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Abstract

One of the beauties of the projected gradi-
ent descent method lies in its rather simple
mechanism and yet stable behavior with in-
exact, stochastic gradients, which has led to
its wide-spread use in many machine learning
applications. However, once we replace the
projection operator with a simpler linear pro-
gram, as is done in the Frank-Wolfe method,
both simplicity and stability take a serious hit.
The aim of this paper is to bring them back
without sacrificing the efficiency. In this pa-
per, we propose the first one-sample stochas-
tic Frank-Wolfe algorithm, called 1-SFW, that
avoids the need to carefully tune the batch
size, step size, learning rate, and other compli-
cated hyper parameters. In particular, 1-SFW
achieves the best known convergence rate of
O(1/€?) for reaching an e-suboptimal solu-
tion in the stochastic convex setting, and a
(1—1/e)—e approximate solution for a stochas-
tic monotone DR~submodular maximization
problem. Moreover, in a general non-convex
setting, 1-SFW finds an e-first-order stationary
point after at most O(1/€®) iterations, achiev-
ing the current best known convergence rate.
All of this is possible by designing a novel
unbiased momentum estimator that governs
the stability of the optimization process while
using a single sample at each iteration.

1 Introduction

Projection-free methods, also known as conditional gra-
dient methods or Frank-Wolfe (FW) methods, have
been widely used for solving constrained optimization
problems [Frank and Wolfe, 1956, Jaggi, 2013, Lacoste-
Julien and Jaggi, 2015|. Indeed, extending such meth-
ods to the stochastic setting is a challenging task as it
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is known that FW-type methods are highly sensitive to
stochasticity in gradient computation [Hazan and Kale,
2012|. To resolve this issue several stochastic variants
of FW methods have been studied in the literature
[Hazan and Kale, 2012, Hazan and Luo, 2016, Reddi
et al., 2016, Lan and Zhou, 2016, Braun et al., 2017,
Hassani et al., 2019, Shen et al., 2019a, Yurtsever et al.,
2019]. In all these stochastic methods, the basic idea
is to provide an accurate estimate of the gradient by
using some variance-reduction techniques that typically
rely on large mini-batches of samples where the size
grows with the number of iterations or is reciprocal of
the desired accuracy. A growing mini-batch, however,
is undesirable in practice as requiring a large collec-
tion of samples per iteration may easily prolong the
duration of each iterate without updating optimiza-
tion parameters frequently enough Defazio and Bottou
[2018]. A notable exception to this trend is the the
work of Mokhtari et al. [2018b] which employs a mo-
mentum variance-reduction technique requiring only
one sample per iteration; however, this method suffers
from suboptimal convergence rates. At the heart of
this paper is the answer to the following question:

Can we achieve the best known complezity
bounds for a stochastic variant of Frank- Wolfe
while using a single stochastic sample per it-
eration?

We show that the answer to the above question is
positive and present the first projection-free method
that requires only one sample per iteration to update
the optimization variable and yet achieves the best
known complexity bounds for convex, nonconvex, and
monotone DR-submodular settings.

More formally, we focus on a general non-oblivious
constrained stochastic optimization problem

f(nellrcl F(X) £ gnel% IEZNP(Z;X) [F(X; Z)]7 (1)
where x € R? is the optimization variable, K C R? is
the convex constraint set, and the objective function
F : R? — R is defined as the expectation over a set
of functions F. The function F : R x Z — R is
determined by x and a random variable z € Z with
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Table 1: Convergence guarantees of stochastic Frank-Wolfe methods for constrained convex minimization,
non-convex minimization, and stochastic monotone continuous DR-submodular function maximization

function Ref. batch | complexity | non-oblivious utility
Convex [Hazan and Kale, 2012] | O(1/€?) O(1/e*) X -
Convex [Hazan and Luo, 2016] | O(1/€?) O(1/€3) X -
Convex [Mokhtari et al., 2018b] 1 O(1/€3) X -
Convex [Yurtsever et al., 2019] | O(1/e) O(1/€?) X -
Convex [Hassani et al., 2019] O(1/e) O(1/€?) v -
Convex This paper 1 O(1/e?) v -
Non-convex | |[Hazan and Luo, 2016] | O(1/€?) O(1/e*) X -
Non-convex | [Hazan and Luo, 2016] [O(1/e*/?)| O(1/€'9/3) X -
Non-convex [Shen et al., 2019a] O(1/e) O(1/€%) X -
Non-convex | [Yurtsever et al., 2019] | O(1/e) O(1/€e3) X -
Non-convex [Hassani et al., 2019] O(1/e) O(1/e3) v -
Non-convex This paper 1 O(1/€e3) v -
Submodular | [Hassani et al., 2017] 1 O(1/€%) X (1/2)OPT—e¢
Submodular | [Mokhtari et al., 2018b] 1 O(1/€%) X (1-1/e)OPT—e¢
Submodular | [Hassani et al., 2019| O(1/e) O(1/€?) v (1-1/e)OPT—e
Submodular This paper 1 O(1/€?) v (1-1/e)OPT—e¢

