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Abstract

In this paper, we consider the problem of
black box continuous submodular maximiza-
tion where we only have access to the function
values and no information about the deriva-
tives is provided. For a monotone and continu-
ous DR-submodular function, and subject to a
bounded convex body constraint, we propose
Black-box Continuous Greedy, a derivative-free
algorithm that provably achieves the tight
[(1− 1/e)OPT − ε] approximation guarantee
with O(d/ε3) function evaluations. We then
extend our result to the stochastic setting
where function values are subject to stochas-
tic zero-mean noise. It is through this stochas-
tic generalization that we revisit the discrete
submodular maximization problem and use
the multi-linear extension as a bridge between
discrete and continuous settings. Finally, we
extensively evaluate the performance of our
algorithm on continuous and discrete submod-
ular objective functions using both synthetic
and real data.

1 Introduction

Black-box optimization, also known as zeroth-order or
derivative-free optimization2, has been extensively stud-
ied in the literature [Conn et al., 2009, Bergstra et al.,

1These authors contributed equally to this work.
2We note that black-box optimization (BBO) and

derivative-free optimization (DFO) are not identical terms.
Audet and Hare [2017] defined DFO as “the mathematical
study of optimization algorithms that do not use deriva-
tives” and BBO as “the study of design and analysis of
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2011, Rios and Sahinidis, 2013, Shahriari et al., 2016].
In this setting, we assume that the objective function
is unknown and we can only obtain zeroth-order infor-
mation such as (stochastic) function evaluations.

Fueled by a growing number of machine learning ap-
plications, black-box optimization methods are usually
considered in scenarios where gradients (i.e., first-order
information) are 1) difficult or slow to compute, e.g.,
graphical model inference [Wainwright et al., 2008],
structure predictions [Taskar et al., 2005, Sokolov et al.,
2016], or 2) inaccessible, e.g., hyper-parameter turning
for natural language processing or image classifications
Snoek et al. [2012], Thornton et al. [2013], black-box
attacks for finding adversarial examples Chen et al.
[2017c], Ilyas et al. [2018]. Even though heuristics such
as random or grid search, with undesirable dependen-
cies on the dimension, are still used in some applica-
tions (e.g., parameter tuning for deep networks), there
has been a growing number of rigorous methods to
address the convergence rate of black-box optimiza-
tion in convex and non-convex settings [Wang et al.,
2017, Balasubramanian and Ghadimi, 2018, Sahu et al.,
2018].

The focus of this paper is the constrained continuous
DR-submodular maximization over a bounded convex
body. We aim to design an algorithm that uses only
zeroth-order information while avoiding expensive pro-
jection operations. Note that one way the optimization
methods can deal with constraints is to apply the pro-
jection oracle once the proposed iterates land outside
the feasibility region. However, computing the projec-
tion in many constrained settings is computationally
prohibitive (e.g., projection over bounded trace norm
matrices, flow polytope, matroid polytope, rotation ma-
trices). In such scenarios, projection-free algorithms,
a.k.a., Frank-Wolfe [Frank and Wolfe, 1956], replace

algorithms that assume the objective and/or constraint
functions are given by blackboxes”. However, as the differ-
ences are nuanced in most scenarios, this paper uses them
interchangeably.
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Table 1: Number of function queries in different settings, where D1 is the diameter of K.

Function Additional Assumptions Function Queries

continuous DR-submodular monotone, G-Lipschitz, L-smooth O(max{G,LD1}3 · dε3 ) [Theorem 1]
stoch. continuous DR-submodular monotone, G-Lipschitz, L-smooth O(max{G,LD1}3 · d

3

ε5 ) [Theorem 2]
discrete submodular monotone O(d

5

ε5 ) [Theorem 3]

the projection with a linear program. Indeed, our pro-
posed algorithm combines efficiently the zeroth-order
information with solving a series of linear programs to
ensure convergence to a near-optimal solution.

Continuous DR-submodular functions are an important
subset of non-convex functions that can be minimized
exactly Bach [2016], Staib and Jegelka [2017] and maxi-
mized approximately Bian et al. [2017a,b], Hassani et al.
[2017], Mokhtari et al. [2018a], Hassani et al. [2019],
Zhang et al. [2019b] This class of functions generalize
the notion of diminishing returns, usually defined over
discrete set functions, to the continuous domains. They
have found numerous applications in machine learn-
ing including MAP inference in determinantal point
processes (DPPs) Kulesza et al. [2012], experimental
design Chen et al. [2018c], resource allocation Eghbali
and Fazel [2016], mean-field inference in probabilistic
models Bian et al. [2018], among many others.

