is far

enough from the faulty set, then, with high probability, there exist monotone paths reaching

far from p in both directions. For two points p < q, we show that if both p and q have far

reaching monotone paths, then the path going to the right from p, and the path going to

the left from q must cross each other, which in turn implies, that there is a monotone path

between p and q. Therefore, it is enough to bound the number of points that does not have

far reaching monotone paths.

◮ Definition 9 (Stairway). Let p ∈ P be an arbitrary point. The path p = p0, p1, . . . , pj is a

right (resp., left) stairway of p to level j, if

(i) p = p0 ≤ p1 ≤ · · · ≤ pj (resp., p ≥ p1 ≥ · · · ≥ pj),

(ii) if pi 6= pi+1, then pipi+1 ∈ Ei, for i = 0, 1, . . . , j − 1,

(iii) pi ∈ Pi, for i = 1, . . . , j.

Furthermore, a stairway is safe if none of its points are in the attack set B. A right (resp.,

left) stairway is usable, if [pj . . . n] ∩ Pj (resp., [1 . . . pj ] ∩ Pj) forms a clique in G. Let

T ⊆ P denote the set of points that have a safe and usable stairway to both directions.

Let αk = α/2k, for k = 0, 1, . . . , log n. Let Sk = S(αk, B) be the αk-shadow of B, for

k = 0, 1, . . . , log n. Observe that S0 ⊆ S1 ⊆ · · · ⊆ Slog n, and there is an index j such that

Sj = P , if B 6= ∅. A point is classified according to when it gets “buried” in the shadow. A

point p, for k ≥ 1, is a kth round point, if p ∈ Sk \ Sk−1. Intuitively, a kth round point is

more likely to have a safe stairway the larger the value of k is.

◮ Definition 10. A point is bad if it belongs to B, or it does not have a right or left stairway

that is safe and usable. Formally, a point p ∈ P is bad, if and only if p ∈ P \ T .

◮ Lemma 11. For any two points p, q ∈ T that are not bad, there is a monotone path

connecting p and q in the residual graph G \ B.

Proof. Suppose we have p < q. Let (p, p1, . . . , pj(p)) be a safe usable right stairway starting

from p and (q, q1, . . . , qj(q)) be a safe usable left stairway from q. These stairways exist, since

p, q ∈ T . Let j = min(j(p), j(q)) and consider the stairways (p, p1, . . . , pj) and (q, q1, . . . , qj).

Notice that both are safe and at least one of them is usable.
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1 n

p p↑2i

2i2i2i

p↑2i + (∆i − 1) · 2iJi

Figure 3.1 The interval Ji =
[

p . . . p
↑2i + (∆i − 1) · 2i

]

.

Let i be the first index such that pi ≥ qi, if there is any. We distinguish two cases based on

whether pi < qi−1 holds or not. In case pi < qi−1, the path (p, p1, . . . , pi−1, pi, qi−1, . . . , q1, q)

is a monotone path from p to q, since qiqi−1 ∈ Ei−1 implies piqi−1 ∈ Ei−1. On the other

hand, if we have pi ≥ qi−1, the path (p, p1, . . . , pi−1, qi−1, . . . , q1, q) is a monotone path

between p and q, since pi−1pi ∈ Ei−1 implies pi−1qi−1 ∈ Ei−1.

Finally, if pi < qi holds for all i = 1, . . . , j, then the path (p, p1, . . . , pj , qj , . . . , q1, q) is a

monotone path between p and q. We have pjqj ∈ Ej , since at least one of the stairways is

usable. This concludes the proof that there is a monotone path from p to q. ◭

◮ Lemma 12. For a fixed set Q ⊆ [n], we have that P[Q ∩ Pi = ∅] ≤ exp(− |Q| /2i).

