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ABSTRACT

Human gaze is known to be an intention-revealing signal in human
demonstrations of tasks. In this work, we use gaze cues from human
demonstrators to enhance the performance of agents trained via
three popular imitation learning methods — behavioral cloning (BC),
behavioral cloning from observation (BCO), and Trajectory-ranked
Reward EXtrapolation (T-REX). Based on similarities between the
attention of reinforcement learning agents and human gaze, we
propose a novel approach for utilizing gaze data in a computation-
ally efficient manner, as part of an auxiliary loss function, which
guides a network to have higher activations in image regions where
the human’s gaze fixated. This work is a step towards augmenting
any existing convolutional imitation learning agent’s training with
auxiliary gaze data. Our auxiliary coverage-based gaze loss (CGL)
guides learning toward a better reward function or policy, without
adding any additional learnable parameters and without requiring
gaze data at test time. We find that our proposed approach improves
the performance by 95% for BC, 343% for BCO, and 390% for T-REX,
averaged over 20 different Atari games. We also find that compared
to a prior state-of-the-art imitation learning method assisted by
human gaze (AGIL), our method achieves better performance, and
is more efficient in terms of learning with fewer demonstrations.
We further interpret trained CGL agents with a saliency map visual-
ization method to explain their performance. At last, we show that
CGL can help alleviate a well-known causal confusion problem in
imitation learning.
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1 INTRODUCTION

Learning agents can outperform humans at tasks such as Atari
game playing when provided with well-defined goals or rewards
using reinforcement learning (RL) [28, 40, 43]. However, designing
reward functions by hand can be difficult for complex tasks, even
for experts. Imitation learning (IL) [1, 38] is an alternative method-
ology which overcomes this difficulty by inferring an optimal policy
from demonstrations. Additionally, imitation learning is a method-
ology which is intuitive and natural for novice end-users to train
agents, similar to how humans teach other humans. A challenge in
training and utilizing IL agents in the real world is learning from
few demonstrations to minimize the burden on end-users, while
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(a) Input image stack

(b) Gaze heatmap

(d) Network activa-
tion with gaze loss

(c) Network activa-
tion without gaze loss

Figure 1: Our auxiliary gaze loss (CGL) guides a convolu-
tional network to focus on parts of the state space which the
human attends to (b). Examples of network activations for
the BCO network on the Breakout game (a) are shown in (c)
and (d). Activation map of the standard BCO algorithm not
utilizing gaze and hence not required to attend to the area
of human attention is shown in (c). Activation map of BCO
with CGL incorporated as part of the training, which also
attends to the area of human attention is shown in (d).

also sufficiently resolving ambiguity in user intentions and avoid-
ing overfitting. Gaze, an additional informative modality from the
demonstrator, can help extract more information out of the same
number of demonstrations [54], in addition to information from
state-action pairs.

Human attention in the form of eye gaze has been known to
encode top-down attention versus bottom-up salience when per-
forming goal-directed tasks [16, 25, 35, 44]. Gaze has been shown to
improve the performance of imitation learning algorithms [56], par-
ticularly for autonomous driving [9, 50] and Atari game playing [54].
However, most prior approaches utilizing gaze for IL algorithms
either use gaze heat maps as input to the agent’s learning model
in addition to the world state [27, 54], or predict gaze heatmaps in
conjunction with learning the policy [50]. By contrast, we propose
using an auxiliary gaze loss during training of imitation learning
algorithms to improve the performance of existing methods with-
out increasing model complexity, data requirements, or requiring
test-time gaze.



Our methodology utilizes a demonstrator’s gaze fixations on the
image as part of a surrogate loss function (coverage-based gaze
loss or CGL) during the training phase. Encoding priors in loss
functions for label-free supervision of neural networks has been
suggested by Stewart et al. [42]. Similarly, we use an auxiliary
gaze loss to guide the learning of any agent using image-based
state representations and convolutional layers as part of its model
architecture. Inspired by our experimental results highlighting the
similarity of RL agent attention and human attention (Sec. 3.1), we
propose a coverage-based gaze loss (CGL). CGL guides a network
to attend to the demonstrator’s gaze locations and helps improve
the performance of three IL methods on 20 Atari games. A critical
advantage of our approach in contrast to several prior approaches
utilizing gaze, is that gaze is not required at test time and instead
used as a weak supervisory signal.

We evaluate our auxiliary gaze loss function on 20 Atari games
with three different IL approaches. Our experiments show that CGL
can improve performance for both inverse reinforcement learning
(IRL) and behavioral cloning (BC) frameworks averaged across 20
games: 95% for behavioral cloning (BC) [54], 343% for behavioral
cloning from observation (BCO) [46], and 390% for T-REX [7], com-
pared to not using any gaze information at all. Moreover, we show
that to improve performance, human gaze is more informative than
information already encoded in the visual state space in the form
of motion of the visual scene.

We also show that CGL outperforms two baseline methods
that incorporate gaze information for imitation learning: (1) gaze-
modulated dropout (GMD) [9] and (2) attention guided imitation
learning (AGIL) [54]. Similar to our approach, GMD does not use
additional learning parameters, whereas AGIL does. We find that
compared to AGIL, our auxiliary gaze loss is more efficient in in-
corporating gaze i.e. CGL improves performance more in low data
regimes and does not require additional learnable parameters. We
provide an analysis that shows that much of the performance im-
provement in AGIL comes from an increased number of model
parameters and access to test-time gaze data, neither of which are
required by CGL. We further perform analyses to show CGL indeed
successfully guides learning agents to attend to important regions
predicted by human gaze models through saliency map visualiza-
tion [15]. Finally, we also show experimental results that explain
part of the gains with CGL can come from its ability to partially
eliminate causal confusion.

2 RELATED WORK

2.1 Imitation Learning for Atari Games

When learning from demonstrations, Atari game playing has been
attempted with various imitation learning approaches. Behavioral
cloning (BC) [3, 10, 34] is a class of imitation learning methods,
where an agent learns a policy by using the demonstrated states
and actions from the expert as input data for supervised learning.
Behavioral cloning from observation (BCO) [46] is a two-phase,
iterative imitation learning technique - first allowing the agent
to acquire self-supervised experience in a task-independent pre-
demonstration phase, which is then used to learn a model for a
specific task policy only from state observations of expert demon-
strations (without access to actions). The self-supervision produces

an inverse dynamics model to infer actions, given state observa-
tions. This model is then used to infer expert actions from state-only
demonstrations. The inferred actions along with state information
are then used to perform imitation learning for the agent’s policy.
GAIL [20] is an adversarial imitation learning approach trained
by alternating the learning updates between a generator policy
network and a discriminator network distinguishing between the
demonstrated and generated trajectories. It achieved state-of-the-
art performance for low-dimensional domains. BCO shows com-
parable performance to GAIL on low-dimensional MuJoCo bench-
marks [45] with increased learning speed.

Behavioral cloning does not explicitly model the goals or in-
tentions of the demonstrations which a succinct reward function
attempts to capture in inverse reinforcement learning (IRL), another
class of imitation learning approaches. Typically, such a succinct
inferred reward function makes IRL have better generalization prop-
erties compared to behavioral cloning [34]. The inferred reward
function of the demonstrator can then be used by RL algorithms
to learn the optimal policy. Most deep learning-based IRL methods
either require access to demonstrated actions [21] or do not scale to
high-dimensional tasks such as video games [13, 14, 33]. Tucker et
al. [47] showed that their adversarial IRL method is difficult to train
and fails at high-dimensional tasks of Atari game playing, even
with extensive parameter tuning. Aytar et al. [2] learn a reward
function from observations for three Atari games. They guide the
agent to exactly imitate the checkpoints from provided demonstra-
tions, assuming access to high-quality demonstrations. A recent
IRL method called T-REX [7] is a reward learning from observation
algorithm, that extrapolates beyond a set of ranked and potentially
suboptimal demonstrations. T-REX outperforms other imitation
learning methods such as BCO and GAIL, on Atari and MuJuCo
benchmarks [45] and also demonstrates the ability to extrapolate
intentions of a suboptimal demonstrator. However, a performance
gap in terms of the final scores achieved exists between reinforce-
ment and imitation learning methods for Atari game playing. In
our work, we propose to reduce this gap by incorporating an addi-
tional information modality in the form of human gaze for imitation
learning.