distribution z ~ p(z;x). We refer to problem (1) as a
non-oblivious stochastic optimization problem as the
distribution of the random variable z depends on the
choice of x. When the distribution p is independent of x,
we are in the standard oblivious stochastic optimization
regime where the goal is to solve

min F(0) £ minE, o [Foa)l. (2)
Hence, the oblivious problem (2) can be considered as
a special case of the non-oblivious problem (1). Note
that non-oblivious stochastic optimization has broad
applications in machine learning, including multi-linear
extension of a discrete submodular function [Hassani
et al., 2019], MAP inference in determinantal point
processes (DPPs) [Kulesza et al., 2012], and reinforce-
ment learning [Du et al., 2017, Sutton and Barto, 2018,

Papini et al., 2018, Shen et al., 2019b].

Our goal is to propose an efficient FW-type method
for the non-oblivious optimization problem (1). Here,
the efficiency is measured by the number of stochas-
tic oracle queries, i.e., the sample complexity of z.
As we mentioned earlier, among the stochastic vari-
ants of FW, the momentum stochastic Frank-Wolfe
method proposed in [Mokhtari et al., 2018a,b] is the
only method that requires only one sample per iteration.
However, the stochastic oracle complexity of this algo-
rithm is suboptimal, i.e., O(1/€3) stochastic queries are
required for both convex minimization and monotone
DR-submodular maximization problems. This subopti-
mal rate is due to the fact that the gradient estimator
in momentum FW is biased and it is necessary to use a
more conservative averaging parameter to control the

effect of the bias term.

To resolve this issue, we propose a one-sample stochas-
tic Frank-Wolfe method, called 1-SFW, which modifies
the gradient approximation in momentum FW to en-
sure that the resulting gradient estimation is an unbi-
ased estimator of the gradient (Section 3). This goal
has been achieved by adding an unbiased estimator of
the gradient variation A; = VF(x;) — VF(x;_1) to
the gradient approximation vector (Section 3.1). We
later explain why coming up with an unbiased esti-
mator of the gradient difference A; could be a chal-
lenging task in the non-oblivious setting and show
how we overcome this difficulty (Section 3.2). We also
characterize the convergence guarantees of 1-SFW for
convex minimization, nonconvex minimization, and
monotone DR-submodular maximization (Section 4).
In particular, we show that 1-SFW achieves the op-
timal convergence rate of O(1/¢?) for reaching an e-
suboptimal solution in the stochastic convex setting,
and a (1 — 1/e) — € approximate solution for a stochas-
tic monotone DR~submodular maximization problem.
Moreover, in a general non-convex setting, 1-SFW finds
an e-first-order stationary point after at most O(1/€%)
iterations, achieving the current best known conver-
gence rate. Finally, we study the oblivious problem in
(2) and show that our proposed 1-SFW method becomes
significantly simpler and the corresponding theoretical
results hold under less strict assumptions. For example,
in the non-oblivious setting, we require second-order
information as the nature of the problems requires;
while in the oblivious setting, we only need access
to first-order information (Theorem 4). We further
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highlight the similarities between the variance reduced
method in [Cutkosky and Orabona, 2019] also known
as STORM and the oblivious variant of 1-SFW. Indeed,
our algorithm has been originally inspired by STORM.

Theoretical results of 1-SFW and other related works
are summarized in Table 1. The complexity shows the
required number of stochastic queries to obtain an e-
suboptimal solution in convex case; an e-first order sta-
tionary point in non-convex case; and an a-OPT —e util-
ity in monotone DR~submodular case, where o = 1/2
or (1—1/e). These results show that 1-SFW attains the
best known complexity bounds in all the considered
settings, while requiring only one single stochastic ora-
cle query per iteration and avoiding large batch sizes
altogether. Even though the focus of this paper is the
fundamental theory behind 1-SFW, we provide some
empirical evidence in Appendix A.