Proof. Let Q = {q1, . . . , qr}, and observe that knowing that certain points of Q are not in Pi,

increases the probability of another point to be in Pi. That is, P[qj ∈ Pi | q1, . . . , qj−1 /∈ Pi] ≥
P[qj ∈ Pi] = 1/2i. As such, we have

P

[

Q ∩ Pi = ∅
]

= P

[

⋂

j

(qj /∈ Pi)
]

=

r
∏

j=1

P[qj /∈ Pi | q1, . . . , qj−1 /∈ Pj ]

≤
(

1 − 1/2i
)r ≤ exp(−r/2i). ◭

◮ Lemma 13. Assume that ϑ ∈ (0, 1/2) and let p ∈ Sk \ Sk−1 be a kth round point for some

k ≥ 1. The probability that p is bad is at most (ϑ/2)k/32.

Proof. For any integer i ≥ 1, let ∆i =
⌊

2(i−1)/2/(2ε)
⌋

and let Ji =
[

p . . . p↑2i + (∆i − 1) · 2i
]

,

see Figure 3.1. Recall that p ∈ [n], so p↑2i =
⌈

p/2i
⌉

2i is the next multiple of 2i. Let ξ be

the largest integer such that Jξ ⊆ P . For i = 0, . . . , ξ, the points of Ji+1 ∩ Pi form a clique

in G, since

|Ji+1 ∩ Pi| ≤
⌈

|Ji+1| /2i
⌉

≤
⌈

2i+1∆i+1/2i
⌉

= 2∆i+1 ≤
⌈

2i/2/ε
⌉

= ℓ(i).

Indeed, any two vertices of Pi with distance at most ℓ(i) are connected by an edge of Ei. As

such, it is enough to prove that there is a right safe stairway from p, that climbs on the levels

to level ξ. Since Jξ+1 ∩ Pξ forms a clique, it follows that such a stairway would be usable.

Let Ei be the event that (Ji \ B) ∩ Pi is empty, for i = 1, . . . , ξ. Since p /∈ Sk−1,

we have that |Ji ∩ B| < αk−1 |Ji| ≤ 2iαk−1∆i. On the other hand, we have |Ji ∩ Pi| ≥
2i(∆i − 1)/2i = ∆i − 1. As such, if |Ji ∩ B| < |Ji ∩ Pi| then P[Ei] = 0. This happens if

2iαk−1∆i ≤ ∆i − 1 ⇐⇒ 2i−k+1α ≤ (∆i − 1)/∆i, which happens if i ≤ k − 2, given that

∆i ≥ 2. Notice that ∆i ≥ 2 holds for all i ≥ 1, if ε ≤ 1
4 .

So assume that i ≥ k − 1. Let q1, . . . , qr be all points of Ji \ B, which are the possible

candidates to be contained in (Ji \ B) ∩ Pi. By Eq. (3.1), there are at least

r = |Ji| − |Ji ∩ B| ≥ (1 − αk−1) |Ji| ≥ (1 − αk−1)2i(∆i − 1)
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≥ (1 − αk−1)2i
(2(i−1)/2

2ε
− 2
)

=
c(1 − αk−1) ln ϑ−1

16(1 − α)
23i/2−1/2 − (1 − αk−1)2i+1

≥ c23i/2−9/2 ln ϑ−1 − 2i+1

such points. Observe, that by the structure of the construction, a point is more likely

to be contained in Pi conditioned on the event there are some other points which are

not contained in Pi. Therefore, by Lemma 12, we have P

[

Ei

]

≤ exp
(

−r/2i
)

≤ τi, for

τi = exp
(

2 − c2i/2−9/2 ln ϑ−1
)

. The sequence τi has a fast decay in i, since

τi+1

τi
= exp

(

−(
√

2 − 1)c2i/2−9/2 ln ϑ−1
)

≤ exp
(

−c2−6 ln 2
)

= 2−c2−6 ≤ 1

2
,

if c ≥ 26 holds. Thus, we have

P

[

∪ξ
i=1Ei

]

≤
ξ
∑

i=1

P

[

Ei

]

≤
ξ
∑

i=k−1

τi ≤ 2τk−1 = 2 exp
(

2 − c2(k−1)/2−9/2 ln ϑ−1
)

≤ 16 exp
(

− c

32
2k/2 ln ϑ−1

)

= 16 · ϑ
c

32
·2k/2 ≤ 24 · ϑ

c
26 ·k

≤ 24 ·
(

1

2

)
c

27 ·k

·
(

ϑ
c

27

)k

≤ (ϑ/2)k

64

for c ≥ 211, using the conditions 0 < ϑ ≤ 1
2 , k ≥ 1 and the fact that x ≤ 2x.

