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Abstract: Recent student knowledge modeling algorithms such as Deep Knowledge Tracing 

(DKT) and Dynamic Key-Value Memory Networks (DKVMN) have been shown to produce 

accurate predictions of problem correctness within the same learning system. However, these 

algorithms do not attempt to directly infer student knowledge. In this paper we present an 

extension to these algorithms to also infer knowledge. We apply this extension to DKT and 

DKVMN, resulting in knowledge estimates that correlate better with a posttest than knowledge 

estimates from Bayesian Knowledge Tracing (BKT), an algorithm designed to infer knowledge, 

and another classic algorithm, Performance Factors Analysis (PFA). We also apply our 

extension to correctness predictions from BKT and PFA, finding that knowledge estimates 

produced with it correlate better with the posttest than BKT and PFA’s standard knowledge 

estimates. These findings are significant since the primary aim of education is to prepare 

students for later experiences outside of the immediate learning activity. 
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1. Introduction 

 
In the last five years, a revolution has been underway in student knowledge modeling. For two decades, 

a dominant algorithm, Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995) was the 

primary option. Other algorithms, both variants on BKT and – after 14 years – variants on logistic 

regression (e.g., Pavlik, Cen, & Koedinger’s [2009] Performance Factors Analysis [PFA]) and item 

response theory (Wauters, Desmet, & Van Den Noortgate, 2010) competed with BKT, but the 

differences in performance between algorithms were small (Gong, Beck, & Heffernan, 2010). 

Then, after two decades, Piech et al. (2015) published an exciting new algorithm, Deep 

Knowledge Tracing (DKT), based on recurrent neural networks, along with initial evidence that its 

performance at predicting immediate correctness was substantially higher than BKT. Though the 

difference appears to be somewhat smaller than initially reported, there nonetheless appeared to be a 

benefit to using DKT instead of BKT (Xiong, Zhao, Van Inwegen, & Beck, 2016; Khajah, Lindsey, & 

Mozer, 2016). Several papers quickly emerged, proposing extensions and improvements to DKT (e.g., 

Cheung & Yang, 2017; Yeung & Yeung, 2018; Zhang, Shi, King, & Yeung, 2017; Zhang, Xiong, Zhao, 

Botelho, & Heffernan, 2017), while other papers explored the utility of additional machine learning 

methods  in predicting problem correctness (e.g., Jiang, Ye, & Zhang, 2018; Lincke, Jansen, Milrad, & 

Berge, 2019). 

However, DKT and its successor algorithms seemed to have two significant limitations relative 

to earlier approaches. First, DKT as originally implemented produced unstable performance, with 

oscillating predictions that sometimes went down after producing a correct answer. Yeung and Yeung 

(2018) proposed a regularization procedure which addresses this limitation. Second, DKT produced 

only predictions of correctness rather than an estimate of student knowledge on specific 

human-interpretable skills (see discussion in Pelánek, 2017). The first half of this limitation was 

addressed by J. Zhang and colleagues (2017), who introduced a skill-item matrix in their approach, 

Dynamic Key-Value Memory Networks (DKVMN). DKVMN produces predictions of latent 
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knowledge, but with reference to a machine-generated set of skills rather than a human-designed set of 

skills (the same interpretability limitation is seen in recent approaches that modify BKT to bring its 

performance into line with DKT – e.g., Khajah et al., 2016). 

Indeed, despite DKVMN’s stated goal of inferring external knowledge, the initial paper on this 

algorithm did not attempt to actually predict performance on external measures of knowledge, sticking 

to the now-dominant paradigm of predicting immediate correctness. What’s more, to the best of our 

knowledge, none of the dozens of papers of DKT and its successors have explicitly attempted to 

measure how well these approaches perform at inferring the knowledge that is carried outside the 

learning system, through a post-test or other methods, in strong contrast to the early work on BKT, 

where considerable attention was paid to this goal (e.g., Corbett & Anderson, 1995; Corbett & 

Bhatnagar, 1997. Also see Pardos, Gowda, Baker, & Heffernan, 2011, for an example including PFA). 

While other recent papers attempt to tie learning data to skill proficiency (e.g., Wong et al., 2017; 

Yeung, 2019), their approaches focus on allowing algorithms to discover skills and skill relationships 

rather than linking back to known and interpretable external skills.  

To address this issue, in this paper we attempt to reconnect student knowledge modeling with 

its initial roots in predicting student knowledge that goes beyond the confines of the learning system. 

