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Abstract

One of the main challenges in imitation learning is determining what action an
agent should take when outside the state distribution of the demonstrations. Inverse
reinforcement learning (IRL) can enable generalization to new states by learning
a parameterized reward function, but these approaches still face uncertainty over
the true reward function and corresponding optimal policy. Existing safe imitation
learning approaches based on IRL deal with this uncertainty using a maxmin
framework that optimizes a policy under the assumption of an adversarial reward
function, whereas risk-neutral IRL approaches either optimize a policy for the
mean or MAP reward function. While completely ignoring risk can lead to overly
aggressive and unsafe policies, optimizing in a fully adversarial sense is also
problematic as it can lead to overly conservative policies that perform poorly in
practice. To provide a bridge between these two extremes, we propose Bayesian
Robust Optimization for Imitation Learning (BROIL). BROIL leverages Bayesian
reward function inference and a user specific risk tolerance to efficiently optimize
a robust policy that balances expected return and conditional value at risk. Our
empirical results show that BROIL provides a natural way to interpolate between
return-maximizing and risk-minimizing behaviors and outperforms existing risk-
sensitive and risk-neutral inverse reinforcement learning algorithms. Code is
available at https://github.com/dsbrown1331/broil.

1 Introduction

Imitation learning [42] aims to train an agent without hand-specifying a reward function by providing
demonstrations. One of the main challenges in imitation learning is determining what action an agent
should take when outside the states contained in the demonstrations. Inverse reinforcement learning
(IRL) [40] is an approach to imitation learning in which the learning agent seeks to recover the
reward function of the demonstrator. Learning a parameterized reward function provides a compact
representation of the demonstrator’s preferences and enables generalization to new states unseen in
the demonstrations via policy optimization. However, IRL approaches still result in uncertainty over
the true reward function and this uncertainty can have negative consequences if the learning agent
infers a reward function that leads it to learn an incorrect policy. In this paper we propose that an
imitation learning agent should learn a policy that is robust with respect to its uncertainty over the
true objective of a task, but also be able to effectively trade-off epistemic risk with expected return.

For example, consider two scenarios: (1) an autonomous car detects a novel object lying in the road
ahead of the car and (2) a domestic service robot tasked with vacuuming encounters a pattern on
the floor it has never seen before. The first example concerns autonomous driving where the car’s
decisions have potentially catastrophic consequences. Thus, the car should treat the novel object as a
hazard and either slow down or safely change lanes to avoid running into it. In the second example,
vacuuming the floors of a house has certain risks, but the consequences of optimizing the wrong
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reward function are arguably much less significant. Thus, when the vacuuming robot encounters a
novel floor pattern it does not need to worry as much about negative side-effects.

Risk-averse optimization, especially in financial domains, has a long history of seeking to address the
trade-off between risk and return using measures of risk such as variance [39], value at risk [32] and
conditional value at risk [50]. This work has been extended to risk-averse optimization in Markov
decision processes [16, 45, 46] and in the context of reinforcement learning [25, 60, 61], where the
transition dynamics and reward function are not known. However, there has only been limited work
in applying techniques for trading off risk and return in the domain of imitation learning. Brown et
al. [12] seek to bound the value at risk of a policy in the imitation learning setting; however, directly
optimizing a policy for value at risk is NP-hard [18]. Lacotte et al. [35] and Majumadar et al. [37]
assume that risk-sensitive trajectories are available from a safe demonstrator and seek to optimize
a policy that matches the risk-profile of this expert. In contrast, our approach directly optimizes a
policy that balances expected return and conditional value at risk [50] which can be done via convex
optimization. Furthermore, we do not try to match the demonstrator’s risk sensitivity, but instead find
a robust policy with respect to uncertainty over the demonstrator’s reward function, allowing us to
optimize policies that are potentially safer than the demonstrations.

One of the concerns of imitation learning, and especially inverse reinforcement learning, is the
possibility of learning an incorrect reward function that leads to negative side-effects, for example, a
vacuuming robot that learns that it is good to vacuum up dirt, but then goes around making messes for
itself to clean up [52]. To address negative side-effects, most prior work on safe inverse reinforcement
learning takes a minmax approach and seeks to optimize a policy with respect to the worst-case
reward function [27, 30, 59]; however, treating the world as if it is completely adversarial (e.g.,
completely avoiding a novel patch of red flooring because it could potentially be lava [27]) can lead
to overly conservative behaviors. On the other hand, other work on inverse reinforcement learning
and imitation learning takes a risk neutral approach and simply seeks to perform well in expectation
with respect to uncertainty over the demonstrator’s reward function [48, 67]. This can result in
behaviors that are overly optimistic in the face of uncertainty and can lead to policies with high
variance in performance which is undesirable in high-risk domains like medicine or autonomous
driving. Instead of assuming either a purely adversarial environment or a risk-neutral one, we propose
the first inverse reinforcement learning algorithm capable of appropriately balancing caution with
expected performance in a way that reflects the risk-sensitivity of the particular application.