Let pi be the leftmost point in (Ji \ B) ∩ Pi, for i ≥ 0. Since Pi ⊆ Pi−1, for all i, it

follows that p = p0 ≤ p1 ≤ · · · ≤ pξ. Furthermore, since Ji+1 ∩ Pi is a clique in level i of G,

and pi, pi+1 ∈ Ji+1 ∩ Pi, it follows that pipi+1 ∈ Ei, if pi 6= pi+1, for all i. We conclude that

p, p1, . . . , pξ is a safe and usable right stairway in G.

The bound now follows by applying the same argument symmetrically for the left stairway.

Indeed, using the union bound, we obtain P[p is bad] ≤ 2(ϑ/2)k/64 = (ϑ/2)k/32. ◭

◮ Lemma 14. Let ϑ ∈ (0, 1/2) and B ⊆ P be an oblivious attack. Recall, that T c is the set

of bad points. Then, we have E[|T c|] ≤ (1 + ϑ) |B|.

Proof. We may assume that all the points of S0 are bad. Fortunately, by Lemma 5,

we have |S0| ≤ |B| /(2α − 1) = |B| /(1 − ϑ/4) ≤ (1 + ϑ/2) |B|, since α = 1 − ϑ/8 and

1/(1 − x/4) ≤ 1 + x/2 for 0 ≤ x ≤ 2. Again, using Lemma 5, we have

|Sk \ Sk−1| ≤ |Sk| ≤
(

1 + 2
⌈

2k/α
⌉)

|B| ≤
(

3 +
2k+1

α

)

|B| ≤ 2k+3 |B| .

For k ≥ 1, we have, by Lemma 13, that

bk = E[|(Sk \ Sk−1) ∩ T c|] ≤
∑

p∈Sk\Sk−1

P[p is bad] ≤ 2k+3 |B| · (ϑ/2)k

32
≤ ϑk

4
|B| .

Since, T c = (S0 ∩ T c) ∪⋃k≥1

[

(Sk \ Sk−1) ∩ T c
]

, we have, by linearity of expectation, that

E

[

|T c|
]

|B| ≤ 1

|B|

(

|S0| +

∞
∑

k=1

bk

)

≤ 1 +
ϑ

2
+

∞
∑

k=1

ϑk

4
≤ 1 +

ϑ

2
+

ϑ

4(1 − ϑ)
≤ (1 + ϑ),

since ϑ < 1/2. ◭
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◮ Theorem 15. Let ϑ ∈ (0, 1/2) and P = [n] be fixed. The graph G, constructed in

Section 3.1, has O
(

nϑ−1 log ϑ−1
)

edges, and it is a ϑ-reliable 1-spanner of P in expectation.

Formally, for any oblivious attack B, we have E[λ(G, B)] ≤ ϑ.

Proof. By Lemma 8 the size of the construction is |E(G)| = O
(

nϑ−1 log ϑ−1
)

. Let B ⊆ P

be an oblivious attack and consider the bad set P \ T . By Lemma 11, for any two points

outside the bad set, there is a monotone path connecting them. Further, by Lemma 14, we

have E[|P \ T |] ≤ (1 + ϑ) |B| for any oblivious attack. Therefore, we obtain E[λ(G, B)] ≤
E[|T c \ B| / |B|] ≤ ϑ. ◭

3.3 Probabilistic bound

One can replace the guarantee, in Theorem 15, on the bound of the loss rate (which holds

in expectation), by an upper bound that holds with probability at least 1 − ρ, for some

prespecified ρ > 0. A straightforward application of Markov’s inequality implies that taking

the union of log ρ−1 independent copies (G′) of the construction of Theorem 15 with parameter

ϑ/2, results in a graph with the desired property. Indeed, we have

P[λ(G, B) > ϑ] ≤ P[λ(G′, B) > ϑ]
log ρ−1

≤
(

E[λ(G′, B)]

ϑ

)log ρ−1

≤
(

1

2

)log ρ−1

= ρ.