2 Related Work

As a projection-free algorithm, Frank-Wolfe method
[Frank and Wolfe, 1956] has been studied for both
convex optimization [Jaggi, 2013, Lacoste-Julien and
Jaggi, 2015, Garber and Hazan, 2015, Hazan and Luo,
2016, Mokhtari et al., 2018b] and non-convex optimiza-
tion problems [Lacoste-Julien, 2016, Reddi et al., 2016,
Mokhtari et al., 2018c, Shen et al., 2019b, Hassani et al.,
2019]. In large-scale settings, distributed FW methods
were proposed to solve specific problems, including op-
timization under block-separable constraint set [Wang
et al., 2016], and learning low-rank matrices [Zheng
et al., 2018]. The communication-efficient distributed
FW variants were proposed for specific sparse learning
problems in Bellet et al. [2015], Lafond et al. [2016],
and for general constrained optimization problems in
[Zhang et al., 2019]. Zeroth-order FW methods were
studied in [Balasubramanian and Ghadimi, 2018, Sahu
et al., 2018, Chen et al., 2019b].

Several works have studied different ideas for reduc-
ing variance in stochastic cases. The SVRG method
was proposed by Johnson and Zhang [2013] for the
convex setting and then extended to the nonconvex
setting in [Allen-Zhu and Hazan, 2016, Reddi et al.,
2016, Zhou et al., 2018]. The StochAstic Recursive
grAdient algoritHm (SARAH) was studied in [Nguyen
et al., 2017a,b]. Then as a variant of SARAH, the
Stochastic Path-Integrated Differential Estimator (SPI-
DER) technique was proposed by Fang et al. [2018].
Based on SPIDER, various algorithms for convex and
non-convex optimization problems have been studied
[Shen et al., 2019a, Hassani et al., 2019, Yurtsever et al.,
2019].

In this paper, we also consider optimizing an important
subclass of non-convex objectives, known as continuous

DR-submodular functions that generalize the diminish-
ing returns property to the continuous domains. Con-
tinuous DR~submodular functions can be minimized
exactly [Bach, 2015, Staib and Jegelka, 2017], and
maximized approximately [Bian et al., 2017b,a, Has-
sani et al., 2017, Mokhtari et al., 2018a, Niazadeh
et al., 2018, Hassani et al., 2019, Chen et al., 2019a].
They have interesting applications in machine learn-
ing, including experimental design [Chen et al., 2018],
MAP inference in determinantal point processes (DPPs)
[Kulesza et al., 2012|, and mean-field inference in prob-
abilistic models [Bian et al., 2019].

3 One Sample SFW Algorithm

3.1 Stochastic gradient approximation

In our work, we build on the momentum variance reduc-
tion approach proposed in [Mokhtari et al., 2018a,b] to
reduce the variance of the one-sample method. To be
more precise, in the momentum FW method [Mokhtari
et al., 2018a], we update the gradient approximation
d; at round t as follows

di=(1—-p)de—1 + ptVF(Xt§ Z¢), (3)

where p; is the averaging parameter and VF(xy;z;) is
a one-sample estimation of the gradient. Since d; is a
weighted average of the previous gradient estimation
d;_1 and the newly updated stochastic gradient, it has
a lower variance comparing to one-sample estimation
VF(x¢;2;). In particular, it was shown by Mokhtari
et al. [2018a] that the variance of gradient approxi-
mation in (3) approaches zero at a sublinear rate of
O(t~2/3). The momentum approach reduces the vari-
ance of gradient approximation, but it leads to a biased
gradient approximation, i.e., d; is not an unbiased es-
timator of the gradient VF(x;). Consequently, it is
necessary to use a conservative averaging parameter
p¢ for momentum FW to control the effect of the bias
term which leads to a sublinear error rate of O(t~1/3)
and overall complexity of O(1/€?).

To resolve this issue and come up with a faster momen-
tum based FW method for the non-oblivious problem
in (1), we slightly modify the gradient estimation in (3)
to ensure that the resulting gradient estimation is an
unbiased estimator of the gradient V F(x;). Specifically,
we add the term A, which is an unbiased estimator
of the gradient variation Ay = VF(x;) — VF(x;_1), to
d;_;. This modification leads to the following gradient
approximation

d; = (1= p)(dio1 + D) + pVE(xp52).  (4)

To verify that d; is an unbiased estimator of VF(x;)
we can use a simple induction argument. Assuming
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that d;_1 is an unbiased estimator of V F(x;) and At is
an unbiased estimator of VF(x;) — VF (x¢—1) we have
E[d)] = (1— po)(VF(xi—1) + (VF(x;) = VF(x;-1))) +
ptVF(x¢) = VF(x:). Hence, the gradient approx-
imation in (4) leads to an unbiased approximation
of the gradient. Let us now explain how to com-
pute an unbiased estimator of the gradient variation
A; = VF(x:) — VF(x¢_1) for a non-oblivious setting.

