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Abstract

Traditional federated learning algorithms im-
pose strict requirements on the participation
rates of devices, which limit the potential
reach of federated learning. This paper ex-
tends the current learning paradigm to include
devices that may become inactive, compute
incomplete updates, and depart or arrive in
the middle of training. We derive analytical
results to illustrate how allowing more flexi-
ble device participation can affect the learning
convergence when data is not independently
and identically distributed (non-IID). We then
propose a new federated aggregation scheme
that converges even when devices may be in-
active or return incomplete updates. We also
study how the learning process can adapt to
early departures or late arrivals, and analyze
their impacts on the convergence.

1 Introduction

Federated learning is a cutting-edge learning framework
that allows distributed devices to train a shared ma-
chine learning model cooperatively without sharing the
raw data. In recent years, federated learning has exhib-
ited remarkable performance in many applications such
as next word suggestion, fault detection, and learning
on private medical data (Li et al., [2020a)). Generic fed-
erated learning involves a coordinator and a collection
of devices. The training procedure consists of multiple
rounds, each of which includes the following three steps:
1) Synchronization: the coordinator synchronizes the
latest global model with all devices. 2) Local updates:
each device trains a local model for a few local epochs,
using samples from its local dataset. 3) Aggregation:
the coordinator aggregates some, or all, of the local
models to produce the next global model.
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Our work focuses on cross-device federated learning
(Kairouz et all, 2019), where participating entities are
mostly mobile devices such as smart phones and tablets.
These devices generally have limited computing and
communication resources, e.g., due to battery limita-
tions, and have different training data distributions, i.e.,
data is not independently and identically distributed
(non-1ID) among devices (Li et al.l |2020b). To relieve
the computation and communication burden, in the
last step of the training procedure, the federated learn-
ing coordinator may only aggregate a subset of local
models. However, only a few device selection policies
ensure convergence in the non-IID setting, and the
selection must be independent of the hardware status
of devices (Li et al [2020b)). In other words, for the
training to converge successfully, all selected devices
must be able to train their local models and upload
the results whenever they are selected. This is why the
traditional federated learning paradigm requires partic-
ipating devices to be dedicated to the training during
the entire federated learning period, e.g., the popular
FedAvg algorithm assumes mobile users will participate
only when their phones are currently plugged-in, and
have unlimited WI-FI access (McMahan et al., |2016]).

Considering that federated learning typically takes
thousands of communication rounds to converge, it
is difficult to ensure that all devices will be available
during the entire training in practice. Moreover, there
are typically multiple apps running simultaneously on
user devices, competing for already highly constrained
hardware resources. As such, it cannot be guaranteed
that devices will complete their assigned training tasks
in every training round as expected. A similar chal-
lenge also arises in cloud based distributed learning due
to the increasingly popular usage of preemptive cloud
services, where the user process can be interrupted
unexpectedly (Zhang et al., 2020).

While many methods have been proposed to mitigate
the workload of individual devices, such as weight
compression and federated dropout (Caldas et al.,
2018)) (Konecny et al., [2016), they cannot completely
remove the possibility that devices are unable to fulfill
their training responsibilities, e.g., due to poor wireless
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connectivity. Thus, in large scale federated learning,
many resource-constrained devices have to be excluded
from joining federated learning in the first place, which
restricts the potential availability of training datasets,
and weakens the applicability of federated learning.
Furthermore, existing work does not specify how to
react when confronting unexpected device behaviors,
and also does not analyze the (negative) effects of such
behaviors on the training progress.

In this paper, we relax these restrictions and allow
devices to follow more flexible participation patterns.
Specifically, the paper incorporates four situations that
are not yet well discussed in the literature: 1) In-
completeness: devices might submit only partially com-
pleted work in a round. 2) Inactivity: furthermore,
devices might not complete any updates, or respond
to the coordinator at all. 3) Farly departures: in the
extreme case, existing devices might quit the training
without finishing all training rounds. 4) Late arrivals:
apart from existing devices, new devices might join
after the training has already started.

The difference between inactivity and departure is that
inactive devices will temporarily disconnect with the
coordinator, but are expected to come back in the near
future. In contrast, departing devices will inform the
coordinator that they do not plan to rejoin the training.
For example, if a user quits the app running federated
learning, a message can be sent to the coordinator; the
coordinator thus knows who is departing. In the mean-
while, although devices’ arriving and departing seem
symmetric, they affect the model training differently,
and thus require distinct treatments. The key difference
is that arriving devices offer extra information about
the data distribution, which can be utilized to accel-
erate the training, while departing devices reduce our
available knowledge, thus degrading the applicability
of the trained model.

Our approach to improve the flexibility of device par-
ticipation comprises the following components that
supplement the existing FedAvg algorithm and handle
the challenges brought by flexible device participation.

e Debiasing for partial model updates. FedAuvg
aggregates device updates as a weighted sum, with
weights that are proportional to the sizes of the lo-
cal datasets. This choice of aggregation coefficients
yields an unbiased gradient as in the centralized set-
ting only when all data points from all devices are
equally likely to join the learning (Li et al., 2020Db)).
However, it in general fails to guarantee convergence
to the globally optimal point in the presence of par-
tial aggregation from incomplete and inactive devices.
We show that by adapting the aggregation coefficients,
the bias can be reduced and the convergence to a
global optimum can still be established. Further-

more, our analysis shows the bias originates from
the heterogeneity in device participation, as well as
from the degree to which local datasets are not IID.

e Fast-rebooting for device arrivals. Arriving de-
vices interrupt the training by forcing the model to
re-orient to the new device’s data, thus slowing the
convergence process. In this paper, we propose to
rapidly reboot the training in the case of device ar-
rivals by applying extra updates from the new devices.
Intuitively, since an arriving device misses all pre-
vious epochs, the model training should emphasize
more on its updates to compensate. We will rigor-
ously prove this method indeed expedites learning
convergence under certain conditions.

¢ Redefining model applicability for device de-
partures. A model successfully trained by federated
learning is expected to be applicable to the data from
all participating devices. However, when a device
withdraws itself from the learning, due to the lack
of its future updates, we may no longer require the
trained model to perform well on its data. It is
then important to redefine the model’s applicability.
Namely, one can either keep the departing device as
a part of the global learning objective, or exclude it
to focus only on the remaining devices. The decision
depends on which definition yields smaller training
loss. We will show the key to this determination lies
in the remaining training time.

In Section [2| we review relevant literature. In Section
Bl we give a convergence analysis that incorporates
flexible device participation. Based on this analysis, we
detail our contributions, as outlined above, in Section
[ and we experimentally verify our theoretical results
in Section [5} Finally we conclude in Section [6}

2 Related Works

The celebrated federated learning algorithm named
FedAvg runs the stochastic gradient descent (SGD) al-
gorithm in parallel on each device in the system and
periodically averages the updated parameters from a
small set of end devices. However, its performance
degrades when the local data is non-IID (Hsieh et al.|
2019)) (Zhao et al. |2018). A few recent works provide
theoretical results for the non-I1ID data case. For in-
stance, |Li et al.| (2020b) analyze the convergence of
FedAvg on non-1ID data and establish an O(+) conver-
gence rate for strongly convex and smooth optimization
problems, where T is the number of rounds of local
SGD updates. These works either simplify the hetero-
geneity of the devices, e.g., ignoring cases where some
devices may partially finish some aggregation rounds
or quit forever during the training (Li et al., |2020b]),
or consider alternative objective functions for the SGD
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algorithm to optimize (Li et al., [2018)). Alternatively,
some recent papers propose to combine federated learn-
ing with the multi-task learning paradigm (Smith et al.|
2017)(Corinzia and Buhmann| [2019)) where multiple
models are trained simultaneously, but they also entail
dedicated device participation throughout the training.

The FedAvg algorithm with non-IID data across de-
vices has also been modified in specific edge computing
scenarios to reduce the communication overhead (Liu
et al)(Sattler et all |2019)(Bonawitz et all [2019) or
maintain a good training convergence under a resource
budget constraint (Wang et al. 2019). However, these
works do not consider the possibility that the edge de-
vices can be unavailable during the training process or
join at different times, which are the main challenges of
this work. An online learning framework (Chen et al.,
2019) (Han et all 2020)) (Damaskinos et al.|, [2020) is a
possible way to enable flexible device participation in
the federated learning scenario. For instance, |Chen
et al.| (2019) propose an asynchronous federated learn-
ing algorithm to handle unbalanced data that arrives
in an online fashion onto different devices. Although
the asynchronous aggregation in their proposed algo-
rithm can be naturally applied to randomly inactive
devices, the authors do not analyze how their algo-
rithm’s convergence is affected by the device inactivity
or incompleteness and the data heterogeneity.

