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Abstract: Reinforcement learning (RL), particularly in sparse reward settings,
often requires prohibitively large numbers of interactions with the environment,
thereby limiting its applicability to complex problems. To address this, several prior
approaches have used natural language to guide the agent’s exploration. However,
these approaches typically operate on structured representations of the environment,
and/or assume some structure in the natural language commands. In this work, we
propose a model that directly maps pixels to rewards, given a free-form natural
language description of the task, which can then be used for policy learning. Our
experiments on the Meta-World robot manipulation domain show that language-
based rewards significantly improves the sample efficiency of policy learning, both
in sparse and dense reward settings.
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1 Introduction

Reinforcement learning (RL) problems often involve a trade-off between the ease of designing a
reward function and the ease of learning from this reward. At one end of the spectrum, a sparse
reward function — e.g. a fixed positive reward for completing the task, and zero in all other states — is
easy to design, but does not give the learning agent any learning signal until it reaches the goal. As
such, the agent requires considerable exploration before any learning can take place. At the other end
of the spectrum, a dense reward function — e.g. distance to the next waypoint — can be specified to
provide the agent with a stronger learning signal, but is often harder to design and tune compared to
sparse reward functions. To get around the challenge of reward design, learning from demonstrations
is a popular approach [1, 2]; however, providing demonstrations to robots requires teleoperating or
kinesthetic teaching, which is difficult and time-consuming to provide, particularly for non-experts.
As such, several methods have been proposed recently, which involve guiding an agent using natural
language commands which are quick and easy to provide [3].

While promising, these techniques are still quite restrictive, often requiring object properties to be
predefined [4, 5], and/or assuming some structure in the natural language commands [6], which is
challenging to scale. Other techniques are applicable to only a restrictive set of environments, such
as those with discrete action spaces [7]. In this work, we propose a framework that makes no such
assumptions, and directly learns to map pixels to rewards for continuous control given a free-form
natural language description of the task.

Our approach contains two phases — (1) a supervised learning phase that takes in paired (trajectory,
language) data and learns a model of relatedness between a trajectory and a language command,
and (2) a policy training phase with a standard RL setup with an additional linguistic description of
the task, wherein the relatedness model is used to generate intermediate rewards using the currently
executed trajectory and task description.

For instance, consider the domain shown in Figure 1, which is adapted from the recently released
Meta-World benchmark [8]. Here, we want the robot to press the green button. Different tasks in
this domain require interacting with different objects. In a sparse reward setting, the agent is given a
non-zero reward only upon successfully interacting with the pre-selected object. In the absence of

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.



Figure 1: A simulated robot completing a task (“push the green button”) in the Meta-World domain.

any other learning signal, the agent will explore randomly until it accidentally completes the desired
task. Using natural language to describe the task and generating intermediate rewards from these
descriptions can guide the agent towards the goal, significantly speeding up learning.

Our experiments on a diverse set of tasks in the Meta-World domain demonstrate that the proposed
approach results in improved sample efficiency during policy learning, both in sparse and hand-
designed dense reward settings. This motivates a new paradigm where language could be used to
improve over hand-designed rewards, which may be suboptimal owing to the difficulty of designing
rewards by hand.

2 Related Work

A number of prior approaches have been proposed to use language to guide a learning agent [9].

Some approaches involve mapping natural language instructions directly to an action sequence to be
executed. Tellex et al. [10] dynamically instantiate a graphical model given a language command,
from which a plan for the agent is inferred. Sung et al. [11] learn a neural network to predict
relatedness between (trajectory, language) pairs and (trajectory, point cloud) pairs, which is then used
to find the most likely trajectory given a new language and point cloud. Our approach is different
from these approaches in that we use language to generate a reward for the current state, that can then
be used to learn a policy using standard RL, which is a more general setting that does not require
knowledge of the environment dynamics, and can also work in more complex environments because
of the policy learning phase.

Several prior approaches map natural language to a reward function [4, 12, 5], but assume a specific
structure of the reward function, while our approach does not make any such assumptions.

