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Abstract

In this paper, we establish the ordinary dif-
ferential equation (ode) that underlies the
training dynamics of Model-Agnostic Meta-
Learning (maml). Our continuous-time limit
view of the process eliminates the influence
of the manually chosen step size of gradi-
ent descent and includes the existing gradi-
ent descent training algorithm as a special
case that results from a specific discretiza-
tion. We show that the maml ode enjoys
a linear convergence rate to an approximate
stationary point of the maml loss function
for strongly convex task losses, even when
the corresponding maml loss is non-convex.
Moreover, through the analysis of the maml
ode, we propose a new bi-maml training al-
gorithm that reduces the computational bur-
den associated with existing maml training
methods, and empirical experiments are per-
formed to showcase the superiority of our
proposed methods in the rate of convergence
with respect to the vanilla maml algorithm.

1 Introduction
In machine learning, an ideal learner is able to speed
up the learning of new tasks based upon previous expe-
riences. This goal has been shared among different but
highly related approaches such as few-shot learning
(Snell et al., 2017), domain adaptation (Yu et al., 2018;
Li et al., 2018), transfer learning (Pan & Yang, 2009),
and meta learning (a.k.a. learning to learn) (Thrun
& Pratt, 1998; Naik & Mammone, 1992; Schmidhuber,
1987; Hochreiter et al., 2001). In particular, meta-
learning addresses a general optimization framework
that aims to learn a model based on data from previ-
ous tasks, so that the learned model, after fine-tuning,
can adapt to and perform well on new tasks. This idea
has been successfully applied to different learning sce-
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narios including reinforcement learning (Wang et al.,
2016; Duan et al., 2016; Schweighofer & Doya, 2003),
deep probabilistic models (Edwards & Storkey, 2016;
Lacoste et al., 2017; Grant et al., 2018), language mod-
els (Radford et al., 2019), imitation learning (Duan
et al., 2017), and unsupervised learning (Hsu et al.,
2019), to name a few. Previous works have also in-
vestigated meta learning from a variety of perspec-
tives and methods, including memory-based neural
networks (Santoro et al., 2016; Munkhdalai & Yu,
2017), black-box optimization (Duan et al., 2016;
Wang & Hebert, 2016), learning to design an optimiza-
tion algorithm (Andrychowicz et al., 2016), attention-
based models (Vinyals et al., 2016), and LSTM-based
learners (Ravi & Larochelle, 2016).

One of the gradient-based meta-learning algorithms
that has been widely used and enjoys great empirical
successes is the model-agnostic meta-learning proposed
in (Finn et al., 2017). Rather than minimizing directly
on a combination of task losses, maml meta-trains by
minimizing the loss evaluated at one or multiple gradi-
ent descent steps further ahead for each task. The in-
tuition is as follows: First, this meta-trained initializa-
tion resides close to the best parameters of all training
tasks. Second, for each new task, the model can then
be easily fine-tuned for that specific new task with only
a small number of gradient descent steps. Following
this work, many experimental and theoretical stud-
ies of maml have been carried out (Song et al., 2019;
Behl et al., 2019; Grant et al., 2018; Yang et al., 2019;
Rajeswaran et al., 2019). In particular, Fallah et al.
(2019) and Mendonca et al. (2019) investigated the
convergence of maml to first order stationary points.
Moreover, Finn et al. (2019) studied an online variant
of maml and Antoniou et al. (2018) proposed vari-
ous modifications to maml to improve its performance.
Empirically, Raghu et al. (2019) found that the suc-
cess of maml can be primarily associated to feature
reuse, given high quality representations provided by
the meta-initialization.

maml assumes a shared parameter space Rd among
all the tasks and learns an initialization ŵ ∈ Rd from
a batch of tasks at meta-learning time, such that
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performing a few steps of gradient descent from this
initialization at meta-testing time minimizes the loss
function for a new task on a smaller dataset. More
specifically, in a task pool with total M candidate
tasks, each task Ti is sampled from the pool accord-
ing to a distribution p(T ) and has a corresponding
risk function fi : Rd → R that is parameterized by a
shared variable w ∈ Rd. This function measures the
performance of the parameter w on task Ti. In prac-
tice we estimate this risk function from a set of training
data for each task. However, for simplicity, we directly
work with the risk function in this paper and assume
that we can acquire the knowledge of the task loss fi
from an oracle. At meta-learning time, maml looks for
a warm start ŵ via solving an optimization problem
that minimizes the expected loss over fi after one step
of gradient descent, i.e.,

ŵ = arg min
w

Ei∼p[fi(w − α∇fi(w))], (1.1)

where Ei∼p denotes the expectation over sampled tasks
and α represents the maml step size (also referred to
as the maml parameter). To ease the burden on nota-
tion, we define the maml loss function of task Ti to be
Fi(w) := fi(w − α∇fi(w)). Further, we define some
shorthand for the expected loss f(w) := Ei∼p fi(w)
and the expected maml loss F (w) := Ei∼p Fi(w). Now
we are able to represent the optimization problem (1.1)
in a more concise form: arg minw F (w).

