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Abstract: Reactions such as gestures, facial expressions, and vocalizations are an abun-
dant, naturally occurring channel of information that humans provide during interactions.
A robot or other agent could leverage an understanding of such implicit human feedback
to improve its task performance at no cost to the human. This approach contrasts with
common agent teaching methods based on demonstrations, critiques, or other guidance
that need to be attentively and intentionally provided. In this paper, we first define the
general problem of learning from implicit human feedback and then propose to address
this problem through a novel data-driven framework, EMPATHIC. This two-stage method
consists of (1) mapping implicit human feedback to relevant task statistics such as reward,
optimality, and advantage; and (2) using such a mapping to learn a task. We instantiate
the first stage and three second-stage evaluations of the learned mapping. To do so, we
collect a dataset of human facial reactions while participants observe an agent execute a
sub-optimal policy for a prescribed training task. We train a deep neural network on this
data and demonstrate its ability to (1) infer relative reward ranking of events in the train-
ing task from prerecorded human facial reactions; (2) improve the policy of an agent in
the training task using live human facial reactions; and (3) transfer to a novel domain in
which it evaluates robot manipulation trajectories.

Keywords: Interactive Learning, Learning from Human Feedback

1 Introduction

People often react when observing an agent—whether human or artificial—if they are interested in the
outcome of the agent’s behavior. We have scowled at robot vacuums, raised eyebrows at cruise control,
and rebuked automatic doors. Such reactions are often not intended to communicate to the agent and
yet nonetheless contain information about the perceived quality of the agent’s performance. A robot
or other software agent that can sense and correctly interpret these reactions could use the information
they contain to improve its learning of the task. Importantly, learning from such implicit human
feedback does not burden the human, who naturally provides such reactions even when learning does
not occur. We view learning from implicit human feedback (LIHF) as complementary to learning from
explicit human teaching, which might take the form of demonstrations [1], evaluative feedback [2, 3],
or other communicative modalities [4, 5, 6, 7, 8]. Though we expect implicit feedback to typically
be less informative in a fixed amount of time than explicit alternatives and perhaps more difficult to
interpret correctly, LIHF has the advantage of using already available reactions and therefore induces
no additional cost to the user. The goal of this work is to frame the LIHF problem, propose a broad
data-driven framework to solve it, and implement and validate an instantiation of this framework
using specific modalities of human reactions: facial expressions and head poses (henceforth referred
to jointly as facial reactions).

Existing computer vision research has shown success in recognizing basic human facial expressions
[9, 10, 11]. However, it is not trivial for a learning agent to interpret human expressions. For ex-
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ample, a smile could mean satisfaction, encouragement, amusement, or frustration [12]. Different
interpretation of the same facial expression could result in very different learning behaviors. Recent
progress in cognitive science also provides a utilitarian view of facial expressions and suggests that
they are also used as tools for regulating social interactions and signaling contingent social action;
therefore the interpretation of facial expressions may vary from context to context and from person to
person [13, 14, 15, 16]. Further, human reactions often have a variable delay after an event or occur
in anticipation of an event, posing an additional challenge of interpreting which (series of) action(s)
or event(s) the person is reacting to. Additionally, many natural human reactions involve spontaneous
micro-expressions consisting of minor facial muscle movements that last for less than 500 millisec-
onds [17, 18], which can be hard to detect by computer vision systems trained with common datasets
with only exaggerated or acted facial expressions [19, 20]. Lastly, human environments often contain
more than the agent and its task environment, and therefore inferring what a person is reacting to at
any moment adds further difficulty.

We approach LIHF with data-driven modeling that creates a general reaction mapping from implicit
human feedback to task statistics. The major contributions of this paper are:

1. We motivate and frame the general problem of Learning from Implicit Human Feedback (LIHF),
which aims at leveraging under-utilized data modality that already exists in natural human-robot
interactions. This problem is different from traditional interactive robot learning settings that put
human and robot in explicit pedagogical settings.

2. We propose a general framework to solve this problem, called Evaluative MaPping for Affective
Task-learning via Human Implicit Cues (EMPATHIC), which consists of two stages: (1) learning a
mapping from implicit human feedback to known task statistics and (2) using such a mapping to
learn a task from implicit human feedback.