Some approaches use a predefined set of linguistic instructions to guide the learning agent. Kuhlmann
et al. [13] and Branavan et al. [14] find the most relevant instruction to follow at each state. Kaplan et
al. [15] and Waytowich et al. [16] learn a neural network that predicts the similarity between a natural
language instruction and a state, and use that to follow a fixed sequence of natural language commands.
These approaches use hand-designed features, whereas we propose to learn the association between
language and trajectories from a small set of human-provided descriptions.

Some approaches learn to ground language while interacting with the environment [17, 18, 6]. Our
approach involves a separate supervised learning phase to ground language, which does not require
interacting with the environment.

Fu et al. [19] learn a language-conditioned reward function, but require knowledge of environment
dynamics to compute the optimal policy during training. Narasimhan et al. [20] use natural language
to transfer dynamics across environments. Blukis et al. [21] generate a state visitation distribution
given a natural language instruction, which is then used to generate rewards for policy training.
Harrison et al. [22] learn a distribution of states and actions given a natural language command,
which is used for policy shaping. Lynch et al. [23] learn a goal-image- and language-conditioned
policy, using behavior cloning. Andreas el al. [24] use natural language as a parameter space in
supervised and reinforcement learning tasks. Paxton et al. [25] generate subgoals from natural
language descriptions of the task, which are then used by a controller to predict actions. Goyal et al.
[7] use a similar framework as us, but their approach uses only the actions to generate language-based
rewards, without taking into account the states, and requires the action space to be discrete, which is
not applicable to most robotics tasks.



Our setting is related to the problem of vision-language navigation (VLN) [26]; while techniques
in VLN work with complex multi-step instructions but predominantly discrete action spaces, the
approach presented here is applicable to both discrete and continuous action spaces, but currently
works with relatively simple instructions. Combining the strengths of both these settings to develop
approaches that can work with complex instructions in continuous actions spaces is an interesting
direction for future work.

3 Approach

Reinforcement learning consists of an agent interacting with an environment. The learning problem is
typically represented using a Markov Decision Process (MDP) M = (S, A, T, R, ). Here, S is the
set of all states in the environment, A is the set of actions available to the agent, T : Sx Ax.S — [0, 1]
is the transition function of the environment, R : S x A — R is the reward function, and y € [0, 1]
is a discount factor.

At timestep ¢, the agent observes a state s; € S, and takes an action a; € A, according to some policy
m: 8 x A — [0,1]. The environment transitions to a new state s;+1 ~ T'(s¢, at, -), and the agent
receives areward Ry = R(st, a;). The goal is to learn a policy 7, such that the expected future return,

G, = ZtT:O ~* R, is maximized.
In this work, we use an extension of the standard MDP, defined as M’ = (S, A, T, R,~, L), where L
is an instruction describing the task using natural language, and the other quantities are as defined

above. We use the following two-phase framework for learning in an MDP with a natural language
description of the task (Figure 2).
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during policy learning for a wide variety of downstream tasks, insofar as the objects and linguistic
vocabulary in these tasks closely match the data used to train the PixL.2R model. Thus, the cost of
training PixL2R is amortized across all the downstream tasks.
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3.1 PixL2R: Pixels and Language to Reward

First, a relatedness model — PixL2R — between a trajectory and a language is trained given paired
data using supervised learning.

3.1.1 Network Architecture

The inputs to the network consist of a trajectory and a natural language description. Representing
the trajectory using a single sequence of frames may be prone to perceptual aliasing and occlusion.
Thus, our network architecture is designed to take multiple views as inputs. We use three different
viewpoints in our experiments (see Figure 5 in the Appendix), but it is straightforward to generalize
to more or fewer viewpoints. In our ablation experiments, we compare the model described here with
a model that takes a single viewpoint as input.