2.2 Utilizing Gaze for Learning

Prior studies have shown that human fovea moves to the correct
place at the right time to extract task-relevant information, making
visual attention a feature selection mechanism for humans [16, 35].
Human gaze information can be used in many ways to help Al
agents learn a variety of tasks [55]. Novice human learners can
benefit from observing experts’ gaze [48] for learning complex sur-
gical skills. Yamani et al. [51] showed that viewing expert gaze
videos can improve the hazard anticipation ability of novice dri-
vers. Saran et al. [36, 37] showed the advantage of incorporating
a human demonstrator’s gaze for learning robotics manipulation
tasks. Penkov et al. [29] learn the mapping between abstract task
plan symbols and their physical instances in the environment us-
ing eye gaze. Gaze has been exploited in prior imitation learning
approaches for autonomous driving [9, 50] and Atari Games [54],
but to the best of our knowledge, our work is the first attempt to
incorporate gaze in a deep IRL algorithm (T-REX).



A common method of incorporating human attention is to simply
use the gaze map as an additional image-like input [27] or predict
the gaze heatmap and further use high-resolution parts of the im-
age to improve learning [50, 54]. Zhang et al. [54] show improved
learning on Atari games for imitation learning (AGIL) but use pre-
dicted heatmaps corresponding to demonstration states as part of
the input to a BC network. In comparison, CGL does not require
any additional learnable parameters and can augment any existing
imitation learning architecture. We compare the performance of
CGL with BC against AGIL in our experiments.

Gaze-modulated dropout (GMD) was proposed by Chen et al. [9]
to implicitly incorporate gaze into an IL framework for autonomous
driving, instead of using gaze as an additional input. An estimated
gaze distribution is used to modulate the dropout probability of
units at different spatial locations in the first two convolutional
layers. While GMD requires gaze both at train and test time, our
auxiliary loss only requires gaze data at train time. Both GMD
[9] and our auxiliary gaze loss CGL do not increase the learnable
parameters of an agent’s network, and hence we use it as a baseline
for comparison.

3 APPROACH

To enable existing IL algorithms to take advantage of human gaze
signals accompanying demonstrations, we first try to understand
the correlation between human gaze and well-performing RL agents
for six Atari games (Sec. 3.1). Based on our findings, which show
a similarity between human gaze and RL attention, we formalize
our auxiliary coverage-based gaze loss term to mimic the attention
mechanism of human demonstrators (Sec. 3.2). This loss term can
guide any convolutional network to attend towards features that
human demonstrators attend to. Our approach does not increase the
model complexity of existing algorithms in terms of the number of
learnable parameters, and can be easily applied to the training of any
neural network with convolutional layers. We then describe other
baseline approaches incorporating human gaze information for IL,
which we evaluate and compare against our proposed approach
(Sec. 3.3).

3.1 Human Gaze Coverage of RL Agent
Attention

Prior studies in the cognitive science literature have established the
concept of selective attention for decision making in primates [30].
While choosing an action among the available set of actions, animals
select a subset of information by directing their sensory organs
towards specific stimuli (overt attention) and focus on specific parts
of the stimulus internally (covert attention) to act upon. Human
gaze data only reveals overt attention which is directly connected
to a sensory organ. However, humans can still pay covert attention
to entities in the working memory [32]. In other words, being
attended by the human gaze model is a sufficient (but not necessary)
condition for the features to be important. An example of this is
shown in Fig. 2 where a high-performing RL agent on the game
Breakout attends to more features of the state space in addition to
what the human gaze attends to (human gaze predicted by a reliable
generative human gaze model [54], RL attention calculated by [15]).
Hence for our analysis comparing the attention of RL agents and
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Figure 2: A trained PPO agent’s attention map (b) and corre-
sponding human gaze map (c) for the same input image (a)
for the Breakout Atari game. The RL attention is directed
towards more regions than the human gaze.

humans, we define a coverage metric (Equation 1) that penalizes the
RL agent only if it fails to pay attention to human attended regions,
or equivalently, a metric that is sensitive to false negatives if we
treat human attention as the ground truth. KL divergence is an
ideal candidate in this case [8]. Let P denote the human attention
map and Q denote the RL attention map. The coverage metric is
computed as follows:

B P(i,j) +e
KL(PIIQ)—ZZP(’ )le g(Q(z J)+€) W

where € is a small regularization constant chosen to be 2.2204E1°
following convention [8]. A lower value of the KL-divergence based
coverage metric would signify a stronger correlation between hu-
man gaze and RL attention.

We compute this coverage metric between the RL attention map
and the corresponding human gaze map for 100 images per game.
The overall metric reported for a game is averaged over all 100
images. The images are uniformly sampled from a policy rollout
of the learned RL agent trained via proximal policy optimization
(PPO). To examine if there is a similarity between the attention of
the agent and human, we compare human attention maps from
one game with RL attention maps of the same game and the other
five games. We hypothesize that the coverage metric would have
a lower value for the gaze maps and RL attention maps from the
same game versus other games.

We find that the lowest average coverage metric scores are ob-
tained between RL attention heatmaps and gaze heatmaps for
the same game (diagonal of Table 1). Comparison of human gaze
heatmaps for one game and RL attention heatmaps of all other game
agents is equivalent to comparison of gaze heatmaps with randomly
generated attention maps (without knowledge of the game state
with which gaze heatmap is computed). This one-to-one compar-
ison for each of the 100 time steps along a trajectory implies the
human gaze and RL attention for the same task are the most similar.
The analysis here informs our auxiliary loss function to guide the
attention of imitation learning algorithms to have coverage over
human gaze.

3.2 Coverage-based Gaze Loss

Based on the coverage metric (Equation 1), we propose adding an
auxiliary loss term in addition to the existing loss function for a
network, modifying the training procedure of any IL algorithm.
Our loss term will have a higher penalty if the network does not



Table 1: Comparison between PPO network attention and human gaze attention using KL divergence. The values represent
the average KL divergence between gaze heat maps and RL attention heat maps for 100 uniformly sampled images from a

policy rollout of the PPO agent.

Humﬁi 23:222 T asterix | breakout | centipede | ms_pacman | phoenix | seaquest
asterix 1.72 6.97 4.64 3.13 14.61 6.34
breakout 5.26 2.09 4.94 3.80 11.13 5.57
centipede 4.43 6.40 1.86 3.34 9.86 5.71
ms_pacman 4.53 6.46 5.49 1.78 13.34 5.92
phoenix 4.29 10.75 5.19 3.59 3.55 6.49
seaquest 5.07 7.70 5.97 3.51 14.10 3.03

attend to parts of the image that the human demonstrator focused
on, but will have no penalty for activations where the demonstrator
did not pay attention. We refer to the proposed loss function as a
coverage-based gaze loss (CGL).

CGL operates on the human gaze heatmap and the output of the
last convolutional layer. For consistency in comparison with base-
lines, gaze heatmaps are generated using convolution-deconvolution
networks trained on real human gaze data [54]. Activation feature
maps from the last convolutional layer [39] of image classification
CNNs are shown to have the best compromise between high-level
semantics and detailed spatial information. Given a 3D feature map
of size hxXwXc from a convolutional layer, it is collapsed to a feature
map f of size h X w using a 1 X 1 convolutional filter. Equation
3 shows the normalization of this feature map f using a softmax
operator to values between 0 and 1. Given a normalized 2D gaze
heatmap g of size h X w, CGL is computed as:
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CGL adds a penalty if activations from none of the convolutional
filters are high on areas where the demonstrator’s gaze fixates dur-
ing gameplay. Only regions of the gaze map which have a non-zero
value contribute to the auxiliary loss, and other regions of the con-
volutional output which are not fixated on by the demonstrator do
not affect the loss term. Hence, our loss term encourages coverage of
the demonstrator’s attended regions. This is because unattended re-
gions may also contain information necessary for decision-making
[30].