Motivation: Computing the gradient of a continu-
ous DR-submodular function has been shown to be
computationally prohibitive (or even intractable) in
many applications. For example, the objective func-
tion of influence maximization is defined via specific
stochastic processes [Kempe et al., 2003, Rodriguez
and Schölkopf, 2012] and computing/estimating the
gradient of the mutliliear extension would require a
relatively high computational complexity. In the prob-
lem of D-optimal experimental design , the gradient
of the objective function involves inversion of a po-
tentially large matrix [Chen et al., 2018c]. Moreover,
when one attacks a submodular recommender model,
only black-box information is available and the service
provider is unlikely to provide additional first-order
information (this is known as the black-box adversarial
attack model) [Lei et al., 2019].

There has been very recent progress on developing
zeroth-order methods for constrained optimization
problems in convex and non-convex settings Ghadimi
and Lan [2013], Sahu et al. [2018]. Such methods typi-
cally assume the objective function is defined on the
whole Rd so that they can sample points from a proper
distribution defined on Rd. For DR-submodular func-
tions, this assumption might be unrealistic, since many
DR-submodular functions might be only defined on a
subset of Rd, e.g., the multi-linear extension Vondrák

[2008], a canonical example of DR-submodular func-
tions, is only defined on a unit cube. Moreover, they
can only guarantee to reach a first-order stationary
point. However, Hassani et al. [2017] showed that for
a monotone DR-submodular function, the stationary
points can only guarantee 1/2 approximation to the
optimum. Therefore, if a state-of-the-art zeroth-order
non-convex algorithm is used for maximizing a mono-
tone DR-submodular function, it is likely to terminate
at a suboptimal stationary point whose approximation
ratio is only 1/2.

Our contributions: In this paper, we propose a
derivative-free and projection-free algorithm Black-box
Continuous Greedy (BCG), that maximizes a monotone
continuous DR-submodular function over a bounded
convex body K ⊆ Rd. We consider three scenarios:

(1) In the deterministic setting, where function eval-
uations can be obtained exactly, BCG achieves the
tight [(1−1/e)OPT − ε] approximation guarantee with
O(d/ε3) function evaluations.

(2) In the stochastic setting, where function evaluations
are noisy, BCG achieves the tight [(1 − 1/e)OPT −
ε] approximation guarantee with O(d3/ε5) function
evaluations.

(3) In the discrete setting, Discrete Black-box Greedy
(DBG) achieves the tight [(1− 1/e)OPT − ε] approxi-
mation guarantee with O(d5/ε5) function evaluations.

All the theoretical results are summarized in Table 1.

We would like to note that in discrete setting, due to
the conservative upper bounds for the Lipschitz and
smooth parameters of general multilinear extensions,
and the variance of the gradient estimators subject to
noisy function evaluations, the required number of func-
tion queries in theory is larger than the best known re-
sult, O(d5/2/ε3) in Mokhtari et al. [2018a,b]. However,
our experiments show that empirically, our proposed
algorithm often requires significantly fewer function
evaluations and less running time, while achieving a
practically similar utility.

Novelty of our work: All the previous results in
constrained DR-submodular maximization assume ac-
cess to (stochastic) gradients. In this work, we address
a harder problem, i.e., we provide the first rigorous
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analysis when only (stochastic) function values can be
obtained. More specifically, with the smoothing trick
[Flaxman et al., 2005], one can construct an unbiased
gradient estimator via function queries. However, this
estimator has a large O(d2/δ2) variance which may
cause FW-type methods to diverge. To overcome this
issue, we build on the momentum method proposed by
Mokhtari et al. [2018a] in which they assumed access
to the first-order information.

Given a point x, the smoothed version of F at x is de-
fined as Ev∼Bd [F (x+δv)]. If x is close to the boundary
of the domain D, (x+δv) may fall outside of D, leaving
the smoothed function undefined for many instances
of DR-submodular functions (e.g., the multilinear ex-
tension is only defined over the unit cube). Thus the
vanilla smoothing trick will not work. To this end,
we transform the domain D and constraint set K in
a proper way and run our zeroth-order method on
the transformed constraint set K′. Importantly, we
retrieve the same convergence rate of O(T−1/3) as in
Mokhtari et al. [2018a] with a minimum number of func-
tion queries in different settings (continuous, stochastic
continuous, discrete).

We further note that by using more recent variance
reduction techniques [Zhang et al., 2019b], one might
be able to reduce the required number of function
evaluations.