An independent CNN is used for encoding the sequence of frames from each viewpoint to generate a
fixed size representation for each frame. These sequence of vectors are concatenated across the views
to generate a single sequence of fixed size vectors, which is then passed through a two-layer LSTM
to get an encoding of the entire trajectory.

The language description is converted to a one-hot representation, and passed through an embedding
layer, followed by a two-layer LSTM. The outputs of the LSTMs encoding the trajectory and the
language are then concatenated, and passed through a sequence of fully-connected layers to generate
a relatedness score. See Figure 6 in the Appendix for a diagram of the neural network.

3.1.2 Data Augmentation

Frame dropping. After sampling a trajectory, each frame is independently selected with a prob-
ability of 0.1. The resulting sequence of frames is passed through the network. This makes the
training faster by reducing the input size, as well as making the network robust to minor variations in
trajectories. During policy training, the trajectories are subsampled to keep 1 frame in every 10.

Partial trajectories. Since during policy training the model will have to make predictions for
partial trajectories, we use partial trajectories during supervised training as well. Given a trajectory of
length L, we sample [ ~ Uniform{1,..., L}, and use the first [ frames of the trajectory.

3.1.3 Training Objectives

Classification. First, we trained the neural network using binary classification. The final output of
the network is a two-dimensional vector, corresponding to the logits for the two classes — RELATED
and UNRELATED. The network is trained to minimize the cross-entropy loss.

As mentioned above, we train the model with partial trajectories of different lengths to better match
the distribution of trajectories that will be seen during policy learning. However, partial trajectories
might sometimes be hard to classify as related or unrelated to the description, since it requires
extrapolating the complete path the agent will follow. Our preliminary experiments suggest that these
harder to classify examples affect learning — on unseen complete trajectories, a model trained with
only complete trajectories has a lower error compared to a model trained on both complete and partial
trajectories. This motivated us to experiment with an alternative regression setting described next.

Regression. In this setting, the model predicts a single relatedness score between the given trajectory
and language, which is mapped to [—1, 1] using the tanh() function. The ground truth score is defined
ass- % where s = 1 for RELATED and s = —1 for UNRELATED pairs, [ is the length of the incomplete
trajectory and L is the length of the complete trajectory as described above. Thus, given a description,
a complete related trajectory has a ground truth score of 1, while a complete unrelated trajectory
has a score of —1. Shorter trajectories smoothly interpolate between these values, with very small
trajectories having a score close to 0. The network is trained to minimize the mean squared error.
Intuitively, this results in a small loss when the model predicts the incorrect sign on short trajectories.
As the trajectories become longer, incorrect sign predictions result in higher losses.

The network is trained end-to-end using an Adam optimizer [28]. We started by tuning the learning
rate on a few different architectures — of the 3 values we tried (1E-3, 1E-4, 1E-5), we found 1E-4 to
work the best. For the network architecture, we had 4 hyperparameters — D1, Do, D3, D4 — as shown
in Figure 6. For each of these hyperparameters, we searched over the following values — {64, 96, 128,
192,256, 384, 512}. We experimented with 8 different combinations of values for the hyperparameters
using random search, and selected the model with the best performance on the validation set. The
source code and the data are available at https://github. com/prasoongoyal/PixL2R.

3.2 Policy Learning Phase

Having learned a PixL2R model as described above, the relatedness scores from the model can be used
to generate language-based intermediate rewards during policy learning on new scenarios. During
policy training, the agent receives a natural language description of the goal, in addition to the extrinsic
reward from the environment. At every timestep, the PixXL2R model is used to score trajectories
executed by the agent against the given natural language description, to generate intermediate rewards.
We used potential-based shaping rewards [27], which are of the form F'(s;) = v - ¢(s¢) — d(st—1),



where s; is the state at timestep ¢ and ¢ : S — R is a potential function. In our case, s; is the
sequence of states encountered by the agent up to timestep ¢ in the current episode. Ng et al. [27] and
Grzes et al. [29] show that potential-based shaping rewards do not change the optimal policy, i.e., the
optimal policies under the original reward function R and the new reward R + F' are identical.