In recent years, some attempts have been made to relax
the strict training requirements on the participating
devices. For example, Tu et al| (2020) study feder-
ated learning in a fog network topology with possible
data sharing among devices; [Yang et al.[ (2020) incor-
porate heterogeneity of devices into the design of the
learning systems; Nishio and Yonetani| (2019)) propose
a client selection policy that adapts to the change of
devices’ hardware status. However, these works do not
show how the variations in the devices could affect the
convergence of training, nor do they incorporate the
heterogeneity of user data into the algorithm design.

In (Rizk et all |2020) and (Wang et all 2020)), the
authors reveal that incomplete devices can block the
convergence, but they consider neither other dynamic
participation patterns such as inactivity, arrivals and
departures, nor probabilistic models for uncertain de-
vice participation. To relieve the impact of incomplete
devices, these works propose similar strategies as our
paper by reweighting the contribution of local models.
However, they focus mostly on removing the additional
bias term originating from heterogeneous device up-
dates, without looking into how this bias is related
to the participation frequency of devices and the di-
vergence among them. They also do not compare the
proposed methods with alternative extensions of Fe-
dAwvg. In this work, we model the device participation

as random variables and incorporate them into the
convergence analysis, and we compare the convergence
rates for three reasonable aggregation schemes.

3 Convergence Analysis

In this section, we establish a convergence bound for
federated learning with flexible device participation
patterns. Our analysis generalizes the standard FedAuvg
to incorporate arbitrary aggregation coefficients. In the
aggregation step, all devices are counted even if they
cannot finish all local epochs. The analysis considers a
non-IID data distribution and heterogeneous devices,
i.e., some devices can be more stable than the others.
We first derive the convergence bound with incomplete
and inactive devices in Sections to and then
discuss arrivals and departures in Section [3.3]

3.1 Algorithm Description

Suppose there are N devices, where each device k
defines a local objective function Fj(w). Here w rep-
resents the parameters of the machine learning model
to be optimized, and Fj(w) may be defined as the
average empirical loss over all data points at device
k, as in typical federated learning frameworks (McMa-
han et al 2016]). The global objective is to minimize
F(w) = Zszl p*Fy(w), where p* = & ny is the num-
ber of data points device k owns, and n = Zszl Ng-
Let w* be the minimizer of F', and denote by F}’ the
minimum value of Fj. We quantify the degree to which
data at each device k is distributed differently than
that at other devices as I'y, = Fj(w*) — F}' to capture
that data distributions at different devices are non-1ID,
and let T = Y8 pPT'y, as in (Li et al., [2020b).

We consider discrete time steps t = 0,1,.... Model
weights are synchronized when ¢ is a multiple of F, i.e.,
each round consists of E time steps. Assume there are
at most T rounds. For each round (say the 7th round),
the following three steps are executed:

e Synchronization: the coordinator broadcasts the lat-
est global weight wa to all devices. Each device
updates its local weight so that: w*, = wa

e Local updates: each device runs stochastic gradient
descent (SGD) on F}, fori =0,...,s" — 1E|

k k k
Wrptit1 = Wrpti =~ Mr9rE+i (1)
Here 7, is a staircase learning rate that decays
with 7, 0 < s’ﬁ < FE represents the number of lo-
cal updates this device completes in this round,
gF = VF,(wk, &F) is the stochastic gradient at device

"While some papers define local epochs and local updates
separately, we use them interchangeably in this paper. Both
refer to the times is conducted in a global round.
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k, and £F is a mini-batch sampled from device k’s
local dataset. We also define gf = VFj,(wF) as the
full batch gradient at device k, hence gF = Eer [gF].

e Aggregation: the coordinator aggregates the gradi-
ents and generates the next global weight as

N
g — oY k g
Wi nyp = Wigt g - Pr(Wrpyer — wip)

N sk
_ G k T k
=Wrg — E :kzlpr E i—o Nr9rE+i

We define that a device k is inactive in round 7 if
sk =0 (i.e., it completes no local updates), and say it
is incomplete if 0 < s* < E. We treat each s* as a ran-
dom variable that can follow an arbitrary distribution.
Devices are heterogeneous if they have different dis-
tributions of s¥, and otherwise they are homogeneous.
We allow the aggregation coefficients p* to vary with
7. In Section [ we will discuss different schemes of
choosing p* and their impacts on the convergence.

(2)

As a special case, traditional FedAvg assumes all se-
lected devices can complete all E local epochs, so that
sk = E. Also, FedAvg with full device participation
uses fixed aggregation coefficients p¥ = p*, so that the
right hand side of (2)) can be written as Z,]cvzl prwkp,
i.e., aggregating gradients is equivalent to aggregating
the model parameters directly.

3.2 General Convergence Bound

The analysis relies on the following five assumptions.
The first four are standard (Li et al., 2020b). The last
assumption ensures bounded aggregation coefficients
and is satisfied by all schemes discussed in Section
[ In Section 5] we experimentally show that our pro-
posed learning algorithm performs well even when some
assumptions (like strong convexity) are violated.

Assumption 3.1. Fy,...,Fyx are all L-smooth, so

that F' is also L-smooth.

Assumption 3.2. Fy,..., Fy are all u-strongly con-
vex, so that F' is also p-strongly convex.

Assumption 3.3. The variance of the stochastic gra-
dients is bounded: E¢|gF — gi||> < o2, Vk,t.
Assumption 3.4. The expected squared norm of the

stochastic gradients at each local device is uniformly
bounded: E¢l|lgr||*> < G* for all k and t.

Assumption 3.5. There exists an upper bound 6 > 0
for the aggregation coefficient: p¥ /p* < 0,Vk.

Assume the following expectations exist and do not vary
with time: E[pt], E[pFsk], E[(pk)2s%], B[(L, pk —
2)+(ZkN:1 pksk)] for all rounds 7 and devices k, and
assume E[Zsz1 pksk] # 0. Intuitively, this last as-
sumption ensures that some updates are aggregated in
each round, otherwise this round can be simply omitted.

ks are functions of s*

Generally, p7 ~, and these expec-
tations can be estimated from device histories. Let
z; € {0,1} indicate the event that the ratio E[pXs¥]/p*
does not take the same value for all k. We can obtain

the following convergence bound for general p*:

Theorem 3.1. By choosing the learning rate n, =

16E 1 :
JESN., pRak] TET We con obtain

M.D+V

Bludy - w|? < S

(3)

32E(1+0)L 4E29 }
HE[S -2, pEsk]? E[3 0L, pksk] J7
64E 30 E[pf kT

HE[Zk{\;l pksk] 7

X 2 gB.
o {VQ]E”wg -0l () SE
By =202+ 0)L YL, phsiTy + (24 sty ) B(E —
DG (SN phst + 000 ph = 204 T phsk)  +

N k)2 N
2EG* Y5, (Z;%k)sﬁ + 2 (F) ko

Here we define v = max{

M, = T E[z], D

Theorem 3.1 shows that the convergence rate is affected
by the aggregation coefficients p¥’s as they determine
M., D,and V. From , wa will eventually converge
to a globally optimal solution only if M., increases
sub-linearly with 7. In the original full-participation
FedAvg, ptsk = p*E, so 2, = 0 and M, =0 as per the
definitions. Thus, full-participation FedAwvg converges
according to , which is consistent with (Li et al.l
2020b)). However, when considering flexible device
participation, M, may increase with 7, which can cause
FedAwvg to converge to an arbitrary suboptimal point.
The magnitude of M, is determined by the degree of
heterogeneity in the device participation, and D is
bounded by the non-IID metric I'y of local datasets.
If M, increases linearly with 7 (e.g., due to device
departures), the model will converge to a suboptimal
point with the loss bounded by %. As we will see
in Section [£:I] by smartly choosing the aggregation
coefficients p¥, the increase of M, can be controlled
and a convergence to the global optimum can still be
established.

While we only show results for s* whose distributions
are static with time, Theorem [3.1] can be easily ex-
tended to time-varying distributed s* by replacing the
corresponding expectations of p¥s* and (p¥)%s* with
their minimum or maximum expectations over 7.

3.3 Shifts in the Global Objective

Recall the global objective is F(w) = 3, .o pFFi(w),
i.e., an average of local objectives for participating
devices C. A well trained model w* is expected to
perform well on all data points generated by devices in
C. In the presence of departing and arriving devices,
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C may shrink or expand dynamically during the train-
ing. The global objective thus varies accordingly. For
example, after admitting an incoming device [ with n;
data points: C < C+ {1}, the global obJectlve becomes
F(w) = 7 Fi(w) + Yy 7*Fiw), where = -2
The model @* fully trained with this objective is then
applicable to the new data from device . We formally
define objective shift as the process of changing the
global objective, and the applicability of the trained
model, by adding or removing devices from C.