The magnitude of the penalty is computed using a smoothed
(€ = 2.2204E~1%) KL divergence term between the normalized gaze
map and the collapsed and normalized convolutional map, and is
then weighted by the amount of gaze fixation an image region
gets (Equation 2). Instead of forcing the filter weights to exactly
match the demonstrator’s gaze, CGL guides the network to focus
on aspects of the state space which might be missed by the network,
for example, areas of the image which are not feature-rich but are
critical for decision-making (e.g., the ball in Fig. 6(a)), eventually
leading to better performance. A loss function which encourages

a network to attend proportional to the human’s gaze frequency
instead, will be more restrictive.

3.2.1 Auxiliary Gaze Loss for BC. For the behavioral cloning (BC)
method, the gaze coverage loss is added as an auxiliary loss term
in addition to the log likelihood action classification loss:

N
L) = | - (1- @) log m(asls) +a CGL(g(s:), e3(50)) | (4)
i=1
The network architecture is similar to the one used in Zhang
et al. [54], comprising of three convolutional layers and one fully-
connected layer. It takes in a single game image as input and outputs
a vector that gives the probability of each action. The gaze coverage
loss is applied to the feature maps at the third convolutional layer.
g(s;) is the gaze map of size 21 X 21, c3(s;) is the collapsed and
normalized feature map of size 21 X 21 (Equation (3)) from the third
convolutional layer.

3.22  Auxiliary Gaze Loss for BCO. For BCO [46], we incorporate
CGL as part of learning the imitation policy after the agent learns
an inverse-dynamics model of the environment. Similar to Torabi
et al. [46], we use a neural network with three convolutional layers
and one fully-connected layer using a stack of four consecutive
frames as input. The output is the probability distribution over the
discrete action space of the Atari domain. The network is learned
using maximum likelihood estimation (MLE), finding the network
parameters that best match the provided state-action pairs - states
s; obtained from a demonstrated trajectory 7; and actions a; recov-
ered from the inverse dynamics model. The new loss function is a
weighted combination of the standard cross-entropy loss for MLE
and CGL applied to the output of the last convolutional layer as
shown below.

N
L0 = | - (1- @) logmg @ilsi) + @ CGL{g(si). es(si) | )
i=1
Here, 7y is the imitation policy network, g(s;) is the gaze map
of size 84 X 84, c3(s;) is the collapsed and normalized feature map
(Equation (3)) from the last convolutional layer (7 X 7 size map
upsampled to 84 X 84).

3.2.3 Auxiliary Gaze Loss for T-REX. T-REX [7] is concerned with
the problem of reward learning from observation, using rankings
of demonstrations to efficiently infer a reward function. To the best



of our knowledge, gaze has not been incorporated as part of a deep
inverse reinforcement learning. Given a sequence of m demonstra-
tions ranked from worst to best, 71, . . ., 7., a parameterized reward
network 7y is trained with a cross-entropy loss over a pair of tra-
jectories (7; < 7;), where 7; is ranked higher than ;. We add CGL
to the reward network’s loss, so the new loss function becomes:
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Tig (s) represents the gaze map corresponding to the state s from
the trajectory snippet 7; and c4(s) represents the collapsed and
normalized version of the last convolutional layer’s output for the
same state s. The loss function accumulates gaze over the entire
trajectory snippet for both trajectories used as input to the network.

We use the default implementation of T-REX from Brown et al.
[7]. The reward network has four convolutional layers. The gaze
loss is computed over the last convolutional layer output — a spatial
map of size 16 X 7 X 7 (normalized, collapsed and upsampled to the
size of the gaze heatmaps 84 X 84). At the end, a fully connected
layer with 64 hidden units with a single scalar output is used to
determine the ranking between a pair of demonstrations.

Similar to the implementation of Brown et al. [7], the trajectories
are first subsampled by maximizing over every 3rd and 4th frame,
from which a stack of 4 consecutive frames with pixel values nor-
malized between 0 and 1 is passed as input to the reward network.
The snippets are ranked based on ground truth rewards or cumula-
tive game scores of the trajectories they are sampled from. A PPO
agent is then trained using the learned reward to obtain a policy
for gameplay.

3.3 Other Techniques to Incorporate Gaze

Here we describe two alternative methods incorporating human
gaze for imitation learning, which we compare against.

3.3.1 Gaze-modulated Dropout (GMD). As a baseline for learning
from human gaze, we implement GMD [9] for the first two convolu-
tional layers of the BCO policy network Torabi et al. [46]. The BCO
policy network does not originally use dropout layers. Gaze maps
are generated using a convolution-deconvolution network [54],
trained separately for each game on the Atari-HEAD dataset [57].
The gaze prediction network uses as input a stack of 4 consecutive
game frames, each of size 84 X 84. Details of the network architec-
ture are similar to Zhang et al. [54]. We employ this network for
gaze prediction, as it has been shown to work well for the Atari
domain, instead of the Pix2Pix network [22] used by Chen et al. [9]
for the autonomous driving domain. The generated gaze map is
then used as a mask for the additional dropout layer added after
first two the convolutional layers as described by Chen et al. [9].
Units of the convolutional layer near the estimated gaze location
are assigned a lower dropout probability than units far from the
estimated gaze location. This is similar to conventional dropout

[41], but with non-uniform dropout probability for spatial units
corresponding to different parts of the image space.

3.3.2  Attention Guided Imitation Learning (AGIL). AGIL adds more
parameters to a BC network to utilize gaze. The output of the gaze
prediction network is used as input to an additional convolutional
pathway in a modified version of standard behavioral cloning. AGIL
consists of two channels of 3 convolutional layers. One channel
takes as input a single image frame (game state) and another uses
a masked image which is an element-wise product of the original
image and predicted gaze saliency map. Finally, the outputs of the
two channels are averaged to predict one of the 18 actions within
ALE [4]. We use the same hyperparameters provided by Zhang et
al. [54] for the implementation of AGIL.

4 EXPERIMENTS AND RESULTS

We use demonstrations from 20 games in ALE [4] with varying
dynamics and features. Demonstrations and corresponding human
gaze data are from the publicly available Atari-HEAD dataset [57].
We augmented three imitation learning algorithms with CGL — BC,
BCO, and T-REX. These algorithms were implemented in the Ope-
nAlI Gym platform [6], which contains Atari 2600 video games with
high-dimensional observation space (raw pixels). All reported re-
sults were game scores averaged over 30 different rollouts (episodes)
of the learned policy, similar to the procedure followed by Zhang
et al. [54]. We used the default settings from OpenAlI baselines [12]
for parameters of ALE [4]. All experiments are conducted on server
clusters with NVIDIA 1080, 1080Ti, Titan V, or DGX GPUs.

For evaluation, we intend to show improvement in terms of
game scores using CGL. We calculate the improvement factor over
baseline in the following way: improvement = (new score - baseline
score) / baseline score. If both the baseline score and the new score
are zero, improvement is zero. However, for some games baseline
game scores are zeroes but new scores are non-zero. In such cases,
the improvement will not be calculated. We report average improve-
ment (including games in which improvements are negative) across
20 games. Details on the experiments and individual games scores
can be found in the Appendix. Note that the improvement factors
are underestimated, due to the way we handle zero score games.