For the classification setting, we used the potential function ¢(s;) = pr(s:) — pu(st), where pg and
py are the probabilities assigned by the model to the classes RELATED and UNRELATED respectively.
For the regression setting, the relatedness score predicted by the model is directly used as the potential
for the state. Note that for both the settings, the potential of any state lies in [—1, 1].

4 Domain and Dataset

4.1 Description of the Domain

We use Meta-World [8], a recently proposed benchmark for meta-reinforcement learning, which
consists of a simulated Sawyer robot and everyday objects such as a faucet, windows, coffee machine,
etc. Tasks in this domain involve the robot interacting with these objects, such as turning the faucet
clockwise, opening the window, pressing the button on the coffee machine, etc. Completing these
tasks requires learning a policy for continuous control in a 4-dimensional space (3 dimensions for
the end-effector position, and the fourth dimension for the force on the gripper). While the original
task suite consists of only one object in every task, we create new environments which contain one or
more objects in the scene, and the robot needs to interact with a pre-selected object amongst those. In
a sparse reward setting, the agent is given a non-zero reward only on successfully interacting with
the pre-selected object. In the absence of any other learning signal, the agent might have to learn
to approach and interact with multiple objects in the scene in order to figure out the correct object.
Using natural language to describe the task in addition to the sparse reward helps alleviate this issue.

4.2 Data Collection

First, 13 tasks were selected from the Meta-World task suite. This gave us a total of 9 objects
to interact with (for 4 objects, multiple tasks can be defined, e.g. turning a faucet clockwise or
counter-clockwise). We then created 100 scenarios for each task as follows: In each scenario, the
task-relevant object is placed at a random location on the table. Then, a new random location is
sampled, and one of the remaining objects is placed at this position. This process is repeated until the
new random location is close to an already placed object. This results in 1300 scenarios in total, with
a variable number of objects in each scenario.

A policy was trained for each of these scenarios independently using PPO [30], which was then used
to generate one video of the robot completing the task in the scenario. For this purpose, we used the
dense rewards defined in the original Meta-World benchmark for various tasks. The median length
of trajectories across all generated videos is 131 frames. Note that our algorithm does not need the
policies used to generate the videos, so they could also be collected using human demonstrations.

To collect English descriptions of these tasks, Amazon Mechanical Turk (AMT) was used. The
workers were first provided with the instructions and an example trajectory with a possible description.
They were then shown a video and were given 4 possible descriptions to choose from. Only workers
that passed this basic test were allowed to provide descriptions for the main tasks.! Each worker
was asked to provide descriptions for 5 videos, which were sampled from the 1300 scenarios with
the constraint that no two videos in the selected videos belong to the same task. We used simple
heuristics (such as number of words and characters in the descriptions) to automatically filter out
clearly bad descriptions.

Interestingly, most of the descriptions involve only the object being manipulated, with no reference
to other objects in the scene. As such, a description collected for one scenario for a task can be paired
with any of the 100 scenarios for the corresponding task. Therefore, we collected a total of 520
descriptions, which gives us 40 descriptions per task on average.

For each task, 79 scenarios were used for training, 18 for validation, and 3 for testing. Similarly, the
descriptions for each task were split as follows — 5 for validation, 3 for testing, and the remaining for
training (since there could be variable number of descriptions per task).

!The objects used for the example and the test are different from those used in the main tasks.



The distribution of number of words per de- ;5
scription is shown in Figure 3. Our dataset
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pendix (Section B) for sample descriptions and
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result in most negative examples lacking the task-relevant object mentioned in the description. As
such, the network might learn to use the presence of the mentioned object to compute relatedness,
instead of whether the mentioned object is being interacted with.
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S Experiments

5.1 Policy Training with Language-based Rewards

To empirically evaluate the effectiveness of PixL2R, the following setup was used. For each of the
13 tasks, a policy was trained for the 3 test scenarios using the PPO algorithm. Each policy training
was run for 500,000 timesteps, and the number of successful completions of the task were recorded.
The maximum episode length was restricted to 500 timesteps. The robot’s end-effector was set to a
random position within a predefined region at the beginning of each episode.

