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Abstract

Unsolicited calls are one of the most prominent security
issues facing individuals today. Despite wide-spread anec-
dotal discussion of the problem, many important questions
remain unanswered. In this paper, we present the first large-
scale, longitudinal analysis of unsolicited calls to a honeypot
of up to 66,606 lines over 11 months. From call metadata we
characterize the long-term trends of unsolicited calls, develop
the first techniques to measure voicemail spam, wangiri at-
tacks, and identify unexplained high-volume call incidences.
Additionally, we mechanically answer a subset of the call
attempts we receive to cluster related calls into operational
campaigns, allowing us to characterize how these campaigns
use telephone numbers. Critically, we find no evidence that an-
swering unsolicited calls increases the amount of unsolicited
calls received, overturning popular wisdom. We also find that
we can reliably isolate individual call campaigns, in the pro-
cess revealing the extent of two distinct Social Security scams
while empirically demonstrating the majority of campaigns
rarely reuse phone numbers. These analyses comprise power-
ful new tools and perspectives for researchers, investigators,
and a beleaguered public.

1 Introduction

The global telephone network serves more users than the In-
ternet, is designed with higher availability guarantees, and
is commonly relied upon for mission critical real time com-
munications, including 911 service and emergency notifica-
tions [1, 2]. Despite its global importance, the phone net-
work faces a number of problems. Prime among them are
so-called “robocalls” — a catch-all term for automated or
semi-automated unsolicited calls, often for fraud or telemar-
keting purposes [3]. Much like spam threatened the useful-
ness of email, unsolicited phone calls threaten to make voice
calling unusable between two unknown parties. Moreover,
because of the historic trust users have placed in the phone
network, these scams surprisingly steal millions of dollars of
revenue each year [4, 5].
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Despite the clear importance of the problem, much of what
is known about the unsolicited calling epidemic is anecdotal
in nature. Despite early work on the problem [6—10], the re-
search community still lacks techniques that enable rigorous
analysis of the scope of the problem and the factors that drive
it. There are several challenges that we seek to overcome.
First, we note that most measurements to date of unsolicited
volumes, trends, and motivations (e.g., sales, scams, etc.) have
been based on reports from end users. In addition to the poten-
tial for selection bias, this information is often non-specific,
unreliable, and/or incomplete. Second, most prior work on
the problem has relied on analysis merely of the claimed
number of the caller, neglecting to address the rampant (but
previously unmeasurable) problem of number spoofing. Third,
like modern cybercrime, robocalling is a commercial activ-
ity perpetrated at scale by professional operators [4,5, 11].
Identifying the largest botnets and black markets has enabled
targeted takedowns that reduce overall abuse on the Internet.
Prior to this work, similar techniques for unsolicited calls have
been out of reach. Such techniques could inform measure-
ments, but also facilitate effective enforcement of the worst
actors, leading to a decline in unsolicited calls.

In this paper, we operate a telephone honeypot that receives
unsolicited calls over an 11-month period to up to 66,606 tele-
phone lines. Our key innovation is the combined analysis
of extensive and detailed call metadata with call audio. We
combine this with novel techniques to identify similar calls
efficiently allowing us to characterize whole campaigns of
operation and detect fraud and abuse. While our purpose in
this paper is to characterize a pernicious phenomenon, we
note that our measurement techniques can provide valuable,
actionable threat intelligence to carriers. In so doing, we pro-
vide a perspective on the problem that has been until now
unavailable to researchers, regulators, and even carriers.

We use this new perspective to deliver 24 findings address-
ing three pressing questions:

e How frequent are robocalls and is the problem getting
worse? We find that our lines can expect to receive a
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robocall once every 8.42 days. Surprisingly, we learn
that weekly call volumes are neither better nor worse
over the observation period. We also discover and char-
acterize rare “storms” of sudden unexplained bursts of
unsolicited calls, providing support that anecdotal reports
of high call volumes by individuals do occur.

e [s it even safe to answer the phone? Regulatory agencies
and the press regularly warn of the risks of answering
or returning calls from unknown callers. Shockingly, we
discover no evidence that answering unsolicited calls
increases daily call volume in a randomized single-blind
study. We also develop heuristics to detect and measure
wangiri call-fraud scams, finding no evidence of such a
scam in 35 days across 2,949 highly-called lines.

o Who is calling and how do they operate? We develop
and evaluate techniques to tightly cluster call audio to
associate individual calls into broader campaigns with
high precision. We then provide the first estimates of the
number of operational campaigns and analyses of their
number spoofing and line rotation practices and identify
the top scam campaigns collected by our honeypot. All
of these scams target vulnerable populations, including
the elderly and recent immigrants, while operating over
long time scales with impunity.

2 Background

To understand why unsolicited calling is such a challenging
problem, we first need to review how the modern phone net-
work operates. A call is said to “originate” at the caller’s
equipment, facilitated by the caller’s carrier. It is the job of
this carrier to “terminate” the call, which has the counter in-
tuitive meaning of “establishing the connection”, not ending
it. If the originating carrier provides service to the called
party, termination is straight forward. If however, the called
party is served by another network, the originating carrier
must route the call signalling and media through one or more
intermediate carriers to reach the terminating carrier.
Carriers terminate calls using signalling protocols. In the
PSTN', the most common protocol is Signaling System No.
7 (SS7). In VoIP, the most common protocol is Session Ini-
tiation Protocol (SIP). Carriers interconnect by establishing
network gateways, which can operate over traditional PSTN
trunks (called “TDM” in the industry) or VoIP, and often
translate both signalling protocols (e. g., SS7 to SIP) and me-
dia encoding (e. g., PCM to Speex). It is important to note
that when customers purchase VoIP-based telephone service
from a provider, the customer does not actually place calls
on an end-to-end basis with the called party. Instead, when
the customer places a VoIP call, their local VoIP client soft-
ware, physical phone, or phone gateway terminates the call at
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a proxy maintained by the provider. This provider-controlled
proxy then routes the call to a peering partner’s proxy, which
forwards to another provider, and so on until the called party’s
provider receives the call and delivers it to the called party.

This state of affairs may seem surprising, but it is to prevent
abuse of the network. Further, carriers are not allowed to listen
to call audio of subscribers to protect their privacy. Instead,
the call recipient must make a complaint, or the carrier must
identify a malicious operator by call metadata. Carriers are
required by law to maintain records on all calls they originate
or route, but they are not required to make this information
public. As a result when fraud specialists identify a fraudulent
call, they must coordinate with every carrier in the entire call
path to identify the origin. This entirely manual process is
known as “traceback.” A single call traceback can take dozens
of hours to complete, making it largely infeasible.

2.1 Identity in the Phone Network

The principal identifier in the phone network is the phone
number. While different countries and regions have different
formats, all are unified in the ITU E.164 general format for
numbers for unambiguous interpretation. Blocks of phone
numbers are assigned to carriers according to the North Amer-
ican Numbering Plan (NANP), which covers all of the United
States, Canada, and 23 other countries or territories. Carriers
then assign numbers to subscribers. A valid NANP number
has a country code (e.g. “1” for USA and Canada), three
digit Numbering Plan Area code (NPA), three digit Exchange
code (termed “NXX”) and a four digit line number. There
are fine-grained restrictions on NPA, NXX and the line num-
bers which determine if a phone number is valid, assigned,
toll-free, or charges a premium rate when called.

The feature known as “caller ID” actually takes several
forms in the PSTN. The first form, Calling Line Identification
(CLI) includes the phone number of the calling party in the
signalling information to setup the call. The second form is a
15-digit alphanumeric string to identify the caller known as
Caller ID Name (CNAM). CNAM is not carried in the sig-
nalling of the call. Instead, the terminating provider performs
a lookup for the CNAM associated with a CLI by querying
an authoritative database in the telephone network.