1.1 Further Related Work

Submodular functions Nemhauser et al. [1978], that
capture the intuitive notion of diminishing returns,
have become increasingly important in various machine
learning applications. Examples include graph cuts
in computer vision Jegelka and Bilmes [2011a,b], data
summarization Lin and Bilmes [2011b,a], Tschiatschek
et al. [2014], Chen et al. [2018a, 2017b], influence maxi-
mization Kempe et al. [2003], Rodriguez and Schölkopf
[2012], Zhang et al. [2016], feature compression Bateni
et al. [2019], network inference Chen et al. [2017a], ac-
tive and semi-supervised learning Guillory and Bilmes
[2010], Golovin and Krause [2011], Wei et al. [2015],
crowd teaching Singla et al. [2014], dictionary learn-
ing Das and Kempe [2011], fMRI parcellation Salehi
et al. [2017], compressed sensing and structured spar-
sity Bach [2010], Bach et al. [2012], fairness in machine
learning Balkanski and Singer [2015], Celis et al. [2016],
and learning causal structures Steudel et al. [2010],
Zhou and Spanos [2016], to name a few. Continuous
DR-submodular functions naturally extend the notion
of diminishing returns to the continuous domains Bian
et al. [2017b]. Monotone continuous DR-submodular
functions can be (approximately) maximized over con-
vex bodies using first-order methods Bian et al. [2017b],
Hassani et al. [2017], Mokhtari et al. [2018a]. Bandit

maximization of monotone continuous DR-submodular
functions Zhang et al. [2019a] is a closely related set-
ting to ours. However, to the best of our knowledge,
none of the existing work has developed a zeroth-order
algorithm for maximizing a monotone continuous DR-
submodular function. For a detailed review of DFO
and BBO, interested readers refer to book [Audet and
Hare, 2017].

2 Preliminaries

Submodular Functions We say a set function f :
2Ω → R is submodular, if it satisfies the diminishing
returns property: for any A ⊆ B ⊆ Ω and x ∈ Ω \ B,
we have

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). (1)

In words, the marginal gain of adding an element x
to a subset A is no less than that of adding x to its
superset B.

For the continuous analogue, consider a function F :
X → R+, where X = Πn

i=1Xi, and each Xi is a compact
subset of R+. We define F to be continuous submodular
if F is continuous and for all x, y ∈ X , we have

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y), (2)

where ∨ and ∧ are the component-wise maximizing
and minimizing operators, respectively.

The continuous function F is called DR-submodular
Bian et al. [2017b] if F is differentiable and ∀x ≤ y :
∇F (x) ≥ ∇F (y). An important implication of DR-
submodularity is that the function F is concave in any
non-negative directions, i.e., for x ≤ y, we have

F (y) ≤ F (x) + 〈∇F (x), y − x〉. (3)

The function F is called monotone if for x ≤ y, we
have F (x) ≤ F (y).

Smoothing Trick For a function F defined on Rd,
its δ-smoothed version is given as

F̃δ(x) , Ev∼Bd [F (x+ δv)], (4)

where v is chosen uniformly at random from the d-
dimensional unit ball Bd. In words, the function F̃δ at
any point x is obtained by “averaging” F over a ball of
radius δ around x. In the sequel, we omit the subscript
δ for the sake of simplicity and use F̃ instead of F̃δ.

Lemma 1 below shows that under the Lipschitz as-
sumption for F , the smoothed version F̃ is a good ap-
proximation of F , and also inherits the key structural
properties of F (such as monotonicity and submodu-
larity). Thus one can (approximately) optimize F via
optimizing F̃ .
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Lemma 1 (Proof in Appendix A). If F is monotone
continuous DR-submodular and G-Lipschitz continuous
on Rd, then so is F̃ and

|F̃ (x)− F (x)|≤ δG. (5)

An important property of F̃ is that one can obtain an
unbiased estimation for its gradient ∇F̃ by a single
query of F . This property plays a key role in our
proposed derivative-free algorithms.

Lemma 2 (Lemma 6.5 in [Hazan, 2016]). Given a
function F on Rd, if we choose u uniformly at random
from the (d − 1)-dimensional unit sphere Sd−1, then
we have

∇F̃ (x) = Eu∼Sd−1

[
d

δ
F (x+ δu)u

]
. (6)

3 DR-Submodular Maximization

In this paper, we mainly focus on the constrained
optimization problem:

max
x∈K

F (x), (7)

where F is a monotone continuous DR-submodular
function on Rd, and the constraint set K ⊆ X ⊆ Rd is
convex and compact.