First, policy training was run with 15 random seeds, both in the sparse reward setting (Sparse; 1 if
the agent reaches the goal, and O otherwise) and the hand-designed dense reward setting (Dense;
defined in the original Meta-World benchmark). Then, a Kruskal-Wallis test was used for each
scenario to identify scenarios where the number of successful episodes using dense rewards was
statistically significantly more than the number of successful episodes using sparse rewards. All
subsequent comparisons were done on the 16 (out of 39) scenarios for which this was true. Intuitively,
these 16 tasks are too difficult to learn from sparse rewards, while they can be learned using dense
rewards. Therefore, language-based dense rewards should be useful on these tasks. The remaining
tasks are presumably either too simple that they can be learned with sparse rewards alone, or are too
difficult to learn within 500,000 timesteps even with hand-designed dense rewards.

Then, for each of the 16 selected scenarios, a policy was trained with language-based rewards using
the regression setting, in addition to the sparse rewards (Sparse+RGR). For each scenario, 5 policies
were trained with different seeds for each of the 3 test descriptions, resulting in a total of 15 policy
training runs per scenario.

A comparison of policy training curves for Sparse and Sparse+RGR rewards is shown in Figure 4
(left). Each curve is obtained by averaging over all runs (16 scenarios X 15 runs per scenario) for that
reward type. The results verify that using language-based rewards in addition to sparse rewards result
in higher performance on average than using only sparse ones.

Next, language-based rewards were used in addition to hand-designed rewards using a similar
methodology, and the corresponding learning curves for Dense and Dense+RGR are shown in Figure 4
(right). Interestingly, we find that using language-based rewards in conjunction with hand-designed
rewards result in an improvement even over hand-designed rewards. A plausible explanation is
that the hand-designed dense rewards in Meta-World are suboptimal, since the reward function for
each task consists of parameters that require tuning, highlighting the complexity of reward design
mentioned in the introduction. This result motivates a novel paradigm wherein coarse dense rewards
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Figure 4: A comparison of policy training curves for different reward models. The shaded regions
denote 95% confidence intervals.

could be designed by hand, and the proposed framework can be used to get a further improvement in
policy training efficiency by using natural language.

Further, the statistical significance was computed to compare the reward functions. For each type of
reward, first the average number of successful episodes was computed across all the 15 runs for each
scenario, giving 16 mean successful episode scores per reward type. Since the number of successful
episodes across different scenarios vary quite a bit, the mean scores for each scenario were scaled to
be at most 1, by dividing by the maximum value of the mean score across all reward types for that
scenario (including the reward types used in ablation experiments described in Section 5.2).

A Wilcoxon signed-rank test was then performed between the sets of normalized scores across reward
types. Sparse+RGR was found to be statistically significantly better than Sparse (p-value=0.007)
and Dense+RGR was found to be statistically significantly better than Dense (p-value=0.034) rewards,
at a 5% significance level . Thus, the proposed approach can be used to make policy learning more
sample efficient in both sparse and dense reward settings.

Having established that policy learning works better with the language-based rewards, we ran ablation
experiments (described below) and analyzed the supervised learning phase (see Section C of the
Appendix) to better understand our design choices and to inspect what factors most affect the
efficiency of policy learning.

5.2 Ablations

All the ablation experiments were performed with language-based rewards added to dense rewards,
since most applications of RL in robotics currently use dense hand-designed rewards (which could be
suboptimal for complex tasks).