Solving (1.1) yields a solution ŵ that in expectation
serves as a good initialization point, such that after a
step of gradient descent it achieves the best average
performance over all possible tasks. However, because
the objective function F (w) is non-convex in general,
there is no guarantee that one is able to find a global
minimum. Hence it is common to consider instead an
approximate stationary point ŵ where ‖∇F (ŵ)‖ ≤ ε
for some small ε (Fallah et al., 2019).

In this paper, we study the maml algorithm proposed
in (Finn et al., 2017), in which maml meta-learns the
model by performing gradient descent on the maml
loss. We begin by establishing a smooth approxima-
tion of this discrete-time iterative procedure and con-
sidering the continuous-time limit by taking an in-
finitesimally small step size. With any initialization
of the parameter, the problem is transformed into an
initial value problem (ivp) of an ode, which is the un-
derlying dynamic that governs the training of a maml
model. Specifically, We consider the convergence of
the gradient norm ‖∇F (w)‖ and the function value
F (w) under the continuous-time limit of maml.

Our contributions are summarized as follows:

• We propose an ode that underlies the training
dynamics of a maml model. In this manner, we

eliminate the influence of the manually chosen
step size. The algorithm in (Finn et al., 2017)
can be viewed as an forward Euler integration of
this ode.

• We prove that the aforementioned ode enjoys a
linear convergence rate to an approximate station-
ary point of F for strongly convex task losses. In
particular, it achieves an improved convergence
rate of O(log 1

ε ), compared to O( 1
ε2 ) in (Fallah

et al., 2019). Note that the maml loss F may not
be convex even if the individual task losses fi are
strongly convex.

• We show that for strongly convex task losses with
moderate regularization conditions, the maml
loss F has a unique critical point that is also the
global minimum.

• We propose a new algorithm named bi-maml for
strongly convex task losses that is computation-
ally efficient and enjoys a similar linear conver-
gence rate to the global minimum compared to
the original maml. It also converges significantly
faster than maml on a variety of learning tasks.

2 Preliminaries
Before turning to the discussion of the continuous-time
limit of maml, we briefly introduce a widely-used ap-
proach for taking the continuous-time limit of discrete-
time algorithms and the approach we use later for its
analysis.

Optimization through lens of ODE. There is
an extensive literature on the topic of understand-
ing discrete-time algorithms through the lens of
odes (Schropp & Singer, 2000; Helmke & Moore, 2012;
Lu, 2020), and recent developments in this field offer
novel perspectives for looking at discrete-time opti-
mization algorithms (Su et al., 2014; Muehlebach &
Jordan, 2019). For example, Shi et al. (2019) devel-
oped a first-order optimization algorithm by perform-
ing discretization on odes that correspond to Nes-
terov’s accelerated gradient descent. Krichene et al.
(2015) proposed a family of continuous-time dynamics
for convex functions where the corresponding solution
converges to the optimum value at an optimal rate.
However, there can be multiple odes that correspond
to the same discrete-time algorithm, and it oftentimes
requires strong mathematical intuitions when it comes
to taking the continuous limit. In this paper, we take
the most intuitive approach by letting the step size of
the gradient descent on the maml loss F go to zero,
and the resulting ode is a gradient flow on F .

Lyapunov’s direct method. One of the most com-
monly used approaches for analyzing the convergence
of odes is Lyapunov’s direct method (Lyapunov, 1992;
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Hirsch et al., 2012; Wilson et al., 2016), which is based
on constructing a positive definite Lyapunov function
E : Rd → R that decreases along the trajectories of the
dynamics ẇ:

d

dt
E(w(t)) = 〈∇E(w(t)), ẇ(t)〉 ≤ 0. (2.1)

This method is a generalization of the idea that mea-
sures the “energy” in a system, and the existence
of such a continuously differentiable Lyapunov func-
tion guarantees the convergence of the dynamical sys-
tem.

3 Main Results
In this paper, we analyze the maml algorithm on
strongly convex functions with its continuous-time
limit and establish a linear convergence rate. We also
propose a new algorithm named bi-maml based on
our theoretical analysis on maml, which we will elab-
orate further in Section 4. Moreover, we will present
empirical results in Section 5 to show that bi-maml
significantly outperforms vanilla maml.