3. We experimentally validate an instantiation of the EMPATHIC framework, using human facial re-
actions as the implicit feedback modality, and rewards as target task statistic:

• We develop an experimental procedure for collecting data of human reactions to an autonomous
agent’s behavior. The dataset is recorded while human observers watch an autonomous agent
performing a task that determines their financial payout. We refer to such tasks as the training
tasks.

• We analyze the modeling problem through a human proxy test: the authors act as proxies for a
reaction mapping by watching the reactions of the human observers and then ranking semanti-
cally anonymized events by their inferred reward, which we refer to as the reward-ranking task.
Moderate success at this human proxy test provides confidence that human reactions could in-
form an understanding of reward values. This activity also provides critical insight regarding
which reaction features are helpful for modeling.

• Our instantiation of EMPATHIC learns a reaction mapping from a proximate time window of
human reactions to a probability distribution over reward values. The mapping is learned by
using a pre-trained model to extract facial reaction features from video data and training a deep
neural network via supervision to predict rewards with the extracted features.

• We compare the performance of the learned reaction mapping and a random baseline on the
reward-ranking task. We also show an initial evaluation of learning the training task online, in
which an agent updates its belief over possible reward functions from live human reactions and
improves its policy in real time.

• We transfer the learned reaction mapping to a deployment task, providing a proof-of-concept
of the potential for reaction mappings to generalize across tasks. Specifically, the reaction
mapping trained with data from the training task is used to evaluate and rank trajectories from
a robotic sorting task.

2 Related Work

Our work relates closely to the growing literature of interactive reinforcement learning (RL), or
human-centered RL [2, 21, 22, 23, 24, 25, 26, 27, 28, 29] , in which agents learn from interactions
with humans in addition to, or instead of, predefined environmental rewards. In the EMPATHIC frame-
work, we use the term implicit human feedback to refer to any multi-modal evaluative signals humans
naturally emit during social interactions, including facial expressions, tone of voice, head gestures,
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hand gestures, and other body-language and vocalization modalities not aimed at explicit communica-
tion. Others’ usage of “implicit feedback” has referred to the implied feedback when a human refrains
from giving explicit feedback [30, 31], to human biomagnetic signals [32], or to facial expressions
[33, 34, 35]. This work focuses on predicting task statistics from human facial features and therefore
is also related to the broad area of research on facial expression recognition.

Interactive Reinforcement Learning Inspired by clicker-training for animals, the TAMER frame-
work proposed by Knox et al. [2, 3] is the first to explicitly model human feedback in the form of
button clicks, thus allowing RL agents to learn from human feedback signals without any access to
environmental rewards. Veeriah et al. [36] propose learning a value function grounded only in the
user’s facial expressions and agent actions, using manual negative feedback as supervision. The cor-
responding RL agent’s policy is only a function of the trainer’s facial expression and does not reason
about the task state. In the preliminary work of Arakawa et al. [34], the authors adopt an existing
facial expression classification system to detect human emotions and use a predefined mapping from
emotions to TAMER feedback but do not optimize the mapping to be effective for the downstream
task. Similarly, recent work of Zadok et al. [37] models the probability of human demonstrators
smiling within a task and then biases an RL agent’s behavior to increase the predicted probability of
human smiling, improving exploration. Li et al. [28] extend TAMER by interpreting the trainer’s facial
expressions as positive or negative feedback with a deep neural network. Their results suggest it is
possible to learn solely from facial expressions of the trainer. Our proposed method differs from prior
work through learning a direct mapping from facial reactions to task statistics independent of states or
state-actions, which requires no explicit human feedback at either training or testing time. Our system
is the first, to the best of our knowledge, attempting to learn from subjects that are not explicitly told
to teach or react.