(1) LastFrame: To analyze whether using the full se-
quence of frames contains more information than the
last frame, instead of using the sequence of frames

Mean p-value
Setting Successful w.r.t.
Episodes  Dense

in the trajectory, only the last frame of the trajectory —porce 794 -
was used, both for training the PixL.2R model, as Dense+RGR 126.9 0.0340
well as for policy training. LastFrame 1335 00114
(2) MeanpoolLang: To study if the temporal order- MeanpoolLang 1383 0.0004
ing of the words in the description is useful, the Meanpool Traj 784 0.9601
LSTM used to encode the language was replaced SingleView 100‘ 4 0.3789
with the mean-pooling operation. Dense+CLS 1020 0.6384

(3) MeanpoolTraj: To study if the temporal order-
ing of the frames in the trajectory was useful, the Table 1: Comparison of various ablations to
LSTM used to encode the sequence of frames was the Dense+RGR model.

replaced with the mean-pooling operation.

(4) SingleView: To study the impact of perceptual aliasing and/or occlusion when using a single
viewpoint, instead of using 3 viewpoints for the trajectory, only 1 viewpoint was used. A model was
trained with each of the three viewpoints in the supervised learning phase, and the model with the



best validation score was used for policy learning.
(5) Dense+CLS: Instead of the regression loss, classification loss was used, to understand the benefit
of using regression loss when working with partial trajectories.

For each ablation, the same setup was used as for Dense+RGR. This model is used to generate rewards
for policy training, for each of the 16 scenarios with 5 random seeds for all the 3 descriptions as
before. The mean successful episodes across all runs are reported in Table 1. Further, the p-values for
Wilcoxon tests between each ablation and the Dense rewards is reported, from which we can make
the following observations:

* Using only the last frame (LastFrame), or using mean-pooling instead of an LSTM to encode
the language (MeanpoolLang) does not substantially affect policy learning efficiency. In both
these cases, the resulting model is still statistically significantly better than Dense rewards. Both
of these results agree with intuition, since the progress in the task can be predicted using the last
frame alone, and since the linguistic descriptions are not particularly complex in the given domain,
simply looking at which words are present or absent is often sufficient to identify the task without
using the ordering information between the words.

* Using mean-pooling instead of an LSTM to encode the sequence of frames (MeanpoolTraj)
drastically reduces the number of successful episodes, and results in no statistically significant
improvement over Dense. Again, this agrees with intuition, since it is not possible to infer the
direction of movement of the robot from an unordered set of frames.

» Using a single view instead of multiple views (SingleView) results in a smaller increase in
the number of successful episodes, which is no longer statistically significant over Dense. As
mentioned earlier, using frames to represent trajectories requires addressing challenges such as
perceptual aliasing and occlusion, and these ablation results suggest that using multiple viewpoints
alleviates these issues.

* Using classification loss instead of regression (Dense+CLS) also leads to a drop in performance,
again making the resulting improvements no longer statistically significant. This is consistent with
our initial observation (Section 3.1.3), wherein, the learning problem becomes more difficult due
to partial trajectories when the classification loss is used.

It is worth noting that while these ablations agree with intuition, and therefore suggest that the model
is extracting meaningful information from trajectories and language descriptions, the performance
of these variants depends crucially on the domain. For instance, an environment that is not fully
observable in the last frame might show a significant drop in performance when using only the last
frame instead of the full trajectory.

6 Conclusion

We proposed an approach for mapping pixels to rewards, conditioned on a free-form natural language
description of the task. Given paired (trajectory, language) data, first, a relatedness model — PixL2R —
is learned between a sequence of states and a natural language description using supervised learning.
This model is then used to generate intermediate rewards for policy learning using a natural language
task description. Our experiments on a simulated robot manipulation domain show that the proposed
approach can significantly speed up policy learning, both in sparse and dense reward settings. The
proposed technique can be used in a novel RL training paradigm, wherein language-based rewards
can be used to make training efficient over coarse hand-designed dense rewards.

