
This article was downloaded by: [71.87.83.39] On: 08 February 2021, At: 20:10
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Optimization

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Parallelizing Subgradient Methods for the Lagrangian Dual
in Stochastic Mixed-Integer Programming
Cong Han Lim, Jeffrey T. Linderoth, James R. Luedtke, Stephen J. Wright

To cite this article:
Cong Han Lim, Jeffrey T. Linderoth, James R. Luedtke, Stephen J. Wright (2021) Parallelizing Subgradient Methods for
the Lagrangian Dual in Stochastic Mixed-Integer Programming. INFORMS Journal on Optimization 3(1):1-22. https://
doi.org/10.1287/ijoo.2019.0029

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoo.2019.0029
https://doi.org/10.1287/ijoo.2019.0029
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

INFORMS JOURNAL ON OPTIMIZATION
Vol. 3, No. 1, Winter 2021, pp. 1–22

http://pubsonline.informs.org/journal/ijoo ISSN 2575-1484 (print), ISSN 2575-1492 (online)

Parallelizing Subgradient Methods for the Lagrangian Dual in
Stochastic Mixed-Integer Programming
Cong Han Lim,a Jeffrey T. Linderoth,b James R. Luedtke,b Stephen J. Wrightc

aWisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706; bDepartment of Industrial and Systems
Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706; cDepartment of Computer Sciences, University of
Wisconsin–Madison, Madison, Wisconsin 53706
Contact: clim9@wisc.edu, https://orcid.org/0000-0002-2033-4927 (CHL); linderoth@wisc.edu,

https://orcid.org/0000-0003-4442-3059 (JTL); jim.luedtke@wisc.edu, https://orcid.org/0000-0001-9265-7728 (JRL); swright@cs.wisc.edu,
https://orcid.org/0000-0001-6815-7379 (SJW)

Received: October 14, 2018
Revised: June 7, 2019; November 27, 2019
Accepted: January 10, 2020
Published Online in Articles in Advance:
January 26, 2021

https://doi.org/10.1287/ijoo.2019.0029

Copyright: © 2021 INFORMS

Abstract. The dual decomposition of stochastic mixed-integer programs can be solved by
the projected subgradient algorithm.We show how tomake this algorithmmore amenable
to parallelization in a master-worker model by describing two approaches, which can be
combined in a natural way. The first approach partitions the scenarios into batches and
makes separate use of subgradient information for each batch. The second approach drops
the requirement that evaluation of function and subgradient information is synchronized
across the scenarios. We provide convergence analysis of both methods. We also evaluate
their performance on two families of problems from SIPLIB on a single server with 32
single-core worker processes, demonstrating that when the number of workers is high
relative to the number of scenarios, these two approaches (and their synthesis) can sig-
nificantly reduce running time.

Funding: Financial support from the National Science Foundation Division of Civil, Mechanical and
Manufacturing Innovation [Grant 1634597] is gratefully acknowledged.

Keywords: stochastic mixed-integer programming • subgradient methods • parallel optimization

1. Introduction
We study subgradient approaches for solving the Lagrangian dual of stochastic mixed-integer programs (SMIPs)
that are amenable to parallel implementation. SMIPs can be used to model multistage problems with uncertainty,
where information is revealed stage-wise and the decisions available in each stage depend on those made in prior
stages. A two-stage SMIP can be formulated as:

φSMIP :� min
x,y1,y2,...,yN

c�x + 1
N

∑
s∈S

q�
s ys : x, ys

() ∈ Ks, s ∈ S

{ }
, (1a)

where Ks :� x,ys
()

: Wsys � hs − Tsx, x ∈ X, ys ∈ Y
{ }

, (1b)
where c ∈ Rn, X is a closed mixed-integer set defined by linear inequalities and integrality restrictions on some
of the variables, Y is a closed mixed-integer set, and the random outcomes are represented with a finite set of
equally likely scenarios (qs,hs,Ts,Ws), for s ∈ S :� {1, . . . ,N}. We assume for simplicity that all scenarios are
equally likely, but all our techniques can be generalized easily to the case of nonuniform probabilities. In this
setup, the first-stage decision x must be fixed before knowing the scenario s, and there is a separate set of
decisions ys for each scenario s ∈ S, indicating that these decisions can be made after observing the scenario.
The approaches we study in this paper can be extended beyond the two-stage setting considered here, to
multiple stages, but we limit our exposition to two-stage problems for clarity.

SMIPs can be solved directly via the formulation (1), which is a large mixed-integer program whose size
scales linearly with the number of scenarios. The size of this formulation makes it computationally intractable
for many interesting cases, so we focus instead on methods that work with decompositions of the problem.
Many methods, ranging from the classic Benders decomposition to branch-and-bound techniques, make
certain assumptions on the structure of the underlying SMIP. We focus on dual decomposition (Carøe 1998,
Carøe and Schultz 1999), which applies to all multistage SMIPs.

1

http://pubsonline.informs.org/journal/ijoo
mailto:clim9@wisc.edu
https://orcid.org/0000-0002-2033-4927
https://orcid.org/0000-0002-2033-4927
mailto:linderoth@wisc.edu
https://orcid.org/0000-0003-4442-3059
https://orcid.org/0000-0003-4442-3059
mailto:jim.luedtke@wisc.edu
https://orcid.org/0000-0001-9265-7728
https://orcid.org/0000-0001-9265-7728
mailto:swright@cs.wisc.edu
https://orcid.org/0000-0001-6815-7379
https://orcid.org/0000-0001-6815-7379
https://doi.org/10.1287/ijoo.2019.0029

In dual decomposition, N copies of the first-stage decision variables are introduced, along with a “master
copy” z, yielding the following equivalent expression for φSMIP:

min
x1,...,xN ;y1,...,yN ;z

1
N

∑
s∈S

c�xs + q�
s ys

()
: xs,ys
() ∈ Ks; xs � z, s ∈ S

{ }
. (2)

The constraints xs � z, s ∈ S enforce nonanticipativity—that is, the same first-stage decisions must be made for
all second-stage scenarios. Introducing multiplier vectors λ :� [λs]s∈S for the nonanticipativity constraints, we
obtain the Lagrangian dual function for (2):

min
x1,...,xN ;y1,...,yN ;z

1
N

∑
s∈S

c�xs + q�
s ys + λ�

s xs − z()()
: xs,ys
() ∈ Ks, s ∈ S

{ }
. (3)

The Lagrangian dual problem for (2) is to find the λ that maximizes (3). Note that because z is unrestricted,
this function takes a value greater than −∞ only when

∑
s∈S λs � 0. When this requirement holds, the z

variables vanish from (3), and the minimization in (3) becomes separable over the different scenarios. We
can write

+ λ() :� ∑
s∈S

+s λs(), (4)

where

+s λs() :� min
x,y

c�x + q�
s y + λ�

s x : x,y
() ∈ Ks

{ }
for all s ∈ S. (5)

(Note that + and +s, s ∈ S are all concave functions based on their definitions.) The Lagrangian dual
problem is

φLD :� max
λ∈C

1
N
+ λ(), where C :� λ :

∑
s∈S

λs � 0

{ }
. (6)

For any feasible choice of multipliers λ, we have (1/N)+(λ) ≤ φSMIP because
∑

s∈S λ�
s z � 0 for any vector z.

Thus, the optimal value φLD of the Lagrangian dual provides a lower bound on φSMIP.
The lower bound φLD is at least as good as the linear programming (LP)-relaxation bound of the extensive

form (1) (see, for example, Conforti et al. 2014). Empirical (for example, Rahmanai et al. 2018 and Bodur et al.
2016) and theoretical (Dey et al. 2018) evidence indicates that it is often much better. Thus, the ability to
compute high-quality Lagrangian bounds efficiently is useful for exact solution approaches—for example,
those that use a branch-and-bound framework (Carøe and Schultz 1999, Lubin et al. 2013). Additionally, the
solutions to the scenario subproblems (5) can provide useful information for finding high-quality primal
feasible solutions. Another advantage of dual decomposition is that it extends readily to multistage stochastic
programs. The only change is that the nonanticipativity constraints must be redefined to reflect the structure of
the scenario tree representing the evolution of the uncertain parameters.

Our focus in this paper is to effectively make use of parallel computing to solve the dual problem (6)
efficiently. This problem is nonsmooth with many (possibly very many) variables. On the other hand, it is a
concave maximization problem, and its objective is separable; the only coupling between variables λs, s ∈ S is
via the constraint requiring these vectors to sum to zero. Any constrained nonsmooth convex optimization
method can be applied to solve the dual problem (6), but we focus here on the traditional subgradient method
because it is amenable to analysis and easy to implement.

Subgradients of the Lagrangian dual can be obtained by solving N scenario-wise subproblems. Traditional
subgradient methods (Shor 1985, Bertsekas 1999, Ruszczyński 2006) require the full subgradient to be
evaluated (across all scenarios) before any progress can be made, thus requiring all N scenario-wise sub-
problems to be solved at each iteration. Scenarios requiring larger computation time can cause delays in the
execution, as well as inefficient usage of parallel computing resources. We describe two variants of the
traditional subgradient method (Shor 1985, Bertsekas 1999, Ruszczyński 2006) that alleviate this issue. The first
variant uses stochastic subgradients of +(λ) constructed from batches of scenarios. Because the batches arise
from a partition of the full scenario set S, we term this method the partitioned subgradient method. The second
variant, an asynchronous subgradient method, does not necessarily wait for all scenarios to complete before
taking a step, using the current returned solution for completed scenarios and the most recent solution for the

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
2 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

remaining scenarios to construct a “noisy” subgradient. The two variants can be combined into an asynchronous
partitioned subgradient algorithm. All these approaches maintain feasibility of iterates λ throughout, allowing
us to continually update a lower bound to monitor the algorithm’s progress.

We focus on improving parallel variants of the projected subgradient algorithm, which performs a step
along the gradient direction followed by a projection onto the feasible set, for several reasons. First, although
more advanced subgradient methods tend to converge faster in experiments on standard SMIP instances from
SIPLIB, they are based on construction of a master problem that approximates the expected recourse function
more closely as the algorithm advances. The per-iteration cost of the algorithm can increase significantly with
the complexity of the master problem, an operation that can become a bottleneck in a large-scale imple-
mentation. Second, parallel and more generally distributed versions of the subgradient methods have been
studied in several other contexts; it is interesting to consider it in the context of dual decomposition as well.
Third, many variants of the subgradient method (especially the stochastic gradient method) have been de-
veloped in recent years, and our techniques may be applicable to these variants, too.

In the remainder of this introduction, we review related work on SMIPs and distributed optimization.
Section 2 recaps the application of the standard projected subgradient method to solve (6) and highlights the
possible disadvantage of requiring full subgradients at every iteration. Sections 3 and 4 develop our parti-
tioned and asynchronous variants (respectively) and give convergence results. Computational results on
canonical instances from the SIPLIB library are shown in Section 5, and Section 6 gives some concluding
remarks. The appendix contains proofs for some results in Sections 3 and 4, together with a discussion on how
partitioning can be applied to other subgradient methods.