4.1 CGL Improves BC

BC+CGL outperforms basic BC on 19 out of 20 games with 15 min-
utes of demonstration data (Fig. 3). On average, the improvement
is 95.1% (Table 6). With all 300 minutes of human gameplay data,
BC+CGL outperforms BC on all 20 games with an average improve-
ment of 86.2% (Table 7). The hyperparameter « is tuned using a
grid search from a set of 7 values — 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9.
Batch size N = 50 and Adadelta optimizer [53] is used for all models
based on BC.

4.1.1 Efficiency of CGL in terms of Learnable Parameters. Previous
methods (such as AGIL) incorporate human attention by introduc-
ing extra parameters to the model due to additional neural network
modules added. To tease apart whether improvement in these ap-
proaches comes from increased parameters to standard behavioral
cloning or from the gaze information itself, we perform the follow-
ing experiment. We re-train the AGIL network, but instead of using
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Figure 3: Average (across 20 games) percentage improve-
ment over the BC baseline. Results are presented as as
meantstandard error of the mean (N=20). Individual game
scores of all agents can be found in Tables 6 and 7.

gaze heatmaps, we pass the original image as input to the gaze path-
way, referred to as the BC-2ch model. This helps us disambiguate if
more parameters in the model help more versus the gaze informa-
tion itself. As shown in Fig. 3, we find that the BC-2ch model does
result in improved performance over BC, indicating that part of
AGIL’s improvement over BC is due to additional parameters. This
hints at the fact that increasing model complexity alone without
using any additional information as input proves beneficial.

4.1.2  CGL Provides Stronger Guidance than AGIL. In Fig. 3, we also
show that on average, CGL outperforms the previously best method
to incorporate gaze (AGIL [54]) by a large margin. This study sug-
gests that CGL performs significantly better than AGIL with fewer
model parameters, and the advantage is even more evident with a
limited amount of human demonstration data (95.1% improvement
over BC versus 10.1%). The sample efficiency of CGL is critical as it
can be beneficial for applying this method to challenging imitation
learning problems, where collecting demonstrations is cumbersome,
expensive and time-critical.

4.2 CGL Improves BCO

BCO+CGL outperforms basic BCO on 14 out of 20 games with 15
minutes of human demonstration data (Fig. 4). On average, the
improvement is 160.9%. The hyperparameter « is tuned using a
grid search from a set of 9 values — 0.001, 0.005, 0.01, 0.05, 0.1,
0.3, 0.5, 0.7, 0.9. The Adam optimizer [24] is used to solve for the
network parameters with a batch size N = 32. There are six games
for which BCO achieves scores of zero but BCO+CGL can achieve
non-zero scores. With all 300 minutes of human demonstration data,
BCO+CGL outperforms BCO on 12 out of 20 games with an average
improvement of 343.6%. The largest improvement comes from the
game Centipede, which increases the average improvement by a
large margin (Table 9). However, we found that BCO is unable to
learn an accurate inverse dynamics model for up to seven of the
20 games. For these games, the baseline BCO policy model scores
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Figure 4: Average (across 20 games) improvement over the
BCO baseline. Results are presented as meanztstandard error
of the mean (N=20). Individual game scores of all agents can
be found in Tables 8 and 9.

zero and the utilization of gaze is also unable to overcome the
shortcomings of the inverse dynamics model. We utilize a publicly
available implementation of BCO by Brown et al. [7] and do not
tune any parameters specifically for the Atari-HEAD dataset [57]
for this work.

4.2.1 CGL Provides Stronger Guidance than GMD. We test GMD
and CGL with BCO and find that on average across 20 games,
CGL outperforms GMD both with 15 minutes and 300 minutes of
demonstration data (Fig. 4). Chen et al. [9] propose using a uniform
dropout probability of 0.7, whereas we test GMD with nine values
similar to the hyperparameters tested with CGL - 0.001, 0.005,
0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9. GMD outperforms CGL in 3 out of
20 games with 15 minutes of demonstration data and 4 out of 20
games with 300 minutes of demonstration data. One may expect
that convolutional dropout helps generalization by reducing over-
fitting. However, it is less advantageous since the shared-filter and
local-connectivity architecture in convolutional layers is a drastic
reduction in the number of parameters and this already reduces
the possibility to overfit [19]. Empirical results by Wu et al. [49]
confirm that the improvement in generalization to test data from
convolutional dropout is often inferior to max-pooling or fully-
connected dropout.

4.2.2 CGL Provides Stronger Guidance than Implicit Motion In-
formation. Prior work has established that human gaze encodes
attention which is different from salient regions in a scene (such as
motion) [16, 25, 35, 44]. We test whether our proposed approach
extracts the additional information from human gaze data, in com-
parison to what might already be encoded in the visual game state,
such as motion. We replace the gaze heat maps used by CGL with
heatmaps representing the normalized motion in an input image
frame stack (the difference between the last and first frame in a
stack shown in Fig. 5). We test this motion-based loss for BCO with
the same hyperparameter values as that for CGL. While motion in-
formation is also beneficial to improve performance for BCO and is



Table 2: Average (across 20 games) improvement over the T-
REX baseline. Result is presented as as meanz+standard error
of the mean (N=20). Individual game scores of all agents can
be found in Tables 10 and 11.

Improvement over T-REX (%) ‘ T-REX+CGL
| 390.4 +203.5

30min data

300min data | 373.6 + 206.5

also beneficial in predicting human gaze [54], the average gain from
CGL is higher than that from motion, more so with 300 minutes
of demonstration data (Fig. 4). The games Berzerk, Centipede, and
River Raid show consistent performance improvements with CGL
compared to motion, regardless of the amount of training data used.
Prior work [52] has also shown that using optical flow between
two frames as the attention map provides moderate performance
improvements in Atari Games. Incorporating both gaze and motion
information simultaneously in an auxiliary loss can be investigated
as part of future work.

4.3 CGL Improves T-REX

T-REX is an inverse reinforcement learning algorithm which com-
pares pairs of trajectory snippet to learn the reward. Along with full
300 minutes of demonstration data, we evaluate with 30 minutes
of demonstration data to compare trajectories from two different
demonstrations (each demonstration in Atari-HEAD [57] was at
least 15 minutes long and T-REX requires at least two demonstra-
tions to compute the reward function). The hyperparameter « is
tuned using a grid search from a set of 9 values — 0.001, 0.005,
0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 and the Adam optimizer [24] is used.
T-REX+CGL outperforms basic T-REX on 15 out of 20 games both
with 30 minutes and 300 minutes worth of training data (Tables
10 and 11). On average, the improvement due to CGL is 390.4%
with 30 minutes of data, and 373.6% with 300 minutes of data (Ta-
ble 2). There are four games that T-REX achieves scores of zero
but T-REX+CGL can achieve non-zero scores (Tables 10 and 11). To
the best of our knowledge, CGL is the first method to augment the
learning of an IRL algorithm with human gaze.

4.4 Best Performing Models for each Game

We then summarize the best game scores obtained from various
algorithms presented above. The results are shown in Table 3. We
notice that CGL augmented methods achieve the best results in 15
out of 20 games. For comparison, we also show DQN scores [18, 28]
as a reference (the evaluation methods are slightly different). With
human gaze information (especially with CGL), imitation learning
algorithms start to match and even outperform DQN. Note that
DON is trained with 200M samples per game, while IL methods are
at most trained with 360K samples (300 minutes of human data).

4.5 Visualizing CGL Attention

We can analyze whether the CGL agents have successfully learned
to pay attention to the critical regions highlighted by human saliency
maps in two ways. First, we directly visualize the activation map

Table 3: A summary of the best game scores obtained. DQN
scores are from no-op starts evaluation regime table of [17]
, except for game Riverraid [28]. With human gaze infor-
mation (especially with CGL), imitation learning algorithms

start to match and even outperform DQN.