The proposed approach can be extended in multiple ways. First, further experimentation on a richer
domain could be used to analyze generalization to new tasks with novel compositions of objects and
actions seen during training. Secondly, the current model only works for a single instruction and
could be extended to use a sequence of instructions, for instance, by starting with the first instruction
in the sequence, and transitioning to the next instruction when the prediction of the PixL2R model is
above a threshold. Next, PixL.2R currently encodes the trajectory and language independently, which
are then concatenated to obtain a relatedness score. For more complex domains, it might be helpful
to use an attention-based model to learn a mapping between spatio-temporal regions of the trajectory
and words or phrases in the language. Finally, it may be useful to fine-tune the PixL2R model on
trajectories seen during policy learning.
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A Approach Details

Figure 5 shows the viewpoints used in our experiments. Figure 6 shows a diagram of the neural
network architecture described in Section 3.1.1.

Figure 5:
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Figure 6: Neural network architecture: The sequence of frames from the three viewpoints are passed
through three separate CNN feature extractors. The resulting feature vectors are concatenated across
views. The sequence is then passed through an LSTM to obtain an encoding of the trajectory. The
given linguistic description is converted to one-hot representation, and passed through an embedding
layer, followed by an LSTM. The outputs of the two LSTMs is concatenated and passed through a
sequence of 2 linear layers (with a ReLU activation between them) to generate the final prediction.

B Data Collection Details

Since the models of the objects in the environment are coarse, it is usually non-trivial to recognize
the real-world objects they represent from the models alone. To guide the AMT workers to use the
names of real-world objects the models represent, we showed a table of the models with prototypical
images of real-world objects that closely match the models (shown in Figure 7). This enabled us
to get gescriptions that use the real-world object names, without priming the workers with specific
words.

Some examples of descriptions collected are shown in Table 2.

Despite using this technique, we still got some responses where people described the models directly instead
of using the object names, e.g. “Pull the red box out slightly in blue square.” instead of using the word toaster.
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Figure 7: List of objects used

Task Id  Description

Press the button.

Pressing the button

Push peg in to hole.

Push the green button.

Turn on the coffee maker
push in the green button
Push toaster handle down
Push down the red block.
pressing down the object
pull down the red switch
move the plate down

push down the slider

Close the door

Open the door.

twisting the cube

rotate the object

Rotate the lever anticlockwise
Turn the faucet to the right.
rotating the object

turn on the faucet

Open the window.

Open the yellow window.
Slide the window to the left.
Close the Window.

pull out the green block
Pull out the green piece
Table 2: Examples of descriptions collected using AMT.
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C Additional Experiments: Word-level Analysis

In order to understand how the supervised learning phase is using different words in the description,
the supervised model was used to make predictions on the test set, and the gradient of the loss was
computed with respect to the continuous representation of the words in the descriptions (i.e. after the
embedding layer). The mean of the absolute values of these gradients is then a measure of how much
the prediction is affected by the corresponding word. The values are reported in Table 3, which were
scaled so that the maximum value for any description is 1.

First, we observe that for all the descriptions, the words describing the main object have a very high
average gradient magnitude — green and button in description 1, red and block in description 2, lever
and toaster in description 3, faucet in description 4, green and lever in description 5, and window in
description 6. Several verbs also have a high average gradient magnitude — turn on in description
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Descriptions
Average magnitude of gradient for each word

1. | push the green button

0.53  0.30 1.00 0.94
2. | push down the red block

042  0.57 0.34 1.00 091
3. | pull down the lever on the toaster

0.16  0.31 0.15 0.75 0.58 0.36 1.00
4. | turn on the faucet

0.94  1.00 0.44 0.87
5. | slide the green lever to  the left

052 0.23 0.94 1.00  0.77 0.30 0.78
6. | open the window

0.83  0.32 1.00

Table 3: Average magnitude of gradients for different words in a description for the relatedness score
prediction.

4 and open in window. Verbs in other descriptions do not have a high gradient magnitude because
for those descriptions, the object affords only one possible interaction, thus making the verb less
discriminatory. For the objects faucet and window, there are two possible actions each (turning the
faucet on or off and opening or closing the window); thus the verb also carries useful information for
these objects.

This analysis suggests that the model learns to identify the most salient words in the description that
are useful to predict the relatedness between a trajectory and language.
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