Both our new analyses on maml and the new bi-
maml algorithm are based on our analysis of the land-
scape of F . Fig. 1 illustrates an example where F
is indeed non-convex. This example has two tasks
where we take f1(w) = 0.505w2 − sin(w) and f2(w) =
0.505w2 − 0.0001 sin(100w). Both functions are 0.01-
strongly convex and 2.01-smooth. We observe that
F ′(w) is not monotone increasing and that F ′′(w) is
not always positive. These imply that F is non-convex.
While F is non-convex in general as illustrated, we
prove that F has a unique critical point and is strongly
convex on a convex set around the critical point, which
implies that it is the global minimum. Of course,
the function F can be non-convex outside the convex
set.

3.1 MAML Algorithm and ODE
In this section, we present the original maml. In par-
ticular, we investigate maml under a continuous-time
limit. Recall that the update rule of maml on w fol-
lows a gradient descent on F (w), i.e.,

w+ = w − β∇F (w)
= w − β Ei∼p∇Fi(w)
= w − β Ei∼p[Ai(w)∇fi(w − α∇fi(w))], (3.1)

where w denotes the iterate input, w+ denotes the it-
erate output, β represents the step size, and Ai(w) :=
Id − α∇2fi(w) is a shorthand for the Hessian correc-
tion term. Here we see that computing the gradient of
F requires the Hessian of f . In this paper we consider
maml where the step size α of the task-specific gra-
dient descent remains constant while the step size β
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(b) Plot of F ′′(w).

Figure 1: An example of non-convex maml loss F (w)
even if its corresponding task losses satisfy all Assump-
tions 3.2 to 3.5. Here we let f1(w) = 0.505w2− sin(w)
and f2(w) = 0.505w2 − 0.0001 sin(100w). Notice
that both f ′′1 (w) ≥ 0.01 and f ′′2 (w) ≥ 0.01 for all
w ∈ Rd. Both functions are 0.01-strongly convex and
2.01-smooth. It is not hard to see also that Assump-
tions 3.4 and 3.5 are both satisfied for some finite σ
and κ. Taking the maml step size as α = 0.4, we have
a non-convex maml loss F with its first- and second-
order derivatives as indicated in Figs. 1a and 1b.

for the maml gradient descent goes to zero. Proposi-
tion 3.1 presents the continuous-time limit for maml,
which we term as the maml ode.

Proposition 3.1 (Proof in Appendix B). If the losses
fi are twice differentiable, the continuous-time limit
for maml is

ẇ = −∇f(w) + Ei∼p[Bi(w)∇fi(w)] (3.2)

where Bi(w) := α(∇2fi(w) + ∇2fi(w̃i)) −
α2∇2fi(w)∇2fi(w̃i) and w̃i is a convex combina-
tion of w and w − α∇fi(w).

The first term on the right-hand side of (3.2) repre-
sents a gradient flow on f , and the second term that
follows is the key term that differentiates a maml gra-
dient descent on the maml loss function F from a
vanilla gradient descent on the expected loss function
f . Due to the compositional nature of the maml loss
F (w), the second-order information is required to eval-
uate its gradient. Recall that by definition, we have
∇F (w) = Ei∼p[(Id − α∇2fi(w))∇fi(w − α∇fi(w))].
To reduce such cost on computing the Hessian, Finn
et al. (2017) proposed the first-order model-agnostic
meta-learning (fo-maml), which is a first-order ap-
proximation of maml that replaces the second-order
term Id−α∇2fi(w) with an identity matrix. However,
this may cause a failure in convergence, as mentioned
in (Fallah et al., 2019). In comparison, our new bi-
maml algorithm achieves a similar computational effi-
ciency by evaluating only first-order information while
at the same time still being able to converge to an
approximate stationary point, as we will see in Sec-
tion 4.
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3.2 Summary of Assumptions, Results, and
Techniques

In this section, we establish our theoretical results
for maml when the loss functions fi(w) are strongly
convex and smooth with bounded gradient variance
among the tasks. Formally, we make the following as-
sumptions.

Assumption 3.2. For every i ∈ [M ], the loss fi(w)
is twice differentiable and Li-smooth, i.e., for every
w, u ∈ Rd, we have ‖∇fi(w)−∇fi(u)‖ ≤ Li‖w − u‖.

Assumption 3.3. For every i ∈ [M ], the loss fi(w) is
µi-strongly convex, i.e., for every w, u ∈ Rd, there
exists positive µ, such that ‖∇fi(w) − ∇fi(u)‖ ≥
µi‖w − u‖.

Assumption 3.4. For any w ∈ Rd, the variance of
gradient ∇fi(w) is bounded, i.e., there exists non-
negative σ, such that Ei∼p ‖∇f(w)−∇fi(w)‖2 ≤ σ2.

