


Our methodology utilizes a demonstrator’s gaze fixations on the

image as part of a surrogate loss function (coverage-based gaze

loss or CGL) during the training phase. Encoding priors in loss

functions for label-free supervision of neural networks has been

suggested by Stewart et al. [42]. Similarly, we use an auxiliary

gaze loss to guide the learning of any agent using image-based

state representations and convolutional layers as part of its model

architecture. Inspired by our experimental results highlighting the

similarity of RL agent attention and human attention (Sec. 3.1), we

propose a coverage-based gaze loss (CGL). CGL guides a network

to attend to the demonstrator’s gaze locations and helps improve

the performance of three IL methods on 20 Atari games. A critical

advantage of our approach in contrast to several prior approaches

utilizing gaze, is that gaze is not required at test time and instead

used as a weak supervisory signal.

We evaluate our auxiliary gaze loss function on 20 Atari games

with three different IL approaches. Our experiments show that CGL

can improve performance for both inverse reinforcement learning

(IRL) and behavioral cloning (BC) frameworks averaged across 20

games: 95% for behavioral cloning (BC) [54], 343% for behavioral

cloning from observation (BCO) [46], and 390% for T-REX [7], com-

pared to not using any gaze information at all. Moreover, we show

that to improve performance, human gaze is more informative than

information already encoded in the visual state space in the form

of motion of the visual scene.

We also show that CGL outperforms two baseline methods

that incorporate gaze information for imitation learning: (1) gaze-

modulated dropout (GMD) [9] and (2) attention guided imitation

learning (AGIL) [54]. Similar to our approach, GMD does not use

additional learning parameters, whereas AGIL does. We find that

compared to AGIL, our auxiliary gaze loss is more efficient in in-

corporating gaze i.e. CGL improves performance more in low data

regimes and does not require additional learnable parameters. We

provide an analysis that shows that much of the performance im-

provement in AGIL comes from an increased number of model

parameters and access to test-time gaze data, neither of which are

required by CGL. We further perform analyses to show CGL indeed

successfully guides learning agents to attend to important regions

predicted by human gaze models through saliency map visualiza-

tion [15]. Finally, we also show experimental results that explain

part of the gains with CGL can come from its ability to partially

eliminate causal confusion.

2 RELATED WORK

2.1 Imitation Learning for Atari Games

When learning from demonstrations, Atari game playing has been

attempted with various imitation learning approaches. Behavioral

cloning (BC) [3, 10, 34] is a class of imitation learning methods,

where an agent learns a policy by using the demonstrated states

and actions from the expert as input data for supervised learning.

Behavioral cloning from observation (BCO) [46] is a two-phase,

iterative imitation learning technique ś first allowing the agent

to acquire self-supervised experience in a task-independent pre-

demonstration phase, which is then used to learn a model for a

specific task policy only from state observations of expert demon-

strations (without access to actions). The self-supervision produces

an inverse dynamics model to infer actions, given state observa-

tions. This model is then used to infer expert actions from state-only

demonstrations. The inferred actions along with state information

are then used to perform imitation learning for the agent’s policy.

GAIL [20] is an adversarial imitation learning approach trained

by alternating the learning updates between a generator policy

network and a discriminator network distinguishing between the

demonstrated and generated trajectories. It achieved state-of-the-

art performance for low-dimensional domains. BCO shows com-

parable performance to GAIL on low-dimensional MuJoCo bench-

marks [45] with increased learning speed.

Behavioral cloning does not explicitly model the goals or in-

tentions of the demonstrations which a succinct reward function

attempts to capture in inverse reinforcement learning (IRL), another

class of imitation learning approaches. Typically, such a succinct

inferred reward function makes IRL have better generalization prop-

erties compared to behavioral cloning [34]. The inferred reward

function of the demonstrator can then be used by RL algorithms

to learn the optimal policy. Most deep learning-based IRL methods

either require access to demonstrated actions [21] or do not scale to

high-dimensional tasks such as video games [13, 14, 33]. Tucker et

al. [47] showed that their adversarial IRL method is difficult to train

and fails at high-dimensional tasks of Atari game playing, even

with extensive parameter tuning. Aytar et al. [2] learn a reward

function from observations for three Atari games. They guide the

agent to exactly imitate the checkpoints from provided demonstra-

tions, assuming access to high-quality demonstrations. A recent

IRL method called T-REX [7] is a reward learning from observation

algorithm, that extrapolates beyond a set of ranked and potentially

suboptimal demonstrations. T-REX outperforms other imitation

learning methods such as BCO and GAIL, on Atari and MuJuCo

benchmarks [45] and also demonstrates the ability to extrapolate

intentions of a suboptimal demonstrator. However, a performance

gap in terms of the final scores achieved exists between reinforce-

ment and imitation learning methods for Atari game playing. In

our work, we propose to reduce this gap by incorporating an addi-

tional information modality in the form of human gaze for imitation

learning.

2.2 Utilizing Gaze for Learning

Prior studies have shown that human fovea moves to the correct

place at the right time to extract task-relevant information, making

visual attention a feature selection mechanism for humans [16, 35].