First, we propose a very simple extension that can be applied to DKT, DKVMN, and other algorithms in 

this family, to enable the algorithms to predict external performance on externally-defined and 

meaningful skills. This extension consists solely of taking the real-time predicted probability of 

correctness over all items that a student answered that have been tagged with each external skill, and 

then calculating the mean of those values for each student, within each skill. To some extent, this 

follows the “correct first attempt rate” used by Yu et al. (2010) in their KDD Cup winning entry, 

combining students’ performance on all the problems that they attempt. It also captures a student’s 

degree of difficulty in getting to mastery within the system as well as their final state; as Corbett and 

Bhatnagar (2017) note, final mastery estimates can be incomplete estimates of the knowledge a student 

carries out of a system when that system has enough practice for most students to reach high 

within-system proficiency. Although this paper applies this extension solely to predicting performance 

on an external test, this extension could also be used to report current skill levels to students and 

teachers in a meaningful fashion (in skill bars, perhaps, as seen in Cognitive Tutors and other platforms 

[Koedinger & Aleven, 2007]).  

Second, we apply this extension to the outputs of DKT and DKVMN, and compare their 

performance on an external post-test measure of student knowledge to the classic BKT and PFA 

algorithms. Since it is classic BKT that has extensive evidence for making latent knowledge predictions 

that are both interpretable and predict post-tests effectively, we use BKT’s original formulation rather 

than modern extensions (i.e., Khajah et al., 2016). Third, we apply this extension to BKT and PFA as 

well, finding that the same extension improves prediction of post-test performance for these algorithms 

as well. 

In the remainder of this paper, we present each algorithm in greater detail, present the data set 

that these algorithms will be compared within, discuss results, and then conclude with a discussion of 

implications and future extensions. 
 

 

2. Algorithms Studied 

 

2.1 Deep Knowledge Tracing 

 
Deep knowledge tracing (DKT) uses recurrent neural networks to model student performance learning 

(Piech et al., 2015). It does not provide estimates of latent student knowledge (unlike BKT), and does 

not provide estimates of performance for a skill in general (unlike PFA), only predictions of correctness 

for each actual problem in the data. We implemented DKT using code from Yeung and Yeung (2018), 

who added extensions to the original method (Piech et al., 2015). The extensions address irregular 

fluctuations in correctness probabilities as students complete the learning activities and eliminate 

occasional instances where estimated correctness probabilities either decreased after correct answers or 

increased after incorrect answers.  



In order to generate predictions of external knowledge, we took the probability of correctness 

over all items that a student answered from each skill, and then calculated the mean of those values for 

each student, within each skill.1 These resulting means were then used as knowledge estimates. We 

refer to these knowledge estimates as coming from mean-DKT. 

 

2.2 Dynamic Key-Value Memory Networks for Knowledge Tracing 

 
Dynamic Key-Value Memory Networks (DKVMN) represents states and the relationships within them 

with two matrices, one for storing internally-derived knowledge components and KC-item mappings 

and the other for storing the mastery associated with each knowledge component (J. Zhang et al., 2017). 

While DKVMN produces latent knowledge estimates like BKT, unlike BKT these estimates cannot be 

straightforwardly mapped back to externally-defined skills, as a new skill-item mapping is distilled 

bottom-up by DKVMN. Therefore, in order to map DKVMN’s estimates back to the posttest, we used 

the same approach as for DKT: we calculated the mean probability of correctness for each item 

associated with each skill for each student and used these means as knowledge estimates, referring to 

those estimates as coming from mean-DKVMN. Code from J. Zhang and colleagues (2017) was used to 

implement DKVMN. 

 

2.3 Bayesian Knowledge Tracing  

 
Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995) is an algorithm that infers the 

probability that students have mastered a skill and the probability they will correctly answer a question 

which demonstrates that skill. BKT is often thought to differ from other knowledge and performance 

modeling algorithms in that it explicitly models latent knowledge as well as predicting future correct 

performance (e.g., Baker, 2019), differentiating between the two with estimates of slip and guess that 

reflect how performance may not entirely match knowledge. In this study, BKT was implemented using 

code from Baker et al. (2010), which estimates guess, slip, initial knowledge, and learning transition 

probabilities for each skill. The parameters were bounded to avoid model degeneracy (Baker, Corbett, 

& Aleven, 2008), with a floor of 0.01 for all probabilities, a ceiling of 0.3 for guess and slip, and all 

others having a ceiling of 0.99. 