The following theorem bounds the offset between the
global optima due to the objective shift. As we can
intuitively expect, the difference reduces when the data
becomes more IID (I'; — 0), and when the depart-
ing/arriving device owns fewer data points (n; — 0):

Theorem 3.2. Suppose a device l arrives/departs, and
let n be the total number of data points originally.
Consider the objective shift F — F, w* — w*. Let
Ty = Fi(0*) — Fj quantify the degree of non-IID with
respect to the new objective. Then in the arrival case

2\/7[/ ny \/E (4)

[w" — 2| £ ——
U e

and in the departure case
* ~* 2V 2Ln
e e (5)
L on

Objective shift is mandatory when a new device (say
device 1) arrives: Unless F; = F' (which is highly un-
likely), incorporating updates from [ will always move
F(w) away from F*. The best strategy without objec-
tive shift is then not to aggregate updates from [, and
thus not to admit [ into the learning process in the first
place. In contrast, objective shift is optional when de-
vices depart: we can keep the original objective F' even
if we will no longer receive updates from a departing
device, if doing so yields smaller training loss.

Suppose an objective shift occurs at 79. The remainder
of the training is then equivalent to starting over from
T g but converging towards the new objective w*
Combining Theorems [3.1] and [3:2] we can obtain the
following convergence bound after the objective shifts:
Corollary 3.2.1. Assume the objective shifts at 1y
with Ewa_UE —w*||? < A,,. By increasmg the learning

16E
PE[S L, phsh] (7= 70)E+’Y
the convergence to the new objective can be bounded by
M,D+V
< ——— (6)
(t—10)E+7%

rate back to n, = for 7 > 7o,

Elw?y — @

Here MT,D,V,’y are defined analogously to M., D,
V., 7 but they respectively include/exclude the ar-
riving/departing device. The first term in V' equals

523/ By + 0" — 671)? = O (e +T1).

The increase of the learning rate after the objective
shift is necessary. Intuitively, if the shift happens at
a large time 79 when wfﬂ g is close to the old optimal
w* and 7., is close to zero, the learning rate used in
Theorem [B.1] will be too small to steer the model to

the new optimum, since ||wf0E — ¥ = |Jw* —w¥.

Comparing and @, an objective shift yields an one-
time increase in the loss, which forces us to take actions
when confronting departures and arrivals. In the case
of device departure, it is possible that retaining the old
objective can result in a smaller training loss compared
to doing a shift. In this situation, the trained model is
still applicable to data of the departing device. In the
arrival case, though objective shift is mandatory, we can
still accelerate the training by a “fast-reboot”, applying
extra gradient updates from the arriving device.

We will discuss in Section [£.2] the fast-reboot method
for the arrival case, and in Section [.3] the decision of
model applicability for the departure case.

4 Main Results

Based on the convergence analysis in Section [3] in this
section, we present corollaries that can guide operators
in reacting to flexible device participation.

4.1 Debiasing on Incomplete Aggregation

According to Theorem the convergence bound is
controlled by the expectation of p* and its functions.
Below we discuss three plausible schemes of choosing
p¥, and compare their convergence rates in Table

e Scheme A: Only aggregate parameters from devices
that complete all E local epochs, with aggregation

— Np* ok :
= %—q;, where K is the number of

complete devices, ¢* € {0,1} denotes if client k is
complete. If K. = 0, this round is discarded.

coefficient p¥

e Scheme B: Allow clients to upload incomplete work
(with s¥ < E updates), with fixed aggregation coeffi-
cient p* = p*.

e Scheme C: Accept incomplete works as in Scheme B,
with adaptive p¥ = s%pk, or pk =0 if s* =

Schemes A and B are natural extensions of FedAug.
Scheme C assigns a greater aggregation coefficient to
devices that complete fewer local epochs. Though this
idea seems counter-intuitive, as fewer local updates
might lead to less optimal parameters (cf. Table , it
turns out to be the only scheme that guarantees con-
vergence when device participation is heterogeneous.

Corollary 4.0.1. Let K. be the number of devices that
run all E epochs, I indicate the appeamnce of any in-
active devices in round T, and write 53 = >, (pFoy)?.
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Table [1] gives the convergence rates of Schemes A, B,
C when device updates may be incomplete and inactive.

Table 1: Convergence rates with incomplete and inac-
tive devices. The bound for Scheme A assumes there
is at least one complete device (K, # 0), and those for
Schemes B, C assume s is not trivially zero (E[s¥] # 0).
While the three schemes have similar performance in
the homogeneous setting, Schemes A and B fail to con-
verge to the global optimum even assuming all devices
are active. Scheme C works if inactive devices do not

occur in every round (3, Iy < O(7)).

Homogeneous Heterogeneous
NZi 52
AlO ]E[KT]-:: v+l S %
5%, +T D
B 0 (T]E][ST]) < E
T—1 N
52 1T > ItD+Zk:(p’“ak)2E[%k}+r
N {= y 87
C| 0 (satimy=r) |0 ;

The reason for enlarging the aggregation coefficients
in Scheme C can be understood by observing from
that increasing p* is equivalent to increasing the
learning rate of device k. Thus, by assigning devices
that run fewer epochs a greater aggregation coefficient,
these devices effectively run further in each local step,
compensating for the additional epochs other devices
completed. As shown in Figure [T} Scheme C ensures an
unbiased gradient after aggregation, while Schemes A
and B will favor devices that run more epochs. Ideally,
allowing devices to adapt learning rates by themselves
would effectively lead to the same result. However,
when a device is running local updates, it may not yet
know or be able to estimate the number of local epochs
it will complete. In contrast, centralized intervention
can make accurate adjustments a posterior.

Scheme B - Scheme C

Scheme A

Figure 1: Snapshot of one aggregation round. The bot-
tom two devices completed all E = 5 local epochs, while
the top two completed only 3 and 4 epochs. Scheme
C enlarges the incomplete gradients by respectively
5/3 and 5/4 and produces unbiased aggregation results.
Aggregations with Schemes A and B are biased towards
devices that run more epochs.

Table [I] also reveals how the following system and

statistical factors affect the convergence asymptotically:

e The non-IID metric I' is the major obstacle of con-
vergence in the homogeneous case. In the hetero-
geneous setting, the D term (which grows with T")
dominates the training loss. It controls the maxi-
mum non-diminishing loss D/E of Scheme A and
B, and decelerates the training of Scheme C in the
presence of inactive devices.

e Devices’ activeness s¥ and K, contribute inversely
to the training loss: The more devices participate,
the faster the loss decays. When inactivity occurs
frequently, Scheme C cannot converge either. E.g.,
if a device never responds to the coordinator (so
I, = 1), its training loss can never converge to zero.

e The variance 7y, oy in the stochastic gradient de-
scent algorithm slows down the training as expected.

4.2 Fast-rebooting on Arrivals

Intuitively, when a device [ arrives, w* will be “dragged”
towards its local optimum w;. The gradients from de-
vice [ may thus encode more information about the new
optimum w* compared to those from the other devices.
Thus, by adding an extra update —6'V Fj(w9), 8" > 0
to the gradient aggregation, it is likely that w can move
closer to w*, allowing the training to fast-reboot from
the point of arrivals. However, as shown in Figure [2]
this intuition may not hold: it is also possible that
—6'VFj(wY) ends up driving w9 away from @*. In
fact, the success of this method is determined by the
distance b = ||w9 — w*||. When b is small, it is highly
likely the extra update can rapidly reboot the training.
We formalize this statement in Corollary [£.0.2}

* s
wl wl
. ° e
Oc. WrE
SN
el ds (]N
, e o AN
Wep! 1 b
b
° .
w* w*

Figure 2: Left: when the distance to the old optimum
b= |[w9 — w*| is small, applying an extra update to
w? following the direction —V Fj(w9) moves it closer
to w* (da < dp). Right: for a large b, the extra update
may on the contrary enlarge this distance (dy > dy).

Corollary 4.0.2. Assume VF(w) is continuous, and
0 < ||[VEW)|2, [V2F(w)||2 < W for any w (The latter
is the induced lo norm for matrices). Let w' = w —
S'VE(w), then there exists a ' > 0 such that ||w' —
W*|| < lw —@*|| if w satisfies

F(w*) — F(w*)

(")
(2229 VI +1) W

Jw —w*|| <
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@ defines a sphere around the original global optimum
w* within which the extra update helps fast-reboot.
The radius of the sphere depends on the divergence
between the new (arriving) and old data points. Gen-
erally, the longer the training has elapsed, the closer
the global model is to w*. Thus, the extra updating
works best for devices that arrive late in the training.

When applied in practice, the extra updating can be
conducted on-the-fly, by augmenting the aggregation
coefficient of the arriving device so that p. = p! + '
Furthermore, the distance b can be estimated by the
gradient norm with respect to the original objective.