For first-order monotone DR-submodular maximiza-
tion, one can use Continuous Greedy Calinescu et al.
[2011], Bian et al. [2017b], a variant of Frank-Wolfe
Algorithm [Frank and Wolfe, 1956, Jaggi, 2013, Lacoste-
Julien and Jaggi, 2015], to achieve the [(1−1/e)OPT −
ε] approximation guarantee. At iteration t, the FW
variant first maximizes the linearization of the objective
function F :

vt = arg max
v∈K

〈v,∇F (xt)〉. (8)

Then the current point xt moves in the direction of vt
with a step size γt ∈ (0, 1]:

xt+1 = xt + γtvt. (9)

Hence, by solving linear optimization problems, the
iterates are updated without resorting to the projection
oracle.

Here we introduce our main algorithm Black-box Con-
tinuous Greedy which assumes access only to function
values (i.e., zeroth-order information). This algorithm
is partially based on the idea of Continuous Greedy.
The basic idea is to utilize the function evaluations of
F at carefully selected points to obtain unbiased esti-
mations of the gradient of the smoothed version, ∇F̃ .
By extending Continuous Greedy to the derivative-free

setting and using recently proposed variance reduction
techniques, we can then optimize F̃ near-optimally. Fi-
nally, by Lemma 1 we show that the obtained optimizer
also provides a good solution for F .

Recall that continuous DR-submodular functions are
defined on a box X = Πn

i=1Xi. To simplify the expo-
sition, we can assume, without loss of generality, that
the objective function F is defined on D ,

∏d
i=1[0, ai]

Bian et al. [2017a]. Moreover, we note that since
F̃ = Ev∼Bd [F (x+δv)], for x close to ∂D (the boundary
of D), the point x+ δv may fall outside of D, leaving
the function F̃ undefined.

To circumvent this issue, we shrink the domain D by δ.
Precisely, the shrunk domain is defined as

D′δ = {x ∈ D|d(x, ∂D) ≥ δ}. (10)

Since we assume D =
∏d
i=1[0, ai], the shrunk domain

is D′δ =
∏d
i=1[δ, ai − δ]. Then for all x ∈ D′δ, we

have x + δv ∈ D. So F̃ is well-defined on D′δ. By
Lemma 1, the optimum of F̃ on the shrunk domain
D′δ will be close to that on the original domain D, if
δ is small enough. Therefore, we can first optimize
F̃ on D′δ, then approximately optimize F̃ (and thus
F ) on D. For simplicity of analysis, we also translate
the shrunk domain D′δ by −δ, and denote it as Dδ =∏d
i=1[0, ai − 2δ].

Besides the domain D, we also need to consider the
transformation on constraint set K. Intuitively, if there
is no translation, we should consider the intersection of
K and the shrunk domain D′δ. But since we translate D′δ
by −δ, the same transformation should be performed
on K. Thus, we define the transformed constraint set
as the translated intersection (by −δ) of D′δ and K:

K′ , (D′δ ∩ K)− δ1 = Dδ ∩ (K − δ1). (11)

It is well known that the FW Algorithm is sensitive to
the accuracy of gradient, and may have arbitrarily poor
performance with stochastic gradients Hazan and Luo
[2016], Mokhtari et al. [2018b]. Thus we incorporate
two methods of variance reduction into our proposed al-
gorithm Black-box Continuous Greedy which correspond
to Step 7 and Step 8 in Algorithm 1, respectively.
First, instead of the one-point gradient estimation in
Lemma 2, we adopt the two-point estimator of ∇F̃ (x)
[Agarwal et al., 2010, Shamir, 2017]:

d

2δ
(F (x+ δu)− F (x− δu))u, (12)

where u is chosen uniformly at random from the unit
sphere Sd−1.We note that (12) is an unbiased gradi-
ent estimator with less variance w.r.t. the one-point
estimator. We also average over a mini-batch of Bt
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Algorithm 1 Black-box Continuous Greedy
1: Input: constraint set K, iteration number T , ra-

dius δ, step size ρt, batch size Bt
2: Output: xT+1 + δ1
3: x1 ← 0, ḡ0 ← 0
4: for t = 1 to T do
5: Sample ut,1, . . . , ut,Bt i.i.d. from Sd−1

6: For i = 1 to Bt, let y+
t,i ← δ1 + xt + δut,i, y

−
t,i ←

δ1 + xt − δut,i and evaluate F (y+
t,i), F (y−t,i)