The parameter estimates were applied to the problem data using Excel and the final probability 

of having learned each skill was recorded for each student. In addition to taking the final probability 

estimated for each skill, we also calculated knowledge estimates by computing the mean correctness 

probability for each skill for each student across all of that student’s attempted problems, for 

comparability to the approach used for DKT and DKVMN. We refer to this variation as mean-BKT. 

 

2.4 Performance Factors Analysis 

 
Performance Factors Analysis (PFA), pioneered by Pavlik, Cen, and Koedinger (2009), models and 

predicts student performance using a logistic regression equation that models changes in performance 

in terms of the number of student successes and failures that have occurred for each skill. PFA estimates 

the probability of correctness, which is considered as an estimation of learning (Pavlik et al., 2009). In 

this study, the algorithm was implemented in Excel following the formulas in Pavlik et al. (2009), and 

using the Excel equation solver to determine optimal parameter estimates. The final learning probability 

was recorded for each skill for each student. 

As with the other algorithms, we also calculated knowledge estimates by computing the mean 

correctness probability for each skill for each student across all of that student’s attempted problems. 

We refer to this variation as mean-PFA. 

 

 

3. Participants and Data Collection 

 

 
1 Using DKT, we were unable to calculate valid correctness predictions for 22 problem attempts, out of a 

total of 70,552 attempts. Those invalid attempts were omitted. 



Data from the present study were originally collected for a series of studies, conducted across three 

semesters, on the effectiveness of erroneous examples on student learning (Richey et al., 2019). The 

studies aimed to improve students’ understanding of decimal numbers and their operations, particularly 

relating to several common misconceptions held by students (Stacey, Helme, & Steinle, 2001). 

Participants in the study were sixth-grade students at five urban and suburban schools in the northeast 

U.S. Data were collected over a six-day period in each study. The materials used in the three studies 

were the same except that the second and third semester versions of the study had twelve more practice 

problems than the first. The students received slightly different educational materials depending on 

whether they were assigned to an erroneous examples group or a more standard problem-solving group. 

Students in both groups received the same problem content, but erroneous examples problems began by 

describing a hypothetical student who had answered the problem incorrectly. In both groups, students 

were then asked to solve a problem (in the case of erroneous examples, this meant finding and 

correcting the error) and answer an explanatory multiple-choice question about their reasoning. If 

students responded correctly, they proceeded to the next problem; if they responded incorrectly, they 

were prompted to answer the incorrect sub-problem(s) with errors again until they got it correct. The 

materials used did not contain any hints. 

 A total of 598 students were included in the studies, with 287 students in the erroneous 

examples group and the remaining 311 in the problem-solving group. 

 All materials and posttests were delivered through the Tutorshop learning management system, 

which recorded students’ interactions (Aleven, McLaren, & Sewall, 2009). The materials were 

developed with the Cognitive Tutor Authoring Tools (Aleven et al., 2016). More information about the 

materials is available in Richey et al. (2019), McLaren, Adams, and Mayer (2015), and Adams et al. 

(2014). More information about the skills and their relationship to the misconceptions is available in 

Nguyen, Wang, Stamper, and McLaren (2019). 

 Students in the study were given 36 (208 students) or 48 (390 students) problems aimed to 

increase their understanding of decimal numbers. Each of the 36 or 48 problems comprised several 

subproblems. The problems covered four different skills:  

• Ordering decimal numbers by magnitude 

• Placing decimal numbers on a number line 

• Completing a sequence of decimal numbers 

• Adding two decimal numbers 

 In total, our data set contained 70,552 student attempts at subproblems: 28,908 for ordering 

decimals, 24,115 for placement on number line, 10,762 for completing the sequence, and 6,767 for 

decimal addition. 

 After students completed the problems, their understanding was checked with a 43-item 

posttest, which tested the four skills. Different numbers of items were used for different skills, in 

accordance with the number of common misconceptions which were presented for each skill (Richey et 

al., 2019): 22 items addressed ordering decimals (M = 0.71, S.D. = 0.26), six addressed placement on a 

number line (M = 0.53, S.D. = 0.31), four addressed completing the sequence (M = 0.59, S.D. = 0.28), 

and eleven addressed decimal addition (M = 0.66, S.D. = 0.23). 