Caller ID in SIP calls is more complicated. Identity info can
be carried in the “To:” and “From:” fields of an INVITE mes-
sage, the first signalling message to set up a VoIP call. These
fields are populated by the SIP client controlled by the end cus-
tomer. Some providers optionally append an additional iden-
tity header called a “P-Asserted-Identity” header. This header
is meant to indicate a “true” identity to be used by the originat-
ing provider or its peers to traceback a source. Recently, a new
standard to authenticate phone calls, STIR/SHAKEN [12],
has been developed and is in the earliest stages of deployment.
In this protocol, originating providers append a signature to
the SIP header indicating that they indeed originated the call.
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This is also intended to facilitate traceback of abusive calls to
their original source. When deployed, STIR/SHAKEN will be
the first and only widely-used cryptographic authentication
mechanism anywhere in the telephone network.

Operations that make large amounts of unsolicited calls,
especially those doing so illegally, have a strong incentive
to obscure their source phone number. They may do this to
entice callers to answer, to avoid easy blocking based on caller
ID, and/or to frustrate attempts to prosecute callers. There are
a number of methods they can use to accomplish this. The
first is to ask the terminating provider to block the caller ID
to prevent it from being delivered to the called party. In the
United States, callers can precede their call with the prefix
“*#67” to do this. In practice, this provides little anonymity
because all carriers on the path see the true identity.

The second method is to purchase VoIP service from a
provider who does not check outbound “From” fields for cor-
rect values. Many providers allow arbitrary “From” fields as
a feature for customers who wish to present a main business
number (e.g., a customer support number) that may not be
owned by that provider. This is the most common form of
caller ID spoofing. A special form of caller ID spoofing aims
to match the caller’s first six digits (NPA-NXX). This prac-
tice is termed “neighbor spoofing” as it is meant to entice
victims to answer a phone call believing it is a neighbor or
local organization (such as a school). The final method is
to simply purchase a very large pool of phone numbers and
rotate through them, often keeping them for only a short time.
Operators have informed us this is an occasional practice by
mass unsolicited callers. We note that from our viewpoint
of measuring unsolicited phone calls, caller ID spoofing and
simply having a large, rapidly changing pool of numbers is
indistinguishable. As such, in this paper, we call the practice
of changing numbers frequently “line rotation” regardless of
mechanism.

2.2 Unsolicited Calls

Unsolicited calls may be known by many different terms, in-
cluding “robocalls”, “phone spam,” and “vishing”. Not all
unsolicited calls are illegal or undesirable. Examples include
public safety announcements for evacuations or school clo-
sures.

Most unsolicited calls are undesired yet may be legal. In
the United States, calls made by political campaigns are legal.
Some telemarketing calls are also legal, provided they are not
targeted at cell phones, the called party has not subscribed to
the FTC’s “Do Not Call” list, or the caller has given permis-
sion for the call. Not only do most individuals not care for
such calls, often these sales calls are for undesirable products
criticized by consumer advocates, like auto warranties.

A small fraction of unsolicited calls are illegal scams. These
scams may impersonate law enforcement or government agen-
cies for taxes or benefits. They may also impersonate or fraud-

ulently claim to be representatives of respected brands, as in
tech support scams [13, 14] or fraudulent vacation sales [11].
Two categories of unsolicited calls are not intended to be
answered. The first is voicemail spam. Rather than enticing
their targets to listen to a recorded message in realtime, voice-
mail spam “injects” the recording into the voicemailbox of
the target [3, 15]. Spammers will place two simultaneous calls
to the target so that the second call finds the line busy and is
redirected to voicemail. When the second call is connected,
the first is disconnected by the caller, often before it rings.
The second type of unanswered call is known as a “one-
ring” or “wangiri” scam, derived from a Japanese term which
translates to “One (ring) and cut”. In this scam, the perpetrator
first obtains a premium rate number that bills all callers at a
high rate (e.g. five dollars per minute). The perpetrator then
calls a large number of victims indiscriminantly, hanging up
just after it starts to ring. These calls are effectively free for the
perpetrator because incomplete call attempts are not billable.
However, the victim sees a missed call, and many victims will
attempt to return the call, discovering they were billed only
after their phone bill arrives. This scam is especially effective
in North America if the premium rate number is obtained in
certain Caribbean countries that are part of the North Amer-
ican Numbering Plan, as those phone numbers appear to be
domestic and are not obviously charging a premium.

3 Data Collection

In this section, we explain the design principles of our honey-
pot, discuss the history of phone numbers used in our exper-
iments, describe our data collection methodology, highlight
ethical and legal considerations of our work and finally share
details about a secondary data set used in our study.

3.1 Designing a Telephony Honeypot

A honeypot owned by a researcher allows adversaries to in-
teract with a set of resources in an isolated environment. A
telephony honeypot collects information about the entities
that operate in the phone network. To collect such informa-
tion, we assign a set of phone numbers to a honeypot. These
phone numbers were provided to us by our service provider,
Bandwidth Inc. In this paper, we refer to these phone numbers
as inbound lines *. Such a setup allows us to conduct con-
trolled experiments, collect data, and characterize the phone
calls.

We explain key design decisions of the deployment, con-
figuration, testing and operation of our honeypot.
On-premises deployment: A local deployment of our honey-
pot provided fine-grained control over its design and ensured
that we stored all the sensitive data on servers we own.

2Inbound lines : A set of virtual VoIP phone lines and not physical PSTN
lines.
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Phone Numbers: We worked with a telecommunication ser-
vice provider who owned the phone numbers used in our
experiments. We built our honeypot using Asterisk *, which is
an open-source software implementation of a Private Branch
Exchange (PBX). With a setup like an enterprise VoIP con-
sumer, our honeypot received and processed phone calls.
Configuring the Call Processing System: Like routing ta-
bles and routes of a router, the dial-plan and dial-rules of a
PBX determine how it handles a phone call. By developing
appropriate dial-plans, our honeypot automatically answers
and records calls made to one set of lines, while the honeypot
rejects any calls made to a different set of inbound lines.
Reliability of the Call Processing System: We used over
66,000 inbound lines for our experiments. With 66,000 con-
figuration entries, Asterisk exhibited inconsistent behavior
resulting in frequent crashes. After many iterations, we es-
timated that a single Asterisk instance can handle approxi-
mately 15,000 unique dial-plan entries under realistic load
of phone calls. To operate a stable honeypot, we reduced
the dial-plan’s size by reusing dial-plan subroutines for each
experiment and automating dial-plan generation.

3.2 History of Inbound Lines

The total number of inbound lines terminated on our honeypot
varied at different stages of our study because our service
provider dynamically added inbound lines to our honeypot.
We kept track of any additional inbound lines added to our
honeypot through periodic snapshots and updates to a local
database. We account for this incremental addition of numbers
to our honeypot throughout our experiments and normalize
our measurements when appropriate. Based on the history of
the inbound lines, we categorize them into two types:
Abuse Numbers: As reported by our service provider, abuse
phone numbers had a history of abuse. Some of these numbers
were returned by their previous owners due to high volume
of unsolicited calls. This pool also included phone numbers
previously used by spammers and robocallers to generate
unsolicited phone calls. Abuse numbers are an invaluable
resource for our honeypot because these numbers were owned
by adversaries in the past or were victims of high volume of
unsolicited calls. We started with 6,754 abuse numbers at the
beginning of our study and obtained additional abuse numbers
in April 2019, resulting in a total of 9,071 abuse numbers.
Clean Numbers: A set of phone numbers owned by our ser-
vice provider which were intended for distribution among new
users. This pool contained a combination of numbers which
were newly procured by our service provider and numbers
which were rotated from prior customers. These numbers
did not have a reported abuse history. We obtained a total of
57,535 such clean phone numbers at the end of July 2019.

A combination of clean and abuse numbers allowed us to
systematically measure and report our observations of the two

3https://www.asterisk.org
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Figure 1: Honeypot Architecture and Data Collection Flow

extremes of the phone network. To the best of our knowl-
edge, we are the first to develop a comprehensive telephony
honeypot with both clean and abuse numbers.

No Seeding: Throughout our study, we do not seed either the
clean or the abuse numbers on any online portals, forums,
denylists or mobile apps which claim to block robocalls. By
definition, the calls collected and processed in our experiments
were unsolicited calls. We did not initiate any outbound calls
using any inbound lines.

3.3 Call Meta-data and Call Audio Collection

After designing and deploying our honeypot, we collect the
call meta-data, which includes Call Detail Record (CDR) and
SIP header logs. From CDR logs, we extracted the calling
number, CNAM, called numbers, timestamp and optional call
duration, if the honeypot answers the call. From SIP logs we
get P-Asserted-Identity, a SIP header field which can contain
different identification information.