The main contributions of this work are: (1) We propose Bayesian Robust Optimization for Imitation
Learning (BROIL), the first imitation learning framework to directly optimize a policy that balances
the expected return and the conditional value at risk under an uncertain reward function; (2) We
derive an efficient linear programming formulation to compute the BROIL optimal policy; (3)
We propose and compare two instantiations of BROIL: optimizing a purely robust policy with
respect to uncertainty and optimizing a policy that minimizes baseline regret with respect to expert
demonstrations; and (4) We demonstrate that BROIL achieves better expected return and robustness
than existing risk-sensitive and risk-neutral IRL algorithms, as well as providing a richer class of
solutions that correctly balance performance and risk based on different levels of risk aversion.

2 Related Work

An important challenge in inverse reinforcement learning (IRL) is dealing with ambiguity over the
reward function [40, 67], since there are usually an infinite number of reward functions that are
consistent with a set of demonstrations [40]. Problems with such ambiguous parameters can be
solved using robust optimization techniques, which compute the best policy for the worst rewards
consistent with the demonstrations [7]. Indeed, many IRL methods optimize policies for the worst-
case rewards [27, 29, 30, 59]. This optimization for the worst-case parameter values is well known
to lead to overly conservative solutions across many domains [18, 31, 51]. Bayesian IRL infers a
posterior distribution over which rewards are most likely, but often only optimize for the mean [48]
or MAP [15] reward function. Instead of optimizing only for the mean or worst-case reward values,
we optimize for the expected performance across uncertain rewards while ensuring acceptable
performance with high confidence. We rely on coherent measures of risk to represent the trade-off

between the average and worst-case performance [4, 23, 50]. Similar approaches to parameter
uncertainty, also known as epistemic uncertainty, have been referred to as soft-robustness in earlier
work [6, 20] but have not been studied in the context of IRL.



Table 1: Summary of differences between BROIL and related robust IRL algorithms.

BROIL RS-GAIL VaR-BIRL RBIRL FPL-IRL LPAL GAIL
(ours) [35] [11,12] [66] [30] [59] [29]

Bayesian robust criterion v v

Risk-averse expert . v . .

Exploits Bayesian prior v v v

Robust to bad demos . v . .
Baseline regret objective v v v v v
Optimizes policies v v . v v v v

In Table 1, we summarize pertinent properties of IRL methods with a focus on robustness or risk-
aversion. VaR-BIRL [11, 12], a closely-related method, uses VaR, a risk measure, to quantify
the robustness of a given policy in Bayesian IRL. Unfortunately, extending VaR-BIRL to policy
optimization is difficult since the problem of optimizing VaR in an MDP with uncertain rewards is
NP-hard [18]. Additionally, VaR ignores both the tail-risk of the distribution, as well as its average
value, which may be undesirable for highly risk-sensitive problems [50].

While some of the methods in Table 1 resemble our approach, they differ either in their focus or
the approach. RS-GAIL and related algorithms [35, 37, 54] also mitigate risk in IRL but assume
risk-averse experts and focus on optimizing policies that match the risk-aversion of the demonstrator.
These methods focus on the uncertainty induced by transition probabilities, also known as aleatoric
risk. The challenges in this area are very different and there is no obvious way to adapt risk-averse
IRL to our Bayesian robust setting where we seek to be robust to epistemic risk rather than seeking
to match the risk of the demonstrator. RBIRL [66] aims to infer a posterior distribution that is
robust to small numbers of bad demonstrations, but does not address robust policy optimization with
respect to ambiguity in the learned posterior. While not explicitly robust to bad demonstrations, our
method makes use of any posterior distribution over reward functions and can easily be extended
to use posteriors generated from methods like RBIRL [66]. Finally, FPL-IRL [30], LPAL [59], and
GAIL [29] optimize the policy for a (regularized) worst-case realization of the rewards and do not
attempt to balance it with the average performance.

Another important point of difference among robust IRL algorithms is the objectives they optimize
for. For example, FPL-IRL [30] focuses on the absolute performance of a policy, while GAIL [24, 29]
optimizes the regret (or loss) relative to the policy of the demonstrator. In reinforcement learning, it
has been shown that optimizing the regret is more appropriate if a good baseline policy is available [34,

, 45]. There are similar advantages to optimizing the regret for the optimal policy [2, 3, 49]. We
would also like to emphasize that our setting is quite different from robust RL methods which
focus on uncertain transition probabilities rather than rewards [22, 28, 51, 62, 64]. Unlike much
robust RL work, the optimization problems we derive are tractable without requiring rectangularity
assumptions [26, 38].

3 Preliminaries

Before describing our method in Section 4, we briefly introduce our notation and review some of the
concepts necessary to understand our approach. We use uppercase boldface and lowercase boldface
characters to denote matrices and vectors respectively.

3.1 Markov Decision Processes

We model the environment as a Markov Decision Process (MDP) [47]. An MDP is a tuple
(S, A,r, P,y,po), where S = {s1,...,sg} are the states, A = {a1,...,a4} are the actions,
r: S x A — Ris the reward function, P : § X A x & — R is the transition function, v € [0, 1)
is the discount factor, and py € A® is the initial state distribution with A* denoting the probability
simplex in k-dimensions.