1.1. Related Work
In the context of SMIP, alternatives to the subgradient algorithm for solving the Lagrangian problem include
coordinate descent (Aravena and Papavasiliou 2015), column generation (Lulli and Sen 2004), cutting plane
(Lubin et al. 2013, Kim and Zavala 2017), and bundle methods (Lubin et al. 2013, Kim and Zavala 2017, Kim
et al. 2017). The approach of Aravena and Papavasiliou (2015) is the most similar in flavor to our work. They
work with a slightly different Lagrangian relaxation that avoids elimination of the term involving z, instead
defining a smoothed subproblem that incorporates z. They then apply an asynchronous block-coordinate
descent approach in which each block corresponds to a single scenario. The cutting-plane approach (which is
an application of the classic Kelley’s method (Kelley 1960) to the present setting) uses subgradients to
construct cutting planes for the objective function. The model of the objective function constructed in this way
can be formulated as a linear program and solved exactly at each iteration. Bundle methods are a refinement of
this process that solve regularized or restricted problems over the cutting-plane objective. Such methods avoid
the oscillating iterates often observed in the cutting-planes method and tend to converge faster in practice.
Lubin et al. (2013) apply the proximal bundle method; Kim and Zavala (2017) use an interior-point method to
generate the next iterate; and Kim et al. (2017) use an asynchronous trust-region method.

Our partitioned subgradient approach repartitions the scenario set uniformly at random at each iteration of
the algorithm for the purposes of improving parallelization. The concept of partitioning has been used in the
context of SMIPs in a completely different manner. Instead of completely decomposing the problem so that each
scenario can be treated as a separate subproblem, scenarios can be grouped together to form larger subproblems
(Boland et al. 2016, Maggioni and Pflug 2016, Maggioni et al. 2016, Ryan et al. 2016, Sandikçi and Ozaltin
2017). This approach can potentially yield better relaxations at the cost of having more expensive subproblems.

As we were finishing this work, we found the paper of Necoara et al. (2017), which performs batch updates
similar to those in our partitioned approach. There are several key differences with our work. First, they
adopt a randomized block-coordinate descent perspective rather than our stochastic gradient viewpoint.
Second, they consider a more general distributed optimization model based on a graph that determines how
information can be shared, whereas we assume no such structure. In effect, we work with a completely
connected graph. Third, whereas their batches are sampled independently at every step, we generate many
batches at a time (with nonoverlapping scenarios) by partitioning the entire group of scenarios. Finally, our
convergence analysis focuses on the case of nonsmooth objective function, whereas they study the smooth case
with and without strong convexity.

2. Subgradient Method for the Lagrangian Dual
This section describes the basic projected subgradient method applied to the problem and its convergence
properties. Section 2.1 demonstrates how subgradients can be computed, and Section 2.2 presents the pro-
jected subgradient method.

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 3

2.1. Subgradient Computation
The following statement characterizes the subdifferential ∂+s(λs): If for some λs in the domain of +s, (xs,ys) is a
vector pair that achieves the minimum in (5), then xs ∈ ∂+s(λs), that is,

+s µs

() ≤ +s λs() + 〈xs,µs − λs〉, (7)
for all µs in the domain of +s.

By making use of the indicator function δ0 : Rn → R ∪ {∞}:

δ0 x() :� 0, if x � 0,
∞, otherwise,

{
we restate (6) as follows:

φLD :� 1
N

max
λ∈Rn×N

+0 λ(), where +0 λ() :� + λ() − δ0
∑
s∈S

λs

()
. (8)

The domain of +0 (containing those values of λ for which +0(λ) > −∞) is a subset of C defined in (6). Note that
+0 is a concave function with a closed convex domain, because each +s is concave with closed convex domain,
and the set C is a hyperplane.

Lemma 1. Fix a vector λ � [λs]s∈S in the domain of+0. For all s ∈ S, let (xs, ys) be a solution of (5) at these values of λs. Then,
[xs − z]s∈S is a subgradient of +0 at λ for all z ∈ Rn.

Proof. We need to show that

+0 µ
() ≤ +0 λ() +∑

s∈S
〈xs − z,µs − λs〉, for any µ � µs

[]
s∈S.

In the case in which
∑

s∈S µs �� 0, we have +0(µ) � −∞, so the required inequality is satisfied trivially. In the
other case, we have

∑
s∈S µs �

∑
s∈S λs � 0, so using the fact that xs is a subgradient of +s at λs, we have that

+0 µ
() � + µ

() ≤ + λ() +∑
s∈S

〈xs,µs − λs〉 � +0 λ() +∑
s∈S

〈xs − z,µs − λs〉,

as required. □

Lemma 1 gives us a useful way to compute subgradients to be used as step directions in a subgradient
method. We have freedom in the choice of z; it makes sense to choose z in such a way that any step along the
subgradient direction maintains feasibility of λ with respect to the set C defined in (6). Specifically, we
should choose

z � 1
N

∑
s∈S

xs,

where the xs are the solutions to (5), because we then have
∑

s∈S(xs − z) � 0.

2.2. Projected Subgradient Method
The projected subgradient method for the Lagrangian dual, shown in Algorithm 1, generates a sequence of
iterates (λk)k∈N satisfying λk ∈ C—that is,

∑
s∈S λk

s � 0. At iteration k, we solve (5) for all s ∈ S to obtain a
subgradient xks . (We assume knowledge of just one of the solutions (xks , yks) of (5) for each s ∈ S.) We assemble a
subgradient of ∂+0(λk) as follows (see Lemma 1):

gk :� xks − zk
[]

s∈S
, where zk :� 1

N

∑
s∈S

xks . (9)

By this definition of zk, gk satisfies
∑

s∈S gks � 0, so that for any α ∈ R, we have

λk ∈ C ⇒ λk + αgk � λk + α xks − zk
[]

s∈S
∈ C. (10)

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
4 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

The subgradient method in general has no good practical stopping criterion (Lemarechal 1978). One can
decide to terminate the algorithm when a time limit or desired objective has been reached. Alternatively, one
can set an iteration limit based on the convergence guarantees, such as the one in Corollary 1. In the context of
dual decomposition for SMIPs, another method that has been used in practice is to compute an upper bound
by evaluating candidate first-stage solutions, and one can terminate the algorithm once the gap between the
lower and upper bounds is sufficiently small (for example, Aravena and Papavasiliou 2015).

Algorithm 1 (Subgradient Algorithm for (8))

Input: starting point λ1 � [λ1
s]s∈S with λ1 ∈ C

Output: Lower bound value LBmax
1: k ← 1
2: LBmax ← −∞;
3: while termination criteria not met do
4: for all s ∈ S do
5: Evaluate +s(λk

s) and xks ∈ ∂+s(λk
s);

6: end for
7: LBmax ← max(LBmax, (1/N)∑s∈S +s(λk

s));
8: Set zk � (1/N)∑s∈S xks ;
9: for all s ∈ S do

10: Set λk+1
s � λk

s + αk(xks − zk);
11: end for
12: k ← k + 1;
13: end while

The basic convergence result for the subgradient algorithm (Ermoliev 1966) is well known, but we state it
below for completeness. Convergence is proved for the function values at weighted averages of the iterates, not
the iterates themselves. We assume that a solution of (8) exists, denoted by λ∗ � [λ∗s]s∈S, and obtain the
following results.

Theorem 1. Let M be a constant such that ‖xs‖2 ≤ M for all xs ∈ ∂+s(λs), for all [λs]s∈S with
∑

s∈S λs � 0. Let (λk)k∈N be
generated by Algorithm 1, with αk > 0 for all k. Then, for all L ≥ 1, we have

∑L
k�1

αk + λ∗() −+ λk()[] ≤ 1
2
‖λ1 − λ∗‖22 +

1
2
NM2

∑L
k�1

α2
k .

Proof. We have

1
2

λk+1 − λ∗⃦⃦ ⃦⃦2
2 �

1
2

λk + αkgk − λ∗⃦⃦ ⃦⃦2
2 �

1
2

λk − λ∗⃦⃦ ⃦⃦2
2 + αk〈gk,λk − λ∗〉 + 1

2
α2
k‖gk‖22. (11)

For the second term, we have from (9) and Lemma 1 that

〈gk,λk − λ∗〉 ≤ +0 λk() −+0 λ∗() � + λk() −+ λ∗()
, (12)

because λk ∈ C and λ∗ ∈ C. For the third term in (11), we have from (9) that

gk
⃦⃦ ⃦⃦2 � xks − zk

[]
s∈S

⃦⃦⃦ ⃦⃦⃦2
2

� ∑
s∈S

xks
⃦⃦ ⃦⃦2

2 − 2 zk
()�∑

s∈S
xks +N zk

⃦⃦ ⃦⃦2
2

� ∑
s∈S

xks
⃦⃦ ⃦⃦2

2 −N zk
⃦⃦ ⃦⃦2

2

≤ ∑
s∈S

xks
⃦⃦ ⃦⃦2

2 ≤ NM2.

(13)

By substituting these bounds into (11) and rearranging, we obtain

αk + λ∗() −+ λk()[] ≤ 1
2
‖λk − λ∗‖22 −

1
2
‖λk+1 − λ∗‖22 +

1
2
α2
kNM2.

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 5

We obtain the desired result by summing both sides over k � 1, 2, . . . ,L and using the fact that ‖λL+1 − λ∗‖2 ≥ 0. □

The following corollary, concerning convergence of the objective values of the averaged iterates, follows
from concavity of + by a standard argument.

Corollary 1. Suppose the assumptions of Theorem 1 hold. Define

λ̄L :�
∑L

k�1 αkλ
k∑L

k�1 αk
.

Then,

+ λ∗() −+ λ̄L() ≤ ‖λ1 − λ∗‖2 +NM2 ∑L
k�1 α

2
k

2
∑L

k�1 αk
.

Various strategies for choosing step lengths αk give rise to various convergence rate guarantees. If we have∑∞
k�1

α2
k < ∞,

∑∞
k�1

αk � ∞, (14)

then Corollary 1 ensures convergence: +(λ̄L) → +(λ∗) as L → ∞. Particular choices of αk lead to guarantees on
worst-case convergence rates. For example, the common choice of αk � θ/

̅̅
k

√
for some constant θ > 0 leads

to +(λ∗) −+(λ̄L) ≤ O((log L)/ ̅̅
L

√).
Algorithm 1 can be parallelized in a straightforward way. Each iteration requires evaluation of a complete

subgradient, constructed from the solutions xks to the subproblems for each of the N scenarios s ∈ S (i.e., the
loop in lines 4–6). The subproblems can be solved in parallel, but before zk can be calculated (step 8), every
scenario needs to be solved. This synchronization requirement can be a bottleneck in parallel execution of this
algorithm. Because the subproblems are mixed-integer programs (MIPs), their solution time could vary
significantly, not just from scenario to scenario, but also according to the values of λk. If significant time is
spent waiting for a small fraction of subproblems to be processed, parallel computing resources may not be
utilized to their full potential.