Call audio is essential to characterize different spam and
robocalling campaigns in the telephone network. To obtain
a representative sample of call audio content, we initially
selected 3,000 random lines from our pool. We refer to this
set of lines as Recording Lines 1 (RL1). We setup the dial-
plan and configure our honeypot to answer any unsolicited
call made to these 3,000 numbers and play a recording after a
delay of 2 seconds. We use a default Asterisk audio recording
as the source for the audio prompt, which says “Hello” in a
female voice with an American accent.

On 21st December 2019, we analyzed the data collected
thus far and identified the inbound lines which received an
average of one or more calls per day. A total of 2,949 inbound
lines met this criteria. We assign these inbound lines to a new
Asterisk PBX and configure it to ring for 10 seconds before
answering every call made to these lines. We call this set of
lines as Recording Lines 2 (RL2).

We configure our honeypot to record any unsolicited call
made to an inbound line which belongs to Recording Lines 1
or 2. The honeypot records and stores every call as three sep-
arate audio streams — incoming (calling party to the honey-
pot), outgoing (honeypot to the calling party) and a combined
recording. Separate recording streams allowed us to prevent
issues caused by overlapping speech signals or locally gener-
ated noise or audio. We ensured that multiple simultaneous
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calls made to the same inbound line generated separate record-
ing files with appropriate timestamps. Finally, we rejected
any unsolicited call made to a non-recording inbound line
with a 403 Forbidden SIP response code. We observed that
certain SIP clients which initiate unsolicited calls retry calls
multiple times when they receive a rejection from the called
side. To address this, we identify and remove any duplicate
calls which have the same calling and called number within a
30 second window. We do not consider these duplicate calls
in any results in this paper.

A majority of service providers allow callers to mask their
details by dialing with a prefix. In the United States, most
subscribers can prefix the called number with *67 to ensure
that the called party does not see the calling part’s caller ID.
By doing so, the caller ID shown to the user changes from
the actual caller ID to a string like “Restricted”, “Private” or
“Anonymous”. In our honeypot, we observed that there were
multiple instances where the actual caller ID was replaced
with string like “Restricted”, “Private” or “Anonymous”. We
confirmed that our service provider’s system was not manip-
ulating the caller ID and instead, in some cases the actual
caller ID was transparently passed from upstream service
providers to our honeypot in the “P-Asserted-Identity” SIP
header. Since neither us nor our service provider had control
over caller ID information, we do not have caller ID infor-
mation in the “P-Asserted-Identity”” SIP header for all calls.
Also, one of the key limitations of telephone networks is the
lack of end-to-end caller authentication. Thus, the attested
caller ID propagates across different boundaries in the phone
network on best effort basis. Due to this, we do not assume
that the caller ID information is complete or accurate.

While our study lasted over 11 months, Table | in the Ap-
pendix shows the exact dates when RL1 and RL2 were setup
to collect call audio, maintenance downtime, power outage
and the duration of t-test discussed later in Section 4.3.

3.4 Ethical and Legal Considerations

Our university’s Institutional Review Board (IRB), our univer-
sity’s office of general counsel, and our provider reviewed and
approved our experiments. We understand that our research
may involve human subjects even though our main intention
is to study automated phone calls. It is possible for a live
human to call one of our inbound lines due to mis-dialing or
while trying to reach the previous owner of the numbers. As
responsible researchers, we take all the necessary actions to
ensure that our research is within the legal and ethical bound-
aries. Before the start of our research, we ensured that we
were compliant with ethical and legal restrictions imposed by
the university, our state and the federal laws of United States.
Specifically, we sought the approval of our IRB to address the
ethical considerations of our study. We also worked closely
with our university’s Office of General Counsel to make sure

that our actions are within the bounds of state laws of our
state and the federal laws of United States.

Throughout our study, we ensured that our actions do not in-
flict harm to human subjects. We worked closely with our IRB
before the start of our research to describe our experiments
and the associated limitations. As part of this review process,
we submitted a detailed report to our IRB. As explained in
Section 3, our principal data collection methodology is to wait
for the arrival of calls on the inbound lines owned by us. Our
methods are similar to research studies that perform public
observation of humans, except that we observe the behavior
of humans in a virtual environment. In such a setting, we are
neither targeting nor recruiting participants to take part in our
study. We do not reach out to any participants. We strictly
refrain from advertising the phone numbers of our inbound
lines in spam portals, social media or through any other mech-
anisms. We do not initiate any outgoing calls to any phone
numbers throughout our study. After a thorough review of our
proposal, the above facts were carefully considered and the
IRB determined that our research was exempt from further re-
view on the basis that effectively, we are performing a public
observation study.

In the United States, call audio is considered private in-
formation. Thus, recording a phone conversation is strictly
regulated by state and federal laws. Our honeypot was setup
in a state where single party consent is sufficient to record
phone calls. In situations where a phone call spans across
one or more state boundaries, federal law takes precedence
over the state law. Federal law also mandates that at least a
single party needs to consent for the phone call to be legally
recorded. Throughout our study, all the calls that we recorded
were made to the inbound lines we owned. Furthermore, we
terminated these inbound lines on the Asterisk PBX which
we operated. Since we explicitly consent to being recorded,
we satisfied the single party consent requirement.

Many robocallers or spam campaigns make automated
phone calls based on a “hitlist”, which is a list of active phone
numbers maintained and sold by third parties. As a result,
the campaigns attempt to reach large groups of unknown
recipients, seldom with the intention of reaching a known
individual. Since these campaigns make unsolicited phone
calls to unknown parties, it is reasonable to assume that the
callers do not consider the call content especially private or
sensitive. Not obtaining explicit consent of the caller (live
human or automated call) prior to being recorded does not
affect their rights or welfare. This is because the caller does
not have a reasonable expectation that their calls are not be-
ing recorded. Further, these callers do not have a reasonable
privacy expectation since they make unsolicited phone calls
to a vast number of users.

The goal of our study is to develop a deeper understanding
of the adversaries who operate in the telephone network, and
not to identify details about individuals or specific callers
from the data available in our honeypot. We designed our
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experiments to limit the recording duration to 60 seconds.
There are possibilities where a non-adversarial caller may
make a phone call to one of the inbound lines configured for
recording. By capping the recording duration to 60 seconds
and by gracefully terminating the call at the 60 second mark,
we minimize the amount of data gathered in such scenarios.

3.5 Industry Robocall Blocking Data

To evaluate our methodology in Section 5, we use a second
corpus of phone calls provided to us by a company that builds
services to help block robocalls. This data set consisted of the
audio recording of the call, calling party number, timestamp
of the call and the transcript of the call. Since we did not
collect the data directly, we do not know the exact setup of
the honeypot used for data collection or transcription.

4 Individual Call Characterization

In this section, we provide an overview of the data collected
throughout our experiments. We delve into the temporal char-
acteristics of call volume and highlight operational character-
istics of unsolicited calls. We develop a method to identify
and characterize high call-volume events. We statistically
evaluate the effects of answering a phone call on the number
of unsolicited calls received per inbound line. Next, we pro-
pose a heuristic to identify voicemail spam calls. We share
a detailed analysis of caller ID spoofing in the wild and dis-
cuss how unsolicited callers reuse Caller ID Name (CNAM).
We develop and apply a heuristic to identify wangiri scam
and estimate the scale of wangiri scam observed in our hon-
eypot. Finally, we delve into the characteristics of the call
audio which sets the foundation for the subsequent section on
campaign identification.

Finding 1: Unsolicited phone calls are rampant in the United
States. Using the telephony honeypot described in Section 3,
we collect 1,481,201 unsolicited phone calls over a span of
11 months, without seeding our phone numbers to any source.
We observed an average of 4,137.43 unsolicited calls per
day, across all the inbound lines used in our honeypot. Each
inbound line received an average of 0.12 call per day, which
translates to one call every 8.42 days.