Game ‘ Algorithm (#demo) Score  DQN Score
alien AGIL (300min) 2104.7 1620.0
asterix T-REX+CGL (30min)  66445.0 4359.0
bank_heist BC-2ch (300min) 174.3 455.0
berzerk BCO+CGL (15min) 687.67 585.6
breakout T-REX+CGL (300min)  438.4 385.5
centipede T-REX+CGL (30min)  20762.5 4657.7
demon_attack T-REX+CGL (300min) 17589.0 12149.4
enduro BC+CGL (300min) 445.1 729.0
freeway BC-2ch (300min) 314 30.8
frostbite BC+CGL (30min) 5897.7 797.4
hero BC+CGL (15min) 19023.2 20437.8
montezuma BC+CGL (300min) 1720.0 0.0
ms_pacman BC+CGL (30min) 2739.7 3085.6
name_this_game AGIL (300min) 5817.0 8207.8
phoenix AGIL (300min) 5140.0 8485.2
riverraid T-REX+CGL (300min)  7370.0 8316.0
road_runner BC+CGL (300min) 33510.0 39544.0
seaquest T-REX+CGL (30min) 759.3 5860.6
space_invaders | T-REX+CGL (300min)  1563.7 1692.3
venture BC+CGL (15min) 376.7 163.0

of the networks trained with and without CGL, which has already
been shown in Fig. 1 for a trained BCO agent. However, this only
shows that the convolutional layer we applied CGL to behaves as
expected.

We use a second method to show that the whole trained network
has learned to attend to the desired region with CGL. We visualize
the attention maps of trained CGL agents with a method commonly
used to provide visual interpretations of deep RL agents [15]. The
algorithm takes an input image I and applies a Gaussian filter to
a pixel location (i, j) to blur the image. This manipulation adds
spatial uncertainty to the surrounding region and produces a per-
turbed image ®(1, i, j). A saliency score for this pixel (i, j) can be
defined as how much the blurred image changes the network out-
put [15]. Doing this for every pixel results in a saliency map that
approximates the “attention” of a network. The results for a case
of Breakout where CGL outperforms the baseline T-REX method
can be found in Fig. 6, where the T-REX+CGL agent successfully
learned to focus on the ball like the human did, while the T-REX
agent did not. We also highlight a failure case with MsPacman,
where the CGL agent does not outperform baseline T-REX. We find
that the network fails to attend to both modes of attention in the
human’s gaze map.

4.6 Reducing Causal Confusion with CGL

Discriminative models for IL such as BC are non-causal, i.e. the
training procedure is unaware of the causal structure of the in-
teraction between the demonstrator and the environment. Causal
misidentification is the phenomenon where cloned policies fail by



(a) An input frame stack for Ms. Pacman

(d) An input frame stack for Asterix
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Figure 5: Motion in the visual game state, i.e. the difference between the last and first frame in an input image stack, cannot
alone explain human attention. This is further highlighted with minimal performance gains when CGL utilizes the motion

heatmap instead of the human gaze heatmap.

(b) Human ) T-REX+CGL

(a) Game state

(h) T-REX+CGL

Figure 6: CGL guides the T-REX reward network (d) to focus
on parts of the state space which the human attends to (b) for
Breakout (a). A failure case happens where CGL is unable to
guide the T-REX reward network (h) to attend to both modes
which the human attends to (f) for MsPacman (g). The atten-
tion maps of deep networks are generated using the method
proposed by Greydanus et al. [15].

misidentifying the causes of the demonstrator’s actions. A very
problematic effect of distributional shift in BC can lead to causal
misidentification. This is exacerbated by the causal structure of
sequential action: the very fact that current actions cause future
observations often introduces complex new nuisance correlates.
Prior work on understanding causal confusion in IL [11] uses past
action information (often correlated with current action) to identify
if the IL algorithm is in a causal confusion trap. To understand
the performance gains of CGL, we investigate if it disambiguates
the intent of the user in the demonstrated actions by eliminating

) Breakout

(b) Asterix

(c) Demon Attack (d) Freeway

Figure 7: Confounded states with past actions (text indicat-
ing past action identifiers is superimposed on the visual
state) to test reduction of causal confusion with CGL. The
design follows methodology proposed by de Haan et al. [11].

causal confusion. We overlay the four frame image stack (state) with
actions from the last frame in the previous stack (Fig. 7). This lays
a causal confusion trap for the IL agent. If the agent can ignore the
new correlated action information that is part of the state space, it
hints towards the fact that the agent learns to ignore those features
and perform better empirically. We find that on average (across 20
games), CGL agents suffer less when trained with confounded data
compared to the BC baseline (-34.0% versus -47.8%). Moreover,
when trained with confounded data, BC+CGL outperforms BC
trained with confounded data by 571% (Table 12), indicating that
guidance with human gaze via CGL greatly reduces the causal
confusion introduced with overlaid past action information. This
hints to the fact that in addition to directing the attention of the
network to learn a better mapping between states and actions, part
of the gains from using human gaze data with CGL can come from
reducing causal confusion.

5 CONCLUSIONS

In this work, we introduced an auxiliary coverage-based gaze loss
(CGL) term which guides the training of any imitation learning



network with convolutional layers. Our experiments showed im-
proved performance on several Atari games over standard imitation
learning algorithms. Our approach provides these gains without
requiring gaze prediction at test time or increasing the model com-
plexity of existing algorithms. We outperform a baseline method
(GMD), which also does not increase model complexity. CGL is
more efficient in terms of both learnable parameters and data ef-
ficiency when compared to a state-of-the-art gaze-augmented IL
method (AGIL) which utilizes gaze in the form of additional input
to a BC algorithm. AGIL requires gaze prediction at test time and is
shown to gain performance by increasing model complexity alone.
Our approach improved performance by utilizing gaze without
these shortcomings. We also highlighted that utilizing human gaze
provides additional information to what is encoded implicitly in
the game state (such as motion). Our work confirms prior research
showing gaze can help extract more information from a demonstra-
tor than traditional state-action pairs, bridging some of the gap in
performance between IL and RL agents.

6 DISCUSSION AND FUTURE WORK

Human attention can be seen as a form of spatial prior on the visual
input. In deep learning research, this prior is often used as a mask to
filter out unimportant information (e.g., AGIL). This approach has
two main drawbacks. First, it requires the mask at testing time. Sec-
ondly, some unattended visual features handled by human memory
systems could still be useful for decisions. Therefore, completely
filtering out all unattended information seems inappropriate. In this
work, we present a novel method to incorporate gaze effectively
that only requires access to human gaze data at training time. More-
over, by utilizing a coverage-based loss, this method highlights the
attended features while keeping the unattended features available
for the learning agent. This novel method in training deep neural
networks can be applied to other learning tasks that utilize other
forms of spatial priors.

One limitation of our approach is the need for extensive hyperpa-
rameter tuning to balance the linear combination of loss functions
during training. Moreover, finding good solutions to optimally bal-
ance multi-objective losses can be especially challenging if the
Pareto front of the loss landscape is concave [5]. Often the shape of
the Pareto front for neural network architectures is unknown and it
can be hard to find an optimal solution to minimize multi-objective
loss functions. Platt and Barr [31] proposed a theoretical framework
(a modified differential method of multipliers) to tune the balance
between the losses in a semantically useful way using stochastic
gradient descent, no matter the shape of the invisible Pareto front.
They introduce an additional damping hyper-parameter which
trades the time to find the Pareto front with the time to converge
to a solution on that front. Going forward, we envision that uti-
lizing such theoretical findings [23] can help the training of CGL
based deep networks by potentially reducing the effort for tuning
hyper-parameters and further improving the performance gains of
incorporating gaze.

Additionally, human gaze and actions from demonstrations may
be correlated in time. Our approach only utilizes gaze per game
state, and so do all other approaches we compare against. Utilizing
temporal connections in the gaze signal is a direction for future

work. We hope our work encourages the research community to
innovate on other novel ideas for efficiently incorporating human
attention as part of different learning frameworks.
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Table 4: The human demonstration data used for BC and
BCO (15 minutes) experiments. The trial IDs are human
data trial IDs from Atari-HEAD dataset, each trial contains
15 minutes of human demonstration data. For experiments
with 300 minutes of data, we include all human trials.