A policy is denoted by 7 : S — A“. When learning from demonstrations, we denote the ex-
pert’s policy by 7 : & — A. The rewards received by a policy at each state are r, where
T7(8) = Equr(s)[r(s,a)] and the transition probabilities for a policy 7: Py, treated as a ma-



trix, are defined as: Pr(s,s') = Eq,un(s)[P(s,a,8)] = > ,7m(a|s)P(s,a,s"). We denote
the state-action occupancies of policy 7 as u, € R4, where u, = (u‘}rlT, e 7u‘}r*‘T)T and

ul(s) = E[X7207"  L(s,=snas=a)]. If we denote the reward function as a vector r € R4,

with » = (r(s1,a1),7(s2,a1),...,7(ss,a1),7(s1,a2),...,7(ss,a4))", then the expected return
of policy 7 under the reward function r is denoted by p(7,7) = ulr.

Linear Reward Functions We assume, without loss of generality, that the reward function r €
R4 can be approximated as a linear combination of k features r = ®w, where ® € R A%F is the
linear feature matrix with rows as states and columns as features and w € RF. If & is the identity
matrix, then each state-action pair is allowed a unique reward. However, it is often the case that the
rewards at different states are correlated via observable features which can be encoded in ®. Note
that the assumption of a linear reward function is not necessarily restrictive as these features can be
arbitrarily complex nonlinear functions of the state and could be obtained via unsupervised learning
from raw state observations [13, 14, 57]. Given r = ®w, we denote the expected discounted feature
counts of a policy as p, = ®"u,, where . € R¥. In this case, the return of a policy is given by
o(m,r) = ul®w = plw.

Distributions over Reward Functions We are interested in problems where there is uncertainty
over the true reward function . We will model this uncertainty as a distribution over R, the random
variable representing the true reward function. This distribution could be a prior distribution P(R) that
the agent has learned from previous tasks [65]. Alternatively the distribution could be the posterior
distribution P(R | D) learned via Bayesian inverse reinforcement learning [48] given demonstrations
D or the posterior distribution P(R | R') learned via inverse reward design given a human-specified
proxy reward function R’ [27]. While the distribution over R may have an analytic form, this
distribution is typically only available via sampling techniques such as Markov chain Monte Carlo
(MCMC) sampling [12, 27, 48]. When there are no good priors for I?, one may resort to Bayesian
modeling techniques that mitigate the negative impacts of misspecified priors (e.g., [8]).

3.2 Risk Measures

Value at Risk When dealing with measures of risk, we assume that lower values are worse.
Thus, as depicted in Figure 1, we want to maximize the value at risk (VaR) or condi-
tional value at risk (CVaR). Given a risk-aversion parameter « € [0,1], the VaR,, is the
(I — «)-quantile worst-case outcome. Thus, VaR,, can be written as VaR,[X] = sup{z :
P(X > z) > «}. Typical values of « for risk-sensitive applications are o € [0.9,1].
Despite the popularity of VaR, optimizing a policy for

VaR has several problems: (1) VaR is not convex and

leads to an NP hard optimization problem [ 18], (2) VaR

ignores risk in the tail that occurs with probability less

than (1 — «) which is problematic for domains where >
there are rare but catastrophic outcomes, and (3) VaR is CVa@aRr, VAR,

not a coherent measure [4].

Figure 1: VaR, measures the (1 — a)-

. . . . quantile worst-case outcome in a distri-
Conditional Value at Risk CVaR is a coherent risk pytion. CVaR, measures the expecta-

measure [19] that is also commonly referred to as average jon given that we only consider values
value at risk, expected tail risk, or expected shortfall. For aqq than the VaR,,.
continuous atomless distributions, the CVaR is defined as

CVaRo[X] = E[X | X < VaRa[X]]. (1)

In addition to being coherent, CVaR is convex, and is a lower bound on VaR. CVaR is often
preferable over VaR because it does not ignore the tail of the distribution and it is convex [50].

4 Balancing Risk and Return for Safe Imitation Learning

Let II be the set of all randomized policies, and let R be the set of all reward functions. Given some
function ¢ : IT x R — R representing any performance metric for a policy under the unknown



reward function R ~ P(R), we seek to find the policy that is the solution to the following problem:
max CVaRg [ (7, R)) (2)

The obvious choice for the performance metric is ¢ (m, ) = p(w,r). We discuss other choices in
Section 4.2. We now discuss how to solve for the policy that optimizes Equation (2). We build on the
classic LP formulation of MDP planning, which optimizes the state occupancy distribution subject
to the Bellman flow constraints [47]. Specifically, we make use of the one-to-one correspondence
between randomized policies 7 : § — AA (where A is the number of actions) and the state-
action occupancy frequencies u, [47]. This allows us to write max, p(m, ) as the following linear
program [47, 59]:

max {T'Tu | Z(I—V-Pg)ua:po,uZO} . 3)

u€eRSA
acA

We denote the posterior distribution over samples from P(R| D) as the vector pr, where each
element of pp represents the probability mass of one of the samples from the posterior distribution,
e.g., prli] = 1/N for N sampled reward functions Ry, Rs, R3, ... Ry obtained via MCMC [12, 48].
Because posterior distributions obtained via Bayesian IRL are usually discrete [12, 27, 48, 53], we
cannot directly optimize for CVaR using the definition in (1) since this definition only works for
atomless distributions (i.e. most continuous distributions). Instead, we use the following convex
definition of CVaR, [50] that works for any distribution (discrete or continuous):

1
CVaR,[X] = max (a -
oc€R 11—«

Bllo - %)) | @
where (z); = max(0,2) and the optimal o is equal to VaR,, for atomless distributions [50].
Although we focus on the CVaR measure, our approach readily extends to other convex risk measures,
such as the entropic risk [56]. The only difference is that our linear programs turn to tractable convex
optimizations.