Throughout our study, we track the state of clean and abuse
lines assigned to our honeypot, since these were dynamically
added to our honeypot by our provider. We owned a total of
66,606 unique inbound lines of which 57,535 were clean lines
and 9,071 were abuse lines, as explained in Section 3.2.
Finding 2: Clean Numbers received 77.83% of all unsolicited
calls in our honeypot without any form of seeding. Among
all the inbound lines, 87.08% (57,535) were clean inbound
lines and 12.92% (9,071) were abuse inbound lines. The clean
inbound lines with no history of abuse received an average of
0.11 call per day per inbound line, which translates to one call
every 9.35 days. The abuse inbound lines received an average

of 0.11 call per day per inbound line, which translates to one
call every 9.44 days. The scale of our findings shows that it is
not necessary for a phone number to have a prior history of
abuse calls in order to receive unsolicited phone calls.
Finding 3: 75.10% of clean lines and 100% of abuse lines
received at least one unsolicited phone call during our study.
We found that only a small fraction (24.90 %) of all the clean
numbers never received an unsolicited call during our study.
It took an average of 8.01 weeks for an inbound line to receive
the first unsolicited call after being added to our honeypot.

Since calls arrive into a honeypot at a fairly low rate, only
a fraction of these calls actually contain audio. This justifies
our design decision of having adding a very large set of num-
bers as inputs to our honeypot. In particular, this shows that
prior research [6, 16, 17] which relied on only a few hundred
inbound lines was ultimately unlikely to see large portions of
the problem.

4.1 Temporal Characteristics

The normalized daily call volumes per line over the 11 month
study period is shown in Figure 2. We observed outliers that
caused a spike in call volume during April of 2019, which we
characterize in detail in Section 4.2.

Finding 4: We observed a stationary call volume of unso-
licited calls over our study period. Since our study spanned
11 months, we were able to observe the cumulative call vol-
ume on both clean and abuse numbers over extended period
of time. We fit a linear model to our weekly average call vol-
ume observed in our honeypot after discarding the two weeks
affected by server downtime, finding a slope of -0.0002, indi-
cating almost no change in the rate of unsolicited calls over
the study period. We also fit a model after also discarding the
anomalous storm peak in April, finding an even smaller slope
of —9 x 107>, In addition to its significance for the phone
network, this is also an important result for our evaluating
methods. While we do not know the history of the numbers
before we possessed them, on the whole we see approximately
the same volume of calls months after we take possession.
This implies that recent activity before we take ownership of
the line is unlikely to skew our results.

Finding 5: The call volume of unsolicited calls had a peri-
odicity of one calendar week. The call volume increased on
Mondays and remained high during weekdays. The call vol-
ume decreased on Saturday and remained low on Sunday. We
observed this pattern in every week of our data collection.
To measure the extent of periodicity, we compute the auto-
correlation score — a score from 0 to 1 which measures the
similarity of a signal with itself at different time lags between
the two copies of the signal. For daily unsolicited call volume,
we observed a maximum auto-correlation of 0.87 at a time
lag of 7 days.

Finding 6: Our honeypot received 83.36% of all unsolicited
phone calls during local working hours and 92.71% during

402 29th USENIX Security Symposium

USENIX Association



Largest Call Storm = Normalized Daily Calls to Clean Numbers
£ 0.8 «— Observed ——- Normalized Daily Calls to Abuse Numbers
3 —— Normalized Daily Total Calls
Og
=5 0.64
Li_g . Winter
T3 Clean Numbers Downtime
a Added 1
oL 0.4 | H
o RL1 RL2; §
=8 Start Start; .
€ 0.2 ' L1
o ' A i I 11
S A ‘. AlN]\fn Iy i

0.0 :
2019-03 2019-05 2019-07 2019-09 2019-11 2020-01
Time

Figure 2: In this plot of normalized average calls, we observed a stationary call volume distribution of unsolicited phone calls on
clean and abuse numbers with a weekly periodicity during our 11-month study. Major events in our honeypot are labelled.

weekdays. Intuitively, we would expect to receive significant
amount of unsolicited calls when users are available to answer
their phones. Weekends and non-working hours would seem
to maximize the user’s availability. Our honeypot received
83.36% of calls between 9 AM to 5 PM, as per the local
timezone of our honeypot (Eastern Standard Time), which is
roughly the local working hours. Furthermore, 92.71% of all
calls were received during weekdays.

4.2 Storms: High Call Volume Events

When we observed an abnormally high number of calls in
April of 2019, as seen in Figure 2, we delved deeper into
the distribution of these calls over our inbound lines. We dis-
covered instances when a disproportionately large number of
calls were received on specific inbound lines. Using average
call volume of each inbound line is not sufficient to identify
such outliers. Inbound lines (e.g. abuse numbers) that regu-
larly receive a significantly large number of unsolicited calls
would naturally have a higher average call volume, but does
not qualify as an outlier.

In this paper, we refer to such instances of high call volume
occurrence as storms. To systematically identify storms, we
wanted a uniform mechanism to compare call volumes in rel-
ative terms across all the inbound lines. To address this prob-
lem, we used z-score. The z-score is defined as z = (x — u) /0o,
where x is a data point in the distribution, u is the mean and ¢
is the standard distribution. We computed the z-score distribu-
tion of daily call volume per day, for each individual inbound
line. A z-score of 1 for a specific day indicates that the call
volume on that day is a single standard deviation away from
the mean call volume of the inbound line. A higher z-score
indicates that the measured value is farther away from the
mean. We use a conservative heuristic and set a z-score of

4 as the limit to identify calls that received abnormally high
calls per day during our study. A z-score greater than 4 indi-
cated that the call volume on the specific day was 4 standard
deviations higher than its mean call volume. Such behavior is
an intuitive indication of an outlier.

Even though z-score allowed us to develop relative com-
parison, it includes inbound lines which has very low average
call volume with sporadic calls. To remove these inbound
lines with low call volume, but with significant high z-scores
due to an occasional call, we set a threshold of a minimum
call volume per day of 24 calls. A 24 calls per day threshold
translates to one call per hour — this is a significant amount
of unsolicited call volume. We identified inbound lines which
received more than 24 calls on any single day, and had a z-
score of greater than 4 during our study. By so doing, we
identify inbound lines that received a significantly high call
volume and characterize this phenomenon as a storm.

Finding 7: We observed 648 instances of storms spread
across 223 inbound lines. A 11 month long study helped
us uncover numerous instances of storms. The largest storm
comprised of over 1,400 unique unsolicited calls made to the
same number on the same day. These calls seemed to orig-
inate from over 750 unique callers based on the number of
unique caller IDs used. We note that in prior work, Gupta et
al. [6] report 2 “TDoS” events over their 7 week observation
period. Our findings indicate such events are rare, yet occur
regularly. We also note, our term “storm” does not imply ma-
licious intent, as we cannot attribute a course or source of
these events. Throughout our study, we observed storms as
early as March 2019 and as late as January 2020.

Our discovery of storms also confirms anecdotal reports
where individuals seem to be deluged seemingly “out of the
blue” by dozens of calls in a day. Most of our storm events oc-

USENIX Association

29th USENIX Security Symposium 403



cur on unrecorded lines. * As a result, it is unclear if the storms
originate from a single operation or campaign, or if storms
comprise a chance coincidence where one line is randomly
targeted by many different campaigns.

4.3 Effects of Answering Unsolicited Phone
Calls

One of the most common recommendations to tackling the
problem of unsolicited calls is to not answer any calls orig-
inating from unknown numbers (numbers not in the user’s
contact list), under the hypothesis that answering will increase
call volume. To understand if there is a significant impact of
answering phone calls to the number of unsolicited phone
calls received on an inbound line, we designed an experiment
and statistically evaluate our measurements. For this experi-
ment, we randomly selected 3000 inbound lines, which were
the same lines initially referred to as Recording List 1 (RL1).
Initially, we did not answer any unsolicited calls made to these
3000 inbound lines for 6 weeks. Next, we answered all calls
received on these 3000 inbound lines and observed the call
volume for 6 weeks. We calculated the average call volume of
each line in RL1 during the first 6 weeks of not answering the
phone call. We also computed the average call volume during
the next 6 weeks, when we answered all calls made to these
inbound lines. To understand if there is significant evidence
that answering phone calls has an effect on the number of
unsolicited phone calls, we apply a statistical test based on
average call volume observed from 17th February to 12th
April of 2019.