As the name suggests, fast-reboot only accelerates the
training for a certain duration after the device arrives.
In fact, if there are no future interrupts, models with
or without fast-rebooting eventually converge to the
same global optimum. Nevertheless, fast-reboot is still
beneficial if there is insufficient training time remaining
(e.g., a device arrives near the end of the training).

4.3 Redefining Applicability on Departures

As is discussed in Section [3.3] when a device leaves, we
need to redefine the applicability of the trained model.
Namely, one can decide to either exclude this departing
device and shift the objective, or keep including it and
stick to the old objective. The decision depends on the
time at which the device leaves. When including the
device as a part of the global objective, from , since
M, = 7 — 719 from then on, the training loss will always
exceed a structural bias D/E. In contrast, if the device
is excluded and the model is trained with a shifted
global objective, there will be an immediate increase
in the convergence bound as in Theorem [322] But
afterwards, the bound will decrease and eventually the
parameters will converge to the new global optimum.

Assume a device leaves at 79 < T and there are no
subsequent arrivals/departures. Let fo(7) be the con-
vergence bound if we include the device, and f;(7) be
the bound if it is excluded. We can obtain fo(1) =
%,fl(ﬂ = % Here M., V,, 4 are de-
fined analogously to M., V,,v but they exclude the
departing device. A device is excluded if by doing so,
a smaller training loss can be obtained at the deadline
T, which is summarized in the following corollary:

Corollary 4.0.3. Excluding a device that departs at
To leads to smaller training loss if

Tnéig fo(T) > f1(T) (8)

Further assume 5 =, and V is dominated by its first

term so that V = # +Iy. then becomes

T*TOZO<\/TTO) (9)

From @D, when the remaining training time 7' — 79 is
at least O(v/T;70), applying the trained model to the
departing device becomes less promising. It is thus
better to exclude it and shift the objective. As we can
expect, the bound grows with I';, since the non-IID
contribution from the departing device increases the
initial V. As 7 increases, the learning rate without
shift gets smaller, mitigating the increase of the training
loss from departing devices.

5 Experiments

In this section, we experimentally evaluate Section [A]'s
results. Due to the limitations on hardware resources,
the training process is performed in computer simu-
lations. To ensure the simulation is consistent with
the real learning environment, we use real-world traces
to represent the participation patterns of simulated
devices. We present our experiment setup in Section

and verify our theory results in Sections -

5.1 Experiment Setup

We create various data traces to represent the hetero-
geneous participation patterns of local devices. We
set up a simple federated learning experiment with
five Raspberry Pls as workers, and a desktop server as
the coordinator. Each PI has a training process that
runs the original FedAwvg algorithm, and a competitor
process doing CPU-intensive work simultaneously. We
manually tune the workload of the competitor process
so that it takes up 0%, 30%, 50%, 70%, 90% of the
PT’s CPU resources, simulating different device config-
urations in federated learning. Under the five settings,
for each round, we record the percentage of required
epochs the PI ends up submitting before a preset, fixed
deadline. Due to the default load-balancing behavior
of the operating system’s CPU scheduler, these traces
do not contain zero epochs (i.e. inactive cases). To
generate inactive device participation patterns, we cre-
ate another set of three traces with respectively low,
medium and high bandwidth. Devices can thus be inac-
tive due to weak transmission. Table 2] shows the mean
and standard deviation of the percentage of epochs
completed for each trace. In the following experiments,
each simulated device is randomly assigned a trace. For
each aggregation round 7, it randomly samples from
its trace to obtain the number of local epochs s¥.

Three datasets are used in this paper: MNIST (Le-
Cun et al} [1998]), EMNIST (Cohen et al., [2017)) and
SYNTHETIC(«, 8) (Li et al.l [2018). We build a two-
layer MLP model and a two-convolution-layer CNN
model respectively for MNIST and EMNIST, both
models are defined by [McMahan et al.| (2016]). For
SYNTHETIC(«, ), we use an ordinary logistic re-
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Table 2: The means and standard deviations for the
percentage of required local epochs actually submitted
to the coordinator during the federated training. The
first five traces do not contain inactive cases.

Name | 7o | T30 | Ts0 | T70 | Too | Thi | Tmi | Tio
Mean | 100|75.3]67.2|57.2(56.3|82.5|74.1|51.2
Stdev| 0 |14.8|11.3|11.7|14.8|23.3]22.3|18.3

gression model. All models use the vanilla SGD as
local optimizers, with batch sizes of 10 for MNIST and
EMNIST, and 20 for SYNTHETIC. When generating
non-IID data, we sort the MNIST and EMNIST data by
labels so that each device is assigned data from one label
chosen uniformly at random. For SYNTHETIC(«, 8),
we vary the parameters a, 8 from 0 to 1. The larger
a, 3 are, the less IID the dataset becomes. We use the
staircase learning rate 7, = 19/7 as adopted in our
convergence analysis. The initial 7g is 2e-3 for MNIST,
5e-4 for EMNIST, and 1 for SYNTHETIC(«, 8). Un-
less otherwise noted, the number of samples at each
device follows the Type-I Pareto distribution with the
Pareto index of 0.5.

5.2 Comparison of Aggregation Schemes

We first examine the effects of the device heterogeneity
and the non-IID data distributions on the convergence
for each aggregation scheme. We conduct eight sets of
experiments where we incrementally increase the num-
ber of participation traces to reflect the increasing het-
erogeneity in device participation. For SYNTHETIC,
we use « = § = 0 for the IID case, and a = g =1
for the non-IID case. We train on 100 devices for
MNIST, 62 devices for EMNIST (by merge), and 50
devices for SYNTHETIC(a, 8). Table |3| records the
differences in the test accuracies between different ag-
gregation schemes after 200 global epochs. The typical
convergence process is depicted in Figure [3]

70
60
50
40
30
20 | [ Scheme A

10 = = Scheme B
——Scheme C

0

Figure 3: Test accuracy for non-IID EMNIST. Plots
from left to right correspond to 7| = 1,3,5,8. (in-
creasing device heterogeneity)

As we can see, Scheme C yields the best test accuracy
on average. Compared to Schemes A and B, it achieves

higher accuracy when devices get more heterogeneous
and less IID. This is consistent with our loss bounds in
Table[l] since Schemes A and B fail to converge to the
global optimum in the heterogeneous case with non-I1ID
data. On the other hand, Scheme A performs extremely
badly with large |7]. This is because the last few
traces contain very few complete rounds, significantly
increasing E[1/K;]. Noteworthily, Scheme C is no
different from, or even worse than Scheme B in more
homogeneous settings, this is consistent with Table [I]
since ﬁ < E[i] When the traces contain inactive
devices (|T] > 6), Scheme C becomes less stable due
to the variance introduced by I; in Corollary

Table 3: The % improvement in the test accuracies of
Scheme B w.r.t. Schemes A(left numbers) and Scheme
C w.r.t. Scheme B (right numbers). |T| = j represents
using the first j traces in Table

(a) MNIST Data

7] 1 ) 3 1
IID |-06]03 | 19 [01 |56 |0.1] 83 [0.7
NIID | 02 [-03| 95 | 1.8 [19.3 |16 | 338 |33
7] 5 6 7 8
IID [104[26 [140]22 | 58 |19 |11.8 |24
NIID [ 332 |32 |28.7 | 6.2 | 36.0 | 3.6 |43.4 | 6.9

(b) EMNIST Data

T 1 2 3 4
IID | 0.7 [-0.6| 09 | 0.1 | 42 [0.7 | 48 | 1.0
NIID | -0.1 [-0.7 | 17.0 [-2.0 | 34.2 | 1.8 | 37.9 | 48

T 5 6 7 8
IID |69 [1.1]66 |12 |40 [15 | 7.6 | 1.2
NIID | 30.2 [ 2.5 | 22.5 | 3.0 [ 253 |22 | 18.6 | 1.8

(¢) SYNTHETIC Data

7] 1 2 3 4
IID |-06]05 | 2.1 [0.1 | 6.6 0.0 ] 9.0 |07
NIID | 0.1 [-04] 96 |15 [222 1.8 | 38232
7] 5 6 7 8
IID [11.6 3.0 [164]25 | 6.3 | 1.9 | 144 |28
NIID 333 [3.9 | 30.5 | 7.9 | 37.9 | 45 |41.6 | 8.0

5.3 Effectiveness of Fast-Reboot

We now investigate the effectiveness of the fast-reboot
method described in Section [£.2] The experiments
involve N — 1 existing devices, and the arriving device
joins at 79. As is discussed in Section the method
makes no difference when data distribution is IID. We
thus only consider non-IID cases. We set N = 10
for MNIST and EMNIST (balanced) and N = 30 for
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SYNTHETIC(1,1). To avoid the interference brought
by inactive devices, for this experiment we only use
the first five traces in Table 2] and we adopt Scheme C
as the aggregation method. All devices are given the
same number of samples for fair comparison.