Here we show how one can do better to avoid the multiplicative factor log ρ−1.

Construction. The input consists of two parameters ϑ, ρ > 0 and the set P = [n]. Let G

be the graph constructed in Section 3.1 with parameters

α = 1 − ϑ

8
and ε =

8(1 − α)

c(ln ϑ−1 + ln ρ−1)
=

ϑ

c(ln ϑ−1 + ln ρ−1)
,

where c > 1 is a sufficiently large constant. First, we need a variant of Lemma 13 to bound

the probability of a kth round point being bad, using the new value of ε.

◮ Lemma 16. Assume that ϑ ∈ (0, 1/2), ρ ∈ (0, 1) and let p ∈ Sk \ Sk−1 be a kth round

point for some k ≥ 1. The probability that p is bad is at most ϑ · ρ/23k+4.

Proof. The proof is the same as the proof of Lemma 13. The only difference is due to the

new value of ε, which results in τi = exp
(

2 − c2i/2−9/2(ln ϑ−1 + ln ρ−1)
)

, using the same

notation. Therefore, we have

P[p ∈ Sk \ Sk−1 is bad] ≤ 4τk−1 = 4 exp
(

2 − c2k/2−5(ln ϑ−1 + ln ρ−1)
)

≤ 25 exp
(

− c

26
k(ln ϑ−1 + ln ρ−1)

)

= 25 · ϑ
c

26 k · ρ
c

26 k

≤ 25 ·
(

1

2

)
c

26 k−1

· ϑ · ρ = 2−
c

26 k+6 · ϑ · ρ ≤ 2−3k−4 · ϑ · ρ,

for c ≥ 210. See Lemma 13 for a complete proof. ◭

◮ Lemma 17. Let ϑ ∈ (0, 1/2), ρ ∈ (0, 1) be fixed and B ⊆ P be an oblivious attack. Then,

with probability ≥ 1 − ρ, the number of bad points is at most (1 + ϑ) |B|. That is, we have

P[|T c| ≤ (1 + ϑ) |B|] ≥ 1 − ρ.
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Proof. The idea is to give bounds on the number of bad kth round points for all k ≥ 1. Let

Ek be the event that |(Sk \ Sk−1) ∩ T c| > ϑ
2k+1 |B| happens, for k ≥ 1. Recall, by the choice

of α, we have |S0 ∩ T c| ≤ |S0| ≤
(

1 + ϑ
2

)

|B|. Notice, that at least one of the events Ek must

happen, for k ≥ 1, in order to have |T c| > (1 + ϑ) |B|, since

|T c| = |S0 ∩ T c| +

∞
∑

k=1

|(Sk \ Sk−1) ∩ T c| ≤
(

1 +
ϑ

2

)

|B| +

∞
∑

k=1

ϑ

2k+1
|B| = (1 + ϑ) |B| .

Using Markov’s inequality and Lemma 16 we get

P[Ek] ≤ E[|(Sk \ Sk−1) ∩ T c|]
ϑ

2k+1 |B| ≤ |Sk| · P[p ∈ Sk \ Sk−1 is bad]
ϑ

2k+1 |B| ≤ 2k+3 |B| · ϑ·ρ
23k+4

ϑ
2k+1 |B| =

ρ

2k
.