We use z-test for dependent populations to measure if the
difference between the means of two populations is signifi-
cant. We also select an alpha value of 0.01 to determine the
significance of our statistical test. Our p-value should be less
than alpha to indicate statistical significance.

Since we observe a peak in overall call volume, which we
have associated to storms, we checked if any of the inbound
lines of RL1 were victims of such huge call volume. We
confirmed that there were no storms associated with any of
the RL1 inbound lines. This steps ensures that there were no
outliers when we perform the ¢-test.

Finding 8: Answering unsolicited calls did not have a statis-
tically significant effect on the average number of unsolicited
phone calls received on a phone number. We observed that
average call volume when not answering calls was 0.1027
and average call volume when we were answering phone calls
was 0.0944. Our ¢-test indicated the result was statistically
insignificant (p = 0.0708). Through this result, we conclude
that there is no evidence that answering phone call increases
the number of unsolicited phone calls received. This finding
contradicts the traditional wisdom and provides insight to
operators in that our findings indicate that it would be safe for

“4In the absence of evidence to the contrary, we assume this is simply due
to the fact the majority of our lines are not answered.

operators to monitor and use lines without the risk of further
contamination.

4.4 Voicemail Spam

Unlike traditional landline or mobile phones, our inbound
lines did not have the restriction of maintaining only one ac-
tive call at a time. Such a configuration allowed us to observe
multiple call attempts with the same calling and called num-
bers in quick succession — a classic behavior of voicemail
spam. Since the successive call attempts maintained the same
calling and called numbers, we identified groups which have
a unique 3 tuple of the calling number, the called number
and the date. We discard the groups which have a single call.
Next, we calculate the time difference between successive
calls in each group. Since our honeypot rejected a fraction of
incoming calls with a 403 SIP Response code, we observed
clients re-trying the same call within a short duration of time,
as discussed in section 3. After referring to the SIP retrans-
mission section in the SIP [18] RFC, we remove all duplicate
retries within 30 seconds of each other.
Finding 9: We estimate that 2.91% of all calls made to our
honeypot were suspected voicemail injection attacks. Most
adversaries need to tune their campaigns through manual
delay measurement and determine the ideal time difference
between successive calls for executing voicemail spam. Such
delay estimation vary depending on how a phone call is routed
from the source to the destination. We performed test calls
across multiple originating service providers to estimate the
delay associated with call setup. By empirical estimation, we
set a conservative window of 30 to 90 seconds as the time
difference between successive calls to execute a successful
voicemail injection. We identified 43,170 calls within this
window which we believe are successful voicemail spam or
voicemail injection attempts.

Our findings also indicate that voicemail spam is likely
a significant problem. However, because our heuristics rely
only on signaling information alone, it should be detectable
by carriers. Though in magnitude similar, this would have the
effect of eliminating an entire class of telephone fraud. While
we have tried to design our heuristics to make it practical and
usable, careful testing and validation with ground truth is
essential before deployment in live networks.

4.5 Caller ID Spoofing

Finding 10: We estimate that 6.12% of all unsolicited calls
used neighbor spoofing techniques. For calls where the call-
ing number adheres to NANP, we compare the calling number
with the called number to identify the length of the match. We
compared the calling and the called numbers and found that
27.67 % (409,876) of all calls had identical area codes (NPA)
between the calling and the called number. Further, 6.12%
(90,648) calls had both, a matching area code and a matching
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exchange code (NPA+NXX). Surprisingly, 0.05% (698) calls
were made with the same calling number as the called number
for that call. We also observed that for 0.07% (976) calls, the
caller ID used by the calling side was one of the 66,606 phone
numbers owned by us. We used libphonenumber > module
and openly available information from North American Num-
bering Plan Administrator’s © website to parse and validate
the non-US and US phone numbers respectively. We highlight
neighbor spoofing as one example of a particular robocalling
strategy. As callers continue to evolve their tactics we can use
similar techniques to identify other trends and patterns.
Regulatory changes made by the Federal Communications
Commission (FCC) in November 2017 [19] authorized tele-
com operators to block calls which seem to originate from
unassigned, unallocated or invalid phone numbers. It also al-
lowed providers to maintain a Do Not Originate list and block
calls which seem to originate from a number on this list. These
changes did not address scenarios where legitimate numbers
were used to spoof the caller ID or when caller ID was not
spoofed at all. The FCC acknowledged these limitations and
allowed more flexibility to block calls by empowering the
providers through its more recent regulatory changes in June
2019 [20].
Finding 11: We found that only 3.2% (47,910 calls) of all
the unsolicited calls made to our honeypot could have been
outright blocked by providers. We observed that only 5.97%
(8,633) of all unique calling numbers seen in our honeypot
met the criteria of call blocking. These percentages are a lower
bound on the effectiveness of provider based call blocking,
mainly because we cannot measure or collect information
about calls which were blocked by the upstream providers.
As described in Section 3.3, calling parties can mask their
identity by dialing with specific prefixes, like *67. In our
honeypot, we collected SIP logs from which we extracted the
caller ID information of unsolicited calls attempting to dial
with a prefix, and in-turn mask their original caller ID.
Finding 12: Out of 72,197 unsolicited calls which attempted
to mask their caller ID by dialing with *67 as a prefix, 79.16%
(57,151) were successful. A small fraction (20.85%) of these
unsolicited callers leaked their actual caller ID through the
“P-Asserted Identity” SIP header, but most calls that dialed a
call using the *67 prefix successfully masked their caller ID.
This observation is an example of how unsolicited callers can
use existing features in the phone network to evade detection.
As described in Section 2.1, CNAM is a feature through
which a set of 15 characters can be sent to the called party.
When CNAM information is available, it represents the name
of the owner of the calling phone number.
Finding 13: A large number of callers used a small pool of
caller names (CNAM) when making unsolicited phone calls.
From the data collected in our honeypot, we observed that
there were 811,262 unique calling entities who had made an

Shttps:// github.com/daviddrysdale/python-phonenumbers
6https://nationalnanpa.com/number_r(;‘,source_info/index.html

unsolicited call. Each calling entity is uniquely identified by
a combination of calling party’s phone number and the Caller
ID Name (CNAM). Of these 811,262 (100%) calling entities,
we observed that there were 801,466 (98.79%) unique phone
numbers (caller IDs) and 239,210 (29.49%) unique CNAMs,
which indicates rampant reuse of CNAMs.

4.6 Wangiri Scam Estimation

We studied wangiri scam attempts on 2,949 inbound lines
(RL2) which were configured to ring for 10 seconds and
answered any unsolicited call. We defined a heuristic and
empirically estimate the scale of wangiri scams. Since all our
inbound lines were located in the United States, the ringing
tone cadence as per ITU specifications [21] was 2 seconds
ring and 4 seconds silence. A single ring lasted for a duration
of 6 seconds.

In order to compute the estimate of wangiri scam calls in

our honeypot, we identified any calls that were disconnected
before being answered. Next, we computed the fraction of
these calls which disconnected from the calling side before the
beginning of the second ring — all the calls that disconnected
at or before 6 seconds after the call setup. Since a successful
wangiri scam involves an International or a premium rate
number as the caller ID, we also analyzed the caller ID for
all calls disconnected on or before 6 seconds from the call
attempt.
Finding 14: We found no concrete evidence of wangiri scams
We found that there were 3,213 calls among all the calls
which were prematurely disconnected within 6 seconds. We
analyzed the caller ID for calls that were disconnected before
answering and observed that there were 29 unique instances
of numbers not matching the standard NANP format and were
likely a premium rate number used for Wangiri scams. There
were 4 invalid caller IDs (e.g. “Restricted, *86") and 2,296
numbers matched the NANP format. Since we found that the
caller IDs for these calls did not match well-known wangiri
NPA — 900, 976 or other Caribbean countries, we report that
there were no instances of wangiri scams observed in our
honeypot.

4.7 Call Audio Characteristics

Among all the data collected in our honeypot, call audio is
crucial in understanding the intent of the call. As explained in
Section 3.3, we record and store call audio from unsolicited
calls on a subset of our lines. Now, we discuss the character-
istics of call audio collected in our honeypot.