Game | Trial ID
alien 474
asterix 213
bank_heist 456
berzerk 468
breakout 198
centipede 204
demon_attack 475
enduro 473
freeway 616
frostbite 479
hero 443
montezuma_revenge 480
ms_pacman 199
name_this_game 484
phoenix 180
riverraid 463
road_runner 483
seaquest 185
space_invaders 455
venture 486

Table 5: The human demonstration data used for TREX (30
minutes) experiments. The trial IDs are human data trial IDs
from Atari-HEAD dataset, each trial contains 15 minutes of
human demonstration data. For experiments with 300 min-
utes of data, we include all human trials.

Game Trial IDs
alien 464, 474
asterix 213, 301
bank_heist 438, 456
berzerk 454, 468
breakout 198, 218
centipede 204, 210
demon_attack 445, 475
enduro 453, 473
freeway 616, 617
frostbite 466, 479
hero 431, 443
montezuma_revenge | 469, 480
ms_pacman 199, 209
name_this_game 458, 484
phoenix 180, 408
riverraid 444, 463
road_runner 460, 483
seaquest 185, 212
space_invaders 364, 455
venture 471, 486

A DEMONSTRATION DATA

We use demonstrations collected in the Arcade Learning Environ-
ment (ALE) [4] for a total of 20 games. Demonstrations from four
participants are publicly available as part of the Atari-HEAD dataset
[57]. The participants were only allowed to play for 15 minutes and
were required to rest for at least 5 minutes before the next trial. The
trial IDs corresponding to 15 minutes and 30 minutes of human
demonstration data are listed in Tables 4 and 5 respectively.

Gaze data was recorded using an EyeLink 1000 eye tracker at
1000 Hz. The game screen was 64.6x40.0 cm (or 1280% 840 in pixels),
and the distance to the subjects’ eyes was 78.7 cm. The visual angle
of the screen was 44.6 X 28.5 visual degrees, where the visual angle
of an object is a measure of the size of the object’s image on the
retina. In the default ALE setting, the game runs continuously at 60
Hz, a speed that is very challenging even for expert human players.
An innovative feature of the Atari-HEAD [57] setup is that the
game pauses at every frame, until a keyboard action is taken by the
human player. This allows users to fixate at all critical locations of
the state space before taking an action, giving enough reaction time
to a participant and producing a richer gaze signal at every time
step. If desired, the subjects can hold down a key and the game will
run continuously at 20Hz, a speed that is reported to be comfortable
for most players.

A.1 Human Gaze Models

Since our baseline methods require gaze estimates at test time, we
use gaze heatmaps from a prediction network for consistency across
all methods. Gaze data collected with demonstrations is used to
generate gaze heatmaps, which are in turn used for training gaze
prediction networks with the four frames of image stack represent-
ing the game state, optical flow and saliency maps as input. We use
convolution-deconvolution networks trained on real human gaze
data, following the architecture by Zhang et al. [54] for gaze predic-
tion. For experiments with 15 minutes of demonstration data, we
use the gaze data corresponding to the same set of demonstrations
to train the gaze prediction network. We follow a similar approach
for experiments with 30 minutes and 300 minutes of demonstration
data. To generate gaze heatmaps from the data collected during
demonstrations, the discrete gaze positions are converted into a
continuous distribution [8] by blurring each fixation location using
a Gaussian with a standard deviation equal to one visual degree
[26].

B INDIVIDUAL GAME SCORES

The individual game scores corresponding to the aggregated results
shown in Fig. 3, Fig. 4 and Table 2 are listed below.



Table 6: Game scores obtained when using 15 minutes of human demonstration data to train the agents. Results are presented
as meanztstandard error of the mean (N=30). The agents we compare are behavioral cloning agent (BC), two channeled be-
havioral cloning agent (BC-2ch), Attention-guided imitation learning agent (AGIL), and proposed coverage-based loss agent
(CGL). The improvement columns show the relative improvement over the BC baseline. Average results over all 20 games are
presented in Fig. 3.

BC BC-2ch AGIL BC+CGL Improv-BC-2ch  Improv-AGIL Improv-CGL

alien 1575+176.8 1296.7£140.8  1866.7+171.3  2044.7+242.1 -17.7% 18.5% 29.8%
asterix 285+28.2 283.3%£31.1 275%35.9 426.7+27.8 -0.6% -3.5% 49.7%
bank_heist 86.3+9.0 129.3£17.7 169+13.1 143+14.8 49.8% 95.8% 65.7%
berzerk 330.7+22.0 350+22.5 251.7+19.1 366.7+19 5.8% -23.9% 10.9%
breakout 2.2+0.3 2.7+0.3 4.9+0.4 3.7+0.4 22.7% 122.7% 68.2%
centipede 4378.8+442.6  5762.1+687.6  4600.2+333.8  6075.9+845.1 31.6% 5.1% 38.8%
demon_attack 112.2+13.9 177+18.7 148+16.9 205.2+41.9 57.8% 31.9% 82.9%
enduro 11.7+2.0 7.8+1.4 0+0 42+14 -33.3% -100.0% -64.1%
freeway 29.4+0.2 28.5+0.3 28.1+0.3 30+0.3 -3.1% -4.4% 2.0%
frostbite 1628.3£246.4  1406.3%£266.5 3185+352.9 2973+279 -13.6% 95.6% 82.6%
hero 13255.3+845.1  18877.2+509.0  15582.7+789.7 19023.2+679.7 42.4% 17.6% 43.5%

montezuma_revenge 100+31.6 0+0.0 0+0 1200+159.2 -100.0% -100.0% 1100.0%
ms_pacman 843.3+62.8 783.3+55.8 1072.3+£74.8 1348.3+206.9 -7.1% 27.2% 59.9%
name_this_game 1917.3£130.2  2153.3%£169.1 2832+194.2 2646.3£156.3 12.3% 47.7% 38.0%
phoenix 1060+172.4 1105+159.7 1171.7£147.6 ~ 2193.7+200.5 4.2% 10.5% 107.0%
riverraid 2771.7£141.8  2701.3+£128.0  3900.3+223.6  2965.3+184.8 -2.5% 40.7% 7.0%
road_runner 7840+553.3 3820+372.3 6920+518.8 12723.3+376.7 -51.3% -11.7% 62.3%
seaquest 194+11.4 162+9.8 198+12.7 216+11.2 -16.5% 2.1% 11.3%
space_invaders 275+26.2 275+29.3 254.7+21.1 314+26 0.0% -7.4% 14.2%
venture 196.7+26.5 273.3£27.1 73.3+24.9 376.7+16.1 38.9% -62.7% 91.5%
average ‘ - - - - 1.0% 10.1% 95.1%

Table 7: Game scores obtained when using all 300 minutes of human demonstration data to train the agents. Results are pre-
sented as mean+standard error of the mean (N=30). The agents we compare are behavioral cloning agent (BC), two channeled
behavioral cloning agent (BC-2ch), Attention-guided imitation learning agent (AGIL), and proposed coverage-based loss agent

(CGL). The improvement columns show the relative improvement over the BC baseline. Average results are shown in Fig. 3.