 

 

4. Algorithm Application 

 
First, we simplified the students’ interaction data, keeping only whether students answered correctly or 

incorrectly on their first attempt at each problem, in line with common practice in student latent 

knowledge estimation (Corbett & Anderson, 1995; Pavlik et al., 2009; Piech et al., 2015; J. Zhang et al., 

2017). Interaction attempts were then labeled with their associated skill. Next, we trained the set of 

different student latent knowledge estimation algorithms listed above, using all of the first-interaction 

data as training data. The implementations of DKT and DKVMN that we used expected separate 

training and test data sets, however, in this case we used the same data for both sets, since our goal is to 

understand performance on entirely new external data (posttests) rather than predict future 

within-system performance. After the algorithms were trained, we derived knowledge estimates for 

each student using each algorithm. The basic process of training and gathering knowledge estimates 



was generally similar from algorithm to algorithm, but differed based on how the algorithms treat (or 

fail to treat) latent knowledge. 

 

 

5. Statistical Comparisons Between Algorithms 

 
After using the four algorithms to produce estimates of latent knowledge for each student and each skill, 

the estimates were compared. First, we calculated Pearson correlations between each algorithm’s 

knowledge estimates and the posttest scores. As all measurements came from the same population of 

students, we were able to use a statistical test of the difference in statistical significance between 

correlations for correlated samples to compare the various correlations to each other (Ferguson, 1976). 

This test tells us whether one correlation (i.e. one model’s ability to predict the post-test) is statistically 

significantly higher than another correlation (i.e. another model’s ability to predict the post-test). 

After comparing each combination of algorithms, we performed the Benjamini-Hochberg post 

hoc control procedure to control for the use of multiple comparisons (Benjamini & Hochberg, 1995; 

Benjamini & Yekutieli, 2001). This procedure reduces false positives by increasing stringency as more 

comparisons are performed, maintaining the same false discovery rate regardless of how many 

statistical tests are conducted. 

 

 

6. Results 
 

Table 1. Pearson correlations between knowledge estimates and posttest scores 

 

Ordering 

Decimals 

Placement on 

Number Line 

Complete the 

Sequence 

Decimal 

Addition 

mean-DKT 0.71 0.64 0.34 0.48 

mean-DKVMN 0.72 0.62 0.35 0.56 

PFA 0.28 0.33 0.10 0.26 

mean-PFA 0.69 0.64 0.36 0.49 

BKT 0.44 0.43 0.28 0.49 

mean-BKT 0.65 0.52 0.28 0.44 

 

 

Table 2. T-scores of correlations between comparisons. * indicates B-H significance at 0.05 level. 

Ordering Decimals mean-DKVMN PFA mean-PFA BKT mean-BKT 

mean-DKT 1.65 -14.35* -1.74 -10.59* -3.74* 

mean-DKVMN  -14.67* -3.22* -11.86* -4.26* 

PFA   14.17* 3.84* 9.89* 

mean-PFA    -10.77* -2.54* 

BKT     6.43* 

      

      
Placement on  

Number Line mean-DKVMN PFA mean-PFA BKT mean-BKT 

mean-DKT -1.35 -9.72* 0.08 -8.07* -6.95* 

mean-DKVMN  -8.85* 1.26 -7.72* -5.31* 

PFA   9.79* 2.53* 5.04* 

mean-PFA    -7.94* -7.14* 

BKT     2.93* 

      

      



Complete the Sequence mean-DKVMN PFA mean-PFA BKT mean-BKT 

mean-DKT 0.41 -5.07* 1.06 -1.79 -2.21* 

mean-DKVMN  -4.90* 0.23 -2.53* -2.28* 

PFA   5.49* 3.33* 3.38* 

mean-PFA    -2.25* -3.45* 

BKT     0.07 

      

      
Decimal Addition mean-DKVMN PFA mean-PFA BKT mean-BKT 

mean-DKT 3.16* -5.89* 0.76 0.32 -2.08 

mean-DKVMN  -7.46* -2.53* -3.13* -4.35* 

PFA   6.04* 5.50* 4.07* 

mean-PFA    -0.01 -3.67* 

BKT     -1.57 

 

 

Table 1 shows the correlation between each algorithm’s within-tutor knowledge estimates and posttest 

performance for each skill. Table 2 shows t-scores of the resulting comparisons, with an indication of 

which tests remained statistically significant after performing the Benjamini-Hochberg control, with 

FDR (false discovery rate) set to 0.05, equivalent to a p-value of 0.05 for a single test. Results for three 

skills were broadly similar, with mean-DKT, mean-DKVMN, and mean-PFA producing better 

estimates than traditional PFA and BKT. Mean-BKT produced estimates that outperformed traditional 

BKT and PFA in several cases, but generally performed lower than mean-DKT, mean-DKVMN, and 

mean-PFA.  