Facial Expression Recognition (FER) The field of facial expression recognition contains a rich body
of research from areas of psychology, neuroscience, cognitive science and computer vision. Fasel and
Luettin [10] provide an overview of traditional FER systems and Li and Deng [11] detail recent FER

systems based on deep neural networks. Our proposed method does not perform FER explicitly but
maps extracted facial features to reward values. Our work is closely related to the problem of dynamic
FER, where time-series data are used as input for temporal predictions. Modern FER systems often
consist of two stages: data pre-processing and predictive modeling with deep networks [11]. Inspired
by techniques from the FER literature, our proposed system leverages an existing toolkit [38, 39, 40]
to extract facial features that are sufficiently informative for modeling despite our small dataset, and
we explicitly model the temporal aspect of the problem by further extracting features in the frequency
domain.

3 The LIHF Problem and The EMPATHIC Framework

Markov Decision Processes (MDPs) are often used to model sequential decision making of au-
tonomous agents. An MDP is given by the tuple 〈S,A, T,R, d0, γ〉, where: S is a set of states; A
is a set of actions an agent can take; T : S ×A× S → [0, 1] is a probability function describing state
transition based on actions; R : S×A×S → R is a real-valued reward function; d0 is a starting state
distribution and γ ∈ [0, 1) is the discount factor. A policy π : S×A → [0, 1] maps from any state and
action to a probability of choosing that action. The goal of an agent is to find a policy that maximizes
the expected return E [

∑∞

t=0
γtrt] where rt is the reward at time step t.

The problem of Learning from Implicit Human Feedback (LIHF) asks how an agent can learn a
task with information derived from human reactions to its behavior. LIHF can be described by the
tuple 〈S,A, T,RH, XH,Ξ, d0, γ〉. S,A, T, d0, and γ are defined identically as in MDPs. The agent
receives observations from implicit feedback modalities asynchronously with respect to time steps,
and each such observation x ∈ XH contains implicit feedback from some human H. An observation
function Ξ denotes the conditional probability over XH of observing x, given a trajectory of states
and actions and the human’s hidden reward function RH. States in LIHF are generally broader than
task states, and include all environmental and human factors that influence the conditional probability
of observing x. The goal of an agent is to maximize the return under RH. How to ground observations
x ∈ XH containing implicit human feedback to evaluative task statistics is at the core of solving LIHF.

The formulation of LIHF resembles the definition of Partially Observable MDPs, but here the partially
observable variable is the human’s reward function rather than state. We include a graphical model in
Appx.A that describes how LIHF models the data generation process.
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random guessing (τ = 0), supporting H1; p = 0.0024 with the annotation-reliant auxiliary task and
p = 0.0207 without it.

Online Learning in the Robotaxi Domain The learned reaction mapping can interactively improve
an agent’s policy: the agent updates its belief over all possible reward rankings using human reactions
to its recent behavior and then follows a policy that is approximately optimal with respect to the most
likely reward function. To test such online policy learning, all data collected in stage 1 trains a single
reaction mapping, and this reaction mapping is used for single-episode sessions with human observers,
none of whom created data within the stage-1 training set. 9 of the 10 participants’ interactions
achieved a better return than that of a random policy, and 7 of the 10 participants’ interactions ended
with the probability of reward mappings that lead to optimal behaviors being the highest, moderately
supporting H2. Details of this preliminary evaluation can be found in Appx.J.

Trajectory Ranking in Robotic Sorting Domain To generalize the reaction mapping trained in
the Robotaxi domain to the robotic sorting task, we modify the original loss function by removing the
multi-class reward classification loss and interpret the reaction mapping’s binary output as a “positivity
score” for an aggregated frame. Each human participant observed 7 trajectories (an episode each),
chosen from 8 distinct predetermined trajectories. Each trajectory accrues return of +2 (recycling a
can); −1 (recycling any other object); or 0 (nothing placed in the bin). This return enables ground-truth
rankings of trajectories. Because we suspect humans react to higher-level actions in this task—to pick
and place object X rather than to the joint torques applied at 25 ms time steps—the window size of the
Robotaxi reaction mapping is too small to contain all relevant facial reactions. To address this apparent
temporal incompatibility, we compute a per-trajectory positivity score as the mean of the positivity
scores of its aggregate frames. A derivation of this approach is in Appx.L with further details of the
trajectory design. Fig. 7 shows Kendall’s τ values for per-participant rankings of trajectories. For each
trajectory, we compute an overall (cross-subject) positivity score as the mean of the trajectory’s per-
subject positivity scores. After ranking the 8 trajectories by these scores, Kendall’s τ independence
test yields τ = 0.70 (p = 0.034); this test implicitly compares to uniformly random guessing, since
its τ = 0. This result supports H3.