Therefore, we obtain

P[|T c| > (1 + ϑ) |B|] ≤ P[∪k≥1Ek] ≤
∞
∑

k=1

P[Ek] ≤
∞
∑

k=1

ρ

2k
≤ ρ,

which is equivalent to P[|T c| ≤ (1 + ϑ) |B|] ≥ 1 − ρ. ◭

◮ Theorem 18. Let ϑ ∈ (0, 1/2), ρ ∈ (0, 1) and P = [n] be fixed. The graph G, con-

structed above, is a ϑ-reliable 1-spanner of P , with probability at least 1 − ρ. Formally,

we have P[λ(G, B) ≤ ϑ] ≥ 1 − ρ for any oblivious attack B. Furthermore, the graph G has

O
(

nϑ−1(log ϑ−1 + log ρ−1)
)

edges.

Proof. The bound on the size follows directly from Lemma 8. Let B ⊆ P be an oblivious

attack and consider the bad set P \ T . By Lemma 11, for any two points outside the

bad set, there is a monotone path connecting them. Further, by Lemma 17, we have

P[λ(G, B) ≤ ϑ] ≥ P[|T c| ≤ (1 + ϑ) |B|] ≥ 1 − ρ for any oblivious attack. ◭

4 Reliable spanners in higher dimensions

Now we turn to the higher-dimensional setting, and show that one can construct spanners

with near linear size that are reliable in expectation or with some fixed probability (which

can be provided as part of the input). We use the same technique as Buchin et al. [4],

that is, we use our one-dimensional construction as a black box in combination with a

result of Chan et al. [6]. Let the dimension d > 1 be fixed. In the following we assume

P ⊂ [0, 1)d, which can be achieved by an appropriate scaling and translation of the d-

dimensional Euclidean space R
d. For an ordering σ of [0, 1)d, and two points p, q ∈ [0, 1)d,

such that p ≺ q, let (p, q)σ =
{

z ∈ [0, 1)d
∣

∣ p ≺ z ≺ q
}

be the set of points between p and q

in the order σ.

◮ Theorem 19 ([6]). For ς ∈ (0, 1), there is a set Π+(ς) of M(ς) = O(ς−d log ς−1) orderings

of [0, 1)d, such that for any two (distinct) points p, q ∈ [0, 1)d, with ℓ = ‖p − q‖, there is an

ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that

(i) p ≺σ q,

(ii) (p, z)σ ⊆ ball
(

p, ςℓ
)

,

(iii) (z, q)σ ⊆ ball
(

q, ςℓ
)

, and

(iv) z ∈ ball
(

p, ςℓ
)

or z ∈ ball
(

q, ςℓ
)

.

Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering,

according to σ, using O(d log ς−1) arithmetic and bitwise-logical operations.
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The above theorem ensures that it is enough to maintain only a “few” linear orderings,

and for any pair of points p, q ∈ P there exists an ordering where all points that lie between

p and q are either very close to p or q. It is natural to build the one-dimensional construction

for each of these orderings with some carefully chosen parameter. Then, since there is a

reliable path in the one-dimensional construction, there is an edge p′q′ along the path between

p and q that connects the locality of p and the locality of q. We fix the edge p′q′ and apply

recursion on the subpaths from p to p′ and q to q′.

4.1 Construction

Let ϑ, ε ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n points. Set ς = ε/16 in

Theorem 19 and let Π+ = Π+(ς) be the set of M = M(ς) orderings that fulfills the conditions

of the theorem. We define ϑ′ = ϑ
3MN , where N = ⌈loglog n⌉. Now, for each ordering σ ∈ Π+,

we build N independent spanners G1
σ, . . . , GN

σ , using the construction in Section 3.1 with

parameter ϑ′. The (random) graph G is defined as the union of graphs Gi
σ for all σ ∈ Π+

and i ∈ [N ], that is, E(G) = ∪σ∈Π+,i∈[N ]E
(

Gi
σ

)

.

4.2 Analysis

◮ Lemma 20. The graph G, constructed above, has O
(

c n loglog2n logloglog n
)

edges, where

the O hides constant that depends on the dimension d, and c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1).