7: gt ← 1
Bt

∑Bt
i=1

d
2δ [F (y+

t,i)− F (y−t,i)]ut,i
8: ḡt ← (1− ρt)ḡt−1 + ρtgt
9: vt ← arg maxv∈K′〈v, ḡt〉

10: xt+1 ← xt + vt
T

11: end for
12: Output xT+1 + δ1

independently sampled two-point estimators for fur-
ther variance reduction. The second variance-reduction
technique is the momentum method used in [Mokhtari
et al., 2018a] to estimate the gradient by a vector ḡt
which is updated at each iteration as follows:

ḡt = (1− ρt)ḡt−1 + ρtgt. (13)

Here ρt is a given step size, ḡ0 is initialized as an all zero
vector 0, and gt is an unbiased estimate of the gradient
at iterate xt. As ḡt is a weighted average of previous
gradient approximation ḡt−1 and the newly updated
stochastic gradient gt, it has a lower variance compared
with gt. Although ḡt is not an unbiased estimation of
the true gradient, the error of it will approach zero as
time proceeds. The detailed description of Black-box
Continuous Greedy is provided in Algorithm 1.

Theorem 1 (Proof in Appendix B). For a mono-
tone continuous DR-submodular function F , which
is also G-Lipschitz continuous and L-smooth on
a convex and compact constraint set K, if we set
ρt = 2/(t+ 3)2/3 in Algorithm 1, then we have

(1− 1/e)F (x∗)− E[F (xT+1 + δ1)]

≤ 3D1Q
1/2

T 1/3
+
LD2

1

2T
+ δG(1 + (

√
d+ 1)(1− 1/e)).

where Q = max{42/3G2, 4cdG2/Bt + 6L2D2
1}, c is

a constant, D1 = diam(K′), and x∗ is the global
maximizer of F on K.

Remark 1. By setting T = O(1/ε3), Bt = d, and δ =
ε/
√
d, the error term (RHS) is guaranteed to be at most

O(ε). Also, the total number of function evaluations is
at most O(d/ε3).

We can also extend Algorithm 1 to the stochastic case
in which we obtain information about F only through
its noisy function evaluations F̂ (x) = F (x) + ξ, where

ξ is stochastic zero-mean noise. In particular, in Step
6 of Algorithm 1, we obtain independent stochastic
function evaluations F̂ (y+

t,i) and F̂ (y−t,i), instead of the
exact function values F (y+

t,i) and F (y−t,i). For unbiased
function evaluation oracles with uniformly bounded
variance, we have the following theorem.

Theorem 2 (Proof in Appendix C). Under the
condition of Theorem 1, if we further assume that
for all x, E[F̂ (x)] = F (x) and E[|F̂ (x)−F (x)|2] ≤
σ2

0, then we have

(1− 1/e)F (x∗)− E[F (xT+1 + δ1)]

≤ 3D1Q
1/2

T 1/3
+
LD2

1

2T
+ δG(1 + (

√
d+ 1)(1− 1/e)),

where D1 = diam(K′), Q = max{42/3G2, 6L2D2
1 +

(4cdG2 + 2d2σ2
0/δ

2)/Bt}, c is a constant, and x∗
is the global maximizer of F on K.

Remark 2. By setting T = O(1/ε3), Bt = d3/ε2, and
δ = ε/

√
d, the error term (RHS) is at most O(ε). The

total number of evaluations is at most O(d3/ε5).

4 Discrete Submodular Maximization

In this section, we describe how Black-box Continuous
Greedy can be used to solve a discrete submodular max-
imization problem with a general matroid constraint,
i.e., maxS∈I f(S), where f is a monotone submodular
set function and I is a matroid.

For any monotone submodular set function f : 2Ω →
R≥0, its multilinear extension F : [0, 1]d → R≥0, de-
fined as

F (x) =
∑
S⊆Ω

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj), (14)

is monotone and DR-submodular [Calinescu et al.,
2011]. Here, d = |Ω| is the size of the ground set
Ω. Equivalently, we have F (x) = ES∼x[f(S)], where
S ∼ x means that the each element i ∈ Ω is included
in S with probability xi independently.