Some robocalls have a pre-recorded message while other
calls have large sections of audio that are silent. In situations
where an actual person dialed one of our inbound lines, it
is typical for the user to wait for a response from our side
to continue the conversation and hang up after some time.
To categorize such calls, we calculate the duration of call
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recording which has audio and the duration for which there
is silence. These two values help us identify the calls which
have a large fraction of audio, which are clear indications of
a robocall.

To measure the amount of audio in a call recording, we
use py-webrtcvad, 7, a Python interface for WebRTC VAD
project. ® By performing this pre-processing step, we identify
and measure the position and duration of non-speech signals.
Using these measurements, we compute the total audio du-
ration, the total silence duration and percentage of audio for
every call recording. We empirically select two thresholds to
determine the calls which have significant amount of audio in
the recording — calls should have at least 5 seconds of pure
audio and at least 10 % of the entire call should be pure audio.
We prune the calls which do not meet these two thresholds
before we perform campaign identification using call audio.

5 Campaign Identification

In this section, we describe common traits of robocalling and
spam calling operations and how we exploit this similarity
to develop a clustering algorithm to identify campaigns. We
note that number rotation eliminates the possibility of using
the calling number to group similar calls.

While number rotation is simple and inexpensive, using
significantly different audio prompts for each call is computa-
tionally and economically expensive for the caller. Our key
insight is that a specific operation will use the same audio to
make unsolicited calls, and similarity allows us to group calls
with similar audio to identify a group of calls as a campaign.

In order to group similar calls, we use raw audio signals
present in the call recording to generate audio fingerprints
and use these fingerprints to cluster similar audio files. While
other researchers [16,22,23] have applied Natural Language
Processing (NLP) and Machine Learning techniques to audio
transcripts in order to analyze calls and cluster them, such
techniques involve error and loss of information during tran-
scription. Our audio fingerprinting based clustering approach
is versatile and has numerous advantages as described below.

First, our approach is language and speaker agnostic, al-
lowing us to process calls in any language without any mod-
ification to our pipeline. Second, our clustering approach is
capable of matching audio files which are not identical, but
have significant portions of audio that are identical. This is
important in our case because many campaigns use text-to-
speech systems to dynamically insert the name of the called
party as part of the robocall. For example, a sample audio
snippet could be “Hello <name>, this is a call from the So-
cial Security Administration.” Third, our specific technique is
resistant to noise, compression, and packet loss.

"https://github.com/wiseman/py-webrtcvad
8https://webrtc.org/
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Figure 3: Robocalling Campaign Identification Process
through a Five Stage Audio Clustering Pipeline

It is important to keep in mind that what we are character-
izing as campaigns is audio, not operators. Multiple operators
may collude and use the same audio files as one campaign.
Likewise, a single operator might use many different audio
files, each a different campaign.

5.1 Fingerprinting and Clustering

The architecture of our multi-stage audio clustering pipeline is
shown in Figure 3. First, the recorded phone calls go through
the audio preprocessing stage which computes the amount of
audio in each call recording, as explained in Section 4.7. In
stage two, the cleanup stage, we discard any audio files with
less than or equal to 5 seconds of audio or less than or equal
to 10% of audio, since we are unable to group silent audio
into particular campaigns. These two threshold values were
empirically determined based on how long it took the authors
to convey a single meaningful sentence.

Thirdly, the fingerprint preprocessing stage takes each au-
dio sample as the input, generates the fingerprint of the audio
file and stores it in the fingerprint database. In the context of
this paper, a fingerprint [24,25] refers to a compact represen-
tation of a file such that, with high probability, the fingerprints
of two similar files are similar (but not necessarily equal), and
the fingerprints of two non-similar files are different. Such
fingerprinting techniques are applied to audio files [26] to
index songs and perform real-time audio search (e.g., Shaz-
aam [27]). We use audio fingerprinting techniques to identify
similar call recordings and cluster them together to identify
robocalling campaigns.

We use echoprint [28], an open source framework for
audio fingerprinting and matching. We choose echoprint
instead of other audio fingerprinting frameworks since it
uses a robust fingerprinting primitive that is well suited for
phone call recordings. Since we do not claim the design of
echoprint as a contribution, we discuss its design and op-
eration in detail in Appendix A. We use raw audio for all
the above computation. Using a lossless Waveform Audio
File Format (WAV) to store call audio instead of a lossy com-
pressed format like MP3 reduces the probability of error [28]
in echoprint. Using WAV files and discarding silent audio
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calls, as done in stage 2, significantly improves the perfor-
mance of echoprint.

Fourthly, the fingerprints of the filtered audio files go
through the matching stage. We query the echoprint database
for each new audio fingerprint to check if there is a similar
audio file already in the database. If there are no matches,
then we add the current audio fingerprint to the database. If
we find a match, then we add an edge between the two audio
files, where each node represents an audio fingerprint. These
nodes and edges are a part of an undirected graph G.

After processing all the audio fingerprints, the undirected
graph G has nodes with edges that connect similar audio files.
The final stage identifies the connected components of G,
where each connected component is a robocalling campaign.

5.2 Clustering Evaluation

It is important to evaluate our clustering methodology. How-
ever, precision in this context is not clearly defined. To evalu-
ate precision, we define and compute two custom metrics —
cluster perfection and intra-cluster precision — to measure
the effectiveness of our audio-based clustering methodology.
Cluster perfection is defined as the ratio of the number of
clusters without misplaced calls to total number of clusters
analyzed. Intra-cluster precision is defined as the mean of the
ratio of number of correctly placed calls in the cluster to the
total number of calls in the cluster. We note that computing
recall is impossible given no ground truth on the total count
of campaigns in our data.

We use the Industry Robocall Blocking Dataset to eval-
uate our methodology, since we already have good quality
transcript for these calls, as explained in Section 3.5 We thus
used the transcripts to assist in labeling correct clustering
assignment. We randomly select 20,000 audio samples from
the Industry Robocall Blocking Dataset and apply our clus-
tering pipeline. We identified 1,188 clusters and clustered a
total of 8,290 audio samples. Out of all these clusters, we
selected 30 random clusters and manually listened to a to-
tal of 160 audio samples to compute Cluster Perfection and
Intra-cluster Precision. We found that there were 2 clusters
among the 30 clusters with at least one misplaced call in
each of them, resulting in an overall Cluster Perfection rate
of 93.33%. The overall Intra-cluster Precision for these 30
clusters was 96.66%.

5.3 Campaign Characterization

In this subsection, we characterize campaigns identified using
our clustering mechanism. We apply the campaign identifi-
cation methodology described above to our data set of call
recordings collected from our honeypot and identify robo-
calling campaigns operating in the real world. We define and

compute metrics which help us characterize the robocalling
campaigns systematically.

Finding 15: 91,796 (62.75%) call recordings did not have
sufficient amount of audio to be considering for clustering. We
found that 61,528 (42.05%) call recordings had less than 1%
audio in the entire duration of the call. Furthermore, 70,916
(48.47%) calls had a total duration of less than one second. A
possible explanations for a large fraction of silent calls could
be that the campaigns are interested in identifying the phone
numbers which are active and are capable of answering a
phone call. Another reason could be that the campaigns use
voice activity detection features that triggers the payback of a
recorded message once the calling side is confident that the
call has been answered by an actual person. Since we used
a simple greeting while answering a phone call and remain
silent post the greeting message, such call answering behav-
ior may not be categorized as a live human in sophisticated
outbound calling campaign systems.

It is practically infeasible to convey meaningful informa-
tion in such short duration and by using a small fraction of
speech throughout the call. Also, it is unlikely for an active
caller who may have mis-dialed the called number, to discon-
nected within a fraction of a second after we answer the call.
At the outset, such a large number of call audio recordings not
containing substantial amount of audio may seem surprising.
This high rate may be explained by hit list generation.

Additionally, we observed that few calls (0.01 %) among all
the recorded calls were disconnected by our honeypot, which
was configured to terminate the call after 60 seconds. The
rest were disconnected by the calling side. This observation
indicates that a 60 second recording duration is sufficient to
record significant portions of unsolicited phone calls.