3.2 Gradient variation estimation

The most natural approach for estimating the gradient
variation Ay = VF(x;) — VF(x;_1) using only one
sample z is computing the difference of two consecu-
tive stochastic gradients, i.e., VF(x;;z) — VEF(x,_1; ).
However, this approach leads to an unbiased estimator
of the gradient variation A; only in the oblivious set-
ting where p(z) is independent of the choice of x, and
would introduce bias in the more general non-oblivious
case. To better highlight this issue, assume that z
is sampled according to distribution p(z;x;). Note
that VF(x;;2) is an unbiased estimator of VF(x;),
i.e., E[VF(xy;2)] = VF(x;), however, VF(x;_1;2) is
not an unbiased estimator of VF(x;_1) since p(z; x;_1)
may be different from p(z; x;).

To circumvent this obstacle, an unbiased estimator
of A; was introduced in Hassani et al. [2019]. To
explain their proposal for approximating the gradient
variation using only one sample, note that the difference
A; =VF(x:) — VF(x¢—1) can be written as

Ay = /0 VF(x¢(a))(x: — x¢—1)da

= {/01 V2F(Xt(a))da:| (x¢ —x¢-1),

where x;(a) = ax;+(1—a)x¢—; for a € [0,1]. According
to this expression, one can find an unbiased estimator of
fol V2F (x¢(a))da and use its product with (x; — x;_1)
to find an unbiased estimator of A;. It can be easily
verified that V2F(x;(a))(x; — x;—1) is an unbiased
estimator of A, if a is chosen from [0, 1] uniformly at
random. Therefore, all we need is to come up with an
unbiased estimator of the Hessian V2F.

By basic calculus, we can show that Vx € K and z with
distribution p(z;x), the matrix V2F(x;z) defined as
V?F(x;2) = F(x;2)[V log p(z; x)][V log p(z; x)] "
+ V?F(x;2) + [VE(x;2)][V log p(z; x)] T
+ F(x;2)V?log p(z; x)
+ [Viog p(z;x)|[VF(x;2)] (5)

is an unbiased estimator of V2F(x). Note that the
above expression requires only one sample of z. As a

result, we can construct A; as an unbiased estimator
of A; using only one sample

At £ @%(Xt - thl)y (6)

where V7 = V2F(x;(a);z:(a)), and z;(a) follows the
distribution p(z:(a);x:(a)). By using this procedure,
we can indeed compute the vector d; in (4) with only
one sample of z per iteration. Through a completely
different analysis from the ones in [Mokhtari et al.,
2018a, Hassani et al., 2019], we show that the modified
d, is still a good gradient estimation (Lemma 2), which
allows the establishment of the best known stochastic
oracle complexity for our proposed algorithm.

Another issue of this scheme is that in (5) and (6),
we need to calculate V2F (x;(a); z¢(a))(x; — x;_1) and
V2 log p(x4(a); zi(a))(x; — x¢—1), where computation
of Hessian is involved. When exact Hessian is not
accessible, however, we can resort to an approximation
by the difference of two gradients. Precisely, for any
function v : R? — R, any vector u € R? with |Ju||< D,
and some § > 0 small enough, we have

N X+ du) — -6
¢(6;¢):V1/J( + u)%vw(x u)

~ V2 (x)u.

If we assume that v is Lo-second-order smooth, i.e.,
V29 (x) = V2 (y))[|< Lafx —yll, Vx,y € R?, we can
upper bound the approximation error quantitatively:

IV2p(x)u = ¢(6; )| = [V (x)u - V2 (x)u)|
< D%Ly6, (7)

where X is obtained by the mean-value theorem. In
other words, the approximation error can be sufficiently
small for proper §. So we can estimate A; by

Ay = F(x;2)[Vlog p(z; x)|[V log p(z; x)] "y
+¢(0;, F(x;2)) + [VE(x;2)] [V 1og p(z; x)] " wy
+ F(x;2)$(8, log p(2, %))
+ [Vlog p(z; x)][VF(x;2)] "uy, (8)

where u; = x; — X;_1, X, z,0; are chosen appropriately.
We also note that since computation of gradient dif-
ference has a computational complexity of O(d), while
that for Hessian is O(d?), this approximation strategy
can also help to accelerate the optimization process.