It can be shown that in lieu of solving the discrete
optimization problem one can solve the continuous op-
timization problem maxx∈K F (x), where K = conv{1I :
I ∈ I} is the matroid polytope [Calinescu et al., 2011].
This equivalence is obtained by showing that (i) the
optimal values of the two problems are the same, and
(ii) for any fractional vector x ∈ K we can deploy effi-
cient, lossless rounding procedures that produce a set
S ∈ I such that E[f(S)] ≥ F (x) (e.g., pipage rounding
[Ageev and Sviridenko, 2004, Calinescu et al., 2011]
and contention resolution [Chekuri et al., 2014]). So we
can view F̃ as the underlying function that we intend to
optimize, and invoke Black-box Continuous Greedy. As
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Algorithm 2 Discrete Black-box Greedy
1: Input: matroid constraint I, transformed con-

straint set K′ = Dδ ∩ (K− δ1) where K = conv{1I :
I ∈ I}, number of iterations T , radius δ, step size
ρt, batch size Bt, sample size St,i

2: Output: XT+1

3: x1 ← 0, ḡ0 ← 0,
4: for t = 1 to T do
5: Sample ut,1, . . . , ut,Bt i.i.d. from Sd−1

6: For i = 1 to Bt, let y+
t,i ← δ1 + xt +

δut,i, y
−
t,i ← δ1 + xt − δut,i, independently

sample subsets Y +
t,i and Y −t,i for St,i times

according to y+
t,i, y

−
t,i, get sampled subsets

Y +
t,i,j , Y

−
t,i,j , ∀j ∈ [St,i], evaluate the function

values f(Y +
t,i,j), f(Y −t,i,j), ∀j ∈ [St,i], and calcu-

late the averages f̄+
t,i ←

∑St,i
j=1 f(Y +

t,i,j)

St,i
, f̄−t,i ←∑St,i

j=1 f(Y −t,i,j)

St,i

7: gt ← 1
Bt

∑Bt
i=1

d
2δ (f̄+

t,i − f̄−t,i)ut,i
8: ḡt ← (1− ρt)ḡt−1 + ρtgt
9: vt ← arg maxv∈K′〈v, ḡt〉

10: xt+1 ← xt + vt
T

11: end for
12: Output XT+1 = round(xT+1 + δ1)

a result, we want that F is G-Lipschitz and L-smooth
as in Theorem 1. The following lemma shows these
properties are satisfied automatically if f is bounded.
Lemma 3. For a submodular set function f defined on
Ω with supX⊆Ω|f(X)|≤ M , its multilinear extension
F is 2M

√
d-Lipschitz and 4M

√
d(d− 1)-smooth.

We note that the bounds for Lipschitz and smooth-
ness parameters actually depend on the norms that we
consider. However, different norms are equivalent up
to a factor that may depend on the dimension. If we
consider another norm, some dimension factors may be
absorbed into the norm. Therefore, we only study the
Euclidean norm in Lemma 3.

We further note that computing the exact value of F is
difficult as it requires evaluating f over all the subsets
S ∈ Ω. However, one can construct an unbiased esti-
mate for the value F (x) by simply sampling a random
set S ∼ x and returning f(S) as the estimate. We
present our algorithm in detail in Algorithm 2, where
we have D = [0, 1]d, since F is defined on [0, 1]d, and
thus Dδ = [0, 1− 2δ]d. We state the theoretical result
formally in Theorem 3.

Theorem 3 (Proof in Appendix E). For
a monotone submodular set function f with
supX⊆Ω|f(X)|≤ M , if we set ρt = 2/(t +

3)2/3, St,i = l in Algorithm 2, then we have

(1− 1/e)f(X∗)− E[f(XT+1)]

≤ 3D1Q
1/2

T 1/3
+

2M
√
d(d− 1)D2

1

T

+ 2Mδ
√
d(1 + (

√
d+ 1)(1− 1/e)).

where D1 = diam(K′), Q = max{ 2d2M2( 1
lδ2

+8c)

Bt
+

96d(d−1)M2D2
1, 4

5/3dM2}, c is a constant, X∗ is
the global maximizer of f under matroid constraint
I.

Remark 3. By setting T = O(d3/ε3), Bt = 1, l =
d2/ε2, and δ = ε/d, the error term (RHS) is at most
O(ε). The total number of evaluations is at most
O(d5/ε5).

We note that in Algorithm 2, f̄+
t,i is the unbiased estima-

tion of F (y+
t,i), and the same holds for f̄−t,i and F (y−t,i).

As a result, we can analyze the algorithm under the
framework of stochastic continuous submodular maxi-
mization. By applying Theorem 2, Lemma 3, and the
facts E[|f̄+

t,i−F (y+
t,i)|2] ≤M2/St,i,E[|f̄−t,i−F (y−t,i)|2] ≤

M2/St,i directly, we can also attain Theorem 3.