90 ' 2.3

22 i —:Exc]lu;le
i — —Include
80 2.1 :
2

1.9

i
60 : —Fast 18
H — —=Vanilla| 17

50 i 1.6 '
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100

70

Figure 4: Evolution of the test accuracy (left) and
loss (right) under device arrival (left, MNIST) and
departure (right, SYNTHETIC) cases. The dashed
vertical lines indicate the arriving (departing) time 9.
After 7p, except for the “include” option, models are
tested with new datasets that include (exclude) holdout
data from the arriving (departing) device.

95
90
85

80

75 —Fast
— - Vanilla

70

0 50 100 150 200 250

Figure 5: Test accuracy with and without fast-reboot
for multiple arrivals for non-ITD MNIST. The test
dataset is updated every time a new device arrives
to include its holdout data. The vertical dashed lines
indicate the time the device arrives.

Table 4: The number of global epochs after the arriving
time 7p until the test accuracy bounces back to that at
To — 1. Left: fast reboot. Right: vanilla reboot.

o0 10 30 50 70
MNIST 4[4 | 2227 | 5563 | 59 |66
EMNIST | 4 |3 | 11 |12 | 14 [19 | 21 |24

SYNTHETIC | 1 |1 | 4 |6 | 7 |12 3 |8

When the device arrives, we increase the learning rate
to mo/(T — 70). The aggregation coeflicient of the ar-
riving device [ is boosted to p. = 3p! initially, and
decays to p! by O(7=2). Table 4| records the number of
global epochs it takes to recover to the accuracy level
before the arrival. Fast-reboot consistently achieves
faster rebound, and works better for late arrivals as we
expect. EMNIST-CNN enjoys less improvement from
fast-reboot because CNN models converge more slowly

than MLP and logistic regression models. Thus, at
the moment new devices arrive, EMNIST models have
not fully converged to the old optima, degrading the
effectiveness of fast-reboot as per Corollary [£.0.2] The
typical fast-reboot process is shown in Figure [4]

Next we study the situation when multiple devices ar-
rive in a row. Figure [5| shows the training process for
MNIST data. Every time a device arrives, we increase
the learning rate as per Corollary [3:2.1] Initially, seven
devices are in the training. After 100 global epochs,
the remaining three devices arrive at 50 epoch inter-
vals, without waiting for the model to fully converge.
From Figure 5] the fast-reboot trick accelerates the
convergence for every device arrival.

5.4 Model Applicability upon Departures

The right plot in Figure [4] shows the typical change of
the test loss after the device departs. We use the same
setting as in Section[5.3} As is predicted in Section [£.3]
an objective shift (‘exclude’) initially increases the test
loss. But eventually, the two curves cross and excluding
the device becomes more beneficial.

Table [5| summarizes the number of global epochs it
takes for the curves to cross with SYNTHETIC(«, 5).
As we can see, the values increase with 79 and the
non-I1ID metric (¢, 8), confirming Corollary

Table 5: The number of global epochs after the depart-
ing time 7y until the test losses coincide for including
and excluding options. The rows correspond to three
choices of parameters («, 3) in SYNTHETIC(a, 3).

To ] 101520 25]30] 354045 | 50
(L,L1)[ 2[5 [3[3[9]3][10][26]40
(5,.5)| 1 | 3|9 |14|13] 7 [12]36]34
(1.,1.)[ 10| 9 [27 |18 [34 |17 |28 |62 | 77

6 Conclusion and Future Work

This paper extends the federated learning paradigm
to incorporate more flexible device participation. The
analysis shows that incomplete local device updates
can be utilized by scaling the corresponding aggrega-
tion coefficients, and a mild degree of device inactivity
will not impact the convergence. Further investigation
reveals how the convergence relates to heterogeneity in
both the data and the device participation. The paper
also proposes techniques to fast-reboot the training
after new devices arrive, and provides an analytical
criterion on when to exclude a departing device. In
the future work, we will analyze groups of arrivals or
departures, and investigate the possibility for users to
dynamically update their datasets during the training.
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A  Proof of Theorems and Corollaries

A.1 Proof of Theorem [3.1]

A.1.1 Equivalent View

For ease of the analysis, we introduce for each client & and each global round 7 a sequence of virtual variables
kg ok 70[]({;T+1)E71' Here each of € {0,1} and ZiE:O of ., = sk Since s¥ is a random variable, o’s
are also random variables, and the distributions of af’s determine the distribution of s*. For example, if
ak ud Bernoulli(p), then s* ~ Bin(E, p). In general, we do not make any assumption on the distributions and
correlations of a¥’s. Our results are thus valid for any realization of s*.

With the definition of af’s, we can rewrite as:

k k k k
WrE+i+l = WrE+i — r9rE+iQrE+i (10)
N E
g _ .9 k k k
Weyne = WrEg — ZPT Z Y7 E+iQr Bt (11)
k= =0

Note that wtg is visible only when ¢ is a multiple of E. To generalize it to arbitrary ¢, we define w; such that
wy = w§, and
0 =wg, an
N
WrE+it1 = WrE+i — Nr ZP¢9§E+ia§E+i (12)
k=1
Note that w,g.; = Zgzl prwk . only if Zi\;l p¥ =1, which generally does not hold.

Lemma A.1. For any 7, W, = wa

Proof. We will prove by induction. By definition, wy = wo Suppose W, 5 = v 7> then
N

_ _ k Kk k
Wr+)E = W(r+1)E-1 — TIr ZPTQ(T+1)E—1CY(T+1)E—1
k=1

=WrE — Z nr Zp'rg'rE+z QArpyi (13)
=0

k k ko _ .G
- ZPT Z Mr9rE+i% E+i = WirinE
k=1 =0

Thus, in the following analysis we will just use w; to denote the global weight.

A.1.2 Key Lemmas

We first present a couple of important lemmas:

Lemma A.2.

N
EsIIZPT —a)|* < Z (14)

Proof.

1D pkar —g0)l” = lepT — g+ pkpiief —ar .9l — ) (15)

k=1 j#k
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Since each client is running independently, the covariance
Ee(gf — 91,91 —gl) =0
Thus,

N N
Eel > pk(gr — af)|* = ZEsHpT —gIP <Y h
k=1 k=1

Lemma A.3. Fori=0,--- ,E—1 and all 7,k

N N N N
. (pF)?
B o es — whpyl?) < (B - D@2 (S pksk + (O pk —2), 30 L2 k)
k=1 k=1 k=1 =1 P
Proof. Note that w¥, = w, g for all k.
107 54i = Wiy | = |(@rpyi — Brp) — (Wrgys — Wrp)|)?

= @ pri — rp|? = 2(0rpri — Wrp, wWEpy; — Wrp) + |Wipy; — ©rp?

From (I0)(I3),
N
k k
Zpr TEJr’L Zpr TEJr’L 1 —Nr Zp-rg‘rEJrz la‘rEJrz 1
k=1 k=1 k=1
N
Z W )+ Wepgi — Wrpgio1
N
_ kK o
= Zp'rer + WrE+i — WrE
k=1
Thus,
N
-2 Zp§-<1DTE+i — WrE, w£E+i - wTE>
k=1
N N
— 2Wrpyi — Wrp, Y PRwEp + W gy — rp — Y phb,p)
k=1 k=1
= - 2||1Z]TE+i - wTEH2
N N
ZP’:HETEH —wipyll® = (ZPE = 2)|[@r51i — wrml® + ZP’:”“’]:EH —wr g
_ k=1 k=1
i—1 N
|@rp4i — 07| = | an ZP£9§E+3‘Q§E+;‘H2
j=0 k=1

N i—1 N g i1
k k k k(P k k
=N Z]%(ZQTEHO‘TEH) 12 =7 ZP (p% ZQTE+jaTE+j> 12
_ =0 k=1 j=0
PT
<7"r Z || ZQTE+] TE+]||

(19)

(23)
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Here
i—1
k k k k k k k k
H Z gTE+jaTE+j H2 = Z ||gTE+jaTE+j H2 + 2 Z<97E+paTE+pa g'rE+qa'rE+q>
j=0 j=0 p<q
i—1
k k k k k k
S Z ||gTE+jaTE+j HQ + 2 Z ||gTE+paTE+p|| HgTE+anE+qH
j=0 p<q
i—1
S PN L S (VS L VS o
j=0 p<g
. k k
=1 Z HgTEJrjaTEJrj ”2
j=0
So
i—1 i—1
Eell ngEﬂalﬁEﬂHQ <iG? Za£E+j < (E - 1G]
j=0 j=0
Plug to we have
N (ph)?
Eel[@rp4s — wrm® < (B — 1)G*n2 Y ~T—s¥
Similarly
N N i—1
kil .k - k k k
Eg ZpTHwTE—H - wTE||2 = E€ ZpTHnT ZQTE+jaTE+j||2 Zp‘r ‘r
k=1 k=1 j=0

Plug (26])(27) to (22)) we have
3 y k 2 2. 2 N N (p*)? i
B o —whl )5 (B 0GR (bt ot -2, 3 )
k=1

k=1 k=1 p

A.1.3 Bounding ||7D7—E+i+1 — w*||2

N N N

(27)

(28)

- - k_k k k. k -k k. k -k
@ g i1 — w*|* = |0 p1i — e ZPTQTEHQTEH —w" =1, ZpTaTE+igTE+i + - ZPTQTEHQTEHW

k=1 k=1 k=1

N N
= [|0rpti —w" — - ZpﬁaﬁE-&-ing-i-i”Q +n2]| ZPEO‘EE-H (@ pvi — Irpa)l”

k=1 k=1
Ay
N N
+ 20 (Wrpti — W — 1y ZP]TC@]:EH?’:EM ZP’:QI;EH@’:EH S A)
k=1 k=1
Az
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Since E¢[g% ;] = ¥ 5., we have E¢[A;] = 0. We then bound A;.