Assumption 3.5. For every i ∈ [M ], the Hessian
for loss fi(w) is κi-Lipschitz continuous, i.e., for every
w, u ∈ Rd, we have ‖∇2fi(w)−∇2fi(u)‖ ≤ κi‖w−u‖.

To simplify the notation, we denote L := maxi Li,
µ := mini µi, and κ := maxi κi in the rest of the paper.
Because fi is twice differentiable, Assumption 3.2 is
equivalent to −LiId � ∇2fi(w) � LiId. We note that
Finn et al. (2019) assumed all the assumptions above,
except Assumption 3.4 because they considered online
meta-learning where functions can be selected in an
adversarial manner. On the other hand, they assumed
that the functions are Lipschitz (Finn et al., 2019, As-
sumption 1.1), which may contradict the strong con-
vexity assumption (Finn et al., 2019, Assumption 2) in
their paper. Similarly, Fallah et al. (2019) assumed all
but Assumption 3.3. We remark that Assumption 3.3
implies the boundedness of the maml loss F from be-
low, but it does not guarantee the convexity of F . See
Fig. 1 for an example of non-convex maml loss F with
corresponding task losses fi satisfying Assumptions 3.2
to 3.5. In other words, while fi are strongly convex,
F can still be non-convex. Hence, minimizing F is
challenging as we are dealing with a non-convex opti-
mization problem.

As we mention above, we make an additional assump-
tion (Assumption 3.3), compared to the set of assump-
tions in (Fallah et al., 2019). They showed that the
maml algorithm outputs a solution that guarantees
‖∇F (w)‖ ≤ ε in O( 1

ε2 ) iterations. Under this addi-
tional assumption, we significantly improve the result
in two aspects. First, we show that our proposed al-
gorithm finds a solution such that ‖∇F (w)‖ ≤ ε in
only O(log 1

ε ) iterations (Theorem 3.6). This is indeed
an exponential improvement on (Fallah et al., 2019) in
terms of iteration complexity. Second, we characterize

the landscape of F . While F is non-convex in general,
we prove that its stationary point is also the global
minimum (Theorem 3.9). Therefore, the solution re-
turned by our algorithm is close to not only a critical
point but also the global minimum.

Our main result in Theorem 3.6 shows that the maml
ode achieves linear convergence in finding a critical
point on the maml loss F .

Theorem 3.6 (Iteration complexity, proof in Ap-
pendix C). Suppose the loss function fi(w) satisfies
Assumptions 3.2 to 3.5, if

α < min
{

1
2L,

7µ3/2

288κσ + 232κ√µσ ,
3

√
2
15µ

1/3L−5/3,√
1
15µ

1/2L−2,

√
1
15µL

−2

}
then the maml ode finds a solution ŵ such that
‖∇F (ŵ(t))‖ ≤ ε after at most running for

t = O

 1
µ

log

 (5 + 9√
µ )(µ2σ‖∇f(w(0))‖2 − µσ3

2 )
4ισ2ε

 ,
if ‖∇f(w(0))‖2 > σ2

µ and

t = O
[

16
µ

log
(

(5 + 9√
µ )σ

4ε

)]
otherwise, where ι > 0 is a small constant.

Theorem 3.6 says that if the maml parameter α is
small enough, then the maml ode finds an approxi-
mate stationary point of the maml loss F in O(log 1

ε )
time. This approximate stationary point is at the same
time an approximate global minimum, as implied by
Theorem 3.9 later.

We prove Theorem 3.6 with a two-phase analysis where
the transition between two phases depends on the
norm of ∇F (w). In the first phase we conduct a Lya-
punov function analysis on the Lyapunov candidate
function ‖∇f(w)‖2 and under the dynamics defined
by the odes. The second phase follows as a land-
scape characterization of the maml loss F . Intuitively,
‖∇F (w)‖ can be large at initialization and will become
smaller over the course of the gradient flow. We note
that ‖∇F (w)‖ is close to ‖∇f(w)‖ if α is small due
to the fact that ∇F (w) = E[(Id − α∇2fi(w))∇fi(w −
α∇fi(w))], and we therefore choose to analyze the gra-
dient norm on f instead of F . When ‖∇f(w)‖ is large
and we are far from the stationary point, the analy-
sis on the Lyapunov function E(w(t)) = ‖∇f(w(t))‖2

helps establish a linear convergence rate for ‖∇f(w)‖
to be in the order of O(σ). This is due to the proof
technique shown in Lemma 3.7.
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Proof of Theorem 3.6

Proof. We first define y(t) = (e−ζ(t+c0) + γ)/ζ, where
we denote y(0) = ‖∇f(w(0))‖2, γ = σ2/2, and ζ =
µ − 5