5 Experiments

In this section, we will compare Black-box Continuous
Greedy (BCG) and Discrete Black-box Greedy (DBG)
with the following baselines:

(1) Zeroth-Order Gradient Ascent (ZGA) is the projected
gradient ascent algorithm equipped with the same two-
point gradient estimator as BCG uses. Therefore, it is
a zeroth-order projected algorithm.

(2) Stochastic Continuous Greedy (SCG) is the state-of-
the-art first-order algorithm for maximizing continuous
DR-submodular functions Mokhtari et al. [2018a,b].
Note that it is a projection-free algorithm.

(3) Gradient Ascent (GA) is the first-order projected
gradient ascent algorithm Hassani et al. [2017].

The stopping criterion for the algorithms is whenever a
given number of iterations is achieved. Moreover, the
batch sizes St,i in Algorithm 1 and Bt in Algorithm 2
are both 1. Therefore, in the experiments, DBG uses 1
query per iteration while SCG uses O(d) queries.

We perform four sets of experiments which are de-
scribed in detail in the following. The first two sets
of experiments are maximization of continuous DR-
submodular functions, which Black-box Continuous
Greedy is designed to solve. The last two are sub-
modular set maximization problems. We will apply
Discrete Black-box Greedy to solve these problems. The
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function values at different rounds and the execution
times are presented in Fig. 1 and Section 5. The first-
order algorithms (SCG and GA) are marked in orange,
and the zeroth-order algorithms are marked in blue.

Non-convex/non-concave Quadratic Program-
ming (NQP): In this set of experiments, we apply our
proposed algorithm and the baselines to the problem of
non-convex/non-concave quadratic programming. The
objective function is of the form F (x) = 1

2x
>Hx+b>x,

where x is a 100-dimensional vector, H is a 100-by-100
matrix, and every component of H is an i.i.d. ran-
dom variable whose distribution is equal to that of the
negated absolute value of a standard normal distribu-
tion. The constraints are

∑30
i=1 xi ≤ 30,

∑60
i=31 xi ≤ 20,

and
∑100
i=61 xi ≤ 20. To guarantee that the gradient

is non-negative, we set bt = −H>1. One can observe
from Fig. 1a that the function value that BCG attains
is only slightly lower than that of the first-order algo-
rithm SCG. The final function value that BCG attains
is similar to that of ZGA.

Topic Summarization: Next, we consider the topic
summarization problem [El-Arini et al., 2009, Yue and
Guestrin, 2011], which is to maximize the probabilistic
coverage of selected articles on news topics. Each news
article is characterized by its topic distribution, which
is obtained by applying latent Dirichlet allocation to
the corpus of Reuters-21578, Distribution 1.0. The
number of topics is set to 10. We will choose from 120
news articles. The probabilistic coverage of a subset
of news articles (denoted by X) is defined by f(X) =
1
10

∑10
j=1[1−∏a∈X(1− pa(j))], where pa(·) is the topic

distribution of article a. The multilinear extension
function of f is F (x) = 1

10

∑10
j=1[1−∏a∈Ω(1−pa(j)xa)],

where x ∈ [0, 1]120 Iyer et al. [2014]. The constraint
is
∑40
i=1 xi ≤ 25,

∑80
i=41 xi ≤ 30,

∑120
i=81 xi ≤ 35. It

can be observed from Fig. 1b that the proposed BCG
algorithm achieves the same function value as the first-
ordered algorithm SCG and outperforms the other two.
As shown in Fig. 2a, BCG is the most efficient method.
The two projection-free algorithms BCG and SCG run
faster than the projected methods ZGA and GA. We
will elaborate on the running time later in this section.

Active Set Selection We study the active set selec-
tion problem that arises in Gaussian process regres-
sion Mirzasoleiman et al. [2013]. We use the Parkin-
sons Telemonitoring dataset, which is composed of
biomedical voice measurements from people with early-
stage Parkinson’s disease [Tsanas et al., 2010]. Let
X ∈ Rn×d denote the data matrix. Each row X[i, :]
is a voice recording while each column X[:, j] denotes
an attribute. The covariance matrix Σ is defined by
Σij = exp(−‖X[:, i] −X[:, j]‖2)/h2, where h is set to
0.75. The objective function of the active set selection

problem is defined by f(S) = log det(I + ΣS,S), where
S ⊆ [d] and ΣS,S is the principal submatrix indexed
by S. The total number of 22 attributes are parti-
tioned into 5 disjoint subsets with sizes 4, 4, 4, 5 and
5, respectively. The problem is subject to a partition
matroid requiring that at most one attribute should be
active within each subset. Since this is a submodular
set maximization problem, in order to evaluate the
gradient (i.e., obtain an unbiased estimate of gradi-
ent) required by first-order algorithms SCG and GA,
it needs 2d function value queries. To be precise, the
i-th component of gradient is ES∼x[f(S ∪ {i})− f(S)]
and requires two function value queries. It can be ob-
served from Fig. 1c that DBG outperforms the other
zeroth-order algorithm ZGA. Although its performance
is slightly worse than the two first-order algorithms
SCG and GA, it require significantly less number of
function value queries than the other two first-order
methods (as discussed above).