Proof. There are M = O
(

ε−d log ε−1
)

orderings, and for each ordering there are N copies,

for which we build the one-dimensional construction with parameter ϑ′. The size of the

one-dimensional construction is O
(

n · ϑ′−1 · log ϑ′−1
)

, by Lemma 8. Therefore, G has size

|E(G)| =
∣

∣∪σ∈Π+,i∈[N ]E
(

Gi
σ

)∣

∣ ≤
∑

σ∈Π+,i∈[N ]

|E(G′σ)| ≤ NM · O
(

n · ϑ′−1 · log ϑ′−1
)

= O
(

n · N2M2ϑ−1 ·
(

log ϑ−1 + log N + log M
))

= O
(

n · loglog2n · ε−2d log2 ε−1 · ϑ−1 · (log ϑ−1+

+ logloglog n + d log ε−1 + loglog ε−1)
)

= O
(

c n loglog2n logloglog n
)

, where c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1). ◭

Fix an attack set B ⊆ P . In order to bound λ(G, B) in expectation, we define a sequence

of sets B0 ⊆ B1 ⊆ · · · ⊆ BN as follows. First, we set B0 = B. Then, for i = 1, . . . , N , we

define Bσ
i for each σ ∈ Π+ to contain all points that do not have a right or left stairway in

Gi
σ that is safe and usable with respect to Bi−1, that is, Bσ

i contains the bad points with

respect to Bi−1. We set Bi = ∪σ∈Π+Bσ
i . Our goal is to show that the expected size of BN

is small, and there is a (1 + ε)-path for all pairs of points outside of BN .

◮ Lemma 21. Let B be an oblivious attack and let B0 ⊆ B1 ⊆ · · · ⊆ BN be the sequence

defined above. Then, for i = 1, . . . , N , we have E[|Bσ
i | | Bi−1] ≤ (1 + ϑ′) |Bi−1|, for all

σ ∈ Π+.

Proof. The set Bi−1 has information only about graphs Gj
σ for j ≤ i − 1. Thus, the

attack Bi−1 on the graph Gi
σ is oblivious and we have E[|Bσ

i | | Bi−1] ≤ (1 + ϑ′) |Bi−1|
by Lemma 14. ◭

◮ Lemma 22. Let BN be the set defined above. For any oblivious attack B, the expected size

of BN is at most (1 + ϑ) · |B|.
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Proof. By Lemma 21 we have E[|Bσ
i | | Bi−1] ≤ (1 + ϑ′) |Bi−1| for all σ ∈ Π+. Therefore,

E[|Bi| | Bi−1] ≤
(

(1 + ϑ′) |Bi−1| − |Bi−1|
)

· M + |Bi−1| =

(

1 +
ϑ

3N

)

|Bi−1|

holds, for i = 1, . . . , N , which gives

E[|BN |] ≤ E[E[|BN | | BN−1]] ≤
(

1 +
ϑ

3N

)

· E[|BN−1|]

≤
(

1 +
ϑ

3N

)N

· E[|B0|] =

(

1 +
ϑ

3N

)N

· |B| .

Using 1 + x ≤ ex ≤ 1 + 3x, for x ∈ [0, 1], we obtain

E[|BN |] ≤
(

1 +
ϑ

3N

)N

· |B| ≤ exp

(

N
ϑ

3N

)

· |B| = e
ϑ
3 · |B| ≤ (1 + ϑ) · |B| . ◭

◮ Lemma 23. Let BN be the set defined above. Then, for any two points p, q ∈ P \ BN ,

there is a (1 + ε)-path in the graph G \ B.

Proof. The proof is essentially the same as the proof of Theorem 15 in [4].

Let p, q ∈ P \ BN be fixed. According to Theorem 19, there is an ordering σ ∈ Π+, such

that all the points z ∈ (p, q)σ lie in one of the balls of radius ς ‖p − q‖ around p and q. Recall

that the graph G contains GN
σ as a subgraph. Since p, q /∈ BN and GN

σ is reliable, there is a

path connecting p and q that is monotone with respect to σ and avoids any point in BN−1

by Theorem 15. Therefore, there is a unique edge p′q′ along this path such that p′ is in the

close neighborhood of p and q′ is in the close neighborhood of q. Furthermore, we also have

that p′, q′ ∈ P \ BN−1. We fix the edge p′q′ in path π and find subpaths between the pairs

pp′ and qq′ in a recursive manner. The bounds on the distances are

(i) ‖p′ − q′‖ ≤ (1 + 2ς) ‖p − q‖ ,

(ii) ‖p − p′‖ ≤ ς ‖p − q‖ and similarly ‖q − q′‖ ≤ ς ‖p − q‖.