Writing the convex definition of CVaR in terms of a the probability mass vector pr € RY, results in
the following definition of the CVaR of a policy 7 under the performance metric ¢ : II x R — R
and reward function random variable R:

CVaR, [ (7, R)] = max (o — ﬁE[(U —(m, R))]+) (5)
= max (0 - %QPHU 11— 1/)(7T7PL)}+> ) (6)

where the boldface (7, R) = (¢(m, R1),...,¥(, RN))T and [-]; denotes the element-wise non-
negative part of a vector: [y]; = max{y, 0}. When the posterior distribution over R is continuous,
Equation (6) represents the Sample Average Approximation (SAA) method applied to (5), which is
used extensively in stochastic programming [56] with known finite-sample properties [9]. One of the
main insights of this chapter is that, using the same approach as the linear program above, we can
formulate (2) as the following linear program which can be solved in polynomial time:

1 T Ty, a _
ueﬂgslgieR{a—wa[a-l—w(ﬂ,R)h | (;4(1—7~Pa)u —po,UZO}. (7)

Given the state-action occupancies u that maximize the above objective, the optimal policy can be
recovered by appropriately normalizing these occupancies [47]. Thus, the optimal risk-averse IRL
policy 7* can be constructed from an optimal u* solution to (7) as:

u*(s,a)

7('* S,.0) = —/———— .
(5.0) = S (. a)

®)

4.1 Balancing Robustness and Expected Return

The above formulation in (7) finds a policy that has maximum CVaR. While this makes sense for
highly risk-sensitive domains such as autonomous driving [53, 63] or medicine [5, 33], in other



domains such as a robot vacuuming office carpets, we may also be interested in efficiency and
performance, rather than pure risk-aversion. Even in highly risky situations, completely ignoring
expected return and optimizing only for low probability events can lead to nonsensical behaviors that
are overly cautious, such as an autonomous car deciding to never merge onto a busy highway [41].

To tune the risk-sensitivity of the optimized policy, we seek to solve for the policy that optimally
balances performance and epistemic risk over the reward function. We formalize our goal via the
parameter A € [0, 1] and seek the policy that is the maximizer of the following optimization problem:

max A~ E[g(r, R)] + (1 - \) - CVaRa[(r, R)] ©)
When A = 0 we recover the fully robust policy, when A € (0,1) we obtain soft-robustness, and
when A = 1 we recover the risk-neutral Bayesian optimal policy [48]. We refer to the generalized
problem in Equation (9) as Bayesian Robust Optimization for Imitation Learning or BROIL. Finally,
by reformulating the optimization problem in Equation (7), we formulate BROIL as the following
linear program:

1
1 1 . T —_ . — T . —
5161%2(1}{[10126% AP (Ty, R) + (1 —X) (0 o PR [0-1—(my, R)]+)

subject to Z (I77~PJ)u“:p0, u>0,
acA

(10)

where we denote the stochastic policy that corresponds to a state-action occupancy vector w as Ty, .

4.2 Measures of Robustness

BROIL provides a general framework for optimizing policies that trade-off risk and return based on
the specific choice of random variable ¢ (m, R), representing the desired measure of the safety or
performance of a policy. We next describe two natural choices for defining (7, R).

Robust Objective If we seek a policy that is robust over the distribution P(R), we should optimize
CVaR with respect to (7, R) = p(w, R), the expected return of the policy. Note that R is a random
variable so p(7, R) is also a random variable that depends on the posterior distribution over R and on
7. In terms of the linear program (10) above we have (7, R) = R"u, where R is a matrix of size
(S - A) x N where each column of R represents one sample of the vector over rewards for each state
and action pair.

Robust Baseline Regret Objective If we have a baseline such as an expert policy or demonstrated
trajectories, we may want maximize CVaR with respect to ¢(m, R) = p(m, R) — p(7g, R). This
form of BROIL seeks to maximize the margin between the performance of the policy and the
performance of the demonstrator. Rather than seeking to match the risk of the demonstrator [35],
the Baseline Regret form of BROIL baselines its performance with respect to the random variable
p(mg, R), while still trying to minimize tail risk. In terms of the linear program (10) above we have
Y(my, R) = R"(u — ug). In practice, we typically only have samples of expert behavior rather
than a full policy. In this case, we compute the empirical expected feature counts using a set of
demonstrated trajectories D = {7y, ..., Ty} to get fip = ﬁ DoreD 2 (se,an)er vt (s, ar), where

¢ : S x A — R¥ denotes the reward features. We then solve the above linear program (10) with with
the performance metric ¥(m,,, R) = RTu — W i, where W is a matrix of size k-by-N where
each column w; € R¥ i =1,... N is a feature weight vector corresponding to each linear reward
function R; sampled from the posterior such that R; = ®w;,.