BC BC-2ch AGIL BC+CGL Improv-BC-2ch  Improv-AGIL Improv-CGL
alien 694+97.5 1303.7+147.6  2104.7+180.2 2027.3+140.1 87.9% 203.3% 192.1%
asterix 516.7+£54.9 465+32 455+50.1 773.3+63.4 -10.0% -11.9% 49.7%
bank_heist 102.3+8 174.3+13.9 117.3+£13.3 156.3+12.5 70.4% 14.7% 52.8%
berzerk 256.7x17.4 379.3+£29.3 188.3+24.5 435+42.3 47.8% -26.6% 69.5%
breakout 1.7£0.3 3.6+0.4 3.6+0.4 2.9+0.3 111.8% 111.8% 70.6%
centipede 7704.5+967 7856.8+903.1 9073.7+914.8 9330+£922 2.0% 17.8% 21.1%
demon_attack 848.2+140.3 333.8+38.6 2156.2+295.2 1375+216.7 -60.6% 154.2% 62.1%
enduro 386+12.1 385.4+12 278.7£17.5 445.1+17 -0.2% -27.8% 15.3%
freeway 27.6+0.3 31.4+0.1 28.9+0.3 30.2+0.2 13.8% 4.7% 9.4%
frostbite 2016.7+180.2 2331.7+240.4 1980+176.4 3253+254.5 15.6% -1.8% 61.3%
hero 9519.7+874.9 11152+1079.9  7685.7+£1100.6 16936.5+1342.6 17.1% -19.3% 77.9%
montezuma_revenge 490+109 1480+168.8 553.3+70.3 1720+156.3 202.0% 12.9% 251.0%
ms_pacman 1200+123.2 1511+144.1 1272.3+£128.6 1590+197.1 25.9% 6.0% 32.5%
name_this_game 2887+177.8 5732+288.2 5817+341.7 5405.3+267 98.5% 101.5% 87.2%
phoenix 4029+279.8 4597.3+324.1 5140+405.2 4472.7+440.2 14.1% 27.6% 11.0%
riverraid 2806+164.5 2266.3+65.7 2555.7£56.2 3452.7+242.1 -19.2% -8.9% 23.0%
road_runner 29433.3+1230.3 31776.7+1426.2 29410+1516.2 33510+1026.3 8.0% -0.1% 13.9%
seaquest 175.5+30.7 182.1+12.4 443+124.6 610.7+106.8 3.8% 152.4% 248.0%
space_invaders 243.8+26.7 196+26.4 20623 363.5+35.7 -19.6% -15.5% 49.1%
venture 73.3+27.9 43.3+20.9 330+21.7 313.3+£29 -40.9% 350.2% 327.4%
average - - - - 28.4% 52.3% 86.2%




Table 8: Game scores obtained when using 15 minutes of human demonstration data to train the agents. Results are presented
as meanztstandard error of the mean (N=30). The agents we compare are behavioral cloning from observation agent (BCO),
gaze-modulated dropout (GMD), BCO with motion information, and BCO+CGL. The improvement columns show the rela-
tive improvement over the BCO baseline. “-" indicates that the baseline score is zero hence the relative improvement is not
calculated and is not counted in the average. Average results over all 20 games are presented in Fig. 4.

BCO BCO+GMD BCO+Motion BCO+CGL Improv-GMD  Improv-Motion Improvement-CGL
alien 0.0 £0.0 140.00 + 0.00 140.00 + 0.00 140.00 + 0.00 - - -
asterix 288.33 £30.48  645.00 + 33.28 700.00 + 0.00 253.33 £9.11 123.70% 142.80% -12.10%
bank_heist 0.0 £0.0 0.00 £+ 0.00 8.67 = 0.62 0.00 = 0.00 0% - 0%
berzerk 158.33 + 16.45  263.67 + 26.36 528.33 £ 17.11 687.67 + 27.98 66.50% 233.70% 334.30%
breakout 0.0 £0.0 2.30 + 0.08 2.30 + 0.08 0.60 +0.17 - - -
centipede 646.83 + 79.70  2707.83 + 309.30 3234.13 £ 167.51 5047.93 + 410.74 318.60% 400% 680.41%
demon_attack 157.33 + 20.87  844.00 + 88.40 806.00 + 85.25 791.83 + 77.56 436.50% 412.30% 403.30%
enduro 0.0 £0.0 0.13 +0.13 1.57 £ 0.72 7.77 £ 0.76 - - -
freeway 0.0 £0.0 21.30 £ 0.21 21.30 £ 0.21 21.30 £ 0.21 - - -
frostbite 116.33 + 6.86 79.33 + 2.94 80.67 + 6.43 160.00 + 0.00 -31.80% -30.70% 37.50%
hero 0.0 £0.0 0.00 £+ 0.00 0.00 £ 0.00 0.00 = 0.00 0% 0% 0%
montezuma_revenge 0.0 0.0 0.00 + 0.00 0.00 = 0.00 0.00 + 0.00 0% 0% 0%
ms_pacman 60 +0 379.00 + 11.27 210.00 + 0.00 210.00 + 0.00 531.70% 250% 250%
name_this_game 694.67 + 86.88  2183.00 + 52.93 2770.00 + 0.00 2770.00 + 0.00 214.20% 298.80% 298.80%
phoenix 282 + 28.95 352.67 £29.26  407.33 + 66.01 256.67 + 22.43 25.10% 44.40% -9%
riverraid 360 £ 0 1029.33 + 13.48 236.00 + 10.93 1250.00 + 0.00 185.90% -34.40% 247.20%
road_runner 0.0 £0.0 473.33 £ 77.16 500.00 + 91.29 956.67 + 9.05 - - -
seaquest 0.0 £0.0 102.00 + 4.46 140.00 + 0.00 140.00 + 0.00 - - -
space_invaders 220.83 + 27.76 195.17 + 17.64 285.00 + 0.00 270.00 + 0.00 -11.60% 29.10% 22.30%
venture 0.0 £0.0 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 0% 0% 0%
average \ - - 132.8% 134.3% 160.9%

Table 9: Game scores obtained when using 300 minutes of human demonstration data to train the agents. Results are pre-
sented as meantstandard error of the mean (N=30). The agents we compare are behavioral cloning from observation agent
(BCO), gaze-modulated dropout (GMD), BCO with motion information, and BCO+CGL. The improvement columns show the
relative improvement over the BCO baseline. “-" indicates that the baseline score is zero hence the relative improvement is
not calculated and is not counted in the average. Average results over all 20 games are presented in Fig. 4.

BCO BCO+GMD BCO-+Motion BCO+CGL Improv-GMD  Improv-Motion Improvement-CGL
alien 140.00 + 0.00 140.00 + 0.00 140.00 + 0.00 140.00 + 0.00 0% 0% 0%
asterix 181.00 + 13.02 276.67 + 24.24 650.00 £ 0.00 690.00 + 27.33 52.90% 259.10% 281.20%
bank_heist 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0% 0% 0%
berzerk 145.00 + 15.87 229.00 = 22.40 539.00 £ 22.99 572.33 £ 17.71 57.90% 271.70% 294.70%
breakout 0.30 £ 0.08 2.00 £ 0.00 0.60 £ 0.17 0.17 £ 0.07 566.60% 100% -43.30%
centipede 184.00 £ 0.91  3309.03 + 186.34 3668.27 + 192.32 8391.03 + 557.52 1698.40% 1893.60% 4460.30%
demon_attack 127.67 + 19.33 180.00 + 18.60 806.00 + 85.25 806.00 + 85.25 41.00% 531.30% 531.30%
enduro 2.93 +£0.81 0.37 £0.17 0.07 £ 0.05 0.00 £ 0.00 -87.20% -97.60% -100%
freeway 0.00 £ 0.00 21.30 £ 0.21 21.30 + 0.21 21.30 + 0.21 - - -
frostbite 102.33 £ 6.14 329.67 + 53.65 160.00 + 0.00 124.00 + 12.68 222.20% 56.40% 21.20%
hero 0.00 £ 0.00 150.00 + 0.00 0.00 £ 0.00 0.00 £ 0.00 - 0% 0%
montezuma_revenge 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0% 0% 0%
ms_pacman 60.00 + 0 210.00 + 0.00 210.00 + 0.00 210.00 + 0.00 250.00% 250.00% 250.00%
name_this_game 1158.00 + 50.88  1808.00 + 75.44  2770.00 + 0.00 2770.00 + 0.00 56.10% 139.20% 139.20%
phoenix 147.33 + 6.22 444.00 + 52.35 474.00 + 75.41 356.43 + 70.41 201.40% 221.70% 141.90%
riverraid 360.00 + 0.00 1646.33 + 50.27 440.00 £ 0.00 1222.00 + 3.98 357.30% 22.20% 239.40%
road_runner 0.00 £ 0.00 493.33 + 97.52 956.67 + 9.05 0.00 £ 0.00 - - 0%
seaquest 0.00 £ 0.00 120.00 + 0.00 180.00 + 0.00 180.00 + 0.00 - - -
space_invaders 398.00 = 16.65 278.00 = 11.71 285.00 = 0.00 273.17 £11.93 -30.20% -28.40% -31.40%
venture 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0% 0% 0%
- - - - 211.7% 212.9% 343.6%

average




Table 10: Game scores obtained when using 30 minutes of human demonstration data to train the T-REX agents. Results are
presented as mean+tstandard error of the mean (N=30). The improvement columns show the relative improvement over the
T-REX baseline. “-" indicates that the baseline score is zero hence the relative improvement is not calculated and is not counted

in the average. Average results over all 20 games are presented in Table 2.