3.3 Variable update

Once the gradient approximation d; is computed, we
can follow the update of conditional gradient methods
for computing the iterate x;. In this section, we intro-
duce two different schemes for updating the iterates
depending on the problem that we aim to solve.
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Algorithm 1 One-Sample SFW (1-SFW)

Input: Step sizes p; € (0,1),n; € (0,1), initial point
x1 € K, total number of iterations T'
Output: xp;1 or x,, where x, is chosen from
{x1,X2, -+, x7} uniformly at random
1: fort=1,2,...,7T do
if t =1 then
Sample a point z; according to p(z1,x1)
Compute d; = Vﬁ(xl; Z1)
else
Choose a uniformly at random from [0, 1]
Compute x:(a) = ax; + (1 — a)xs—1
Sample a point z; according to p(z;x:(a))
Compute A, either by VZ = V2F(x,(a); z;)
based on (5) and A, = VZ(x;, — x,_,) (Exact Hes-
sian Option); or by Eq. (8) with x = x¢(a),z = z;
(Gradient Difference Option) B
10: dt = (1 - pt)(dt—l + At) + ptVF(Xt,Zt)
11: end if
12: (non-)convex min.: Update x;1 based on (9)
13: DR-sub. max.: Update x;41 based on (10)
14: end for

For minimizing a general (non-)convex function us-
ing one sample stochastic FW, we update the iterates
according to

Xep1 = X + (Ve — Xy), (9)

where v; = argmin, ¢, c{v'd;}. In this case, we find
the direction that minimizes the inner product with the
current gradient approximation d; over the constraint
set I, and update the variable x;y1 by descending in
the direction of v; — x; with step size 7.

For monotone DR-submodular maximization, the up-
date rule is slightly different, and a stochastic variant of
the continuous greedy method [Vondrak, 2008] can be
used. Using the same stochastic estimator d; as in the
(non-)convex case, the update rule for DR-Submodular
optimization is given by

Xip1 = X + MV, (10)

where v; = argmax, o {v'd;},n = 1/T,T is the total
number of iterations. Hence, if we start from the origin,
after T' steps the outcome will be a feasible point as it
can be written as the average of T feasible points.

The description of our proposed 1-SFW method for
smooth (non-)convex minimization as well as monotone
DR-submodular maximization is outlined in (1).

4 Main Results

Before presenting the convergence results of our algo-
rithm, we first state our assumptions on the constraint

set K, the stochastic function F, and the distribution
p(z;x).

Assumption 1. The constraint set K C R s compact
with diameter D = max, yex ||z — y||, and radius R =
maxgex||x]-

Assumption 2. The stochastic function ~F(x;z) has
uniformly bounded function value, i.e., |F(x;z)|< B
forallxe K,z e 2.

Assumption 3. The stochastic gradient VF has uni-
formly bound norm: |VF(x;2)||< Gz, Vx € K,Vz € Z.
The norm of the gradient of logp has bounded fourth-
order moment: B, (5x) ||V log p(z; x)|*< G We also
define G = max{Gp,Gp}.

Assumption 4. The stochastic Hessian V2F has
uniformly bounded spectral norm: |V2F(x;z)|<
Lz Vx € K,Vz € Z. The spectral norm of the
Hessian of logp has bounded second-order moment:
Epmp(zin ||V log p(2; x)|2< L2, We also define L =
max{Lz, Ly}.

We note that in Assumptions 2-4, we assume that the
stochastic function F has uniformly bounded function
value, gradient norm, and second-order differential. We
also note that all these assumptions are necessary, and
not restrictive. We elaborate on the reasons as below:

e Assumption 1: The compactness of the feasible
set has been assumed in all projection-free papers.
It is indeed needed for the convergence of the
linear optimization subroutine in the Frank-Wolfe
method, otherwise, v; in (9) can be unbounded.

e Assumptions 3 and 4 about F: Bounded gradient
and Hessian of the stochastic function F are the
customary assumptions for all the variance reduc-
tion methods when we solve the problem over a
compact set. The boundedness of the function
values (Assumption 2) is a direct implication of
bounded gradient and compact constraint set.

e Assumptions 3 and 4 about the distribution p: We
emphasize these assumptions hold trivially for the
oblivious setting (2), where p is not a function
of the variable x. For the non-oblivious case (1),
consider the reinforcement learning as an example
where p is the distribution of a trajectory given
the policy parameter x. It can be verified that for
common Gaussian policy with bounded mean and
variance, the smoothness of the parameterization
of the policy(e.g., neural network with smooth ac-
tivation function) can imply Assumptions 3 and 4.

Now with these assumptions, we can establish an upper
bound for the second-order moment of the spectral
norm of the Hessian estimator V2F(x;z) in (5).
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Lemma 1. [Lemma 7.1 of [Hassani et al., 2019]] Un-
der Assumptions 2-4, for all x € K, we have

Eorp(ano [[| V2 (x:2)[|]
<4B?G* +16G* + 4L + 4B%*[? 2 L.