We repeat this process N − 1 times. Let Qi be the set of pairs that needs to be connected in

the ith round, that is, Q0 = {pq}, Q1 = {pp′, qq′} and so on. There are at most 2i pairs in

Qi and for any pair xy ∈ Qi we have x, y ∈ P \ BN−i. For each pair xy ∈ Qi, there is an

ordering σ such that the argument above can be repeated. That is, there is a monotone path

in the graph GN−i
σ \ BN−i−1 according to σ and there is an edge x′y′ along this path such

that

(i) ‖x′ − y′‖ ≤ (1 + 2ς) ‖x − y‖ ≤ (1 + 2ς)ςi ‖p − q‖ ,

(ii) ‖x − x′‖ ≤ ς ‖x − y‖ ≤ ςi+1 ‖p − q‖ and similarly ‖y − y′‖ ≤ ςi+1 ‖p − q‖.

The edge x′y′ is added to path π and the pairs xx′ and yy′ are added to Qi+1, unless they

are trivial (i.e., x = x′ or y = y′). After N − 1 rounds, QN−1 is the set of active pairs that

still needs to be connected. Notice that x, y ∈ P \ B1 holds for any pair xy ∈ QN−1. Again,

for each pair in QN−1, we apply Theorem 19 and Theorem 15 to obtain a monotone path

according to some ordering σ in the graph G1
σ. None of these paths use any points in B. In

order to complete the path π we add the whole paths obtained in the last step. It is not

hard to see that the number of edges of each of the paths added in the last step is at most

2 log n. Indeed, it is clear from the analysis of our one-dimensional construction that a path

using the stairways can have at most two points per level. Since the number of levels in the

construction is fewer than log n, we get the bound 2 log n.
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Now, that we have a path π that connects the points p and q without using any points in

the failed set B, we give an upper bound on the length of π. First, we calculate the total

length added in the last step. There are |QN−1| ≤ 2N−1 pairs in the last step and for each

pair xy ∈ QN−1 we have ‖x − y‖ ≤ ‖p − q‖ ςN−1. Thus, we obtain

∑

{x,y}∈QN−1

length(π[x, y]) ≤ 2N−1
(

(1 + 2ς) ‖p − q‖ ςN−1 + 2 log n ‖p − q‖ ςN
)

≤ 2 · 2ς ‖p − q‖ + (2ς)
N

log n ‖p − q‖ =
(

4ς + (2ς)
N

log n
)

‖p − q‖

≤
(

ε

4
+
(ε

8

)loglog n

log n

)

‖p − q‖

≤
(

ε

4
+

ε

4
·
(

1

2

)loglog n

log n

)

‖p − q‖ =
ε

2
‖p − q‖ ,

where we simply use 2ς ≤ 1 in the second line and ς = ε/16 and N = ⌈loglog n⌉ in the third

line. Second, we bound the total length of the edges that were added to path π in any round

except the last. This contributes at most

N−2
∑

i=0

2i · (1 + 2ς)ςi ‖p − q‖ ≤ (1 + 2ς) ‖p − q‖ ·
∞
∑

i=0

(2ς)
i

= (1 + 2ς) ‖p − q‖ · 1

1 − 2ς

=

(

1 +
4ς

1 − 2ς

)

‖p − q‖ =

(

1 +
ε/4

1 − ε/8

)

‖p − q‖ ≤
(

1 +
ε

2

)

‖p − q‖

to the length of π. Therefore the total length of the path π connecting p and q, without

using any points of B, is at most (1 + ε) ‖p − q‖. ◭

◮ Theorem 24. Let ϑ, ε ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n points. The

graph G, constructed in Section 4.1, is a ϑ-reliable (1 + ε)-spanner of P in expectation and

has size O
(

c n loglog2n logloglog n
)

, where O hides constant that depends on the dimension

d, and c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1).