For Ordering Decimals, mean-DKT (r=0.71) and mean-DKVMN (r=0.72) produced the closest 

knowledge estimates to the posttest scores. Mean-PFA (r=0.69) produced estimates that were 

significantly worse than mean-DKVMN, but not significantly different from DKT. 

Mean-BKT’s (r=0.65) estimates, although close to mean-PFA, were significantly worse than 

that algorithm, as well as mean-DKVMN and mean-DKT. Estimates from BKT (r=0.44) and PFA 

(r=0.28) were significantly worse than the other algorithms, with BKT significantly better than PFA. 

All algorithms produced worse results on Placement on Number Line, although the order of the 

groups did not notably diverge from Ordering Decimals. Mean-DKT (r=0.64), mean-PFA (r=0.64), and 

mean-DKVMN (r=0.62) all produced estimates that did not differ significantly from each other, but 

beat mean-BKT (r=0.52), BKT (r=0.43), and mean-PFA (r=0.33). Mean-BKT (r=0.52), however, 

performed better than PFA and BKT.  

Complete the Sequence saw all algorithms struggle compared to the first two skills. Mean-PFA 

(r=0.36), mean-DKVMN (r=0.35), and mean-DKT (r=0.34) performed approximately equally. BKT 

(r=0.28) was able to produce estimates that were close to the top three and not significantly different 

from mean-DKT, although its prediction of the post-test was still statistically significantly worse than 

mean-PFA and mean-DKVMN. Mean-BKT’s (r=0.28) estimates did not significantly differ from BKT, 

but were worse than mean-PFA, mean-DKVMN, and mean-DKT. PFA (r=0.10) performed 

significantly worse than all other algorithms for this skill. 

For Decimal Addition, mean-DKVMN (r= 0.56) achieved significantly better prediction of the 

post-test than the other algorithms. In turn, mean-PFA (r=0.49), BKT (r=0.49), and mean-DKT (r=0.48) 

achieved significantly better prediction than PFA (r=0.26). Although BKT’s estimates correlated better 

with the posttest than mean-BKT (r=0.44), that difference was not statistically significant, but 

mean-PFA produced significantly better estimates than mean-BKT. This finding may seem 

non-intuitive, since BKT and mean-PFA achieved the same correlation; it is due to there being a higher 

correlation between mean-PFA and mean-BKT than between BKT and mean-BKT. 

 

 

7. Discussion and Conclusions 
 



Although Deep Knowledge Tracing and Dynamic Key-Value Memory Networks were not designed to 

produce estimates of latent knowledge for predefined skills, our approach was able to convert 

performance predictions made by these algorithms into knowledge estimates, which achieved 

reasonable correlation to student scores on an external posttest. These estimates were more accurate at 

predicting the external posttest than estimates from Bayesian Knowledge Tracing, which was designed 

with the aim of estimating the state of students’ knowledge. Mean-DKVMN and mean-DKT’s 

estimates were comparable to or perhaps a little better than estimates provided by the classic knowledge 

modeling algorithm Performance Factors Analysis. In other words, though deep learning-based models 

might have been thought to mainly capture performance within the system, with a simple adjustment 

they are also better at inferring the knowledge students carry out of the learning system. 

Curiously, PFA only performed comparably to mean-DKT and mean-DKVMN when the same 

adjustment was made to PFA as was necessary for DKT and DKVMN: averaging estimates across the 

actual problems, rather than simply taking the final estimate of knowledge for the skill. Explaining this 

finding may require going back to findings from some of the earliest work in this area. Corbett and 

Bhatnagar (1997) noted that if mastery learning is used – where a student continues to work within a 

learning system until the BKT estimate of their knowledge is very high (in that case 0.975) – there is 

very little variance in the final estimates of student knowledge (as all estimates are above 0.975). 