7 Discussion and Conclusion

In this paper we introduce the LIHF problem and the EMPATHIC framework for LIHF. We demonstrate
that our instantiation interprets human facial reactions in both the training task and the deployment
task. We now discuss the limitations of this work and directions for future investigation.

Experimental Design We validate our instantiation of EMPATHIC with a single training task and
similar testing tasks. An important future extension is to generalize this method to tasks with varying
temporal characteristics and reward structures. In our current setup, agent actions do not have large
long-term consequences on the expected return, however changes in human expectations could sig-
nificantly affect their reactions. One way to incorporate such information into our current modeling
approach is to craft corresponding task environments to explore the use of human facial reactions in
predicting the long-term returns of agent behaviors.

Human Models Data collected in this work allow us to study reactions of human observers who fix
their attention on the agent, whereas in real-world settings human observers are often attending to
their own tasks. A natural next step is to extend our experiment setup to a more general scenario, in
which we also need to infer the relevance of human reactions to the agent’s behavior. Additionally, our
instantiation assumes that human reactions were influenced by recent and anticipated agent experience
but not by other likely factors, such as changing expectations of agent behavior; explicitly modeling
such latent human state may further improve LIHF.

Data Modalities This work maps from facial reactions to discrete rewards. In future work, other
forms of human implicit feedback, such as gaze and gestures, could be included to get a more accurate
mapping to different task statistics and better performance in a variety of real-world tasks.

The above limitations notwithstanding, this paper takes a significant step towards the goal of enabling
an agent to learn a task from implicit human feedback. It does so by successful application of a learned
mapping from human facial reactions to reward types for online agent learning and for evaluating
trajectories from a different domain.
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8 Broader Impacts

In this work, we propose a data-driven framework for learning from implicit human feedback, enabling
autonomous agents to leverage information that already exists during their interaction with end-users.
Our proposed method and the collected dataset are part of an initial investigation of how to learn
from implicit human feedback and therefore is not intended to be production-ready. Nevertheless, we
identify the potential benefits and risks of our proposed method.

Benefits Our proposed method will benefit applications of autonomous learning agents that operate
in human-centered environments. We envision EMPATHIC to be a complementary method for existing
approaches that learn from explicit human feedback, when providing such explicit feedback is desir-
able. In particular, autonomous systems equipped with EMPATHIC will be able to interpret implicit
human feedback as signals for learning tasks in which explicit human feedback signal is sparse or un-
available. Deployed systems will be able to adapt to their end-users’ desires and preferences through
incorporating implicit feedback using our proposed method, inducing little to no additional teaching
cost (time and effort) for the end-user.

Risks The EMPATHIC framework makes use of implicit human feedback data and therefore shares
many of the identified risks with machine learning applications that use personal data [46, 47, 48],
including potential discrimination and breach of privacy. Here we focus on discussing potential risks
that are introduced by misuse of EMPATHIC:

• Data Bias EMPATHIC may lead to unexpected learning behavior when used to transfer learned
reaction mappings to observers who are not sufficiently represented in the training data. EMPATHIC

does not make the assumption that implicit reaction mappings fully generalize across individuals,
and any particular learned model may work better for some populations over others, based on
those populations’ representations in the training set. Furthermore, the mappings should not be
interpreted as describing any intrinsic characteristics of a person, but only as an interpretation of
contextual implicit feedback that they are providing.

• Non-consensual Use of Data EMPATHIC could be misused in applications that capture a per-
son’s reactions to stimuli without their consent—for example, observing their reactions to adver-
tisements, political messaging, or online content placement—to infer their beliefs about sensitive
topics, to improve the persuasiveness of messaging, or to influence the behavior of users.