Proof. The size of the construction is proved in Lemma 20. Let BN be the set defined above.

By Lemma 22, the expected size of BN is at most (1 + ϑ) |B|. By Lemma 23, for any two

points p, q ∈ P \ BN , there is a (1 + ε)-path between p and q in the graph G \ B. Thus, we

have E[λ(G, B)] ≤ ϑ. ◭

4.3 Probabilistic bound

The same construction, as we used in Section 4.1, can be applied to construct spanners with

near linear edges that are reliable with probability 1 − ρ. The idea is to use the probabilistic

version of the one-dimensional construction with parameters ρ′ = ρ
MN and ϑ′ = ϑ

3MN . Then,

similarly to Lemma 22, it is not hard to show that |BN | ≤ (1 + ϑ) |B| holds with probability

1 − ρ.

◮ Lemma 25. Let BN be the set defined in Section 4.2. The probability that the size of BN

is larger than (1 + ϑ) · |B| is at most ρ.
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Proof. By Lemma 17, and since all attacks are oblivious, we have P[|Bσ
i | > (1 + ϑ′) |Bi−1|] ≤

ρ′ for all σ ∈ Π+ and i ≥ 1. Therefore,

P[|Bi| > (1 + Mϑ′) |Bi−1|] = P[|Bi \ Bi−1| > Mϑ′ |Bi−1|]
≤ P[∪σ∈Π+ |Bσ

i \ Bi−1| > ϑ′ |Bi−1|] ≤
∑

σ∈Π+

P[|Bσ
i \ Bi−1| > ϑ′ |Bi−1|]

=
∑

σ∈Π+

P[|Bσ
i | > (1 + ϑ′) |Bi−1|] ≤ Mρ′

holds for i = 1, . . . , N . Since
(

1 + ϑ
3N

)N ≤
(

e
ϑ

3N

)N

≤ 1 + ϑ, we get

P[|BN | > (1 + ϑ) |B|] ≤ P

[

|BN | >

(

1 +
ϑ

3N

)N

|B|

]

≤ P

[

N
⋃

i=1

|Bi| >

(

1 +
ϑ

3N

)

|Bi−1|

]

≤

N
∑

i=1

P

[

|Bi| >

(

1 +
ϑ

3N

)

|Bi−1|
]

=

N
∑

i=1

P

[

|Bi| >
(

1 + Mϑ
′
)

|Bi−1|
]

≤ NMρ
′ = ρ. ◭

Therefore, using the same argument as for Theorem 24, we obtain the following result,

which gives a slight improvement in the constants, compared to the trivial multiplicative

factor O
(

log ρ−1
)

by simply repeating the construction of Section 4.1.

◮ Theorem 26. Let ϑ, ε, ρ ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n

points. The graph described above is a ϑ-reliable (1 + ε)-spanner of P with probability

1 − ρ. Furthermore, the size of the construction is O
(

c n loglog2n logloglog n
)

, where O hides

constant that depends on the dimension d, and c = O
(

ε−2dϑ−1 log3 ε−1(log ϑ−1 + log ρ−1)
)

.

5 Conclusions

Reliable spanners require Ω(n log n) edges. In this paper, we showed that fewer edges are

sufficient, if the spanner only has to be reliable against oblivious attacks (in expectation or

with a certain probability). Our new construction avoids the use of expanders, and as a result

has much smaller constants than previous constructions, making it potentially practical. The

number of edges in the new spanner is significantly smaller – it is linear in one dimension, and

roughly O(n loglog2n) in higher dimensions. An open problem is whether these loglog-factors

in higher dimensions can be avoided. Furthermore, similar results for reliable spanners for

general metrics would be of interest.
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