After filtering out the calls which lack substantial audio
to be clustered into a campaign, we performed clustering to
identify similar audio as described before in Figure 3.
Finding 16: We found that out of 54,504 call recordings with
substantial audio content, 34,150 ( 62.65%) call recordings
were identified to be a part of one of the many campaigns.
Of all the calls we processed, we observed that 62.65% were
grouped into one of the campaigns. Such high percentage
of calls being grouped into clusters indicate that our clus-
tering approach is capable of identifying campaigns and is
successful in grouping similar calls into clusters. By analyz-
ing complete campaigns we give providers the tools to choose
which operations to target and help them find their weakest
points. For example by doing traceback only on the calls in a
campaign that are originated by peers.

Finding 17: We discovered 2,687 unique robocalling cam-
paigns operating in the wild. The largest campaign cluster had
6,055 unique call recording with an average call duration of
47.71 seconds. The calls in this top campaign had an average
of 84.88% audio content, which signifies that the campaign
was indeed playing a dense recorded message. Furthermore,
the average cluster size of the top five campaigns was 2,372.2,
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only a few calls from most campaigns. We received fewer
than 27 calls from 95% of campaigns. The largest campaign
had 6,055 calls.
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Figure 5: Top 10 Robocalling Campaigns with Radius of the
Circle indicating the Relative Campaign Size

which reaffirms our key insight — campaigns that operate at
scale reuse the same audio prompts or use audio prompts with
slight modifications.

Finding 18: We observed that on an average, a campaign has
12.70 calls. As shown in Figure 4, we can infer that among
all the 2,687 campaigns, a large fraction of campaigns were
relatively small in size and a few campaigns have significantly
large size.

5.4 Campaign Metrics

To systematically evaluate various operational characteristics
of the campaigns, we define and calculate metrics to measure
the behavior of robocalling campaigns.

Campaign Size: Number of calls in each campaign, where a
campaign is represented by a cluster of audio recordings.

Source Distribution: Ratio of the count of unique caller ID
used by the campaign to the campaign size. A 100% source
distribution indicates that the campaign used a different caller
ID for every call. This metric quantifies the rate at which
campaigns spoof caller ID or rotate between calling numbers.

Spread: Ratio of the count of unique destination numbers
to the campaign size. A 100% Spread indicates that every
call from this campaign was to a different inbound line. This
metric helps us understand if a campaign is targeting a specific
set of inbound lines or tends to distribute calls across a wide
range of called numbers.

Toll-Free Number Usage: A count of unique toll-free num-
bers used as the caller ID.

NPA-NXX Matching Percentage: Calls which had identical
NPA and NXX for calling and called numbers. This is a
measurement of neighbor spoofing.

After we defined various metrics, we compute them for
each of the 2,687 campaigns. Now, we interpret the metrics
to understand how these campaigns differ from each other.

Finding 19: Robocalling campaigns had an average source
distribution of 84.17%, which indicates that most campaigns
use a large pool of numbers as caller ID. We observed that
the largest robocalling campaign with a campaign size of
6,055 had a Source Distribution of 99.93%. The top 10 cam-
paigns had an average source distribution of 95.50%. Such
high source distribution rate indicates that the campaigns are
likely spoofing the caller ID. If the campaign is not spoof-
ing caller IDs, then the campaign might own a large pool of
phone numbers using which it generates unsolicited phone
calls. The findings from the source distribution indicate that
well-known call blocking techniques that use allowlists or
denylists will not effectively detect or block calls from many
campaigns. In future work we hope to analyze the distribution
and relative usage of lines by campaigns, and in so doing
potentially examine patterns that could be used to predict and
block robocalls based on their line rotation strategies.

Finding 20: Robocalling campaigns had an average spread
of 78.30% with a few top campaigns targeting specific in-
bound lines. We observed that the top campaign had a spread
of 19.60%, which indicates that there were multiple calls from
the same campaign to a set of inbound line. Such behavior
could also indicate that the campaign is using a list of phone
number to target their calls. It could also indicate that they
selectively target the inbound lines which answer the previous
calls made by the campaign. If so, the number of campaigns
using this technique must be small in order to be consistent
with finding 9. An average spread of 78.30% indicates that
most campaigns target a wide range of phone numbers. In
future work we hope to analyze the distribution and relative
usage of lines by campaigns, and in so doing potentially exam-
ine patterns that could be used to predict and block robocalls
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Figure 6: Many of our case study scam campaigns operate
over long periods

based on their line rotation habits.

Finding 21: We find that 2.86% (77) campaigns used neigh-
bor spoofing by matching the NPA-NXX of the calling number
to the called number. Of all the campaigns that did employ
NPA-NXX based neighbor spoofing, we found that on an av-
erage 48.5 % of calls made by these campaigns used neighbor
spoofing. There were 14 (0.52%) campaigns with 100% neigh-
bor spoofing rate, indicating that they matched the NPA-NXX
for every call. These results indicate that operators regularly
evolve spoofing strategies within a single campaign. This find-
ing describes the neighbor spoofing behavior observed among
recorded phone calls which belong to a specific campaign,
whereas Finding 10 describes an aggregate view of neighbor
spoofing among all calls made to our honeypot.

5.5 Case Studies

To get an overview about the contents of a cluster, we ran-
domly selected 3 calls from the top 40 clusters and listened to
them. This allowed us to label the top clusters as seen in Fig-
ure 5 and also helped us to selectively delve into campaigns
with unique characteristics. We discovered that of the differ-
ent telemarketing campaigns, many of them use potentially
misleading tactics to encourage victims to engage.
Finding 22: We uncovered two fraudulent robocalling cam-
paigns which impersonated the Social Security Administration
(SSA) office, a United States agency. Our honeypot discov-
ered two separate large scale fraudulent campaigns which
clearly violates multiple federal and state laws. Both these
campaigns used different audio recordings. The first SSA
Campaign (SSA Campaign #1) was the 10th largest campaign
in our honeypot with a campaign size of 396. This campaign
extensively used 224 unique toll-free numbers as the caller
ID to generate unsolicited calls. We observed that this first
SSA Campaign operated throughout the duration of our study
— April 2019 to February 2020. The second SSA Campaign
(SSA Campaign #2) had a campaign size of 75 and operated
from August 2019 to November 2019.

We observe that, IRS impersonation (anecdotally one of
the most common scams) has given way to different tactics
focused on immigration and social security. We suspect that

these changes have arisen because taxes are seen as a seasonal
issue where other issues are relevant year-round.

Finding 23: We observed that SSA campaigns prefer to use
toll-free numbers as the caller ID and are highly targeted to
specific users. We found that the SSA Campaign #1 used 224
unique toll-free numbers with a source distribution of 89.39%,
which indicates that only a few calls reused a caller ID. This
campaign had a spread of 46.21%. The SSA Campaign #2
also extensively used a pool of 25 unique toll-free numbers.
This campaign has an overall source distribution of 100%
and a spread of 29.33%. Such low spread indicates that both
the campaigns were selective in targeting specific inbound
lines, and therefore called the same inbound lines multiple
times. SSA Campaigns are known to target specific segments
of population who are more vulnerable than the rest [29].
Finding 24: We uncovered two large scale robocalling cam-
paigns that selectively target the Mandarin speaking Chinese
population in North America. Our campaign identification
mechanism uncovered two unique robocalling campaigns that
operated in Mandarin and in turn was targeted towards Chi-
nese population in the United States. Each campaign had a
campaign size of 62 and 51. Both the campaigns imperson-
ated the Chinese Consulate. The first campaign threatened
the callers that there was an important document which had
expired, and it needed immediate attention of the caller to
press a specific digit. The second campaign mentioned that
the caller had an urgent message which was time sensitive.

6 Discussion

The future of robocall mitigation: Current robocall mitiga-
tion techniques use caller ID and other heuristics to identify
suspected robocalls. Using call traceback [30,31] to investi-
gate even a fraction of such suspicious calls is time consuming
and does not scale well for the provider. Instead, providers
can operate their own honeypots and use the campaign identi-
fication technique demonstrated in our paper. Providers can
systematically identify fraudulent and abusive robocalling
campaigns and surgically target the source of such operations.
By prioritizing the takedown of specific campaigns, providers
can better protect their subscribers.