We describe two variants of the subgradient method in the next two sections that can alleviate this bot-
tleneck. The first variant uses stochastic subgradients of +(λ) constructed from batches of scenarios. Because
the batches arise from a partition of the full scenario set S, we term this method the partitioned subgradient
method. The second variant, an asynchronous subgradient method, does not necessarily wait for all scenarios to
complete before taking a step, using the current returned solution for completed scenarios and the most recent
solution for the remaining scenarios to construct a “noisy” subgradient. The two variants can be combined into
an asynchronous partitioned subgradient algorithm. All these approaches maintain feasibility of iterates λ
throughout, allowing us to continually update a lower bound to monitor the algorithm’s progress.

3. Partitioned Stochastic Subgradient
We now propose a method in which a stochastic estimate of the subgradient is used in place of the subgradient
itself. We describe first a serial variant, then a parallel implementation that alleviates to some extent the
bottleneck issues associated with the full subgradient method of Section 2.

3.1. A Serial Variant
A random vector g̃k taking values in Rn×N is said to be a stochastic subgradient of +0 at λk if

E g̃k
[] ∈ ∂+0 λk()

,

where the expectation is taken over all the random quantities on which g̃k depends, conditional on λk. We
obtain such a vector by combining the subgradients from only a subset of scenarios instead of from all of them
as in (9), leading to a similar subgradient analysis (in expectation) to that of Algorithm 1.

At iteration k, we pick a partition of N into batches of equal size K ≥ 2 uniformly at random.1 (We assume
for simplicity that N is a multiple of K.) This can be done by randomly reordering the indices and assigning the
indices in positions cK + 1, cK + 2, . . . , (c + 1)K to the same batch for each nonnegative integer c. We use 3k to
denote this partition:

3k :� Tk
1,T

k
2, . . . ,T

k
N/K

{ }
, (15)

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
6 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

where

Tk
1 ∪ Tk

2 ∪ . . . ∪ Tk
N/K � 1, 2, . . . ,N{ }, where |Tk

i | � K, for all i. (16)
For any s ∈ S and iteration k, we use the following term to denote which batch scenario s belonged to in
iteration k:

ik s() :� i where s ∈ Tk
i . (17)

A subgradient step like that of Algorithm 1 is computed for each Tk
i , for i � 1, 2, . . . ,N/K, separately, as follows:

ĝk :� ĝks
[]

s∈S, where ĝks � xks − zkTk
ik s()

for all s ∈ S, (18)

where for any T ∈ 3k, we define

zkT :� 1
K

∑
j∈T

xkj . (19)

(By setting T � S, we have from (9) that zkS � zk.)
The following result proven in Appendix B establishes that a scaling of x̂k is a stochastic subgradient of +0

at λk. In fact, in expectation, it is a multiple of gk defined in (9).

Proposition 1. For the random vector ĝk defined by (18), we have

K N − 1()
N K − 1()E3k ĝk � gk � xks − zk

[]
s∈S

∈ ∂+0 λk()
,

where the expectation is with respect to the random partition 3k defined by (15).

Algorithm 2 (Partitioned Stochastic Subgradient Algorithm for (8))

Input: starting point λ1 � [λ1
s]s∈S with λ1 ∈ C

Output: Lower bound value LBmax
1: k ← 1;
2: LBmax ← −∞;
3: while termination criteria not met do
4: for all s ∈ S do
5: Evaluate +s(λk

s) and xks ∈ ∂+s(λk
s);

6: end for
7: LBmax ← max(LBmax, (1/N)∑s∈S +s(λk

s));
8: Define ĝk as in (18) with respect to some uniform random partition 3k;
9: for all s ∈ S do

10: Set λk+1
s � λk

s + αk
K(N−1)
N(K−1) ĝ

k
s ;

11: end for
12: k ← k + 1
13: end while

A partitioned stochastic subgradient algorithm is shown as Algorithm 2. To prove a convergence result
(stochastic counterparts of Theorem 1 and Corollary 1), we need a bound on E3k‖ĝk‖2, given by the following
result, whose proof appears in Appendix B.

Lemma 2. Let M be a constant such that ‖xs‖2 ≤ M for all xs ∈ ∂+s(λs), for all [λs]s∈S with
∑

s∈S λs � 0. Then, for the
random partition 3k and stochastic subgradient ĝk defined in (15) and (18), respectively, we have

E3k‖ĝk‖2 ≤ N K − 1()
K N − 1()NM2.

A convergence result for Algorithm 2 (following Theorem 1) is stated next. The proof appears in Appendix B.

Theorem 2. Let M be a constant such that ‖xs‖2 ≤ M for all xs ∈ ∂+s(λs), for all [λs]s∈S with
∑

s∈S λs � 0. Let (λk)k∈N be
generated by Algorithm 2, with αk > 0 for all k. Then, for all L ≥ 1, we have∑L

k�1
αkE + λ∗() −+ λk()[] ≤ 1

2
‖λ1 − λ∗‖22 +

1
2
K N − 1()
N K − 1()NM2

∑L
k�1

α2
k ,

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 7

where the expectation is taken over the random partitions 31,32,

The following corollary is immediate.

Corollary 2. Suppose the assumptions of Theorem 2 hold. Define

λ̄L :�
∑L

k�1 αkλ
k∑L

k�1 αk
.

Then,

E + λ∗() −+ λ̄L()() ≤ ‖λ1 − λ∗‖2 + K N−1()
N K−1()NM2 ∑L

k�1 α
2
k

2
∑L

k�1 αk
,

where the expectation is taken over the random partitions 31,32,

Note that the bound in Corollary 2 is slightly worse than the corresponding bound for the full-subgradient
algorithm in Corollary 1, because of the presence of the factor K(N−1)

N(K−1) in the numerator. Because K ≤ N, this
factor lies in the interval [1, 2). (It is close to two when K takes its minimal value of two.) However, as we
discuss next, the partitioned approach of Algorithm 2 is potentially more amenable to parallel implementation
than the full-subgradient approach of Algorithm 1.

3.2. Parallel Partitioned Subgradient Implementation
Algorithm 2 still requires computation of xks ∈ ∂+s(λk

s) for every scenario s at every iteration k (line 6), but it can
potentially limit the impact of synchronization by allowing computations for a future iteration to be done
before all scenarios from iteration k are solved. In particular, for a given batch Tk

i , as soon as xks ∈ ∂+s(λk
s) has

been found for all s ∈ Tk
i , it is possible to compute ĝks and, hence, λ

k+1
s for all s ∈ Tk

i . As a result, the subproblems
for iteration k + 1 for scenario s ∈ Tk

i can be started. This algorithmic feature contrasts with the projected
subgradient method, which does not start processing subproblems corresponding to later iterations if there is
some unfinished subproblem in the current iteration.

Figure 1 gives a concrete example of how the partitioning process improves parallelism. Each row cor-
responds to a partition/iteration, each box represents a batch with three scenarios, and the arrows pointing
to a batch show which batches need to be finished before that batch can be processed. The hatched boxes
represent completed batches (that is, λk

s , +s(λk
s), and xks ∈ ∂+s(λk

s) have been computed for all s in the batch).
The boxes with thick outlines represent batches where, for every s in the batch, λk

s has been computed, and not
all +s(λk) and xks ∈ ∂+s(λk

s) have been computed. The boxes with dashed outlines are batches where not every
λk
s has been computed. Even if the subproblems corresponding to scenarios 7–9 at iteration k are still being

solved, the subproblems for scenarios 1–6 at iteration k + 1 can be solved because their corresponding batches
in iteration k are complete, and we know λk+1

s for s ∈ {1, . . . , 6}. Further, once the subproblems for scenarios 1,
5, and 6 at iteration k + 1 have completed processing, we can compute λk+2

1 , λk+2
5 , and λk+2

6 and start processing
their subproblems for iteration k + 2, even if the subproblems involving scenarios 7–9 from iteration k are still
being solved.

Figure 1. Example of Dependency Graph Between Batches Across Different Partitions

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
8 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

We describe the algorithm formally in Algorithm 3. To parallelize the computation, we use the master-
worker distributed computing framework, which is a centrally coordinated framework in which a master node
runs the main algorithm while assigning subtasks or jobs to worker processors. Each job consists of computing
the objective +s(λk

s) and subgradient xks ∈ ∂+s(λk
s) associated with a specific scenario s at iteration k. The master

adds these jobs to a queue , and workers are assigned scenario–iteration pairs (s, k) one at a time from .
An interesting feature of this implementation is that, once +s′ (λ1

s′) has been computed for all s′ ∈ S (the initial
jobs added to the queue have been completed), the algorithm maintains an updated lower bound LB each
time a batch completes (line 23). In particular, after +s′ (λ1

s′) has been computed for all s′ ∈ S, the value LB
updated in line 24 equals the value of (1/N)+(λ̂), where λ̂s refers to the most recent λk

s used in the computation
of LB. Indeed, in line 24, λ̂s′ is implicitly updated from λk−1

s′ to λk
s′ for s

′ ∈ Tk−1
i , and, hence, the impact of this

update on
∑

s′∈S λ̂s′ is the term ∑
s′∈Tk−1

i

λk
s′ − λk−1

s′
() � 0,

due to the computation of λk
s′ in line 15. Thus, once λ̂s′ has been initialized to λ1

s′ for all s
′ ∈ S, the algorithm

maintains λ̂ ∈ C thereafter, and, hence, LB � (1/N)+(λ̂) is a lower bound on φLD.
Note that when N � K, Algorithm 3 is simply a master-worker implementation of the standard sub-

gradient method.

Algorithm 3 (Parallel Partitioned Subgradient Algorithm for (8))

Input: starting point λ1 � [λ1
s]s∈S with λ1 ∈ C

Output: Lower bound value LBmax
1: Q ← {(s, 1) : s ∈ S};
2: LB ← 0; LBmax ← −∞;
3: while termination criteria not met do
4: while worker available and Q �� ∅ do
5: (s, k) ← pop(Q);
6: Assign a worker the job to compute +s(λk

s) and xks ∈ ∂+s(λk
s);

7: end while
8: while there is some finished job (s, k) not yet processed by master do
9: (+s(λk

s), xks) at master ← output from job (s, k);
10: Mark job (s, k) as processed;
11: i ← ik(s); {see definition (17)}
12: if all jobs (s′, k) for s′ ∈ Tk

i have finished processing then
13: z ← (1/K)∑s′∈Tk

i
xks′ ;

14: for all s′ ∈ Tk
i do

15: λk+1
s′ ← λk

s′ + αk
K(N−1)
N(K−1) (xks′ − z);

16: end for
17: Q ← Q ∪ {(s′, k + 1) : s′ ∈ Tk

i };
18: end if
19: if k � 1 then
20: LB ← LB + (1/N)(+s(λk

s));
21: else
22: j ← ik−1(s); {see definition (17)}
23: if all jobs (s′, k) for s′ ∈ Tk−1

j have finished processing then
24: LB ← LB + (1/N)∑s′∈Tk−1

j
(+s′ (λk

s′) −+s′ (λk−1
s′));

25: end if
26: end if
27: if all jobs (s′, 1) for all scenarios s′ ∈ S have finished processing then
28: LBmax ← max(LBmax,LB);
29: end if
30: end while
31: end while

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 9

3.3. Batch Size and Parallel Performance
The choice of K involves balancing the trade-off between the improved parallelism afforded by a small value
of K versus the deterioration in convergence rate due to the K(N−1)

N(K−1) factor in Corollary 2. Note that once K is
larger than N/K, it is technically possible for a single hard scenario to hold up progress on all subsequent
partitions if the batch the scenario is contained in has at least one scenario in every batch in the following
partition. In our experiments, we see that setting K to slightly larger than N/K can still offer computational
benefits in some cases, especially when we incorporate asynchronous updates (see Section 4.1).