• Adversarial Reactions EMPATHIC leverages implicit human feedback. However, if someone
is aware that the system adapts to their reactions, they may intentionally change their behavior
to manipulate the agent. Intentional manipulation of EMPATHIC could be harmful if the agent
is deployed amongst other people, such as a robot in a hospital that attempts to navigate busy
walkways without causing disruption.
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[48] S. Cave and S. S. ÓhÉigeartaigh. Bridging near-and long-term concerns about ai. Nature Ma-
chine Intelligence, 1(1):5–6, 2019.

[49] P. M. Niedenthal, M. Mermillod, M. Maringer, and U. Hess. The simulation of smiles (sims)
model: Embodied simulation and the meaning of facial expression. Behavioral and brain sci-
ences, 33(6):417, 2010.

12









– You will watch the Robotaxi earn money for you, and your reactions to its performance will be
recorded for research purposes.

– You will have a chance to practice driving in this world, but the amount earned during the test
session won’t count towards your final payout.

The instructions we give the participants in robotic sorting task are as follows:

– For the robotic task, the robot is trying to sort recyclable cans out of a set of objects.

– You will earn $2 for each correct item it sorts and get penalized for $1 for each wrong item it puts
in the trash bin.

– You will watch the robot earn money for you, and your reactions to its performance will be
recorded for research purposes.

The participants first control the agent themselves for a test session to make themselves familiar with
the Robotaxi task, removing a source of human reactions changing in ways we cannot easily model.
For the agent-controlled sessions, the participants select an agent at the beginning of each episode of
Robotaxi. Fig. 9a shows the view of this agent selection. Unbeknownst to the subject, their selection
of a vehicle only affects its appearance, not its policy. This vehicle choice was included in the exper-
imental design as a speculatively justified tactic to increase the subject’s emotional investment in the
agent’s success, thereby better aligning R and RH as well as increasing their reactions. At the start
of the session, participants are given $12, which they must soon spend to purchase a Robotaxi agent
before it begins its task. To make their earnings and losses more tangible (and therefore, we speculate,
elicit greater reactions), participants are given poker chips equal to their current total earnings. After
each session they are paid or fined according to the performance of the agent: their chips are increased
or decreased based on the score of Robotaxi. At the end of the entire experimental session, participants
exchange their final count of poker chips for an Amazon gift card of the same dollar value.

B.4 Participant Recruitment

The participants we recruited are mostly college students in the computer science department. Each
participant filled out an exit survey of their backgrounds after completing all episodes of observing an
agent. The statistics of these 17 subjects are given below:

• Gender: 10 participants are male and 7 are female.

• Age: The participants’ average age is 20. Ages range from 18 to 28 (inclusive).

• Robotics/AI background: 1 participant is not familiar with AI/robotics technologies at all. 2 have
neither worked in AI nor studied it technically, but are familiar with AI and robotics. 13 have not
worked in AI but have taken classes related to AI or otherwise studied it technically. Only 1 has
worked or done major research in robotics and/or AI.

• Ownership of robotics/AI-related products: 7 participants own robotics or AI-related products,
while 10 do not. The products include Google Home, Roomba, and Amazon Echo.

C Annotations of Human Reactions

C.1 The Annotation Interface

To gain a better understanding of the dataset and the LIHF problem as a whole, two of the authors an-
notated the collected dataset. These annotations are not intended to serve as ground truth and are only
used as labels for an auxiliary task in our training of reaction mappings. Therefore, training/calibration
of annotators, evaluation of annotators via inter-rator reliability scores, etc. are not important. The
interface for annotating the data is displayed in Fig. 12. A human annotator marks whether facial ges-
tures and head gestures are occurring in each frame, effectively marking the onset and offset of such
gestures. Annotation is performed without any visibility of the corresponding game trajectory. The
proportion of 7 reaction gestures in the annotation is shown in Fig. 13. Annotations provide several
benefits in this study: in our search for a modeling strategy, we found our first successful reaction map-
ping while using annotations directly as the only supervisory labels; annotations provide labels for an
auxiliary task to regularize training of and speed representation learning by (both important for a small
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set, randomly sampling half (either the first half or the second) of an unused episode from each subject
into the test set, and using the remaining data in the training set. For a target subject, a model is trained
on the subject’s corresponding training set and tested after each epoch on the test set. The epoch with
the best cross-validation loss is chosen as the early stopping point, and the model trained at this epoch
is then evaluated on the validation set. The performance of a hyperparameter set is defined as the
mean of the cross entropy losses across each subject’s validation set. The hyperparameter set with the
lowest such mean cross entropy loss is selected for evaluation on the holdout set. The data split for
evaluation on the holdout set is similar but simpler. From the 2 episodes per subject that are not in the
holdout set, half an episode is randomly sampled into the test set and the rest are in the training set. A
single model is trained (stopping with the lowest cross-entropy loss on test set) and then evaluated on
the holdout set.