N
Ay = ||U77E+i —w" =, ZpﬁaﬁE-&-ing-H”Q
k=1
N N
=[|@rp1s — W =20, (@r gy — w7, Zp’:aﬁE+ing+i> +n2]l ZP’;O‘]:EH!?’:EH”Q
k=1 k=1
Bl B2

Since Fj is L-smooth,
||aTE+1gTE+l|| < 2L(Fk( TE—H) Fk) TE+’L

By the convexity of lo norm

N N k
_ p _
By = 773” E plﬁ ]:E+ig]:E+i||2 = 772” E pk(ﬁaﬁEﬁngH)HQ
k=1 k=1

N N
S EZ TE'+ngE+z|| < 2L9772 Zpr Fk TE+2) Fk) TE+2
k=1 k=1
N N
By = _2nT<wTE+’L w* ZPT TE+zg‘rE+7,> —2n; Zp‘r WrE+i — w* a§E+zg‘rE+z>
k=1 k=1
N N
= —2n; ZPE@TEH —Wp i O psirpi) — 2 Zpk (Whpyi —w* ol p G e )
k=1 k=1

Here
_ k k _k _ k k _k
= 2AWrp4i — Wipyi G prifrpri) < 2(WrB+i — Wipys, 07 p 107 p4)]
1
k - Kk _k -
S2a7E+i||wTE+i - wTE+i||||gTE+i|| S (77 HwTE‘H 'rE-‘,—zH2 + nTHQTE-HH ) TE-‘r’L
T

Since F}, is p-strongly convex

<w7]fE+7l - w*7a£E+igEE+i> 2 ((Fk( TE+7,) Fk(w*)) ||w7'E+z —w || ) TE+7,

Piuc @ED to €3

(31)

(32)

(34)

(35)

_ — * H *
By < ZPT 7 gy <|wTE+z' —wip il + G pill® = 200 (Fr(wipys) — Fr(w*)) + 5”wa+1’ —w ||2)> (36)

k=1
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Plug GE0) to @)
N
Ay < |[wr gy — w*||* + 20077 Zpﬁa]:E+i(Fk(w}:E+i) - Fy)
k=1
N
_ — * M *
+ ZPI;O/;EH <|wTE+i - TE+1H2 773||ng+¢||2 —QUT((Fk( TE-H) Fi(w")) + §||w]:E+i —w ||2)>
<2n2L(Fk(wTE+1) Fr)
N
< | @rpi — w*||* — pne ZpﬁaﬁE—i-i”wﬁE-&-i —w*||* + ZP§@£E+1‘H@TE+¢ - TE+1||2
k=1 k=1
N
2(1+90) Lﬂr ZPT TE+2(F]€( TE+1) Fy) —2n; Zp§a¢E+i(Fk(w’:E+i) — Fi(w"))
k=1 k=1
c
(37)
Jwhys — w0l = by — i + Trpgs — w0
= HU’I;EH w‘rE+1H + ”w‘rEJrz —w H2 + 2< Wrpti — WrE+i, WrE+i — IU*>
> |[wipys — Orpill? + |0 pri — w|* = 20|wip; — Orprilll|@r s — w| (38)
— — * — 1 — *
> |[wips = Orpill? + |0 pri — w*|* = 2wfpy; — Grpril® + [T = w %)
= 5ll@rp+i — w*|? = [wipy; — Grpral?
Thus,
N N
1 _ N _
A< (1- 5/”]7 ZPI;QI;EH)HWTEH —w ||2 + (1 + pnr) pr—aiE+inTE+i - w’:E+i|‘2 +C (39)
k=1 k=1
Let v, = 2n-(1 — (1 4+ 0)Ln;). Assume 7, < m, hence 7, < v, < 2n,.
N N
C==2n(1=(L+0)Ln) Y phakp (Fu(whpy,) — Fi) + 200 Y prakp(Fe(w*) — FY)
k=1 k=1
N N
= ZPE-O‘EEJri(Fk(wﬁEJri) — I+ Fio(w™) — Fip(w”)) + 207 ZP?QEEH(FIC(W*) - )
k=1 k=1
- k k k - k k (40)
= = Y pralp(F(wipy) — Fr(w®)) + (20, —97) Y phakpy (Fu(w®) — Fy)
k=1 k=1
N
< ZP&QI;EH(FI@(UJ’:EH) — Fi(w*)) +2(1 + 6) Ln? ZPT @il

k=1

D
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Next we bound D
N N N
ZPI;QI;EH(FIC(WI:EH) = Fi(w")) = Zp£a¢E+i(Fk(wa+i) — Fi(0r 1)) + ZpﬁalﬁEH(Fk(erﬁ) = Fi(w"))
k=1 k=1 k=1
N N
> Pk p (VE(@r 1), whp = Grpyi) + Y Pk o (Fu(®rp1a) — Fr(w®))
k=1 k=1
N N
Z E+’L |VFk(wTE+Z)|| ||w‘rE+z wTEJr’L | + Zpr TE+'L(F’€(wTE+’L) Fk(w*))
k=1
N

=1

N

Z &Gpyilne [|VE(wrp)|® + . IIwTEJrz Grpill®) + Y pratp i (Fi(@rpsi) — Fi(w?))
k=1

l\D\>—~ El

L2L(Fy(@rpti)—Fy)
. N
Prakpy (nTL(Fk(wTE+i) - F)+ ﬂ”wﬁEH - wTE+i“2) T Zp":aﬁEJri(Fk(w‘rEJri) — Fi(w?))

1 k=1
(41)

vV

Mz

k

Thus,
al 1
C<~ ZpﬁaﬁE-&-i(nTL (Fi(0rp4i) — FY) +ﬁ”w§E+z — Wrp i)
k=1 T

Fio(Wrp4i) —Fi (w )+ Fp (w*) — Fy;
N

N
— e Y Pk (Fr(@rpyi) — Fr(w) + 20+ 0)In2 > parp Ty
k=1 k=1

N N
4 — * ’YT —
=7-(n-L — 1) ZP&QI;EH(Fk(wTEH) — Fi(w")) + BT Zpia§E+i||w§E+i - wTEJriHQ
k=1 \@kﬂ
<1 (42)
N

2(1+90) LUT ZPTOZTEJrsz + v 0L ZPT 'rE+sz
k=1 e k=1
<27,
N N
<y L= 1)) phakp i (Fr(@rpyi) — Fr(w) + Y phakpillwkp,, — 0yl
k=1 k=1

N
+2(2+0)Lp; Zp’ﬁaf-EﬂFk
k=1

Plug to we have
N N

Ar < Nfwrpis — w*||? = e Zp¢a¢E+inﬁE+i —w*|*+2 ZPI:O‘I;EH”IDTEH - TE+'L
k=1 k=1
N N (43)
+2(2 +60)Ln? ZpﬁaﬁE—&-iFk +79-(n-L —1) ZP&QI;EH(Fk(wTEH) — Fi(w"))
k=1 k=1

I?
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Plug to ,
N

_ 1 _
107 mien = [ < (1= Spumy Y pralpy)drpss — w?
k=1
N N
+n2]| ZPI;QEEH @y — Srpr) P+ (24 pny) ZPEQI:EHHQDTEM —wWipy

k=1 k=1
<2+ 2(1i9)L

N N

+2(2 + 6 LT]T ZpT TE—HFkI + ’Y‘F(l - 777' ZpT TE+1(Fk( ) Fk(wTE"ri))

k=1 <o, k=1

I? I?