In the pathological case where there is a single scenario that is consistently extremely difficult to solve
relative to all other scenarios, then even a small value of K may not be enough to help significantly. That single
scenario will eventually hold up progress on all other scenarios, even if a smaller K value may allow for more
iterations before this starts happening.

4. An Asynchronous Subgradient Scheme
In the master-worker implementation of the projected subgradient method, when the job queue is empty, there
are no more tasks that can be assigned to idle workers. To prevent this from occurring, when the queue is
sufficiently small, we can take measures to refill it. We do this by forcing a step with an estimate of a full
subgradient that uses the most recent value xs that has been computed for each scenario s. Algorithm 4
describes this procedure in detail. We use the notation τs to denote the iteration that gave rise to xs. (If the
latest xs at the master comes from λk′ , then τs � k′.)

Note that, in order to update our lower bound, we have to wait for all scenarios from a particular iteration k
to complete. As a result, we do not terminate jobs that are currently being processed until all the jobs
corresponding to a more recent iteration are complete.

Algorithm 4 (Asynchronous Subgradient Algorithm for (8))

Input: starting point λ1 � [λ1
s]s∈S with λ1 ∈ C, Qthreshold;

Output: Lower bound value LBmax
1: Q ← {(s, 1) : s ∈ S};
2: k ← 1;
3: τ0s ← 0;
4: LBmax ← −∞;
5: while termination criteria not met do
6: while |Q| > Qthreshold or (k � 1 and not all (s, 1) jobs have been processed) do
7: if worker available then
8: (s, �) ← pop(Q);
9: Assign a worker the job to compute +s(λ�

s) and x�s ∈ ∂+s(λ�
s);

10: end if
11: while there is some finished job (s, �) not yet processed by master do
12: (+s(λ�), x�s) at master ← output from job (s, �);
13: Mark job (s, �) as processed;
14: if (s′, �) is done for all s′ ∈ S then
15: LBmax ← max(LBmax, (1/N)∑s′∈S +s′ (λ�

s′));
16: Terminate all running jobs (s′, j) for which j < � for all s′ ∈ S;
17: end if
18: if τk−1s < � then
19: x̂ks ← x�s ;
20: τks ← �;
21: end if
22: end while
23: end while
24: ẑk ← (1/N)∑s∈S x̂ks ;
25: for all s ∈ S do
26: λk+1

s ← λk
s + αk(x̂ks − ẑk);

27: end for
28: Q ← {(s, k + 1) : s ∈ S};
29: k ← k + 1;
30: end while

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
10 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

We introduce notation τks to denote the iteration j ≤ k from which the version of the subgradient x̂s stored on
the master at line 24, corresponding to the kth iteration of the main loop in Algorithm 4 was derived. This
means that x̂ks � xτ

k
s

s . Define λ̂k
s :� λ

τks
s , and let x̂k :� [x̂ks]s∈S, λ̂k :� [λ̂k

s]s∈S. Note that

x̂k ∈ ∂+ λ̂k()
. (20)

The subgradient step in Algorithm 4 can now be written as follows:

λk+1
s � λk

s + αk x̂ks − ẑk
()

, for all s ∈ S, (21)
where ẑk � 1

N
∑

s∈S x̂ks .
We now state a result about the convergence of a weighted average of the iterates (λk)k∈N to an opti-

mal value.

Theorem 3. Let M be a constant such that ‖xks‖2 ≤ M for all xks ∈ ∂+s(λk
s), all λk

s , all s ∈ S, and all k ∈ N. Let (λk)k∈N be
generated by Algorithm 4, with αk > 0 for all k. For any L � 1, 2, . . ., define

λ̄L :�
∑L

k�1 αkλ̂
k∑L

k�1 αk
, λ̃L :�

∑L
k�1 αkλ

k∑L
k�1 αk

.

Then,

+ λ∗() −+ λ̄L() ≤ ‖λ1 − λ∗‖2 +M2 N
∑L

k�1 α
2
k + 2

∑L
k�1 αk

∑
s∈S

∑k−1
i�τks αi

()
2
∑L

k�1 αk
.

Furthermore, we have

λ̄L,C
() ≤ ‖λ̄L − λ̃L‖ ≤

2M
∑L

k�1 αk
∑

s∈S
∑k−1

i�τks αi∑L
k�1 αk

,

where (w,C) denotes the Euclidean distance between w and the set C, defined in (6).

For αk satisfying the usual conditions (14), the right-hand sides of the inequalities in Theorem 3 approach
zero, provided that the “ages” of the updates are bounded—that is, there is a positive integer D such that

k − τks ≤ D, for all k ∈ N and all s ∈ S. (22)
(We expect D to be modest unless there are a small fraction of scenario evaluations that require much longer to
process than the times for all other scenarios combined.) For each s ∈ S, using the elementary inequality 2ab ≤
a2 + b2 for any a, b ∈ R, we have

αk
∑k−1
i�τks

αi ≤
∑k−1

i�max k−D,1()
αkαi ≤

∑k−1
i�max k−D,1()

1
2

α2
k + α2

i

() ≤ 1
2

Dα2
k +

∑k−1
i�max k−D,1()

α2
i

()
.

Hence, we have ∑L
k�1

αk
∑k−1
i�τks

αi ≤ 1
2

∑L
k�1

Dα2
k +

∑L
k�1

∑k−1
i�max k−D,1()

α2
i

()
≤ D

∑L
k�1

α2
k ,

and it follows that

dist λ̄L,C
() ≤ 2M

∑L
k�1 αk

∑
s∈S

∑k−1
i�τks αi∑L

k�1 αk
≤ 2MND

∑L
k�1 α

2
k∑L

k�1 αk
,

so that (λ̄L,C) → 0 because
∑∞

k�1 α
2
k is bounded and

∑∞
k�1 αk is not. For the second bound in Theorem 3, similar

logic yields +(λ∗) −+(λ̂L) → 0 under the same assumptions.

4.1. An Asynchronous Partitioned Method
The partitioned method is likely to be blocked much less often than the projected subgradient method, but
blocking is still a possibility. To reduce the possibility of blocking further, we consider an asynchronous
variant of the partitioned method: When the input queue is empty and all batches are waiting on some

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 11

scenarios, we simply take a batch that was created at the earliest iteration among the open batches, use the
most recent subgradient information for the scenarios in that batch, and take a step. The description of the al-
gorithm and the analysis is quite similar to what we had in the preceding two sections. The choice of the batch
size K for the asynchronous partitioned method follows the same intuition as in Section 3.3.

5. Computational Results
In this section, we report results from a numerical comparison between our methods and the standard full
subgradient approach, reporting on the number of MIP solves and the wall-clock time required to reach
certain levels of accuracy.

5.1. Computing Setup and Implementation Details
The experiments were run on a dedicated server with two 2.2-Ghz Intel E5-4640 Xeon processors (40 cores
total) with 256 GB of RAM. We implemented the subgradient algorithms in Python (Version 3.6.4) in NumPY
(Version 1.13). Gurobi (Version 7.5.2) was used for solving the mixed-integer subproblems associated with
each scenario. We used 32 workers with a single core each to process the subproblems.

We implemented four variants of the subgradient method in our experiments. Our baseline method was the
standard projected subgradient method, Algorithm 1, with the subproblems for all scenarios solved in parallel
over all processors. We also implemented the parallel partitioned subgradient method (Algorithm 3), the
asynchronous projected full subgradient method (Algorithm 4), and an algorithm that combines partitioning
with asynchronicity (discussed in Section 4.1). We denote these methods by FSG, PSG, ASG, and APSG, respectively.

The parallel versions of the subgradient algorithms required two modifications to a standard serial version.
We first created a data structure to maintain the list of batches created and the dependencies, as illustrated in
Figure 1. Secondly, we organized each algorithm around issuing scenario subproblems to solve and process
the solutions as each result comes in.

To evaluate the scenario subproblems in parallel, we used a master-worker parallel computing framework
provided by the Python package Dask.distributed. We launched a scheduler on a process then separately
created 32 single-core workers to connect to the scheduler. Each subgradient algorithm issues tasks (single-
scenario subproblems) to the scheduler as needed, which subsequently assigns these tasks to workers.
Whenever a task is finished by a worker, the main routine is notified, and the results are processed.

We briefly discuss how the number of workers W affects the parallel performance. If W is many factors
smaller than the number of scenarios N, then in the projected subgradient method, the fraction of time that
workers spend idling is significantly smaller, which, in turn, reduces the potential benefit of using the
partitioned or asynchronous methods. On the other hand, if W is very close to N, the fraction of time that
workers spend idling in the projected subgradient method can take up a large portion of the running time. We
also note that there is no benefit in having W > N in the projected subgradient and partitioned subgradient
methods because only N subproblems can be solved simultaneously in those methods. On the other hand, the
asynchronous methods can have the same scenario (with different λs values) being evaluated by multiple
workers at the same time.

5.2. Methods Evaluated
The partitioning methods use a batch parameter K, and we use PSG-K and APSG-K to denote this parameter
when needed. We set the size of each batch within the partition K to be five or 10 for the 50-scenario instances
and 10 or 20 for the 200-scenario instances. For these values, the ratio K(N−1)

N(K−1) that appears in the convergence
results of Section 3 takes on the values shown in Table 1.

For the asynchronous methods ASG and APSG, we ensured saturation of the processors by forcing a step to
be taken with the most recent information available, whenever there were five or fewer scenarios remaining in
the job queue for which processing had not yet been started. This corresponds to setting Qthreshold � 5 in
Algorithm 4.

We set the step lengths as αk :� θ/k, where θ is a constant chosen via grid search for FSG to maximize the
lower bound within a chosen time limit then used for all the methods. Initial experiments with constant step
lengths or of the form αk � θ/

̅̅
k

√
did not perform as well as the θ/k step length, so we did not use those.