Influence Maximization In the influence maximiza-
tion problem, we assume that every node in the network
is able to influence all of its one-hop neighbors. The ob-
jective of influence maximization is to select a subset of
nodes in the network, called the seed set (and denoted
by S), so that the total number of influenced nodes,
including the seed nodes, is maximized. We choose
the social network of Zachary’s karate club Zachary
[1977] in this study. The subjects in this social net-
work are partitioned into three disjoint groups, whose
sizes are 10, 14, and 10 respectively. The chosen seed
nodes should be subject to a partition matroid; i.e., We
will select at most two subjects from each of the three
groups. Note that this problem is also a submodular
set maximization problem. Similar to the situation in
the active set selection problem, first-order algorithms
need function value queries to obtain an unbiased es-
timate of gradient. We can observe from Fig. 1d that
DBG attains a better influence coverage than the other
zeroth-order algorithm ZGA. Again, even though SCG
and GA achieve a slightly better coverage, due to their
first-order nature, they require a significantly larger
number of function value queries.

Running Time The running times of the our pro-
posed algorithms and the baselines are presented in
Section 5 for the above-mentioned experimental set-
ups. There are two main conclusions. First, the two
projection-based algorithms (ZGA and GA) require
significantly higher time complexity compared to the
projection-free algorithms (BCG, DBG, and SCG),
as the projection-based algorithms require solving
quadratic optimization problems whereas projection-
free ones require solving linear optimization problems
which can be solved more efficiently. Second, when we
compare first-order and zeroth-order algorithms, we
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Figure 1: Function value vs. number of oracle queries. Note that every chart has dual horizontal axes. Orange
lines use the orange horizontal axes above while blue lines use the blue ones below.
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Figure 2: Relative running time normalized with respect to BCG (for continuous DR-submodular maximization in
the first two sets of experiments) and DBG (for submodular set maximization in the last two sets of experiments).

can observe that zeroth-order algorithms (BCG, DBG,
and ZGA) run faster than their first-order counterparts
(SCG and GA).

Summary The above experiment results show the
following major advantages of our method over the
baselines including SCG and ZGA.

1. BCG/DBG is at least twice faster than SCG and
ZGA in all tasks in terms of running time (Figs. 2a
to 2d)

2. DBG requires remarkably fewer function evalua-
tions in the discrete setting (Figs. 1c and 1d)

3. In addition to saving function evaluations,
BCG/DBG achieves an objective function value
comparable to that of the first-order baselines SCG
and GA.

Furthermore, we note that the number of first-order
queries required by SCG is only half the number re-
quired by BCG. However, as is shown in Figs. 2a and 2b,
BCG runs significantly faster than SCG since a zeroth-
order evaluation is faster than a first-order one.

In the topic summarization task (Fig. 1b), BCG ex-
hibits a similar performance to that of the first-order
baselines SCG and GA, in terms of the attained
objective function value. In the other three tasks,
BCG/DBG runs notably faster while achieving an only
slightly inferior function value. Therefore, BCG/DBG

is particularly preferable in a large-scale machine learn-
ing task and an application where the total number of
function evaluations or the running time is subject to
a budget.

6 Conclusion

In this paper, we presented Black-box Continuous
Greedy, a derivative-free and projection-free algo-
rithm for maximizing a monotone and continuous
DR-submodular function subject to a general convex
body constraint. We showed that Black-box Continuous
Greedy achieves the tight [(1−1/e)OPT−ε] approxima-
tion guarantee with O(d/ε3) function evaluations. We
then extended the algorithm to the stochastic continu-
ous setting and the discrete submodular maximization
problem. Our experiments on both synthetic and real
data validated the performance of our proposed al-
gorithms. In particular, we observed that Black-box
Continuous Greedy practically achieves the same utility
as Continuous Greedy while being way more efficient in
terms of number of function evaluations.
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