Note that the result in Lemma (1) also implies the
L-smoothness of F', since

IV2EX)[]” = | Epmpan [V2F(x; 2)] |2
< Ezr\/p(z;x)[”sz(X;Z)HZ} < L2'

In other words, the conditions in Assumptions 2-4
implicitly imply that the objective function F' is L-
smooth.

To establish the convergence guarantees for our pro-
posed 1-SFW algorithm, the key step is to derive an
upper bound on the errors of the estimated gradients.
To do so, we prove the following lemma, which pro-
vides the required upper bounds in different settings
of parameters.

Lemma 2. Consider the gradient approximation d;
defined in (4). Under Assumptions 1-4, if we run
Algorithm 1 with Ezxact Hessian Option in Line 9, and
with parameters py = (t —1)7* (Vt > 2), and n <
t=* (Vt > 1 and for some a € (0,1]), then the gradient
estimation d; satisfies

E[|VF(x:) —de|*] < Ct™e, (11)

- 4
where C:max{2(22§+€fa)2, [272,201%[} , [2D(E+L)]4}.
Lemma (2) shows that with an appropriate parameter
setting, the gradient error converges to zero at a rate of
O(t~*). With this unifying upper bound, we can obtain
the convergence rates of our algorithm for different
kinds of objective functions.

If in the update of 1-SFW we use the Gradient Difference
Option in Line 9 of Algorithm 1 to estimate A, as
pointed out above, we need one further assumption on
second-order smoothness of the functions F' and log p.

Assumption 5. The stochastic function F is uni-
formly L, - second-order smooth: |V2F(x;z) —
V2E(y;2)||< Ly pllx — yll, Vx,y € K,Vz € Z. The
log probability log p(z; x) is uniformly Lo p-second-order
smooth: [V logp(z;x) — V2 logp(z;y)[|< Laplx —
vll, Vx,y € K,Vz € Z. We also define Ly =
max{L, z, Lo}

We note that under (5), the approximation bound in (7)
holds for both F and logp. So for 8, sufficiently small,
the error introduced by the Hessian approximation can
be ignored. Thus similar upper bound for errors of
estimated gradient still holds.

Lemma 3. Consider the gradient approximation d;
defined in (4). Under Assumptions 1-5, if we run Algo-
rithm 1 with Gradient Difference Option in Line 9, and

with parameters py = (t—1)"%,6; = % (Vt > 2),
and e <t~ (Vt > 1 and for some a € (0,1]), then

the gradient estimation d; satisfies

E[|VE(x:) - de|”] < Ct7, (12)

_ , 4 _
where C' = max {8(D2L22;G;LGDL)7 (272720!%) ,(4D(L+
L)4 }

Lemma 3 shows that with Gradient Difference Optionin
Line 9 of Algorithm 1, the error of estimated gradient
has the same order of convergence rate as that with
Exact Hessian Option. So in the following three sub-
sections, we will present the theoretical results of our
proposed 1-SFW algorithm with Exact Hessian Option,
for convex minimization, non-convex minimization, and
monoton DR-submodular maximization, respectively.
The results of Gradient Difference Option only differ
in constant factors.

4.1 Convex Minimization

For convex minimization problems, to obtain an e-
suboptimal solution, (1) only requires at most O(1/€?)
stochastic oracle queries, and O(1/€?) linear optimiza-
tion oracle calls. Or precisely, we have

Theorem 1 (Convex). Consider the 1-SFW method
outlined in Algorithm 1 with FEzact Hessian Option in
Line 9. Further, suppose the conditions in Assump-
tions 1-4 hold, and assume that F is convex on K. If
we set the algorithm parameters as py = (t — 1)~ and
ne = t~1, then the output X741 € K is feasible and
satisfies

E[F(x74+1) — F(x¥)] < 2\\//>CTD n LD (12;- lnT)7

where C = max{4(2G + DL)?,256,[2D(L + L)]*}, and
x* is a minimizer of F' on K.

The result in Theorem 1 shows that the proposed one
sample stochastic Frank-Wolfe method, in the convex
setting, has an overall complexity of O(1/¢?) for finding
an e-suboptimal solution. Note that to prove this claim
we used the result in Lemma 2 for the case that a =1,
i.e., the variance of gradient approximation converges
to zero at a rate of O(1/t). We also highlight that
1-SFW is parameter-free, as the learning rate 7; and
the momentum parameter p; do not depend on the
parameters of the problem.
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4.2 Non-Convex Minimization

For non-convex minimization problems, showing that
the gradient norm approaches zero, i.e., |VF(x:)||—
0, implies convergence to a stationary point in the
unconstrained setting. Thus, it is usually used as a
measure for convergence. In the constrained setting,
however, the norm of gradient is not a proper measure
for defining stationarity and we instead use the Frank-
Wolfe Gap [Jaggi, 2013, Lacoste-Julien, 2016], which is
defined by
G(x) = max(v — x, —VF(x)).
vek

We note that by definition, G(x) > 0,Vx € K. If some
point x € K satisfies G(x) = 0, then it is a first-order
stationary point.