5 Experiments

In the next two sections we explore two case studies that highlight the performance and benefits
of using BROIL for robust policy optimization. For the sake of interpretability, we keep the case
studies simple; however, BROIL easily scales to much larger problems due to the efficiency of linear
programming solvers. In the Appendix we empirically study the runtime of BIRL and demonstrate
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Figure 2: Machine Replacement MDP

that BROIL can efficiently solve problems involving thousands of states in only a few hundred
seconds of compute time on a personal laptop.”

5.1 Zero-shot Robust Policy Optimization

We first consider the case where an agent wants to optimize a robust policy with respect to a prior
over reward functions without access to expert demonstrations. This prior could come from historical
data or from meta-learning on similar tasks [65].

We consider the machine replacement problem, a common problem in the robust MDP literature [18].
In this problem, there is a factory with a large number of machines with parts that are expensive to
replace. There is also a cost associated with letting a machine age without replacing parts as this may
cause damage to the machine, but this cost is uncertain. We model this problem as the MDP shown
in Figure 2 with 4 states that represent the normal aging process of the machine, two actions in each
state (replace parts or do nothing), discount factor v = 0.95, and uniform initial state distribution.
The prior distribution over the cost of the Do Nothing action is modeled as a gamma distribution
T'(z,0), resulting in low expected costs but increasingly large tails as the machine ages. The prior
distribution over the cost of replacing a part is modeled using a normal distribution.

Because we have no demonstrations, we use the Robust Objective version of BROIL (Section 4.2).
We sampled 2000 reward functions from the prior distributions over costs and computed the CVaR
optimal policy with o = 0.99 for different values of . Figure 3(a) shows the action probabilities
of the optimal policy under different values of A\, where P(Replace Parts) = 1 — P(Do Nothing).
Setting A = 1 gives the optimal policy with respect to the mean reward under the reward posterior.
This policy is risk-neutral and chooses to never repair the machine since the mean of the gamma
distribution is x - 6, so in expectation it is optimal to do nothing. As A decreases, the optimal policy
hedges more against tail risk via a stochastic policy that sometimes repairs the machine. With A = 0,
we recover the robust optimal policy that only seeks to optimize CVaR. This policy is maximally
risk-sensitive and chooses to probabilistically repair the machine in states 2 and 3 and always repair
in state 4 to avoid the risk of doing nothing and incurring a possibly high cost. Figure 3(b) shows the
efficient frontier of Pareto optimal solutions. BROIL achieves significant improvements in robustness
by sacrificing a small amount of expected utility. Figure 3(c) shows that the BROIL policies with
A < 1 have much smaller tails than the policy that only optimizes with respect to the expected
rewards.

5.2 Ambiguous Demonstrations

Next we consider the case where the agent has no prior knowledge about the reward function, but
where demonstrations are available. In particular, we are interested in the case where demonstrations
cover only part of the state-space, so even after observing a demonstration there is still high uncertainty
over the true reward function. To clearly showcase the benefits of BROIL, we constructed the MDP
shown in Figure 4 where there are two features (red and white) with unknown costs, a terminal state
in the bottom right, and v = 0.95. Actions are in the four cardinal directions with deterministic
dynamics. The agent observes the demonstration shown in Figure 4(a) that demonstrates some
preference for the white feature over the red feature and a preference for exiting the MDP. However,
the demonstration does not provide sufficient information to know what to do in the top right states
where demonstrator actions are unavailable. In particular, the agent does not know the true cost of
the red cells and whether taking the shortest path from the top right states to the terminal state is

2Code to reproduce experiments is available at https://github.com/dsbrown1331/broil
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Figure 3: Risk-sensitive (A € [0,1)) and risk-neutral (A = 1) policies for the machine replacement
problem. Varying A results in a family of solutions that trade-off conditional value at risk and return.
The risk-neutral policy has heavy tails, while BROIL produces risk-sensitive policies that trade-off a
small decrease in expected return for a large increase in robustness (CVaR).
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Figure 4: When demonstrations BROIL results in a family of solutions that balance return and risk
based on the value of . (a) Ambiguous demonstration that does not convey enough information to
determine how undesireable the red states are. (b-c) MaxEnt IRL and LPAL results in stochastic
policies where size of arrow reprents probability. (d) The robust policy with A = 0 balances the
goodness and badness of red and prefers taking a shortcut. (e-g) The regret policy avoids red for
small A. (h) The optimal policy for the mean reward (A = 1) takes a short cut through red cells.

optimal. We demonstrate that BROIL results in much more sensible policies across a spectrum of
risk-sensitivies, than other state-of-the-art approaches.

Given the single demonstration, we generated 2000 samples from the posterior P(R| D) using
Bayesian IRL [48]. We compare against the risk-sensitive, maxmin algorithm, LPAL, proposed by
Syed et al. [59] and the risk-neutral Maximum Entropy IRL algorithm [67]. Shown in Figure 4 are
the optimal policies for MaxEnt IRL [67], LPAL [59], and BROIL using the robust and baseline
regret formulations with o = 0.95. We plotted the unique policies and a sample A that results in
each policy. Note that A = 1 is equivalent to solving for the optimal policy for the mean reward
Figure 4(h). The baseline regret formulation uses the expert feature counts to baseline risk and seeks
to completely avoid the red feature for A = 0. As )\ increases, the baseline regret policy is more
willing to take a shortcut to get to the terminal state in the bottom right corner. Conversely, the robust
policy takes the shortcut through the far right red cell which balances the risk of the red feature with
the knowledge that the white feature is likely to also have high cost. The reason the robust policy
does not match the demonstration for one state in Figure 4(d) is that Bayesian IRL does not assume
demonstrator optimality, only Boltzman rationality. We used a relatively small inverse temperature
parameter (5 = 10) resulting in reward function hypotheses that allow for occasional demonstrator
errors. Using a large inverse temperature causes the robust policy to match all the demonstrator’s
actions (see the Appendix for more details regarding Bayesian IRL).
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Figure 5: Sorted return distributions over the posterior for the BROIL Robust and Baseline Regret
policies compared to the return distributions of the demonstration, MaxEnt IRL [67], LPAL [59]. The
robust policy attempts to maximize worst-case performance over the posterior. The baseline regret
also seeks to maximize worst-case performance but relative to the demonstration.