E.2 Hyperparameters

Random search is used to find the best set of hyper-parameters, including input window size (k and
l), learning rate, dropout rate, loss coefficients (λ1 and λ2), depth and widths of the MLP hidden
layers. Fig. 14 indicates that reactions are likely to onset between 2.8s before and 3.6s after an event.
Therefore, we convert the corresponding range of temporal window into the number of aggregated
frames before and after a particular prediction point (aggregated frame) and use that as the range to
sample the input window. Each set of randomly sampled parameters is evaluated on all 17 train-test
folds and the set with the lowest average test loss is selected. For each model, the weights with the
lowest test loss are saved and evaluated on the validation set.

The best hyper-parameters found through random search are: {learning rate = 0.001, batch size = 8,
k = 0, l = 12, dropout rate = 0.6314, λ1 = 2, λ2 = 1}. Below is the best model architecture found
through random search:

(facial_action_unit_input): Linear(in_features=455, out_features=64, bias=True)

(head_pose_input): Linear(in_features=702, out_features=32, bias=True)

(hidden): ModuleList(

(0): Linear(in_features=96, out_features=128, bias=True)

(1): BatchNorm1d(128, eps=1e-05, momentum=0.1)

(2): LeakyReLU(negative_slope=0.01)

(3): Dropout(p=0.63, inplace=False)

(4): Linear(in_features=128, out_features=128, bias=True)

(5): BatchNorm1d(128, eps=1e-05, momentum=0.1)

(6): LeakyReLU(negative_slope=0.01)

(7): Dropout(p=0.63, inplace=False)

(8): Linear(in_features=128, out_features=64, bias=True)

(9): BatchNorm1d(64, eps=1e-05, momentum=0.1)

(10): LeakyReLU(negative_slope=0.01)

(11): Dropout(p=0.63, inplace=False)

(12): Linear(in_features=64, out_features=8, bias=True)

(13): BatchNorm1d(8, eps=1e-05, momentum=0.1)

(14): LeakyReLU(negative_slope=0.01)

(15): Dropout(p=0.63, inplace=False))

(out): Linear(in_features=8, out_features=3, bias=True)

(auxiliary_task): Linear(in_features=128, out_features=130, bias=True)

E.3 Ablation Study for Predictive Model Design

To validate the effectiveness of our model design, we conduct ablation study on the use of auxiliary
task and input features. Fig. 16 shows the loss profiles during training across 17 subject train-test-
validation sets for the proposed model, the model without auxiliary loss, the model using only FAU
features, and the model using only head-motion features respectively. Each of them uses its own set
of hyperparameters found through random parameter search. All models are evaluated using 17-fold
cross validation based on each subject, and the set with the lowest average test loss is selected. As
shown in Fig. 16, our best full model has the best average loss on the test set, and also has the lowest
mean and variance of validation loss compared with the other three models. We also tested training
an end-to-end model with a Resnet-18 CNN as feature extractor and an LSTM model for processing
features within a window. The CNN-LSTM model’s training loss did not decrease to be lower than
that obtained by outputting the label distribution. Given the size of this end-to-end model, we could
not efficiently conduct an extensive hyperparameter search and have to rely on manual tuning. We
speculate that as a main factor of failure. Meanwhile, we may not have enough data to effectively
train a CNN-based feature extractor. Leveraging existing models such as OpenFace [38, 39, 40] for
extracting features alleviates our modeling burden with limited amount of data.
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