However, performance is not always equally high in external post-tests; BKT estimates for students 

driven to mastery tend to over-estimate post-test performance (Corbett & Anderson, 1995; Corbett & 

Bhatnagar, 1997). Notably, over-prediction appears to be more characteristic of cases where students 

had more remedial practice (Corbett & Anderson, 1995). Although the data set used in the current paper 

did not involve mastery learning, there was a sufficiently large amount of practice in that system (9 to 

12 problems per skill for each student) to have caused similar phenomena. For three of the four skills, 

nearly all final knowledge estimates asymptotically approached either 0 or 1, although students rarely 

got all posttest items correct or all incorrect. By averaging estimates across problems, we capture 

student knowledge throughout the learning process rather than apparent knowledge at the end – 

capturing lower performance on the eventual path to mastery – which appears to be a better estimate of 

the knowledge students carry out of their learning experience. However, this does not completely 

explain our results: for Ordering Decimals, no students had final knowledge estimates greater than 0.95 

or less than 0.05, but our adjustment still significantly improved the posttest correlations for that skill.  

The same adjustment of averaging estimates across actual problems rather than using final 

knowledge estimates led to better performance for BKT as well as PFA, although not to the same 

degree. In this paper, the original version of BKT was used. Recent work has suggested that BKT 

performs better at predicting within-system correctness if several adjustments are made (i.e., Khajah et 

al., 2016), though still not as well as DKT. It is possible that a version of BKT adjusted in this fashion 

may perform more comparably to mean-DKT, mean-DKVMN, and PFA for predicting the post-test. 

However, the very adjustments necessary in Khajah et al. (2016) eliminate some of the benefits – such 

as interpretable estimates of student knowledge on expert-defined skills – that have made BKT an 

attractive alternative for practical use.  

One of the major arguments in favor of Bayesian Knowledge Tracing has been its interpretable 

latent estimates – separate from performance. This paper’s findings suggest that BKT’s latent estimates 

may not be as useful as thought. BKT does more poorly at estimating an external post-test measure than 

a reasonable transformation of modern deep learning based algorithms, as well as a more traditional 

competitor, PFA. Combined with evidence that BKT does more poorly at forecasting time until mastery 

than PFA (e.g., Slater & Baker, in press), and evidence that classical BKT does more poorly at 

forecasting future performance within a learning system than DKT or DKVMN (Khajah et al., 2016; J. 

Zhang et al., 2017), it appears that BKT’s use as a primary knowledge modeling algorithm may be 

coming to an end. With the simple modification to DKT or DKVMN provided here, assessments of 

specific understandable skills can be provided to teachers and students, one of the core uses of BKT 

(Koedinger & Aleven, 2007), and these estimates are more predictive of post-test performance than 

BKT’s estimates.  

Our findings should not be interpreted as indicating that Bayesian Knowledge Tracing has no 

use, however. Bayesian Knowledge Tracing still offers the advantage of interpretable parameters, and 

there are cases – particularly when one wants to understand which skills have low learning rates or high 

slip rates (e.g., Agarwal, Babel, & Baker, 2018), where BKT may be very useful. In addition, 

distillations of Bayesian Knowledge Tracing, such as student-level contextual slip, remain useful 



predictors of long-term outcomes (e.g., San Pedro, Baker, Bowers, & Heffernan, 2013). At this point, 

however, its shortcomings in predictive accuracy make it harder to justify their use in cases where 

model structure does not need to be explained.  

Of course, no single result is definitive, and more research is needed to establish our findings 

here as conclusive. This study only investigated data from students’ experiences learning decimals in 

one tutoring system, comparing learning estimates with a single posttest. Our findings, particularly 

regarding BKT’s ability to predict external measures, should be replicated with different student 

populations and in different domains. However, the results should be encouraging to researchers 

interested in using DKT, DKVMN, and other cutting-edge knowledge tracing algorithms to infer 

knowledge, rather than just predicting performance within-system. 

There has been considerable work over the last several years to discover which student 

knowledge model is best at predicting future correctness within intelligent tutoring systems. In Corbett 

and Anderson’s (1995) original vision for student knowledge modeling, as much attention was given to 

prediction of performance outside the learning system as within it. This seems appropriate, given that 

the true goal of education is not what students can do during learning, but what they can do beyond and 

going forward. In this paper, we find that simple enhancements make it possible for recent emerging 

performance prediction algorithms to also effectively predict knowledge that extends outside the 

tutoring system. The simple solution provided here will almost certainly fall short of the best that can be 

done. We hope that in the years to come as much attention will be provided to the problem of predicting 

long-term and system-external performance as predicting immediate correctness has received recently. 

Ultimately, the goal of student knowledge modeling should be to infer knowledge, not just predict 

performance. Happily, it seems like the newest student knowledge algorithms can successfully do this, 

with only a modest adjustment.  
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