In the following theorem, we formally prove the number
of iterations required for one sample stochastic FW to
find an e-first-order stationary point in expectation,
i.e., a point x that satisfies E[G(x)] <.

Theorem 2 (Non-Convex). Consider the 1-SFW
method outlined in Algorithm 1 with Ezxact Hessian
Option in Line 9. Further, suppose the conditions in
Assumptions 1-4 hold. If we set the algorithm param-
eters as py = (t —1)72/3 and n, = T=2/3, then the
output x, € K is feasible and satisfies

2B +3VCD/2 LD?
T1/3 27T2/3

E[G(x0)] <

Wil

2
Y 2
5-2 3

G T\2
where C:max{2(2 D2) ) L 2
i_o
3

]4, [2D(E+L)}4}.

We remark that Theorem (2) shows that Algorithm 1
finds an e-first order stationary points after at most
O(1/€%) iterations, while uses exactly one stochastic
gradient per iteration. Note that to obtain the best
performance guarantee in Theorem (2), we used the
result of Lemma 2 for the case that a = 2/3, i.e., the
variance of gradient approximation converges to zero
at a rate of O(T~2/3). Again, we highlight that 1-SFW
is a parameter-free algorithm.

4.3 Monotone DR-Submodular
Maximization

In this section, we focus on the convergence properties
of one-sample stochastic Frank-Wolfe or one-sample
stochastic Continuous Greedy for solving a monotone
DR-submodular maximization problem. Consider a
differentiable function F' : X — R>(, where the domain
X & ngl X;, and each X; is a compact subset of
R>o. We say F is continuous DR-submodular if for all
x,y € X that satisfy x <y and every i € {1,2,---,d},

we have g—g(x) > g—i(y).

An important property of continuous DR-submodular
function is the concavity along the non-negative di-
rections [Calinescu et al., 2011, Bian et al., 2017b]:
for all x,y € X such that x <y, we have F(y) <
F(x)+ (VF(x),y —x). We say I is monotone if for
all x,y € X such that x <y, we have F(x) < F(y).

For continuous DR-submodular maximization, it has
been shown that approximated solution within a factor
of (1 — e~ + ¢) can not be obtained in polynomial
time [Bian et al., 2017b]. To achieve a (1—e~1)OPT —
€ approximation guarantee, 1-SFW requires at most
O(1/€?) stochastic oracle queries, and O(1/¢?) linear
optimization oracle calls, which are the lower bounds
of the complexity established in Hassani et al. [2019].

Theorem 3 (Submodular). Consider the 1-SFW
method outlined in Algorithm 1 with Ezxact Hessian
Option in Line 9 for mazimizing DR-Submodular func-
tions. Further, suppose the conditions in Assump-
tions 1-4 hold, and further assume that F is momno-
tone and continuous DR-submodular on the positive
orthant. If we set the algorithm parameters as x, =
0,pt = (t— 1)L, ny = T71, then the output X711 € K
is feasible and satisfies

ARVC  LR?
TV 2T
where C = max{4(2G + RL)?,256, [2R(L + L)]*}.

E[F(x741)] = (1 — e H)F(x") —

Finally, we note that Algorithm 1 can also be used
to solve stochastic discrete submodular maximization
[Karimi et al., 2017, Mokhtari et al., 2018a]. Precisely,
we can apply Algorithm 1 on the multilinear extension
of the discrete submodular functions, and round the
output to a feasible set by lossless rounding schemes like
pipage rounding [Calinescu et al., 2011] and contention
resolution method [Chekuri et al., 2014].

5 Oblivious Setting

In this section, we specifically study the oblivious prob-
lem introduced in (2) which is a special case of the
non-oblivious problem defined in (1). In particular,
we show that our proposed 1-SFW method becomes
significantly simpler and the corresponding theoretical
results hold under less strict assumptions.