5.3. Problem Instances
We used the canonical SSLP (Ntaimo and Sen 2005) and DCAP (Ahmed and Garcia 2003) problem families
from SIPLIB (Ahmed et al. 2015). SSLP (stochastic server location) has binary first-stage variables and mixed
second stage, whereas DCAP (dynamic capacity acquisition) has mixed first stage and binary second stage. We

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
12 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

performed experiments on both 50-scenario and 200-scenario versions of these problems. Existing instances of
these problems have a relatively small number of first-stage variables and can be solved fairly quickly, so we
created new instances using the same generation process as the original problems, but with significantly more
variables in both the first and second stages.2 In Table 2, we describe the numbers of binary variables (#B),
continuous variables (#R), and constraints (#cons) in each stage of the problem, and in the extensive form for
the 200-scenario instance. The two numbers in the SSLP problem names correspond to (i) the number of server
locations and (ii) the number of customers. The three numbers in DCAP names correspond to the numbers
of (i) resources, (ii) tasks, and (iii) time periods.

As discussed in Section 1, the variability in the time taken to solve scenario-wise subproblems can have a
significant effect on overall running time. We report statistics on the average solve times in Table 3. For each
problem and each scenario, we averaged the time it takes to solve a subproblem associated with that particular
scenario as a measure of how difficult that scenario is to process. We then summarized the distribution over all
the scenarios by reporting the quartiles. We will again refer to these statistics when discussing the experi-
mental results in Section 5.4.3. The scenarios in SSLP instances have comparatively high solve times compared
with the DCAP instances, whereas the variability in SSLP times is much smaller. Specifically, the ratio between
the median and the maximum is always within a factor of two to three for SSLP, whereas this ratio can reach
100 for DCAP. We also provide an aggregate measure of solve time variability for each instance via the
coefficient of variation (CV) for all the solve times over all scenarios for each instance, obtained by dividing
the standard deviation by the mean. As the number of scenarios increases from 50 to 200, the tail ends of the
distribution can become far more extreme for DCAP instances (especially for DCAP 6-6-5), whereas for SSLP,
the CV remains relatively stable.

5.4. Comparison of Subgradient Algorithms
Dual decomposition is used to obtain high-quality lower bounds quickly, so it is natural to compare either
how much time each method requires to reach a target value, or else the objective value of each method after a
given amount of computation time. We used the former in our experiments. If the method is being used to
obtain “good enough” lower bounds, we can set a termination criterion based on the objective value relative to
some upper bound that is updated on the fly by evaluating candidate first-stage solutions (see, for example,
Aravena and Papavasiliou 2015). To make this termination criterion consistent between the different methods
in our experiments, we simply picked threshold values and checked how long it took each method to reach
this value.

We evaluated the relative performance of the various subgradient methods by comparing the wall-clock
time and number of MIP solves required for each method to reach specific optimality thresholds. To define
these thresholds, we took the tightest lower bound f ∗ � +(λ∗) obtained over all runs of all methods and

Table 1. Scenarios, Partition Sizes, and Convergence Ratios

N (scenarios) K (partition size)
K(N − 1)
N(K − 1) (convergence ratio)

50 5 1.225
50 10 1.089
200 10 1.106
200 20 1.047

Table 2. Properties of Our Stochastic Programming Test Problems

Problem

First stage Second stage Extensive form

#B #R #cons #B #R #cons #B #R #cons

SSLP-20-100 20 0 1 2,000 20 120 4e6 4,000 24,001
SSLP-30-100 30 0 1 3,000 30 130 6e6 6,000 26,001
SSLP-60-60 60 0 1 3,600 60 120 7.2e6 12,000 24,001
SSLP-90-45 90 0 1 4,050 90 135 8.1e6 18,000 27,001
DCAP-4-6-8 32 32 32 192 48 80 38,432 9,632 16,032
DCAP-5-7-5 25 25 25 175 35 60 35,025 7,025 12,025
DCAP-6-6-5 30 30 30 180 30 60 36,030 6,030 6,030
DCAP-7-4-7 49 49 49 196 28 77 38,490 9,649 16,049

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 13

compared it with the initial lower bound of f0 � +(0). The thresholds were then set to be f ∗ + c(f0 − f ∗) for
c ∈ {0.1, 0.05, 0.02}. These values correspond to 10%, 5%, and 2% gaps from the best Lagrangian dual value ever
observed for the instance.

We ran each subgradient method on each instance five times and computed the wall-clock time taken and of
single-scenario MIP subproblems (MIPs for short) required for each method to reach each optimality
threshold. Results are shown in Tables 4, 5, 6, and 7 for SSLP and in Tables 8, 9, 10, and 11 for DCAP. The
“Base (s)” column reports the average time (in seconds) required for the parallel implementation of FSG to
attain the threshold value. The columns for PSG, ASG, and APSG show the time for each of these methods as a
fraction of the base time. (A number less than one means that the algorithm is faster than FSG.) The two
numbers in the column represent the timings of the fastest run/slowest run. If a run does not reach the
threshold value, then the ratio for the slowest run is shown as infinity. If all runs do not reach the value, then
the minimum ratio is also infinity.

5.4.1. SSLP Results. On the SSLP instances, PSG performed better than FSG in terms of wall-clock time for
most of the runs, indicating that PSG makes more efficient use of the parallel computing resources.

The ASG method in most cases performed worse than FSG, possibly because asynchronicity introduces a
significant amount of noise, especially when the number of scenarios is small, making the asynchronous step
relying proportionally more often on outdated values of xs. On the other hand, asynchronicity provides better

Table 3. Statistics of Scenario Solve Times and Coefficients of Variation

Problem Scenarios

Mean solve time quartiles (seconds)

Coefficients of variationMinimum 25% Median 75% Maximum

SSLP-20-100 50 0.57 1.23 1.51 2.14 3.62 0.95
200 0.50 1.29 1.64 2.24 4.85 0.99

SSLP-30-100 50 0.84 5.07 6.47 8.06 10.90 0.65
200 1.24 4.57 6.52 9.06 15.26 0.63

SSLP-60-60 50 1.32 8.54 10.41 14.27 20.21 0.46
200 1.17 8.87 11.63 14.94 22.80 0.42

SSLP-90-45 50 1.21 6.50 8.82 11.55 23.43 0.57
200 1.19 6.64 8.97 12.50 25.32 0.52

DCAP-4-6-8 50 0.05 0.11 0.18 0.27 1.18 1.00
200 0.03 0.08 0.14 0.23 2.43 1.79

DCAP-5-7-5 50 0.04 0.06 0.10 0.17 2.42 2.28
200 0.04 0.07 0.12 0.21 6.78 2.69

DCAP-6-6-5 50 0.05 0.10 0.15 0.37 1.58 1.42
200 0.03 0.08 0.13 0.23 17.63 6.34

DCAP-7-4-7 50 0.07 0.19 0.26 0.39 1.59 0.99
200 0.06 0.21 0.30 0.40 1.59 0.81

Table 4. Running Time Ratios for SSLP Instances: 50 Scenarios

Instance % Gap Base (s)

Minimum/maximum ratio

PSG (K � 5) PSG (K � 10) ASG APSG (K � 5) APSG (K � 10)
20-100 10 137 0.81/0.86 0.73/0.88 1.16/1.29 1.11/1.22 1.02/1.28

5 292 0.77/0.83 0.73/0.79 1.22/1.32 1.03/1.19 0.99/1.09
2 723 0.76/0.80 0.70/0.84 1.88/2.66 1.10/1.18 1.10/1.25

30-100 10 274 0.88/1.01 0.94/1.06 1.18/1.26 1.25/1.44 1.21/1.43
5 470 0.80/0.94 0.88/0.96 1.10/1.17 1.14/1.22 1.13/1.22
2 753 0.82/0.93 0.85/0.94 1.24/1.34 1.16/1.30 1.21/1.32

60-60 10 822 0.80/0.91 0.86/0.91 1.10/1.15 0.89/0.94 1.15/1.30
5 1,712 0.71/0.79 0.81/0.84 1.00/1.12 0.79/0.87 1.14/1.24
2 2,907 0.75/0.85 0.78/0.88 1.21/∞ 0.83/1.00 1.26/1.37

90-45 10 505 0.85/0.92 0.85/0.98 1.07/1.21 0.96/1.15 1.18/1.34
5 1,087 0.81/0.90 0.81/0.84 0.95/1.07 0.86/0.94 1.07/1.17
2 2,143 0.83/0.91 0.82/0.85 1.09/1.21 0.88/0.98 1.12/1.24

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
14 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

CPU utilization: By comparing the difference between the number of MIPs and the timing, we see that
within a fixed amount of wall-clock time, ASG is able to solve many more MIPs than FSG, and slightly more
than PSG. As for APSG, it performs somewhere in between PSG and ASG.

The differences between the methods are less pronounced when there are more scenarios, possibly because
the relative amount of time in which workers are idle is significantly reduced for FSG in this situation (as
discussed in Sections 2.2 and 3.3).

We now consider how varying K affects the performance of the partitioning methods. PSG-5 performs
slightly better than PSG-10 in most cases for 50 scenarios. Likewise, PSG-10 is better than PSG-20 for the 200-
scenario instances. This demonstrates that the additional parallelism gained from a finer partitioning can
potentially be worth the slight increase in number of MIPs needed to attain the approximate solution. This also
holds when we consider APSG, reinforcing the idea that partitioning can provide better parallel performance
(in terms of convergence time) than asynchronicity for these instances. Note that the ratio of number of MIP
instances required to reach each threshold for PSG is close to the ratio in the bound provided in Corollary 2
(see Table 1 for the numbers).

5.4.2. DCAP Results. For the DCAP instances, we note from Tables 10 and 11 that, in terms of MIPs that need
to be solved, the ratio of PSG to FSG significantly exceeds what we would expect from Corollary 2 and Table 1,
with the difference being most pronounced on DCAP-5-7-5 with 50 and 200 scenarios and DCAP-6-6-5 with
200 scenarios. This surprising observation may indicate that FSG is performing better than the bound in
Corollary 1 would indicate.