To better understand the differences between these approaches without committing to a partic-
ular ground-truth reward function, we examine each algorithm’s performance across the poste-
rior distribution P(R | D). Figure 5(a) shows ¢ (7, R) = p(m, R) sorted from smallest to largest
when evaluated under each sample from the posterior. Figure 5(b) shows the results when
Y(m,R) = p(m,R) — p(rg, R). LPAL is similar to the baseline regret formulation of BROIL
in that it seeks to optimize a policy that performs better than the demonstrator; however, unlike
BROIL, LPAL uses a fully adversarial maxmin approach that penalizes the biggest deviation from
the demonstrated feature counts [59]. This results in always avoiding red cells, but also trying to
exactly match the feature counts of the demonstration. This feature count matching results in a highly
stochastic policy that does not always terminate quickly. MaxEnt IRL is completely risk-neutral, but
also seeks to explicitly match feature counts while maintaining maximum entropy over the policy
actions. This results in a highly stochastic policy that sometimes takes shortcuts through the red cells,
but also sometimes takes actions that move it away from the terminal state.

Figure 5 shows that both formulations of BROIL significantly outperform MaxEnt IRL and LPAL.
The return distribution of the robust BROIL policy is flatter than the other policies as it attempts to
find a policy that performs well in the 5% worst-case under all reward functions and needs to be
robust to posterior samples that put high costs on white cells and only slightly higher costs on red.
On the other hand the Baseline Regret formulation computes risk under the posterior with respect to
the expected feature counts [ of the demonstrator. This makes reward function hypotheses that
would lead to entering red states more risky since the demonstrator only visited white states. The
regret formulation seeks to maximize the margin between the return of the baseline regret policy and
the return of the demonstration over the posterior. Thus, the regret policy tracks the performance
of the baseline more than the robust policy as shown in Figure 5(a). As shown in Figure 5(b), the
regret formulation has better tail performance with respect to the posterior baseline regret. Figure 5(c)
shows the efficient frontier for the baseline regret formulation and shows that BROIL dominates
LPAL and MaxEnt IRL with respect to both expected return and robustness.

6 Conclusion and Future Work

We proposed Bayesian Robust Optimization for Imitation Learning (BROIL), a method for optimizing
a policy to be robust to conditional value at risk under an unknown reward function. Our results
show that BROIL has better overall performance than existing risk-sensitive maxmin [59] and
risk-neutral [67] approaches to IRL. Our approach balances return and conditional value at risk
to produce a family of robust solutions parameterized by the risk-aversion of the user. This work
focuses on policy optimization and requires either a prior or posterior distribution over likely reward
functions. However, obtaining a posterior via Bayesian IRL [48] typically involves repeatedly solving
an MDP in the inner loop which makes it difficult to obtain posterior distributions in complex
control tasks. Future work includes taking advantage of recent research on efficient non-linear
Bayesian reward learning via Gaussian processes [10] and deep neural networks [ 3]. Future work
also includes investigating natural extensions of our work to continuous state and action spaces
such as optimizing the BROIL objective via policy gradient methods [55, 58] or approximate linear



programming [21, 43, 44], applying BROIL to more complex domains such as health care and
robotics, and investigating extensions to deep Bayesian inverse reinforcement learning [ 3], meta
inverse reinforcement learning [65], and inverse reward design [27].

Broader Impact

Algorithms that balance risk and return are have been common in financial applications for a long
time, but are just starting to be applied to AI/ML systems. We believe this is a positive trend as
many AI/ML applications have risk and return trade-offs that are not always adequately addressed. In
this work we have proposed a principled approach optimizing control policies that balance expected
return and epistemic risk under an uncertain reward functions. We see this work as an important step
towards the general goal of robust autonomous systems that can interact safely with and assist humans
in a wide variety of tasks and under a wide variety of preferences and risk tolerances. However, there
are potential downsides to having risk and return trade-offs if these trade-offs are made incorrectly
or interpreted incorrectly—despite using risk-sensitive metrics, financial systems still occasionally
crash or fail. Our proposed algorithm, BROIL, does not guarantee safety, thus an autonomous system
based on our approach will not be guaranteed to never make a mistake. Instead, BROIL optimizes
a policy that is robust with respect to the agent’s uncertainty over its learned representation of the
demonstrator’s reward function. Thus, the optimized policy may not always conform to a human’s
intuition about what safe or robust behavior should look like.
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A Code

Code to reproduce all experiments is available at https://github.com/dsbrown1331/broil.