5.1 Algorithm

As we discussed in Section 3, a major challenge that
we face for designing a variance reduced Frank-Wolfe
method for the non-oblivious setting is computing an
unbiased estimator of the gradient variation A; =
VF(x:) — VF(x¢—1). This is indeed not problematic
in the oblivious setting, as in this case z ~ p(z) is in-
dependent of x and therefore VF (x;;2z) — VF(x,_1;2)
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Algorithm 2 One-Sample SFW (Oblivious Setting)

Input: Step sizes p; € (0,1),n; € (0,1), initial point
x1 € K, total number of iterations T'

Output: xp;1 or x,, where x, is chosen from
{x1,X2, -+, x7} uniformly at random

1: fort=1,2,...,7T do

2 Sample a point z; according to p(z)

3 if t =1 then

4 Compute d; = Vﬁ(xl; Z1)

5: else

6.

7

8

9

Ay = VF(x4;2¢) — VE(X-1;2¢)
dt = (1 — pt)(dt—l + At) + ptVF(Xt,Zt)
end if
: (non-)convex min.: Update x;1 based on (9)
10: DR-sub. max.: Update x;1 based on (10)
11: end for

is an unbiased estimator of the gradient variation
Ay = VF(x¢) — VF(x¢-1). Hence, in the oblivious
setting, our proposed one sample FW uses the follow-
ing gradient approximation

di = (1= p)(de1 + Ay) + p V(x5 2),
where A, is given by
At = VF(Xt;Zt) - VF(thl; Zt).

The rest of the algorithm for updating the variable x; is
identical to the one for the non-oblivious setting. The
description of our proposed algorithm for the oblivious
setting is outlined in Algorithm 2.

Remark 1. We note that by rewriting our proposed
1-SFW method for the oblivious setting, we recover the
variance reduction techniqgue STORM [Cutkosky and
Orabona, 2019] with different sets of parameters. In
[Cutkosky and Orabona, 2019/, however, the STORM
algorithm was combined with SGD to solve uncon-
strained non-convex minimization problems, while our
proposed 1-SFW method solves convexr minimization,
non-conver minimization, and DR-submodular maxi-
mization in a constrained setting.

5.2 Theoretical results

In this section, we show that the variant of one sample
stochastic FW for the oblivious setting (described in
Algorithm 2) recovers the theoretical results for the
non-oblivious setting with less assumptions. In partic-
ular, we only require the following condition for the
stochastic functions F' to prove our main results.

Assumption 6. The function F has uniformly bound
gradients, i.e., Vx € C,Vz € Z

IVE(x;2)||< G.

Moreover, the function F is uniformly L-smooth, i.e.,
Vx,y e C,Vz € Z

IVE(x;2) = VE(y;2)|< L|x —y|

We note that as direct corollaries of Theorems 1 to 3,
Algorithm 2 achieves the same convergence rates, which
is stated in Theorem 4 formally.

Theorem 4. Consider the oblivious variant of 1-SFW
outlined in Algorithm 2, and assume that the conditions
in Assumptions 1, 2 and 6 hold. Then we have

1. If F is convex on K, and we set p;, = (t — 1)~}
and n, = t~1, then the output X741 € KC is feasible
and satisfies

E[F(xr41) = F(x*)] < O(T'?).

2. If F is non-convex, and we set p; = (t — 1)72/3,
and n; = T~2/3, then the output x, € K is feasible
and satisfies

E[G(x,)] < O(T ).

3. If F is monotone DR-submodular on K, and we
setx; =0,p, = (t—1)"Y and ny =T, then the
output Xp41 € K is feasible and satisfies

E[F(xr+1)] > (1 - e HF(x") —O(T1/2).

Theorem 4 shows that the oblivious version of 1-SFW re-
quires at most O(1/€?) stochastic oracle queries to find
an e-suboptimal solution for convex minimization, at
most O(1/€?) stochastic gradient evaluations to achieve
a (1 — 1/e) — e approximate solution for monotone
DR-submodular maximization, and at most O(1/e?)
stochastic oracle queries to find an e-first-order station-
ary point for nonconvex minimization.

6 Conclusion

In this paper, we studied the problem of solving
constrained stochastic optimization programs using
projection-free methods. We proposed the first stochas-
tic variant of the Frank-Wolfe method, called 1-SFW,
that requires only one stochastic sample per iteration
while achieving the best known complexity bounds
for (non-)convex minimization and monotone DR-
submodular maximization. In particular, we proved
that 1-SFW achieves the best known oracle complexity
of O(1/€?) for reaching an e-suboptimal solution in
the stochastic convex setting, and a (1 —1/e)OPT — ¢
approximate solution for a stochastic monotone DR-
submodular maximization problem. Moreover, in a
non-convex setting, 1-SFW finds an e-first-order station-
ary point after at most O(1/€3) iterations, achieving
the best known overall complexity.
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