Partitioning alone does not help in most cases. PSG is faster than FSG for higher precision for DCAP-4-6-8
and DCAP-6-6-5 at 50 scenarios for both PSG-5 and PSG-10 and for DCAP-5-7-5 at 200 scenarios for PSG-20,

Table 5. Running Time Ratios for SSLP Instances: 200 Scenarios

Instance % Gap Base (s)

Minimum/maximum ratio

PSG (K � 10) PSG (K � 20) ASG APSG (K � 10) APSG (K � 20)
20-100 10 657 0.93/0.99 0.90/0.96 1.09/1.18 0.95/1.01 0.94/0.97

5 1,376 0.90/0.96 0.88/0.92 1.08/1.15 0.92/0.96 0.90/0.96
2 2,912 0.85/0.90 0.83/0.91 1.12/1.21 0.86/0.91 0.85/0.91

30-100 10 1,047 0.84/0.89 0.92/0.96 1.01/1.15 0.84/0.89 0.95/0.99
5 1,611 0.85/0.89 0.90/0.96 0.99/1.12 0.84/0.87 0.95/0.98
2 2,329 0.86/0.89 0.96/1.00 1.05/1.13 0.85/0.91 0.97/1.03

60-60 10 2,338 0.84/0.92 0.97/1.01 1.08/1.18 0.86/0.93 0.98/1.03
5 4,739 0.85/0.92 0.98/1.02 1.12/1.20 0.87/0.92 0.98/1.04
2 9,166 0.82/0.89 0.96/0.99 1.18/1.30 0.84/0.91 0.98/1.03

90-45 10 2,354 0.91/0.96 0.96/1.04 1.12/1.19 0.92/0.97 0.97/1.02
5 4,755 0.87/0.92 0.96/0.98 1.11/1.14 0.89/0.93 0.97/0.99
2 9,131 0.88/0.90 0.93/0.95 1.08/1.17 0.86/0.90 0.94/1.02

Table 6. MIP Ratios for SSLP Instances: 50 Scenarios

Instance % Gap

Minimum/maximum ratio

PSG (K � 5) PSG (K � 10) ASG APSG (K � 5) APSG (K � 10)
20-100 10 1.14/1.29 1.02/1.12 1.76/1.88 1.68/1.74 1.59/1.95

5 1.15/1.24 1.01/1.11 1.92/2.21 1.62/1.81 1.62/1.79
2 1.16/1.21 0.98/1.18 3.33/5.15 1.78/1.88 1.84/2.10

30-100 10 1.22/1.40 1.11/1.21 2.13/2.24 1.82/2.08 1.82/2.03
5 1.13/1.29 1.09/1.12 2.11/2.25 1.62/1.79 1.74/1.83
2 1.15/1.28 1.03/1.12 2.22/2.48 1.69/1.88 1.79/1.93

60-60 10 1.27/1.37 1.07/1.12 2.26/2.35 1.87/1.94 1.76/1.98
5 1.14/1.25 1.03/1.07 2.06/2.31 1.68/1.85 1.77/1.91
2 1.19/1.31 1.01/1.13 2.46/∞ 1.74/2.07 1.94/2.11

90-45 10 1.23/1.31 1.07/1.18 2.00/2.20 1.80/2.13 1.80/2.00
5 1.17/1.31 1.00/1.10 1.90/2.10 1.72/1.88 1.71/1.89
2 1.13/1.28 1.04/1.09 2.26/2.47 1.79/1.99 1.84/2.04

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 15

but otherwise performs the same or worse. We observe an interesting phenomenon when comparing the
number of MIPs solved versus the running time. For PSG, the variability in the timings can be significantly
larger than the variability in the number of MIPs solved, so much so that in certain outlying instances (for
example, DCAP-7-4-7 with 50 scenarios for PSG-5 and DCAP-6-6-5 with 200 scenarios for both PSG-10 and
PSG-20), the running-time ratio can be much larger than the MIP ratio. In these circumstances, the average
per-MIP time for PSG is higher than for FSG, suggesting that the order in which subproblems are solved can
significantly alter the difficulty of the subproblems, making the performance of partitioning schemes much
less predictable.

Unlike the case for SSLP, a larger batch size K seems to help in general, even for in the majority of cases.
Although Tables 8 and 9 show that parallel FSG is generally hard to beat, the DCAP instances reveal

potential for large benefits from asynchronicity and from combining asynchronicity with partitioning. In
particular, APSG and ASG often significantly outperformed FSG on instances DCAP-5-7-5 (50 and 200
scenarios) and DCAP-6-6-5 (200 scenarios). The only instances where neither asynchronicity nor partitioning
helped were DCAP-4-6-8 and DCAP-7-4-7 with 200 scenarios.

We see that the APSG methods often slightly outperforms ASG, showing that even if partitioning alone (as
in PSG) does not improve performance, there may still be benefits to be gained by using partitioning in
conjunction with asynchronicity.

5.4.3. Summary of Experiments. The results reported in Tables 4, 5, 8, and 9 show that it is usually possible to
reduce wall-clock times relative to a basic parallel implementation of Algorithm 1 by using some combination
of partitioning and asynchronicity. It is not obvious to predict in advance, however, which particular

Table 7. MIP Ratios for SSLP Instances: 200 Scenarios

Instance % Gap

Minimum/maximum ratio

PSG (K � 10) PSG (K � 20) ASG APSG (K � 10) APSG (K � 20)
20-100 10 1.05/1.13 1.00/1.05 1.29/1.33 1.07/1.13 1.03/1.08

5 1.06/1.12 1.01/1.05 1.31/1.36 1.07/1.12 1.03/1.11
2 1.01/1.08 0.97/1.07 1.37/1.47 1.02/1.07 1.00/1.06

30-100 10 1.05/1.11 0.99/1.03 1.33/1.39 1.06/1.10 1.03/1.08
5 1.08/1.14 0.98/1.03 1.33/1.41 1.08/1.10 1.06/1.07
2 1.09/1.15 1.02/1.07 1.38/1.41 1.09/1.14 1.06/1.12

60-60 10 1.07/1.16 1.03/1.06 1.41/1.43 1.11/1.15 1.07/1.11
5 1.11/1.16 1.05/1.10 1.45/1.49 1.12/1.17 1.08/1.14
2 1.09/1.13 1.04/1.07 1.54/1.64 1.10/1.15 1.08/1.14

90-45 10 1.11/1.15 1.03/1.10 1.41/1.41 1.13/1.16 1.05/1.12
5 1.09/1.14 1.06/1.07 1.41/1.43 1.11/1.16 1.08/1.11
2 1.11/1.12 1.03/1.04 1.38/1.49 1.08/1.12 1.07/1.14

Table 8. Running Time Ratios for DCAP Instances: 50 Scenarios

Instance % Gap Base (s)

Minimum/maximum ratio

PSG (K � 5) PSG (K � 10) ASG APSG (K � 5) APSG (K � 10)
4-6-8 10 159 0.91/1.15 0.78/0.94 1.58/1.70 1.54/2.22 1.21/1.49

5 244 0.89/1.07 0.83/0.89 1.43/1.61 1.46/2.44 1.08/1.40
2 500 0.82/0.90 0.79/1.02 1.28/1.49 1.25/2.09 1.15/1.35

5-7-5 10 565 1.12/1.56 0.89/0.97 0.68/0.78 0.66/0.76 0.62/0.66
5 1,103 1.09/1.44 0.90/1.12 0.57/0.65 0.58/0.63 0.52/0.57
2 2,074 1.03/1.30 0.89/1.08 0.53/0.64 0.57/0.64 0.51/0.57

6-6-5 10 212 0.86/1.17 0.80/1.07 1.09/1.21 1.08/1.33 0.97/1.08
5 379 0.90/1.11 0.84/0.93 1.06/1.17 0.98/1.09 0.89/0.93
2 788 0.90/1.03 0.94/1.00 1.05/1.12 0.92/0.99 0.87/0.97

7-4-7 10 325 1.10/1.72 0.97/1.01 1.58/1.87 1.45/1.81 1.46/1.53
5 569 1.02/2.18 1.00/1.04 1.58/1.74 1.42/1.71 1.45/1.64
2 1,100 0.96/1.77 0.90/0.99 1.66/1.90 1.36/1.62 1.17/1.46

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
16 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

combination and which choices of parameters will work best. The distribution of scenario solve times has
some predictive value with regard to the benefits of asynchronicity, as we explain below. Additionally, the
effect of partitioning can be predicted well from the convergence results on some families of instances, such
as SSLP.

To optimize overall performance on a particular problem and computational platform, each of the proposed
approaches (including possibly multiple instances of the same approach with different choices of partition
parameter K) can be run for a fixed amount of wall-clock time, and the one that makes the best progress could
be adopted to complete the solution of the optimization problem. A more sophisticated and systematic
approach would be to treat the meta-problem of algorithm selection as a multiarmed bandit problem (Bubeck
and Cesa-Bianchi 2002), deploying a limited computational budget to search for the best combination of
algorithmic strategies and parameter K and then selecting the best found approach to continue maximizing the
Lagrangian dual.

A potential explanation for when asynchronicity helps comes from variability in the scenario solve times;
see Table 3. Among DCAP instances, this variability is correlated with the benefit obtained from using
the asynchronous methods ASG and APSG. For 50 scenarios, the highest coefficients of variation are for
DCAP-5-7-5 and DCAP-6-6-5, where the asynchronous methods perform much better than in the other two
DCAP instances. Similar observations can be made for the 200-scenario instances, except that DCAP-7-4-7
performs better than DCAP-4-6-8, despite having a lower CV. For SSLP, Table 3 shows relatively low CV, and
asynchronicity alone always hurts the performance on these instances. We conclude that the CV (and its
standing relative to other instances in the same family) provides a reasonable first indicator of whether
asynchronicity may help.

Table 10. MIP Ratios for DCAP Instances: 50 Scenarios

Instance % Gap

Minimum/maximum ratio

PSG (K � 5) PSG (K � 10) ASG APSG (K � 5) APSG (K � 10)
4-6-8 10 1.38/1.56 1.21/1.26 2.46/2.66 2.42/3.39 2.07/2.55

5 1.32/1.46 1.14/1.22 2.23/2.54 2.26/3.67 1.78/2.25
2 1.15/1.23 0.97/1.20 1.94/2.36 1.91/3.11 1.84/2.11

5-7-5 10 1.43/1.52 1.24/1.30 2.12/2.38 2.03/2.30 2.02/2.11
5 1.42/1.56 1.23/1.29 2.04/2.28 2.02/2.22 1.91/2.06
2 1.45/1.58 1.28/1.31 1.90/2.25 1.96/2.20 1.89/2.08

6-6-5 10 1.29/1.35 1.14/1.21 1.87/2.03 1.78/2.15 1.72/1.88
5 1.28/1.36 1.08/1.13 2.03/2.17 1.82/1.96 1.65/1.77
2 1.24/1.31 1.12/1.21 2.17/2.34 1.86/1.98 1.76/1.96

7-4-7 10 1.30/1.37 1.12/1.17 2.03/2.14 1.77/2.02 1.77/1.87
5 1.23/1.31 1.18/1.23 2.10/2.23 1.81/2.01 1.81/2.09
2 1.21/1.31 1.10/1.17 2.38/2.64 1.85/2.05 1.66/2.09

Table 9. Running Time Ratios for DCAP Instances: 200 Scenarios

Instance % Gap Base (s)

Minimum/maximum ratio

PSG (K � 10) PSG (K � 20) ASG APSG (K � 10) APSG (K � 20)
4-6-8 10 599 1.16/1.65 1.02/1.13 1.54/1.77 1.09/1.28 1.05/1.16

5 905 1.28/1.60 1.06/1.18 1.64/1.99 1.18/1.38 1.16/1.33
2 1,800 1.20/1.41 1.06/1.19 1.54/1.83 1.14/1.29 1.15/1.34

5-7-5 10 1,318 0.92/1.07 0.87/0.98 0.96/1.04 0.79/0.88 0.79/0.83
5 2,442 0.96/1.15 0.91/0.94 0.87/0.95 0.78/0.84 0.74/0.79
2 4,748 0.95/1.25 0.89/0.96 0.84/0.90 0.76/0.82 0.67/0.73

6-6-5 10 908 1.11/1.20 1.07/1.18 1.29/1.38 1.10/1.19 1.07/1.11
5 1,904 1.14/2.17 1.25/2.14 1.08/1.20 0.92/1.01 0.90/0.94
2 8,484 ∞/∞ 2.03/∞ 0.44/0.48 0.40/0.43 0.44/0.47

7-4-7 10 1,010 1.08/1.19 1.07/1.13 1.36/1.49 1.10/1.19 1.14/1.19
5 1,672 1.11/1.22 1.05/1.13 1.36/1.52 1.14/1.20 1.11/1.20
2 3,442 1.13/1.24 1.04/1.10 1.46/1.61 1.13/1.25 1.07/1.20

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 17

We leave it to future work to determine which statistical measure better captures the potential benefit of
asynchronicity across a variety of instances. Given the above correlation between the benefits of asynchronicity
and the variability in subproblem solve time, we believe that the asynchronous algorithms will see a larger
benefit in heterogeneous computing environments with a high degree of variability in worker performance,
such as over a large-scale cloud computing platform.