Define

N N
o _ _
Crp+i=(2+ m) pralﬁEHHwTEﬂ - waﬂ‘HQ + ZPI:QEEH(QEEH - 95E+i)
k=1 k=1

I?

N
22+0)L Z Praip T
k=1

Thus,

_ 1
@07 it — w]? < (1 - *MUTZPT i)l @rprs — 0> + 02 Brpy
k=1

N
+2n, pra’ﬁEﬂ-(Fk(w*) — Py (W0rE+4))
k=1

Apply the lemmas we have

N

N
Crp+il < Z 2afpyot +2(2+0)L ZpﬁaiEﬂ'Fk
k=1

N N (k)Q
+(2+2(1+0) _1 G2<2p757+ Zpﬁ_Z)-i-Z ka Sﬁ)

k=1 k=1 p

Eel

—

(47)

For convenience we write A, py; = |0, p1i — w*||?, and A, py; = E[A;g1], where the expectation is taken over

all random variables up to 7FE + 1.

A.1.4 Bounding ||w,g — w*||

Summing from 7E to (7 + 1)E we have

ZATEJFZ < Z (1- *WITZPT g A + 120, +27772pk M(F(w*) — Fp(0rp41))

E-1 _ . N k Kk _
where Cr =77 Crpqi, and Wrpq = argming Y ohet Pyt g i Fr(Wrpys)-
Reorganize it we can get

E-1

N
Aprr1)e < Arp — */mr Y kel Arpyi+2Cr + 2, Zpk F(Fr(w*) = Fie(@r241))
i=0 k=1 k=1

(49)
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We then seek to find a lower bound for A, g4;.
VArE+iv1 = |0rpriv1 — W] = |0 priv1 — Wrpti + Wrpri — 0"

<N WrEtit1 — Wrptill + VAreti
N

= [In- ZP&QI;EHQI:EH” + VArE+yi
k=1

N
Define hrpii = || o=, Prorprigrpll-
Thus,

\/A(T-‘rl)E < \/A(T+1)E_1 + by E—1

E-1
: S V ATE—',—i + Z T]Th’TE-‘rj
j=i

E-1 E-1
A(‘1’+1)E < ATE+i + 2\/ ATE+i(Z nThTEJrj) + (Z nThTE+j)2
Jj=t Jj=t

E-1
< 2A7‘E+i + 2(2 nThTE+j)2
j=i
E-1 1 E-1
ATE+Z = §A(T+1)E - Z Nr TE+_]) > §A(T+1)E - (Z nThTE+j)2
j=i §=0
Plug to we can get
1 N E-1
(1+ Viass Zpﬁsi)A(T-l-l)E <Arp+ WIT Z;D Z hriti)® +12C;
k=1 i=0
+ 27, Zpk M (Fi(w™) — Fr(0rp41))

Define H, = (Zf:_ol h.g+i)?. Apply Lemma Lemma and Assumption we have

N
E¢ [h?rEJﬂ] = [E¢|| Zp¢a¢E+ig§E+iH2
k=1
S R
SZ 7 Eellofpyigrmll” < TE+i
=1 P =1
, =, 2 (P9)? 4
= B3 hepi)') SEE Y opp) S BG? Y S5s)
i— i=0 k=1
E—-1 N
B = 30 B0 )= 3 oo+ 202 )L Y Ty
i=0 k=1

N N

N
+(2+72(159) )E( (Zp s¥ +6( ;p§—2)+’;p58’ﬁ)

k=1

(51)

(55)

(56)

(57)
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Write ATE+i = Eg[ATEJri],C—YT = E§ [CT], E[T = Eg[(ZlE:BI hTE+i)2]7 then

1
(1+ 4;“7721)7 NAGinE < Arp + umZpk YH, +n2C

+ 20, B¢ prsf(Fk(W*) — Fe(0rp+41))
k=1

Let z, = 0 indicate the event that for all k, E[pFs*] = c,p* for come constant ¢, that does not depend on £,
otherwise zF = 1. Note that if z, = 0, then Z,ivzlpfslj(Fk(w*) — Fr(Wrg41)) = ¢ (F(w*) — F(0rg41)) < 0.
Otherwise, we have

Zpk H(Fr(w*) = Fy(0rp41)) ZPT s7(Fr(w*) — Fy + Fy — Fp(0rp41))

k=1 S P (59)

N

<D il

k=1

Put it together
N
Zpk F(Fr(w*) = Fy(w,541)) < 20 prsﬁ‘k (60)

k=1

Assume 7, < ﬁ < W’ divide both sides with 1 + I un, Zk L pEsk in we can get

=1P757

N
THr Y PESE
N
1+ %/”% Zk:1 pl;Sch

A('f‘Jrl)E' < (1 - )ATE + 27772—HT + 7772—67'

+ 20,2, Zp’“ v (61)

N

(17 ~ ZpT VA + 2By + 20,5 3 phsiT
k=1

Note that p¥, s* are independent with A, p. Taking expectation over p¥ and s* we get

N
BA(rinyp] < (1- g E Zp”) Arp +02E[B] + 20,2, Y Elpkst]y (62)

A.2 Proof of Theorem [3.1]

When the distributions of s* do not change with time, we have B, = B. We prove the convergence by induction.

Let n, = HE[Zk81pk 1] Téi’)/ Initially, % > E[Ag]. Suppose E[A, ] < MTEDj,Yv, then
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2
. TE+~y—2EM,D+V 16E B 32:D
E[A(T—‘rl)E] = E E N &k E 2 E
T +7 T +FY ME[Zkzl p'rs'r] (T +’Y) T +7
2
TE+v—E 12,D 16E B E(M.D+V)
—— (M, D+V)+ —
= (TE +7)2 ( ) TE + v PE[SN | pksk] ) (TE+7)? (TE + )2 (63)
<0
17E+y+FE
M,D+V 375 2D _ MDDtV
“(r+1DE+y (+1DE+y ~ (t+1D)E+~
1DV
Thus A(7—+1)E < ("'J:—llm
We can check it satisfies the previous assumptions regarding 7, :
_ 16B/(UE[Y 0, phsh))
Nr < 1o = i
+7
N k k (64)
16E/(ME[Zk:1 pTS’T]) _ 1

T32B(1+ 0)L/(E[Y , phsk])  2(1+0)L

_ 16E/(uE[Y;, phsk]) _ 16B/(LE[, phst]) 4
TERTTT Sy S i@ phet])  HE .

A.2.1 Extension to Time-Varying Distributions

When the distribution of s* vary with time, we can still establish a convergence with slightly different definitions.

2
32E(140)L 4E%6 } V = Imax {’YQEng - w*||2’ (%) Z—:Ol (]E[Z ]E[Bt} ])
ke PE st

Redefine v = max{ummT BN, phsk]’ min BN, phot]

We now prove by induction that with this definition, we can obtain

. M.D
E[A,g] < —~ Ve 5 (66)
TE+y  (tE+7)

Let n, = S 1Pk T (T+ffE+ Initially, % > E[Ag]. Suppose E[A,g] < T]\gﬁy + (TE+ R then

- tE+~—-E [ M,D v, (16 E)2E[B, + 2H,] 2D
Hherl S e (7E+v ! (TE+7)2> B ) (r+ DE ) T+ DET
(tE+~—E)M.D TE+~y—-FE v, (16 E)?E[B, + 2H,] z:D

(TE+~)2 — E? (TE+7y)2 = E2(1+ DE+y  (uE[XN_ phsk)2 (r+ DE+4)?  (T+1DE+~y

. MDD N v, (16 E)*E[B, + 2H,] N 2D
TEHDEY  (r+DE+9)" (B[S pEsE)2 (T + DE+y)° (THDE 4y
_ M,D Vi1
T+ DE+7  (r+1)E+1)?
(67)

41D Ve
Thus A4y < i + (CEs o

Easy to check previous assumptions regarding 7, are all satisfied.

3
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A.3 Proof of Theorem [3.2]

e Departure Case: n=n —ny

~ % * 2 ~ 2 ~ % ok
[@* —w™]| < ;IIVF(w )IIZ; VE(@") = VF(w")

0

2 ~, ~ % ~ %

== > " = 5"V (@) + p'VF (@)

K k£l

2 ng ng - | ~ %
=D (=- VEy (@) + p'VF (@)
7 Py n n—n;

2 nng ) ~ ! ~ %
==|- — " )\ VE,(@0") 4+ p'VE (w0
T ;(n(n—m) L) V)
2 ~ ~ % ~ %
== |=p" > V(") +p' VF (0%)

K k£l

=VE(@0*)=0

- WAL | /-
HVFl ) < —\/2L (Ri() = Fy) = = =p\/ T

e Arrival Case: n=n-+mn

~ % * * ~ % 2 n * 2 n * *
[0 —w*| = |lw* —w*|| < —[[VF(w")|| = = ||VF(w") = VF(w")
! 8 -

=== ZZPkVFk )+ V EFy(w*)
o

=VF(w*)=0

=1

2 . 2v2L _
:§ IV B = = =5 VT

A.4 Proof of Corollary

A.4.1 Scheme A

In Scheme A, we only consider devices whose s* = E. Let ¢* be an indicator denoting if client & is complete in
round 7. Thus, K, = Zk:l q~.