4L
2α(L3α2 + 2L2α + 2). Especially, under the

assumptions of Theorem C.2, we have µ
2 < µ

2 + ι ≤
ζ ≤ µ where ι > 0 is a small constant. To achieve
‖∇f(w(t))‖2 ≤ σ2

µ , it suffices to have

y(t) = e−ζ(t+c0) + γ

ζ
≤ σ2

µ
. (3.3)

Since at initialization e−ζc0 = ζy(0) − γ, as long as
y(0) = ‖∇f(w(0))‖2 > σ2

µ , plug into (3.3) to get

e−ζt ≤
(
ζσ2

µ
− γ
)
eζc0

t ≥ 1
ζ

log
(
ζy(0)− σ2

2
ζσ2

µ −
σ2

2

)
.

Hence for any initialization w(0) where y(0) > σ2

µ , we
have ‖∇f(w(t))‖2 ≤ σ2

µ for any

t ≥ 2
µ

log
(

µy(0)− σ2

2
(µ2 + ι)σ2

µ −
σ2

2

)

= 2
µ

log
(
µ2‖∇f(w(0))‖2 − µσ2

2
ισ2

)
.

For any initialization w(0) where y(0) ≤ σ2

µ , we skip
the first phase and go directly into the second phase.

Let us denote t1 = mint
{
t : y(t) ≤ σ2/µ

}
, and espe-

cially t1 = 0 if y(0) ≤ σ2

µ . Under the assumption
α ≤ 1

2L , we have

‖∇F (w(t1))‖ ≤ (1 + 2αL+ α2L2) σ
√
µ

+ (2αL+ α2L2)σ

≤ 1
4

(
9
√
µ

+ 5
)
σ. (3.4)

We prove (3.4) in Lemma C.3. Let us denote
K = 1

4
( 9√

µ + 5
)
σ, and Theorem 3.8 implies that if

α ≤ min{ 1
2L ,

7µ
8κ(16K+9σ)} the maml loss F (w) is µ

8 -
strongly convex at w, and the maml ode (3.2) af-
ter time t1 is a gradient flow on a µ

8 -strongly convex
loss F (w). This dynamics then converges exponen-
tially fast to an approximate stationary point ŵ where
‖∇F (ŵ)‖ ≤ ε. More specifically, we have

d

dt
‖∇F (w)‖2 = ∇F (w)ᵀ∇2F (w)ẇ

= −∇F (w)ᵀ∇2F (w)∇F (w)

≤ −µ8 ‖∇F (w)‖2.

Note that even though the set of w such that
‖∇F (w)‖ ≤ K is not necessarily convex, the trajec-
tory of the maml ode still converges inside it. Con-
sider a point w(t1) that has ‖∇F (w(t1))‖ ≤ K. If
there exist τ > 0, such that ‖∇F (w(t1 + τ))‖ > K,
then we define τ0 := maxτ{τ : ‖∇F (w(t1 + t))‖ ≤
K, ∀0 ≤ t ≤ τ}. Because ∇F (w) and ∇2F (w) are
continuous in w, there exists a neighborhood around
w(t1 + τ0) such that for all w in this neighborhood
it holds ‖∇F (w)‖ > K/2 and ‖∇2F (w)‖ > µ/16.
Therefore it has d

dt‖∇F (w)‖2 < −µK2/256, and in-
tegrating it in a short time interval after t1 + τ0 yields
a contradiction. Consequently, we obtain another up-
per bound

‖∇F (w(τ + t1))‖2 ≤ ỹ(τ + t1) := e−µτ/8‖∇F (w(t1))‖2

for any time τ ≥ 0 after t1. A sufficient condi-
tion for the approximate stationary point ŵ writes
e−µτ/8‖∇F (w(t1))‖2 ≤ ε2, which means w(τ + t1) is
an approximate stationary point if

τ ≥ 8
µ

log
(
‖∇F (w(t1))‖2

ε2

)
= 16

µ
log
(

(5 + 9√
µ )σ

4ε

)
.

Combine two parts together to get the major result
that the maml ode converges to an approximate sta-
tionary point ŵ(t) within

t = 1
µ
O

log

 (5 + 9√
µ )(µ2σ‖∇f(w(0))‖2 − µσ3

2 )
4ισ2ε

 .
if ‖∇f(w(0))‖2 > σ2

µ , and the maml ode converges
to an approximate stationary point ŵ(t) within t =
16
µ O

[
log
(

(5+ 9√
µ

)σ
4ε

)]
if ‖∇f(w(0))‖2 ≤ σ2

µ .

Lemma 3.7 (Proof in Appendix C). Suppose the loss
functions fi(w) satisfy Assumptions 3.2 and 3.3, then
it holds

d

dt

1
2 ‖∇f(w)‖2

≤ σ2

2 −
(
µ− 5

4L
2α(L3α2 + 2L2α+ 2)

)
‖∇f(w)‖2.