6. Conclusions
The standard projected subgradient algorithm for solving the Lagrangian dual of an SMIP can be implemented
in parallel by distributing the MIP subproblem for different scenarios among the available processors. This
naive approach can be effective, but bottlenecks can occur that result in underutilization of the processors,
particularly when there is wide variation among the time required to solve the MIPs for different scenarios.

We have proposed and analyzed two modifications to the projected subgradient algorithm that potentially
make better use of parallel computing resources. The first modification (partitioned subgradient) breaks the
subgradient step into a sequence of steps based on smaller groups of scenarios, thus limiting the need to wait
for all scenario subproblems to complete before making progress. The second modification (asynchronous)
allows the use of some old subproblem information to take steps, rather than waiting for all scenarios to be
evaluated at the most recent iterate. The two approaches can be combined in a straightforward way.

Our convergence-rate analysis provides insight into the price paid by these methods (compared with the
standard subgradient method) in terms of the number of subproblems that must be solved to achieve a given
accuracy. We can expect these modifications to outperform the projected subgradient method when the gains
from better utilization of the parallel resources outweigh the degradation in convergence rate.

Our computational experiments indicate that, for one problem class, the partitioned subgradient method
provides significant and consistent reduction in wall-clock time, whereas for a second problem class, the
asynchronous variations provide significant wall-clock time reduction when the time required for solving the
MIP subproblems varies widely between scenarios. Although no one approach to modifying the subgradient
method for parallel execution is best in all circumstances, we have described a small suite of algorithmic
variants for making the best use of parallel resources. Our partitioned methods work best when the number of
workers is large relative to the number of scenarios. This can potentially make a large difference in large-scale
distributed applications, and we leave this evaluation to future work. Techniques from machine learning can
be applied to determine which of these variants is most appropriate on a given instance by performing partial
computations with each.

Appendix A. Applying the Partitioning Technique to Other Subgradient Methods
Convergence of the batching approach described in the subsections above relies on the fact that the update directions ĝks
(18) are stochastic subgradients (Proposition 1). It is, therefore, natural to ask if one can use ĝks in other algorithms that rely
on stochastic subgradients and if the resulting per-step updates in these methods are still efficiently parallelizable. We
briefly show here that this is true for the specific cases of the dual averaging method, and also for multiple averaging
extensions of dual averaging. We leave a detailed evaluation of these methods to future work.

The dual averaging algorithm was introduced by Nesterov (2009) in response to the counterintuitive notion that in the
traditional subgradient method, subgradients calculated more recently are weighted less than older subgradients in

Table 11. MIP Ratios for DCAP Instances: 200 Scenarios

Instance % Gap

Minimum/maximum ratio

PSG (K � 10) PSG (K � 20) ASG APSG (K � 10) APSG (K � 20)
4-6-8 10 1.32/1.48 1.22/1.30 1.86/2.09 1.32/1.45 1.32/1.45

5 1.34/1.54 1.23/1.37 1.90/2.28 1.38/1.51 1.39/1.59
2 1.30/1.44 1.20/1.35 1.76/2.07 1.29/1.40 1.33/1.53

5-7-5 10 1.26/1.32 1.22/1.26 1.50/1.66 1.27/1.32 1.27/1.35
5 1.32/1.41 1.31/1.32 1.52/1.67 1.38/1.42 1.35/1.44
2 1.32/1.49 1.30/1.34 1.58/1.77 1.39/1.49 1.31/1.43

6-6-5 10 1.26/1.31 1.21/1.26 1.54/1.63 1.27/1.34 1.26/1.30
5 1.28/1.34 1.23/1.29 1.59/1.67 1.32/1.34 1.31/1.35
2 ∞/∞ 1.21/∞ 1.50/1.60 1.32/1.35 1.30/1.36

7-4-7 10 1.15/1.19 1.14/1.16 1.47/1.52 1.16/1.22 1.17/1.26
5 1.16/1.22 1.12/1.18 1.51/1.58 1.18/1.21 1.17/1.29
2 1.17/1.22 1.11/1.17 1.60/1.72 1.17/1.22 1.15/1.29

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
18 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

calculating iterates. The approach has been extended to regularized optimization problems (Xiao 2010) and distributed
variants thereof (Duchi et al. 2012). In our notation, each iteration of the (stochastic variant of) dual averaging is performed
as follows:

1. Compute stochastic subgradient ĝk.
2. Gk ← Gk−1 + αkĝk, for some αk > 0;
3. λk ← argminλ∈C{−λ�Gk + βkd(λ)}, for some βk > 0.
Here, αk, βk are parameters that are chosen a priori to guarantee convergence, and d is a strongly convex prox-function.

Observe that if C � Rn and d(λ) :� (ρ/2)‖λ‖22 for some constant ρ > 0, then λk � Gk/(ρβk).
We can use the stochastic subgradients ĝk from (18) in dual averaging in an efficient parallel manner. The definition of ĝk

ensures that
∑

s∈S ĝks � 0, which, in turn, implies that
∑

s∈S Gk
s � 0. Hence, setting d(λ) � (ρ/2)‖λ‖22 provides a cheap and

efficient way to satisfy the constraint
∑

s∈S λk
s � 0. Furthermore, because each λk

s does not depend on any ĝks′ where s and s′
are not in the same batch, we can parallelize the algorithm in a fashion similar to Algorithm 3. Because

∑
s∈S λk

s � 0, the
lower bound from iteration k can be computed once all scenarios in an iteration k have been evaluated.

A similar principle applies for the multiple averaging methods introduced in Nesterov and Shikhman (2015), which
guarantee that the λk values (and not just their average) converge to the optimal solution. One variant, double averaging,
defines λk+1 to be a convex combination of λk and argminλ∈C{−λ�Gk + βkd(λ)}, while triple averaging forms a convex
combination of these two vectors along with the initial iterate λ0. Using similar arguments, we can see that if we use
d(λ) � (ρ/2)‖λ‖22, we can perform the updates in parallel in the manner described above.

Appendix B. Proofs from Section 3

Proof of Proposition 1. We derive the expectation by a sequence of equalities; the less obvious ones are explained below. For a fixed
s ∈ S, we have

E3k ĝks �
∑N/K

i�1
P s ∈ Tk

i

()
E3k ĝks | s ∈ Tk

i

[]
, (B.1(a))

� K
N

∑N/K

i�1
E3k x̂ks | s ∈ Tk

i

[]
, (B.1(b))

� K
N

∑N/K

i�1
E3k xks −

1
K

∑
j∈Tk

i

xkj

⃒⃒⃒⃒
s ∈ Tk

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (B.1(c))

� K
N

∑N/K

i�1
E3k xks 1 − 1

K

()
− 1
K

∑
j∈Tk

i \s
xkj

⃒⃒⃒⃒
s ∈ Tk

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (B.1(d))

� K
N
N
K

xks 1 − 1
K

()
− 1
K
K − 1
N − 1

∑
j∈S\s

xkj

[]
, (B.1(e))

� xks 1 − 1
K

()
− 1
K
K − 1
N − 1

Nzk − xks
[][]

, (B.1(f))

� N K − 1()
K N − 1() xks − zk

[]
. (B.1(g))

Here, (B.1(b)) follows from P(s ∈ Tk
i) � K/N for all i, because all N/K partitions have the same number of scenarios. To obtain

(B.1(e)), we note that each of the summations over Tk
i \ s contains exactly K − 1 terms, and that because the partitioning is done

independently and uniformly at each iteration, all terms xkj for j ∈ S \ s are equally represented when we take the expectation
over the partition. We use the definition of zk in (9) for (B.1(f)), while (B.1(g)) is obtained from arithmetic manipulation. □

Proof of Lemma 2. We first show that

ĝk
()� ĝk − gk

() � 0. (B.2)
The argument is as follows:

ĝk
()� ĝk − gk

() � ∑N/K

i�1

∑
s∈Tk

i

xks − zkTk
i

()�
xks − zkTk

i

()
− xks − zk

()()

� ∑N/K

i�1

∑
s∈Tk

i

xks − zkTk
i

()�
zk − zkTk

i

()

� ∑N/K

i�1

∑
s∈Tk

i

xks − KzkTk
i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠� zk − zkTk

i

()
� 0,

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 19

where third equality follows because |Tk
i | � K and the last equality follows from the definition of zkTk

i
. Thus, using (B.2) yields

E3k‖ĝk‖2 � E3k ĝk
()�gk � N K − 1()

K N − 1() ‖g
k‖2 ≤ N K − 1()

K N − 1()NM2,

where the second equality follows from Proposition 1 and we used the bound (13) for the final inequality. □

Proof of Theorem 2. Defining ξk � [ξks]s∈S by

ξks :�
K N − 1()
N K − 1() ĝ

k
s − gks , (B.3)

we have from Proposition 1 that E3kξk � 0. Expanding the iteration formula in Algorithm 2, and using (B.3), we have

1
2
‖λk+1 − λ∗‖2 � 1

2
λk + αk

K N − 1()
N K − 1() ĝ

k − λ∗
⃦⃦⃦⃦ ⃦⃦⃦⃦2

� 1
2
‖λk − λ∗‖2 + αk〈gk,λk − λ∗〉 + 1

2
α2
k
K N − 1()
N K − 1()

()2
ĝk

⃦⃦ ⃦⃦2 + αk〈ξk,λk − λ∗〉

� 1
2
‖λk − λ∗‖2 + αk + λk() −+ λ∗()() + 1

2
α2
k
K N − 1()
N K − 1()

()2
ĝk

⃦⃦ ⃦⃦2 + αk〈ξk,λk − λ∗〉,

where the last step follows from (12). By taking expectations of both sides over3k, using Lemma 2 andE3kξk � 0, and noting that
λk does not depend on 3k, we have

1
2
E3k‖λk+1 − λ∗‖2 ≤ 1

2
‖λk − λ∗‖2 + αk + λk() −+ λ∗()() + 1

2
α2
k
K N − 1()
N K − 1()NM2.

By taking expectations over the partitions 3l at all iterations and rearranging, we obtain

αkE + λ∗() −+ λk()() ≤ 1
2
E‖λk − λ∗‖2 − 1

2
E‖λk+1 − λ∗‖2 + 1

2
α2
k
K N − 1()
N K − 1()NM2.