B Linear Programming Details
The soft-robust BROIL objective is:

1
. LT I S, S
irel%&r’n;ze% Ap P(my,R)+(1—N) (O’ TP [0 1 — (T, R)]+>

subject to Z (I—’y-PaT)'uJa:po7 u>0.
acA

When using the robust performance metric described in Section 4.2, we have ¥ (7, R) = R™u,
where R is a matrix of size (S - A) X N where each column of R represents one sample of the vector
over rewards for each state and action pair. This results in the following optimization problem:

1
imize - (Rp)T 17)“(7—T 1-RT )
maximize A (Rp)lu+(1-A) (o -1 p [0 ul
subject to Z (I—V-PaT)ua =py, u©w=>0.
acA
where Rp is the mean reward under the posterior distribution.

This can be written as a linear program in standard form as:

1
— inimize “Ap"RTu—(1-M\)- — p'z
uERgE‘I,IEngﬁ%, o€eR p ( ) (U+ 1_ap )
subject to c-1-R'u—2< 0,
u™
(I —~P)),....,(I=~vP] )] | : | =po,
utn

u>0 2>0.
We solve the above linear program to obtain the results presented in Section 5.1.
When using the baseline regret performance metric, ¥ (7, R) = R (u—ug), we have the following
optimization problem:
maximize - (Rp)' (u —ug)+ (1 —\)- (a - LpT 01— R"(u—wug)] )
ueRS4A o€R a +
subject to Z (I—’y-PaT)ua =py, u>0,
acA
This can be written as a linear program in standard form as follows:

1
— minimize A" R (u—ug)—(1-)\)- — p'z
uERSA,zeRJ%, o€ER p ( E) ( ) (0 N 1- Oép )

subject to c-1-R'u—2<-R'ug
u™
(I =~P]),....L =P )] | © | =po
uan
u>0,22>0.

Typically, we only have access to a handful of demonstrations and do not have direct access to the
state-occupancies of the demonstrator and cannot accurately estimate them. If we assume the reward
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Figure 6: LP runtime as number of states and number of reward function hypothesis are increased
for the machine replacement problem. Results are averaged over 20 trials and error bars show plus
or minus one standard deviation. (a) Runtime as the number of states is increased and number of
reward function hypotheses is fixed at 200. (b) Runtime as the number of reward function hypotheses
is increased and the number of states is fixed at 100.

function is a linear combination of features, it is often the case that the number of features k is
much less than the total number of state-action pairs. Thus, it is typically much more practical and
computationally accurate to use an empirical estimate of the expert’s expected feature counts and
rewrite the baseline regret as ¥(m,,, R) = R"u — W' i, where W is a matrix of size k-by-N
where each column is a feature weight vector w € R* corresponding to each linear reward function
weight vector sampled from the posterior as described in Section 4.2. This results in the following
linear program which we use for our experiments in Section 5.2:

1
- inimi A p (RTu—WTag)—(1-X\)-(c+—p'z
ueRg}‘{IEng%lJ%,eaeR P fp) = ( )-(o 1—ap )

subject to c-1-Ru—2<-W'ig
u™

[(I_'ch;rl%a(l_’ypc;rm)] = Do
ua'n
u>0,2>0.

We use Scipy’s linear programming software (v 1.4.1) when solving the above linear programs in
the experiments in the paper.’ Note also that the term —Ap" RTup or —Ap" W T fi in the baseline
regret linear program objectives above can be dropped since they are just constants that do not affect
the resulting optimal policies.

C Runtime and Scalability

In the main paper we focused on simple case studies that are easily interpretable; however, our method
readily scales to much larger problems. In Figure 6 we show that we can easily solve instances with
thousands of states and thousands of reward functions in the posterior. To further test the runtime of
BROIL, we optimized a robust policy for a 60-by-60 gridworld (3,600 states) which took an average
time of 119.34 seconds to solve the BROIL linear program given a reward function distribution. For
comparison, a CVaR optimization approach for MDPs with no uncertainty over the reward function
takes 2 hours for a similar-sized gridworld (see [17] Section 5, last paragraph). All experiments were
run using Scipy’s standard linear programming solver on a Dell Inspiron 5577 laptop with an Intel
i7-7700 processor.

*https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
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D Bayesian IRL Details

When learning a posterior from demonstrations we use Bayesian IRL [48]. Bayesian IRL has the
following likelihood function: Bayesian IRL assumes access to an MDP without a reward function,
denoted MDP\R and a set of demonstrations, D = {(s1,a1),..., (Sm,am)}, consisting of state-
action pairs. Bayesian IRL (BIRL) [48] seeks to estimate the posterior over reward functions given
demonstrations, P(R| D) x P(D | R) - P(R). BIRL makes the assumption that the demonstrator is
Boltzmann rational and follows a soft-max policy, resulting in the likelihood function

P(D|R)= ][] P(sa)IR) = []

BQEL(s,b)
(s,a)eD (s,a)eD ZbGA e n

BQ*,(S’G)
¢’ an

where Q7;(s, a) is the optimal Q-value function for reward R, and [ is a parameter representing
the confidence in the demonstrator’s optimality. Given a reward function R, the Q-value of a
state-action pair (s, a) is defined as Q% (s,a) = R(s) + 7> ,csT(s,a,s )V (s"). We denote
Q7 (s,a) = max,en Q% (s, a). Equation 11 gives greater likelihood to rewards for which the actions
taken by the expert have higher Q-values than the alternative actions.