(3.5)

When the gradient norm ‖∇f(w)‖ is small enough,
‖∇F (w)‖ is also controlled. Then we enter the second
phase, in which we follow a gradient flow inside a con-
vex set where the maml loss is strongly convex. This
establishes another linear convergence rate from O(σ)
down to ε. Combining the above two phases gives us
the overall linear rate. In the following subsections, we
will explain these two phases in more details.
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3.3 Large Gradient Phase: Linear
Convergence via Lyapunov
Analysis

When ‖∇F (w)‖ is large, its behavior under the
maml ode (3.2), namely d

dt‖∇F (w(t))‖, is not easily
tractable due to the non-convex nature of the maml
loss F . Hence, we consider instead a Lyapunov can-
didate function E(w(t)) = ‖∇f(w(t))‖2 in the first
phase, where
d

dt
E(w(t)) = ∇f(w)ᵀ∇2f(w)ẇ

= −∇f(w)ᵀ∇2f(w)∇f(w)
+∇f(w)ᵀ∇2f(w)Ei∼p[Bi(w)∇fi(w)].

(3.6)

Even though we are primarily interested in the con-
vergence of ‖∇F (w(t))‖, the convergence analysis of
‖∇f(w(t))‖ is still helpful. We show that when α is
small, an upper bound on ‖∇f(w)‖ gives an upper
bound on ‖∇F (w)‖, and vice versa. Hence we are able
to keep track of an upper bound on ‖∇F (w(t))‖ while
only having one on ‖∇f(w(t))‖. However, we need to
remark that the convergence of ‖∇f(w)‖ to zero does
not imply the convergence of ‖∇F (w)‖. In fact, the
global minimum of f may not even be a stationary
point of F .

Note that the Lyapunov candidate function ‖∇f(w)‖2

turns into a true Lyapunov function for the dynamic
(3.2) if d

dt ‖∇f(w)‖2 ≤ 0 for every w ∈ Rd. To get a
linear rate on ‖∇f(w)‖2, we need to characterize the
right-hand side of (3.6). Notice that the first term is
a quadratic form of ∇f(w), while the second term is
less tractable due to the expectation. We build an up-
per bound in Lemma C.1 to tackle this second term,
and it is achieved through “pulling out” the integrand
Bi(w) from the expectation and forming a quadratic
form that is more friendly to the spectral analysis to
follow. Lemma C.1 then leads to a more tractable
upper bound for the right-hand side of (3.6), as illus-
trated in Lemma 3.7. If we replace the inequality in
(3.5) with an equality, the resulting ode on ‖∇f(w)‖2

is subject to a closed-form solution, which converges
to a constant smaller than σ2/4 when α is small. This
solution serves as an upper bound on ‖∇f(w(t))‖2 for
any t ≥ 0. By making sure that the upper bound in
(3.5) is strictly less than zero, it enables us to provide
sufficient conditions on the maml step size α so that
the Lyapunov function is convergent in linear rate to
a small constant, as explained in Theorem C.2.

However, the upper bound on the Lyapunov function
‖∇f(w)‖2 does not converge to zero, we can only guar-
antee in phase one that ‖∇F (w)‖ goes below a con-
stant. This issue will be resolved in phase two of the
analysis.

3.4 Small Gradient Phase: Unique Global
Minimum via Landscape Analysis

Due to the aforementioned limitations of the Lyapunov
method, we propose a landscape analysis that com-
plements the above argument and guarantees the lin-
ear rate of the maml ode when the gradient norm
‖∇F (w)‖ on the maml loss is small enough. Recall
that the maml ode is a gradient flow on F , thus the
landscape of F determines the behavior of the maml
ode. If a function is strongly convex, then its gradient
flow converges linearly to its unique minimizer. Even
though the maml loss F is not convex in general, we
are able to show in Theorem 3.8 that for any point
w ∈ Rd with a bounded gradient norm ‖∇F (w)‖, the
maml loss F is both smooth and strongly convex in its
neighborhood. This provides us with a powerful tool
that enables us to show the global convergence of the
maml ode, as indicated in Theorem 3.9.

Theorem 3.8 (Proof in Appendix D). Suppose fi(w)
satisfies Assumptions 3.2 and 3.3. Then for any α ≤
min{ 1

2L ,
7µ

8κ(16K+9σ)} and w ∈ U(K) := {w ∈ Rd :
‖∇F (w)‖ ≤ K}, we have µ

8 Id � Hess(F (w)) � 9L
8 Id,

where Hess(F (w)) is the Hessian matrix of F at point
w.