We obtain the result by summing both sides of this expression over k � 1, 2, . . . , L, using the fact that λ1 does not depend on
any of the partitions (so the expectation can be omitted for this term), and using E‖λL+1 − λ∗‖2 ≥ 0. □

Appendix C. Proofs from Section 4

Proof of Theorem 3. Using the usual expansion, and using the facts that λk ∈ C, λ∗ ∈ C, the projection operation PC(·) is a contraction,
and λk + αk(x̂k − ẑk) � PC(λk + αkx̂k), we obtain

1
2
‖λk+1 − λ∗‖2 � 1

2
λk
s + αk x̂ks − ẑk

() − λ∗s
[]

s∈S
⃦⃦⃦ ⃦⃦⃦2

� 1
2

PC λk + αkx̂k
() − λ∗⃦⃦ ⃦⃦2

≤ 1
2

λk + αkx̂k − λ∗⃦⃦ ⃦⃦2
� 1
2
‖λk − λ∗‖2 + 1

2
α2
k x̂k
⃦⃦ ⃦⃦2 + αk x̂k,λk − λ∗〈 〉

≤ 1
2
‖λk − λ∗‖2 + 1

2
α2
k x̂k
⃦⃦ ⃦⃦2 + αk x̂k, λ̂k − λ∗〈 〉 + αk x̂k,λk − λ̂k〈 〉

.

By rearranging this inequality, we obtain

αk x̂k,λ∗ − λ̂k〈 〉 ≤ 1
2

λk − λ∗⃦⃦ ⃦⃦2− 1
2

λk+1 − λ∗⃦⃦ ⃦⃦2+ 1
2
α2
k x̂k
⃦⃦ ⃦⃦2 + αk x̂k,λk − λ̂k〈 〉

. (B.4)

From (20), we have

+ λ∗() −+ λ̂k() ≤ x̂k,λ∗ − λ̂k〈 〉
.

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
20 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

By summing (B.4) from k � 1 to k � L, and using ‖λL+1 − λ∗‖ ≥ 0, we have

∑L
k�1

αk + λ∗() −+ λ̂k()[] ≤ 1
2

λ1 − λ∗⃦⃦ ⃦⃦2+ 1
2

∑L
k�1

α2
k x̂k
⃦⃦ ⃦⃦2 +∑L

k�1
αk x̂k,λk − λ̂k〈 〉

.

As before, we use concavity of + and the definition of λ̄L to replace the left-hand side, obtaining

+ λ∗() −+ λ̄L() ≤ λ1 − λ∗⃦⃦ ⃦⃦2+∑L
k�1 α

2
k x̂k
⃦⃦ ⃦⃦2 +∑L

k�1 αk x̂k,λk − λ̂k
〈 〉

2
∑L

k�1 αk
.

≤ ‖λ1 − λ∗‖2 +NM2 ∑L
k�1 α

2
k

2
∑L

k�1 αk
+

∑L
k�1 αk x̂k,λk − λ̂k

〈 〉
2
∑L

k�1 αk
,

(B.5)

where in the second inequality, we use the bound ‖x̂k‖2 � ∑
s∈S ‖x̂ks‖2 ≤ NM2. To bound the numerator in the final term, note

first that

λk
s − λ̂k

s � λk
s − λ

τks
s � ∑k−1

i�τks
αi x̂s − ẑi

()
.

Thus, by the assumed bound on ‖xs‖ and the definition of zi, we have ‖x̂is‖ ≤ M and ‖ẑi‖ ≤ M, so

x̂ks ,λ
k
s − λ̂k

s

〈 〉⃒⃒⃒ ⃒⃒⃒
≤ x̂ks

⃦⃦ ⃦⃦ ∑k−1
i�τks

αi x̂is − ẑi
()⃦⃦⃦⃦

⃦⃦
⃦⃦⃦⃦
⃦⃦

≤ M
∑k−1
i�τks

αi x̂is
⃦⃦ ⃦⃦ + ẑi

⃦⃦ ⃦⃦()
≤ 2M2

∑k−1
i�τks

αi.

Substitution into (B.5) completes the proof of the first claim.
We now prove the second claim. Because λk ∈ C for all k � 1, 2, . . . , L, we have that λ̃L ∈ C because λ̃L is their weighted

average, so

dist λ̄L,C
() ≤ λ̄L − λ̃L⃦⃦ ⃦⃦ � ∑L

k�1 αk λ̂k − λk
()⃦⃦⃦ ⃦⃦⃦

∑L
k�1 αk

≤
∑L

k�1 αk λ̂k − λk
⃦⃦⃦ ⃦⃦⃦

∑L
k�1 αk

. (B.6)

As in the analysis above, we have

λk
s − λ̂k

s

⃦⃦⃦ ⃦⃦⃦
� ∑k−1

i�τks
αi x̂is − ẑi

()⃦⃦⃦⃦
⃦⃦

⃦⃦⃦⃦
⃦⃦ ≤ ∑k−1

i�τks
αi x̂is − ẑi

⃦⃦ ⃦⃦ ≤ 2M
∑k−1
i�τks

αi.

By substituting into (B.6), we obtain the desired inequality. □

Endnotes
1The algorithm can, in theory, be adjusted to handle batches of different sizes.
2These instances are available at https://limconghan.github.io/smip/.

References
Ahmed S, Garcia R (2003) Dynamic capacity acquisition and assignment under uncertainty. Ann. Oper. Res. 124(1–4):267–283.
Ahmed S, Garcia R, Kong N, Ntaimo L, Qiu F, Sen S (2015) SIPLIB: A stochastic integer programming test problem library. Accessed November

17, 2019, https://www2.isye.gatech.edu/~sahmed/siplib/.
Aravena I, Papavasiliou A (2015) A distributed asynchronous algorithm for the two-stage stochastic unit commitment problem. 2015 IEEE Power

Energy Society General Meeting (IEEE, New York), 1–5.
Bertsekas DP (1999) Nonlinear Programming, 2nd ed. (Athena Scientific, Belmont, MA).
Bodur M, Dash S, Günlük O, Luedtke J (2016) Strengthened Benders cuts for stochastic integer programs with continuous recourse.

INFORMS J. Comput. 29:77–91.
Boland N, Bakir I, Dandurand B, Erera A (2016) Scenario set partition dual bounds for multistage stochastic programming: A hierarchy of

bounds and a partition sampling approach. Preprint, submitted January 28, http://www.optimization-online.org/DB_HTML/2016/
01/5311.html.

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS 21

https://limconghan.github.io/smip/
https://www2.isye.gatech.edu/~sahmed/siplib/
https://www2.isye.gatech.edu/~sahmed/siplib/
http://www.optimization-online.org/DB_HTML/2016/01/5311.html
http://www.optimization-online.org/DB_HTML/2016/01/5311.html

Bubeck S, Cesa-Bianchi N (2002) Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations TrendsMachine Learn.
5(1):1–122.

Carøe CC (1998) Decomposition in stochastic integer programming. Unpublished doctoral thesis, Department of Operations Research, Uni-
versity of Copenhagen, Copenhagen, Denmark.

Carøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1–2):37–45.
Conforti M, Cornuéjols G, Zambelli G (2014) Integer Programming, Graduate Texts in Mathematics, vol. 271 (Springer, Cham, Switzerland).
Dey SS, Molinaro M, Wang Q (2018) Analysis of sparse cutting planes for sparse MILPS with applications to stochastic MILPS.Math. Oper. Res.

43(1):304–332.
Duchi JC, Agarwal A, Wainwright MJ (2012) Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE

Trans. Automatic Control 57(3):592–606.
Ermoliev YM (1966) Methods of solution of nonlinear extremal problems. Cybernetics 2(4):1–14.
Kelley JJ (1960) The cutting-plane method for solving convex programs. J. Soc. Indust. Appl. Math. 8(4):703–712.
Kim K, Zavala VM (2017) Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer

programs. Math. Program. Comput. 10:225–266.
Kim K, Petra CG, Zavala VM (2017) An asynchronous bundle-trust-region method for dual decomposition of stochastic mixed-integer pro-

gramming. Technical Report ANL/MCS-8046-0917, Argonne National Laboratory, Lemont, IL.
Lemarechal C (1978) Nonsmooth optimization and descent methods. IIASA Research Report RR-78-004, International Institute for Applied

Systems Analysis, Laxenburg, Austria.
Lubin M, Martin K, Petra CG, Sandikci B (2013) On parallelizing dual decomposition in stochastic integer programming. Oper. Res. Lett.

41(3):252–258.
Lulli G, Sen S (2004) A branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing

problems. Management Sci. 50(6):786–796.
Maggioni F, Pflug GC (2016) Bounds and approximations for multistage stochastic programs. SIAM J. Optim. 26(1):831–855.
Maggioni F, Allevi E, Bertocchi M (2016) Monotonic bounds in multistage mixed-integer stochastic programming. Comput. Management Sci.

13(3):423–457.
Necoara I, Nesterov Y, Glineur F (2017) Randomblock coordinate descentmethods for linearly constrained optimization over networks. J. Optim.

Theory Appl. 173(1):227–254.
Nesterov Y (2009) Primal-dual subgradient methods for convex problems. Math. Programming 120(1):221–259.
Nesterov Y, Shikhman V (2015) Quasi-monotone subgradient methods for nonsmooth convex minimization. J. Optim. Theory Appl.

165(3):917–940.
Ntaimo L, Sen S (2005) The million-variable ‘march’ for stochastic combinatorial optimization. J. Global Optim. 32(3):385–400.
Rahmanai R, Ahmed S, Crainic T, Gendreau M, Rei W (2018) The Benders dual decomposition method. Technical Report CIRRELT-2018-03,

Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport, Montreal.
Ruszczyński A (2006) Nonlinear Optimization (Princeton University Press, Princeton, NJ).
Ryan K, Ahmed S, Dey SS, Rajan D (2016) Optimization driven scenario grouping. Preprint, submitted March 10, http://www.optimization

-online.org/DB_HTML/2016/03/5366.html.
Sandikçi B, Ozaltin OY (2017) A scalable bounding method for multistage stochastic programs. SIAM J. Optim. 27(3):1772–1800.
Shor N (1985) Minimization Methods for Non-Differentiable Functions (Springer-Verlag, Berlin).
Xiao L (2010) Dual averaging methods for regularized stochastic learning and online optimization. J. Machine Learn. Res. 11(88):2543–2596.

Lim et al.: Parallelizing Subgradient Methods for Stochastic MIPs
22 INFORMS Journal on Optimization, 2021, vol. 3, no. 1, pp. 1–22, © 2021 INFORMS

http://www.optimization-online.org/DB_HTML/2016/03/5366.html
http://www.optimization-online.org/DB_HTML/2016/03/5366.html

	Parallelizing Subgradient Methods for the Lagrangian Dual in Stochastic Mixed-Integer Programming
	Introduction
	Subgradient Method for the Lagrangian Dual
	Partitioned Stochastic Subgradient
	An Asynchronous Subgradient Scheme
	Computational Results
	Conclusions