Bayesian IRL uses Markov chain Monte Carlo (MCMC) sampling to sample from the posterior
P(R| D). Feature weights are sampled according to a proposal distribution, and for each sample the
MDP is solved to obtain the sample’s likelihood and determine the transition probabilities within
the Markov chain. We use 8 = 10 for all of our experiments. We sample reward function weights
for MCMC by using a Gaussian proposal distribution centered arounnd the previous sample, with
standard deviation of 0.2. We use a burn-in period of 500 samples and skip every 5th sample after
that to reduce auto-correlation. We experimented with range of values for 8 and found very similar
results. The step size was tuned to result in an accept ratio close to 0.4. Because scaling a reward
function does not affect the optimal policy, we following prior work [, 12, 59] and assume that the
reward function is scaled. We project each sampled reward function weight proposal to the Ls-norm
ball to ensure that ||w||s = 1.

E Maximum Entropy IRL Detais

We compare against Maximum Entropy IRL [67]. We use the implementation presented by Ziebart et
al. [67], but to make it more comparable to Bayesian IRL we also add a Boltzmann parameter 3 to

the likelihood such that
P(§) oc exp(BR(S)). (12)

where & is a trajectory and R(€) is the cumulative return of a trajectory. We use § = 10 to match
our implementation choice for Bayesian IRL. We used a learning rate of 0.01. We perform projected
gradient descent by projecting to the Lo-norm ball such that ||w||2 = 1. We use a horizon equal
to the number of states in the MDP. We stop gradient ascent on the likelihood function once it has
converged. We detect convergence by measuring the difference in the Ly-norm of the updated and
prior weights and check if that is within a precision value of 0.00001. If so, then we stop gradient
ascent. We experimented with several different values for each of these hyperparameters and found
these to provide best performance.

F LPAL Details

Linear Programming Apprenticeship Learning (LPAL) [59] has a robust form that is similar to ours
but makes several critical and limiting assumptions: (1) they assume that the reward weights are
strictly positive, this means they assume that the feature vector ¢(s) explicitly encodes whether a
feature is good or bad by its sign. (2) They assume very accurate estimation of the expert’s expected
feature counts /i . This requires an extremely large number of demonstrations (c.f. [12]). (3) Finally,
they assume a worst-case adversarial reward function that penalizes whatever the learner does that
is most different from the demonstrator, even if this reward function completely contradicts the
demonstrations, i.e., it does not take into account the likelihood of reward functions.

To compare BROIL against a state-of-the-art robust IRL approach, we implemented Linear Program-
ming Apprenticeship Learning [59]. The original paper assumes that the signs of the feature weights
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determine whether a feature is good or bad and that the feature weights w lie on the probability
simplex. In our work we do not assume prior knowledge about which features are good or bad (we
seek to infer this from demonstrations). Thus, we implemented LPAL in a way that allows it to work
with any features and feature weights that can be both positive and negative. We simply assume that
[wll < 1.

In the paper we compare against the solution to the following derivation of the LPAL algorithm which
does not assume the weights are non-negative, thus removing the need to know beforehand which
features are good or bad. The LPAL formulation we use is as follows:

- min (13)
BER, ueRS A

st.  B-1—-®"u< —fp, (14)
—B-1+®"u< g, (15)

’l.l,a1
(I =~P]),....(I=~yP )] | | =po, (16)

uan
u >0, (17)
B €R, (18)

where ® € RS 4%k ig the linear feature matrix with rows as states and columns as features and
w € RF,

We now derive the above formulation of the maxmin objective for LPAL. The basic LPAL objective
is
. T T
a u Pw —upPw), 19
waleb}l{wzolfrnlﬁhg( pPw) 19

where U is the set of all feasible state-action occupancies.

If we want to get rid of the requirement for positive weights then we have

. T T
max min (u' Pw — upPw 20
uell uwulgl( p®w) 0

The inner minimization can be changed into a maximization as follows:

max — max (—®'u+® up) w 21
ucl [Jw|1<1
Next, we use the fact that the Lo, norm and L; norm are dual to each other and that ||z|| = || — z|| to
get the following optimization problem:
max —||®Tu — & ug| o (22)
ucl

We change the maximization to a minimization by changing signs:
—min ||®Tu — ®Tup| (23)
ucl

Using a standard linear programming reformulation we can write the above objective as follows:

— min_ {B|B-1>®"u—®"ug, -B-1>-®"u+®"ug}. (24)
ueld, BER

Rather than assuming access to the state-action occupancies of the demonstrator, we will typically
use a finite number of demonstrations to come up with an empirical estimate of the demonstrator’s
expected feature counts g = ®Tu . Given a set of demonstrated trajectories D = {7,...,Tm } We
compute fip = ﬁ >oreD D(seanyer V(s ar), where ¢ : S x A — R¥ denotes the state-action

reward features such that (s, a) = w' ¢(s, a). This gives us the following linear program:

—  mi 1>®"u—fip, —B-1>-®" g ).
uerﬁ%leR{mB 1>®"u—fip, —B-1>-®"u+fp} (25)
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