Theorem 3.9 (Unique global minimum, proof in
Appendix E). If K ≥

(
9
7

√
L
µ + 1

)
σ and α ≤

min{ 1
4L ,

7µ
8κ(16K+9σ)}, the function F is strongly con-

vex on the convex set V
(

(K−σ)2

2L

)
:= {w ∈ Rd :

f(w) ≤ minw′∈Rd f(w′) + (K−σ)2

2L }. Moreover, the set
V
(

(K−σ)2

2L

)
contains the unique critical point of F .

We remark that even though Theorem 3.9 concludes
that the maml loss F is strongly convex within V , F
can be non-convex outside V (recall our example in
Fig. 1). Being a sublevel set of a strongly convex func-
tion f , the set V is convex. Moreover, it is also closed
and bounded. Again, by the strong convexity of f , its
minimum minw′∈Rd f(w′) exists and is finite. Theo-
rem 3.9 implies that there is no critical point outside
V . Since F is strongly convex within V , the unique
critical point inside the convex sublevel set V is con-
sequently the global minimizer of F .

4 Biphasic MAML (BI-MAML)
In this section, we propose a new algorithm named
Biphasic MAML (bi-maml) as an alternative to the
original maml. Unlike maml where we always min-
imize F , the optimization process of bi-maml can be
divided into two phases. In the first phase, bi-maml
optimizes the expected task loss f until it reaches its
approximate global minimum. In the second phase,
it runs maml until it finds an approximate critical
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point. We show that bi-maml also enjoys the same
O(log 1

ε ) iteration complexity on strongly convex func-
tions. While the iteration complexity of maml and
bi-maml share the same order, bi-maml has a lower
computational complexity, because it performs gradi-
ent descent on f rather than F in the first phase and
thereby avoids computing the Hessian. In contrast,
maml performs gradient descent on F , which involves
computing the Hessian of f .

Inspired by our convergence analysis on maml ode,
we propose a different dynamic with gradient flow in
two stages called bi-maml ode. The first stage of
bi-maml ode is a gradient flow on the expected loss
function f that converges to one of its stationary point,
i.e., ẇ = −∇f(w). This is followed by the second
stage, which is a maml ode starting from an approxi-
mate stationary point provided by the first stage. Re-
call that maml is a forward Euler integration of its
continuous-time limit (3.2): a gradient flow on the
maml loss F . Analogously, the bi-maml algorithm
is a forward Euler integration of bi-maml ode: a gra-
dient descent on f followed by a gradient descent of F .
More detailed descriptions of bi-maml and bi-maml
ode are given in Algorithm 2 and Algorithm 1. As
mentioned in Section 3, bi-maml runs faster because
it avoids computing the Hessian of f by performing
gradient descent on f in the first phase.

Algorithm 1 bi-maml ode
Input: Loss functions {fi(w)}i∈[M ], maml parameter

α, step size β, tolerance level ε0, ε.
1: initialize w(0) ∈ Rd arbitrarily
2: for t ∈ [0,∞) do
3: if ‖∇f(w(t))‖ ≥ ε0 then
4: dw

dt ← −β∇f(w(t))
5: else
6: dw

dt ← −β∇F (w(t))
7: end if
8: return w(t) if ‖∇F (w(t))‖ ≤ ε
9: end for

Our result in Theorem 4.1 shows that the bi-maml
ode also achieves linear convergence in finding a crit-
ical point on the maml loss F .

Theorem 4.1 (Proof in Appendix C). Suppose the
loss function fi(w) satisfies Assumptions 3.2 to 3.5
and ε0 is the tolerate level set in Algorithm 1, if

α < min
{

1
2L,

7µ
288κε0 + 232κσ

}
then the bi-maml ode finds a solution ŵ such that
‖∇F (ŵ(t))‖ ≤ ε after at most running for

t = 1
µ
O
[
log
(

(9ε0 + 5σ)‖∇f(w(0))‖
4ε0ε

)]
.

Theorem 4.1 states that whenever the maml parame-
ter α is small enough so that F is strongly convex for
every point w such that ‖∇f(w)‖ ≤ ε0, the bi-maml
ode finds an approximate global minimum of F in
O(log 1

ε ) time. The proof for Theorem 4.1 is similar to
that of Theorem 3.6, cf. Appendix C.

5 Numerical Experiments
Our experiments evaluate the bi-maml algorithm pro-
posed in Section 3 against the maml algorithm on a
series of learning problems. More specifically, we com-
pare both methods on two different tasks: linear re-
gression and binary classification with a Support Vec-
tor Machine (svm). They correspond to two different
types of task loss fi: strongly convex and convex. For
both types of problem we compare the methods on
both synthetic and real data.