Will new initiatives and regulations reduce unsolicited
calls?: To improve enforcement against unsolicited calls, the
United Stated passed the TRACED Act [32] into law on De-
cember 31st, 2019. Among other things, this act mandates the
deployment of STIR/SHAKEN within a certain period and
increases penalties for illegal calls. Unfortunately, by the time
the regulatory agencies impose penalties on robocalling oper-
ations [33], the perpetrators have already generated billions
of robocalls. We do not yet know if STIR/SHAKEN will be
effective in addressing the problem of unsolicited phone calls,
especially because calls that transit any TDM network will be
unauthenticated. During our study, no providers were passing
STIR/SHAKEN authentications to our provider. Therefore,
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our data does not yet indicate if this mechanism will be effec-
tive or not.

Recommendation to the public: As explained in Section 4.3,
we found no statistically significant effect of answering phone
calls on the average number of unsolicited phone calls re-
ceived. Despite this finding, we suggest the general public
should still use caution in answering unsolicited calls.
Limitations: Like all measurement studies, our work does
have some limitations. First, because we do not do any seeding
of our numbers, our results may be biased towards campaigns
that dial at random. However, the low spread values of our top
campaigns indicate that some of our campaigns indeed specif-
ically targeted our lines. Second, our estimates of voicemail
spam, wangiri, and neighbor spoofing are based on heuristics,
and may be subject to false positives. In particular, our neigh-
bor spoofing estimates assume that callers are not purchasing
lines to match the caller, and, given the difficulty of such an
operation, we believe this is unlikely. Moreover, in general
our methods cannot distinguish between “legitimate” line ro-
tation and spoofing. Finally, because we do not analyze the
content of our campaigns, we do not estimate how many of
our unsolicited calls fall into the “good” category (e.g., public
service announcements) and leave them for future work.

7 Related Work

Adversaries continue to thrive [34] in the era of modern tele-
phone networks. Even though researchers [35] have been
trying to make telephone networks more secure, end users are
constantly bombarded with spam calls [3,36] and robocalls.
Some of the previously proposed techniques to combat spam
and fraud [37] in telephone networks employ graph analysis
[38—40], use decoys [41], apply machine learning [22,42-45]
and clustering techniques [46,47]. Other researchers associate
a custom metric for the calling number, like a trust value [48]
or a reputation score [49] to detect malicious callers.

The absence of end-to-end mutual authentication in phone
networks makes caller ID spoofing trivial. Tu et al. [50]
demonstrated that spoofed caller ID is a key factor in trick-
ing victims into revealing their private information, like their
Social Security Number. Caller ID spoofing also allows the
adversaries to operate without the fear of being tracked. To
address this issue, researchers have proposed in-band authenti-
cation techniques [51], pre-call authentication [52], improving
core SS7 protocol standards [53-55], developed mobile appli-
cations [56,57],initiating a call [58] to the calling party during
the ringing state, using a trusted third party [59] and coupling
SMS with call timing [60] to detect caller ID spoofing. The
IETF’s STIR working group [12] has recently proposed the
SHAKEN [61] framework which uses PASSporTs [62] and
certificates [63] to authenticate caller ID [64] in SIP networks.
But, these standards do not address the challenges in large
segments of non-SIP, TDM and analog circuits which are
still operational. By building on top of the Public Key Infras-

tructure (PKI) ideology, SHAKEN/STIR [65, 66] standards
inherit the risks of PKI [67] system designs.

Due to the inherent closed architecture of telephone net-
works, it is extremely challenging to collect real-world data
about how adversaries operate in the wild. Lack of data fur-
ther prevents us from applying spam detection and mitigation
techniques popular in email [68] and SMS [69-75] ecosys-
tems to telephone networks. To collect data and gain insights
about how adversaries operate, researchers have scraped web-
sites for audio transcripts [76,77], used online text-to-speech
services to mimic robocallers [78] and generated calls in
a lab-controlled environment [42,79]. We believe that such
strategies are inadequate in representing a constantly evolv-
ing real-world adversary. Also, user reported details could
be biased, inaccurate and under-represented. Numerous re-
searchers [3,36,68] have emphasized the need for collecting
and analyzing data from actual phone networks, which can in-
turn help in the development of robust mitigation techniques.
Techniques presented by Balasubramaniyan et al. [80] can be
useful to study the network path of a phone call as part of our
future work. Actively engaging with the caller [13,50,77] has
been an effective approach to gain deeper insights about the
adversary’s operational characteristics.

Honeypots [81] have served as a mechanism to collect
data about adversaries. Honeypots have been used to study
worms [82], email spam campaigns [83], SMS spam [71], so-
cial media campaigns [14, 84, 85], telephone networks [6, 86]
and much more. Previously developed telephony honeypots
have certain limitations and inherent assumptions. Gupta
et al. [6] and Li et al. [43] do not collect and process call
audio, while Balduzzi et al. [16] restrict themselves to spe-
cific geographic regions or languages, and Sahin and Fran-
cillon [17] use a small number of clean numbers. Previous
work [6,16,22,23,43] either used transcripts to identify clus-
ters of calls or did not account for caller ID spoofing, which
is prevalent in an adversarial telephone network settings. Our
data collection and campaign identification techniques extend
far beyond each of them. The techniques proposed and used
in this paper are agnostic to caller ID spoofing and language
of the robocall. None of the prior work collect and analyze the
call meta-data, call audio content and signaling information
as a whole.

8 Conclusion

Robocalls and other forms of unsolicited phone calls have
plagued the telephone network. Such calls are a long-standing
problem to all people who use a phone. Despite anecdotal
evidence of the prevalence of such calls, accurate information
on the frequency of these calls is largely unknown. Through a
data-driven study, we provide details about the scale at which
unsolicited calling campaigns operate in the North American
phone network. By experimentation and statistical validation,
we find no evidence that answering unsolicited calls increases
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the number of such calls received. We develop mechanisms
to characterize voicemail spam, wangiri scam and different
forms of caller ID spoofing techniques. We develop, evaluate
and apply a robust campaign identification technique using
call audio, and uncover 2,687 unique robocalling campaign
in the wild. Based on our observation, we discuss the state
of existing detection and mitigation techniques and call for
more data driven studies of the phone network.
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A Functionality of echoprint

At its core, echoprint generates a fingerprint of an audio
file based on the time interval between successive ampli-
tude peaks (called inter-onset interval). Phonemes in human
speech — each unit of sound that distinguishes one word of a
spoken language to another — creates amplitude variations
in the call audio. Prosody in human speech introduces func-
tions like rhythm and tone to the call audio. These features of
human speech allow echoprint to generate fingerprints that
represents a call audio recording.

To generate a fingerprint, echoprint marks the amplitude
peaks and computes the inter-onset interval between these
peaks across 8 independent frequency bands of the audio
file. A combination of (i) inter-onset interval, (ii) the spe-
cific frequency band and (iii) time at which the inter-onset
interval occurs in the audio file are used to generate a non-
cryptographic hash value. Each second of audio generates
approximately 48 hash values. Multiple hash values together
form the fingerprint of the file. We store the fingerprint in the
fingerprint database as a JSON object.

The matching operation of the echoprint framework
works on the fact that inter-onset interval of similar audio
files are identical [28]. When we query the echoprint DB with
a new audio fingerprint, echoprint framework identifies a
list of top 15 audio files which have matching hashes. These
matches are sorted, starting with the best match and ending
with the worst match. We get the top audio sample in this list
as a match if its match score is significantly higher than the
match score of all the other matches in the list. Otherwise,
echoprint does not return a match. If we do not get a match,
we add the audio fingerprint to the echoprint DB.

Table 1: Important Dates

Dates (dd-mm-yyyy)

Name Start End
Study Duration 17-02-2019  01-02-2020
t-test Duration 17-02-2019  04-12-2019
Initial Recording 31-03-2019  01-02-2020
Second Recording 21-12-2019  01-02-2020
Power Outage Downtime ~ 05-04-2019  06-04-2019
Winter Downtime 29-12-2019  04-01-2020
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