Homogeneous participation. Obviously ¢¥’s are homogeneous when s¥’s are homogeneous Thus, E[¢¥] = ¢,
where ¢, = P(s, = E). We then have P(K, = 0) = (1 — ¢,)". When choosing p* = K q%, 0 = N. Note that by
the definition of ¢¥, we have ¢¥s* = Eq¢¥, so E[p¥s*] = EE[p]. Similarly, we can replace all s* terms with E.

Next we calculate E[p¥]:
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k
¢
E, [ |K, # 0] = Np*E, [W‘KT # 0]

i=14
N L (N1 (@) (1 —g)V g,
_ k -
=Np ;1“’( i ) 1—(1—g)¥
1N =1 (g1 —g)V ) (@) (g
:Npk;i<i1>1(lq ’E zfl ﬂy "

:pkz (N> (¢:)'(1 — g-)V " ol (o)(q‘r) (1—g)N ok

1-(1—g)¥ P 1-(1—g )N
Similarly,

E,[(p5)2|K, # 0] = (Np*)2E, | —2=—|K, #0
[(05) K7 0] = (N ") [(Z%W\ #0]

N—-1 . .
k2 1 (N—-1\(¢:)'(1 —g)V g,
00" S ()

It is possible that Zk L PE > 2, so we need to calculate E[ptpl | K, # 0]

dkq
Eq[p5p | K- # 0] = N*p*p'E| —F—| K # 0
{@iﬁq;)? |

) N-2 1 N —2 i1 — ¢ )N27(g,)?
=Npkplz . ( i )(Q)(l(ql)qT)N(Q) (70)

N i (N (@)1 —g)" N ko 1
_ - E[1- —|K
N—lpp; i (z) I—(1-g¢)¥ N-1"7F [ K| ”éo}

For all k and 7, E[p¥s¥| K, # 0] = Ep*, thus z, = 0, M, = 0 for all k, 7.

Therefore, E[B] = O(N%E[%JKT # 0] + Eszl(pkUk)z +T),y = O(N), hence V = O(NQ‘E[I%JKT # 0] +
N2 F2

Zi&\’:l(p’“ork)2 + ). Plug them into Theorem we can get an asymptotic rate of O (W)

p
Heterogeneous Participation. When s*’s (i.e., ¢¥’s) are heterogeneous, generally E[p¥] # p¥, furthermore, we
may have z, = 1 for all 7. To see this, con51der an example where a device ko has ¢® = 1, i.e. P(s¥ = E) =1,
whereas all the rest devices have E[¢¥] = ¢,, then we can show that

k N
ko _ kol __ ko qTO _ ko 1 B (1 B qT)
B, bl |y # 0] = By[pk] = NpE, {@ﬁvl W} = pho—— (71)

and for k # kg
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qk
E,[p5K, # 0] = E,[p}] = Np'E, [ﬁ}

Cin @
pk 3 i N—i
- (271) (QT) (17(]7-)
(N . 1)q (NqT Ngr(1=g)" 1 = (1= (1= )" = Nz (1 - qT)N*1)>
quT—i—(l—qT)N— 1

Thus, different & will have different ratio of E[p¥s¥/p¥] = EE[p¥ /p*], which indicates z, = 1. Since this is true
for all 7, we have M, = 7. Thus according to Theorem the learning will not converge to the global optimal,
and the remainder loss is bounded by D/E.

A.4.2 Scheme B

In Scheme B, p¥ = p* is a fixed number, so we only need to take expectation over s, and cp = 1. Since
N N N
> ke P =1<2, we can bound E[(32,, pf — 2)4 (34, pish)] < 0.

Homogeneous Participation. When s*’s are homogeneous, i.e. s* i s,, then E[p¥sk]/p* = E[s,]. This is

the same for all k, thus z, = 0 and M, = 0. Moreover, we have E[B] = O(E[s,](6% + 1)), v = O(1/E[s,]),
5%+
TE[s,]

V=0 ((5]2\, +T) ﬁ), which yields an asymptotic convergence rate of O (

Heterogeneous Participation. When s¥’s are heterogeneous, E[p¥s¥]/p* = E[s¥] varies with k. Thus, 2, = 1
and M, = 7. Therefore, the algorithm will not converge to the global optimum according to Theorem

A.4.3 Scheme C

In Scheme C, pt = Es—’;k, so § = E. It is possible that Zszl pt > 2, so we mneed to calculate
N N

E[(Zkleﬁ)(Zkzlpﬁsﬁ) :

Homogeneous Participation. When s¥’s are homogeneous, E[p*s*]/p* = E for all k. Thus, z, = 0, M, = 0.

Moreover, we have

k=1 57 =1
N N 1
E[(Y (> phst)| = BE[—] (76)
k=1 k=1 T

Therefore, we have E[B] = O (E [i] (6N + F)) =V, which yields a convergence rate of O (%)

Heterogeneous Participation. Even when s¥’s are heterogeneous, we still have E[pXsk]/p* = E for active all
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k. Thus, z, = 0 only if I, = 1. Thus, M, Zt 0 It Moreover,

N N
E[Y = EY p'E|] (77)
k=1 k=1
N N 1 2
E[Y_ (b7 = B2y (n'E| ) (78)
k=1 k=1 T
N N 1
E[Y(ph)%s4] = B2 Y (0)%E| < (79)
k=1 k=1 o
N N N
E[(Y (Y phsh)| = B2 Y p'E| ] (80)
k=1 k=1 k=1 T

N Til ItD+ZXV:(PkUk)2]E[S%} +
Thus, E[B] = O (Zkzl(pkak)QE [Sik] + F) =V, and the convergence rate is O | =2 b -

T

A.5 Proof of Corollary

We first introduce the following lemma:

Lemma A.4. Suppose device | arrives, then for any w, we have

1 n
Fi(w) = = (F(w) - 2F(w)) (81)
Proof. We expand the right hand side expression and show it equals Fl(w):
1 /- n 1 n
= (Fw) -~ 2Fw) = (Zkak )+ 7 F (w Z 2P Fi(w )
(Zﬁka( + 7' Fy(w Z 5" Fi(w ) = Fi(w)
k=1 k=1

=

Next we investigate the effect of applying additional update from [. Suppose the current global weight is wa = w,
and assume we perform full batch gradient for the additional update. After the update, it becomes

w' = w — 10"V E (w) (83)
We are interested in the distance between w’ and the new global optimum w*:
lw’ = @*||* = flw — 1-8'VEF(w) — &>
.. s 2
= lw —@*||? =25:6"(w — @*, VE (w)) + (n:8')" |V Fy(w)]? (84)

A(w,dt)

Obviously, the additional update helps fast-reboot if A(w,§') < 0
Applying Lemma [A74] we can get

l - n 2
Aw, 8') = _2”;; (w — @, V(W) — V@) + (1,8 |V Fy(w) | (85)
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Write b = w — w*, and use the mean value theorem we have

= (w* =", V2F(§)b) — (b, VFi(w))
+ [lw* =@ V2 E(E) |2 lIb]] + [V Fr(w) [l
+ (lw” =@ + W]

; (86)
< _]%W — 0", VE(w") = = VF(w") + <2r~l\f+ 1) Wbl
=0
<~ (Fw) = Fa) + <2r~lf+ 1) o]
Therefore,
Aw,d") < 2”; (<2F~lf + 1) Wbl ~ (Pw >—F<w*>)> + (0P (87)

F(w*)—F(d")
V2L G T ) W

For &' > 0, the right hand side can be negative if and only if ||b]| < (

A.6 Proof of Corollary

The loss bound without objective shift is fo(7) = %, and the bound with shift is fi(7) = (;"E;[r)i;;:;

Note that fo(7) is a monotonic function. When it is increasing, we just need fo(79) = f1(7), which yields

T —T0 =

E EV |4

Now we consider monotonically decreasing fo(7), which is more commonly observed in experiments. Let
Cy =DE,Co =vD+VE — ET, C3 = V(v — 1), the only possible root for the quadratic equation fo(7) = f1(7)
is

EV
— 4CT" E
0B+ Cz+\/01 1(10 +’y)+<

== O(\/ Torl)

T — T =

EV >2 _ 2C4EV

+(C2 —4C,C
ToF +7v ToE + v (€3 1C3)

(89)
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