T-REX T-REX +CGL Improv-CGL
alien 727.00 + 52.24 800.33 + 66.44 10.1%
asterix 5023.33 + 431.17 66445.00 + 7444.18 1222.7%
bank_heist 0.00 = 0.00 19.33 + 3.86 -
berzerk 273.33 +10.20 584.00 + 22.18 113.7%
breakout 46.33 = 1.75 386.77 + 25.42 734.8%
centipede 8369.30 = 971.79  20762.47 + 2120.94 148.1%
demon_attack 3846.00 + 513.18  6767.33 + 783.84 75.9%
enduro 0.00 = 0.00 0.00 = 0.00 0.0%
freeway 0.00 + 0.00 0.07 + 0.05 -
frostbite 1.00 + 0.55 36.67 + 1.28 3567.0%
hero 0.00 = 0.00 0.00 = 0.00 0.0%
montezuma_revenge 0.00 = 0.00 0.00 = 0.00 0.0%
ms_pacman 967.00 = 84.22 577.33 £ 61.54 -40.3%
name_this_game 2262.00 += 104.89  4081.00 + 175.34 80.4%
phoenix 303.67 + 28.24 502.67 + 39.24 65.5%
riverraid 1748.00 + 31.49 5201.67 + 203.35 197.6%
road_runner 0.00 + 0.00 2660.00 + 359.77 -
seaquest 0.00 + 0.00 759.33 £ 12.56 -
space_invaders 607.00 = 44.32 923.50 = 59.82 52.1%
venture 0.00 = 0.00 0.00 = 0.00 0.0%
- 390.4%

average




Table 11: Game scores obtained when using 300 minutes human demonstration data to train the T-REX agents. Results are
presented as mean+tstandard error of the mean (N=30). The improvement columns show the relative improvement over the
T-REX baseline. “-" indicates that the baseline score is zero hence the relative improvement is not calculated and is not counted

in the average. Average results over all 20 games are presented in Table 2.

T-REX T-REX +CGL Improv-CGL
alien 359.67 + 8.48 1007.33 = 48.94 180.10%
asterix 15231.67 + 2401.26  17073.33 + 2253.10 12.10%
bank_heist 2.33+0.77 7.00 + 1.17 200.40%
berzerk 411.67 + 40.87 596.67 + 32.52 44.90%
breakout 53.33 £ 1.30 438.40 + 17.59 722.10%
centipede 16363.07 + 1993.35  13532.70 + 1550.44 -17.30%
demon_attack 463.17 + 138.3 17589.00 + 1727.02 3697.50%
enduro 0.90 + 0.57 0.67 = 0.16 -25.60%
freeway 0.00 + 0.00 0.07 + 0.05 -
frostbite 22.67 +£1.88 208.00 + 6.28 817.50%
hero 0.00 = 0.00 2.50 + 2.46 -
montezuma_revenge 0.00 = 0.00 0.00 = 0.00 0%
ms_pacman 314.00 + 22.41 527.33 + 38.74 67.90%
name_this_game 3331.67 + 185.85 4010.67 + 147.50 20.40%
phoenix 4322.33 + 363.98 2123.67 = 164.78 -50.90%
riverraid 5812.67 + 233.48 7370.00 + 262.18 26.80%
road_runner 0.00 + 0.00 1286.67 + 111.73 -
seaquest 0.00 = 0.00 729.33 + 16.32 -
space_invaders 410.50 + 46.54 1563.67 + 144.76 280.90%
venture 0.00 = 0.00 0.00 £+ 0.00 0%
average - - 373.6%

Table 12: Confounding study results. Game scores are obtained when using 15 minutes of human demonstration data to train
the agents. Results are presented as mean+standard error of the mean (N=30). The change columns show the relative change
over the non-confounded baselines. On average CGL agents suffer less when trained with confounded data, and still perform
better than behavioral cloning (BC) agents. These results are discussed in Sec. 4.6.

‘ BC CGL Improv-CGL  BC-confounded CGL-confounded Improv-CGL-confounded Change-BC Change-CGL
alien 1575+176.8 2044.7+£242.1 29.8% 73+9.3 439.3+63.4 501.8% -95.4% -78.5%
asterix 285+28.2 426.7+27.8 49.7% 243.3+23.1 363.3+30 49.3% -14.6% -14.9%
bank_heist 86.3+£9.0 143+14.8 65.7% 22.3+3.2 15.3+2.8 -31.4% -74.2% -89.3%
berzerk 330.7£22.0 366.7+19 10.9% 101.7£11.2 322+21.5 216.6% -69.2% -12.2%
breakout 2.2+0.3 3.7+0.4 68.2% 0+0 0.4+0.1 - -100.0% -89.2%
centipede 4378.8+442.6  6075.9+845.1 38.8% 5320.8+705.5 5808.5+640.5 9.2% 21.5% -4.4%
demon_attack 112.2+13.9 205.2+41.9 82.9% 120.5+10 200.7£32.1 66.6% 7.4% -2.2%
enduro 11.7+2.0 4.2+14 -64.1% 3.3+0.7 8.3+1.5 151.5% -71.8% 97.6%
freeway 29.4+0.2 30+0.3 2.0% 23.9+0.2 26.5+0.2 10.9% -18.7% -11.7%
frostbite 1628.3+246.4 2973279 82.6% 189.3+3.7 710+99.3 275.1% -88.4% -76.1%
hero 13255.3+845.1  19023.2+679.7 43.5% 109.7+97.8 10038.3+647.6 9050.7% -99.2% -47.2%
montezuma_revenge 100+31.6 1200+159.2 1100.0% 0+0 0+0 0.0% -100.0% -100.0%
ms_pacman 843.3+62.8 1348.3+206.9 59.9% 281+65.4 397+31 41.3% -66.7% -70.6%
name_this_game 1917.3+£130.2 2646.3+156.3 38.0% 2204.7+196.1 3179.3£173.4 44.2% 15.0% 20.1%
phoenix 1060+172.4 2193.7£200.5 107.0% 550.3£76.8 1657+263.9 201.1% -48.1% -24.5%
riverraid 2771.7+141.8 2965.3+184.8 7.0% 2457+113.8 2105+67.1 -14.3% -11.4% -29.0%
road_runner 7840+553.3 12723.3+£376.7 62.3% 6290+364.1 10023.3+£396 59.4% -19.8% -21.2%
seaquest 194+11.4 216+11.2 11.3% 182.7+10.3 182+10.1 -0.4% -5.8% -15.7%
space_invaders 275+26.2 314+26 14.2% 219.3+£21.9 265.5+£26.9 21.1% -20.3% -15.4%
venture 196.7+26.5 376.7+16.1 91.5% 6.7+6.6 2011 198.5% -96.6% -94.7%
average ‘ - - 95.1% - - 571.1% -47.8% -34.0%
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