Linear regression. For the linear regression problem
with synthetic data, we meta-learn the model param-
eter γ ∈ Rd from a set of generated data that corre-
spond to M = 10 individual linear regression tasks,
each with dimension d = 20. A ground truth vector
γi ∈ Rd is generated independently for each individ-
ual task. Each γi has its coordinates drawn from i.i.d.
standard normal distributions. From each task, we
generate n = 100 training samples {xj , yj} ∈ Rd × R,
where each entry of xj is subject to an i.i.d. standard
normal distribution and yj = xᵀj γi + σZj where Zj is
a standard normal variable and σ = 1 in our case. We
also initialize the model parameter γ ∈ Rd randomly in
the way we generate γi, and the maml step size α = 0.3
is fixed for all tasks. Each linear regression task i has
a strongly convex loss function fi(γ) = ‖y − Xγ‖2,
where X = [x1, . . . , xn]ᵀ and y = [y1, . . . , yn]ᵀ. We
take the gradient descent step size β = 0.05 for both
bi-maml and maml, and we present the numerical re-
sults in Figs. 2a and 2e. For the linear regression prob-
lem on the Diabetes data set, we divide the original
data into M = 4 tasks with dimension d = 8 accord-
ing to male/female and whether the person is older
than mean age of the data. We initialize the model
parameter β randomly with i.i.d. normal entries, and
the maml step size α = 0.5 is fixed for all tasks. We
choose β = 0.1 and run the algorithms. Numerical
results are presented in Figs. 2b and 2f. Compared to
maml, our bi-maml algorithm in Fig. 2a converges to
a neighborhood of stationary point of F in 25 steps,
where maml is far from convergence. After 50 itera-
tions, bi-maml also shows its superiority in computa-
tional efficiency over maml by having 37% and 36%
decrease in computation time on synthetic and real
data, respectively.

Support vector machine. For binary classification
with an svm, we meta-learn from M = 50 binary clas-
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Figure 2: Comparisons on the performance of bi-maml versus maml on linear regression and binary classification
with svm. The figures on the first row compare the bi-maml and maml with function values on the maml loss
F (wk) at each iteration k. The figures in the second row show the trajectory of the corresponding gradient norm
values evaluated at every iteration k. The blue lines represent the performance on bi-maml, and the red lines
represent that on maml.

sification tasks in d = 20 dimensional space, where
each one of the individual tasks is composed of n = 300
samples {xj , yj} ∈ Rd×{±1}, evenly split between the
positive and negative classes. We generate these train-
ing data sets with the default data generating function
from scikit-learn. For each task i, it is equipped
with a convex (but not strongly convex) hinge loss
fi(w) = ReLu(y −Xw), where X = [x1, . . . , xn]ᵀ and
y = [y1, . . . , yn]ᵀ. During the experiment, we take the
maml parameter α = 0.3 for all tasks, and the gra-
dient descent step size β = 0.1 is used for both the
bi-maml and the maml. The corresponding numeri-
cal results are presented in Figs. 2c and 2g. For the
binary classification on MNIST, we design M = 5 tasks,
each to be a classification on different digits (clas-
sify 1, 3, 5, 7, 9 against 2, 4, 6, 8, 0), which has dimen-
sion d = 784. Each task has n = 200 samples, and
the maml parameter α = 0.3 is fixed for all tasks. We
take β = 0.01 for the experiment, and the result is
reported in Figs. 2d and 2h. Compared to maml, our
bi-maml algorithm in Fig. 2g reaches the region with
small gradient norm ‖∇F (w)‖ in less than 30 steps,
where maml still has a much larger gradient. In these
experiments, bi-maml shows its superiority in com-
putational efficiency over maml by having a 19% and
37% decrease in computation time on the synthetic

and real data, respectively.

It is noteworthy that even if our method only provably
works for strongly convex loss functions fi, it empiri-
cally achieves good performance on real world data for
many strongly convex and even convex loss functions,
such as svm. We remark that the gradient norm for
the bi-maml shown in Figs. 2e to 2h represents dif-
ferent quantities in different stages of the algorithm.
Specifically, it denotes ‖∇F (wk)‖ when the bi-maml
descends on F at the k-th iteration; analogously, it
represents ‖∇f(wk)‖ when the bi-maml descends on
f . The jumps in Figs. 2d, 2g and 2h show clearly the
transitions between two phases.

6 Conclusions

In this paper we analyze the maml ode, a continuous-
time limit of maml, and establish a linear conver-
gence rate to the global minimum of the maml loss
function for strongly convex task losses. We also pro-
pose a computationally efficient algorithm bi-maml
where its continuous-time limit bi-maml ode has the
same linear convergence guarantee under milder con-
ditions. We experimentally show that the bi-maml
method outperforms maml in a variety of learning
tasks.
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