Human gaze information can be used in many ways to help AI

agents learn a variety of tasks [55]. Novice human learners can

benefit from observing experts’ gaze [48] for learning complex sur-

gical skills. Yamani et al. [51] showed that viewing expert gaze

videos can improve the hazard anticipation ability of novice dri-

vers. Saran et al. [36, 37] showed the advantage of incorporating

a human demonstrator’s gaze for learning robotics manipulation

tasks. Penkov et al. [29] learn the mapping between abstract task

plan symbols and their physical instances in the environment us-

ing eye gaze. Gaze has been exploited in prior imitation learning

approaches for autonomous driving [9, 50] and Atari Games [54],

but to the best of our knowledge, our work is the first attempt to

incorporate gaze in a deep IRL algorithm (T-REX).





Table 1: Comparison between PPO network attention and human gaze attention using KL divergence. The values represent

the average KL divergence between gaze heat maps and RL attention heat maps for 100 uniformly sampled images from a

policy rollout of the PPO agent.

RL Attention →
Human Attention ↓

asterix breakout centipede ms_pacman phoenix seaquest

asterix 1.72 6.97 4.64 3.13 14.61 6.34

breakout 5.26 2.09 4.94 3.80 11.13 5.57

centipede 4.43 6.40 1.86 3.34 9.86 5.71

ms_pacman 4.53 6.46 5.49 1.78 13.34 5.92

phoenix 4.29 10.75 5.19 3.59 3.55 6.49

seaquest 5.07 7.70 5.97 3.51 14.10 3.03

attend to parts of the image that the human demonstrator focused

on, but will have no penalty for activations where the demonstrator

did not pay attention. We refer to the proposed loss function as a

coverage-based gaze loss (CGL).

CGL operates on the human gaze heatmap and the output of the

last convolutional layer. For consistency in comparison with base-

lines, gaze heatmaps are generated using convolution-deconvolution

networks trained on real human gaze data [54]. Activation feature

maps from the last convolutional layer [39] of image classification

CNNs are shown to have the best compromise between high-level

semantics and detailed spatial information. Given a 3D feature map

of sizeℎ×𝑤×𝑐 from a convolutional layer, it is collapsed to a feature

map 𝑓 of size ℎ × 𝑤 using a 1 × 1 convolutional filter. Equation

3 shows the normalization of this feature map 𝑓 using a softmax

operator to values between 0 and 1. Given a normalized 2D gaze

heatmap 𝑔 of size ℎ ×𝑤 , CGL is computed as:

𝐶𝐺𝐿(𝑔, 𝑓
′

) =
∑︁

𝑖∈(1,ℎ)

∑︁

𝑗 ∈(1,𝑤)

𝑔𝑖, 𝑗

[
log

𝑔𝑖, 𝑗 + 𝜖

𝑓
′

𝑖, 𝑗 + 𝜖

]
(2)

where

𝑓
′

𝑖, 𝑗 =
exp𝑓𝑖,𝑗

∑𝑘=ℎ−1
𝑘=0

∑𝑗=𝑤−1
𝑗=0 exp𝑓𝑘,𝑙

(3)

CGL adds a penalty if activations from none of the convolutional

filters are high on areas where the demonstrator’s gaze fixates dur-

ing gameplay. Only regions of the gaze map which have a non-zero

value contribute to the auxiliary loss, and other regions of the con-

volutional output which are not fixated on by the demonstrator do

not affect the loss term. Hence, our loss term encourages coverage of

the demonstrator’s attended regions. This is because unattended re-

gions may also contain information necessary for decision-making

[30].

The magnitude of the penalty is computed using a smoothed

(𝜖 = 2.2204𝐸−16) KL divergence term between the normalized gaze

map and the collapsed and normalized convolutional map, and is

then weighted by the amount of gaze fixation an image region

gets (Equation 2). Instead of forcing the filter weights to exactly

match the demonstrator’s gaze, CGL guides the network to focus

on aspects of the state space which might be missed by the network,

for example, areas of the image which are not feature-rich but are

critical for decision-making (e.g., the ball in Fig. 6(a)), eventually

leading to better performance. A loss function which encourages

a network to attend proportional to the human’s gaze frequency

instead, will be more restrictive.

3.2.1 Auxiliary Gaze Loss for BC. For the behavioral cloning (BC)

method, the gaze coverage loss is added as an auxiliary loss term

in addition to the log likelihood action classification loss:

L(𝜃 ) =

𝑁∑︁

𝑖=1

[
− (1 − 𝛼) log𝜋𝜃 (𝑎𝑖 |𝑠𝑖 ) + 𝛼 𝐶𝐺𝐿(𝑔(𝑠𝑖 ), 𝑐3 (𝑠𝑖 ))

]
(4)

The network architecture is similar to the one used in Zhang

et al. [54], comprising of three convolutional layers and one fully-

connected layer. It takes in a single game image as input and outputs

a vector that gives the probability of each action. The gaze coverage

loss is applied to the feature maps at the third convolutional layer.

𝑔(𝑠𝑖 ) is the gaze map of size 21 × 21, 𝑐3 (𝑠𝑖 ) is the collapsed and

normalized feature map of size 21× 21 (Equation (3)) from the third

convolutional layer.

3.2.2 Auxiliary Gaze Loss for BCO. For BCO [46], we incorporate

CGL as part of learning the imitation policy after the agent learns

an inverse-dynamics model of the environment. Similar to Torabi

et al. [46], we use a neural network with three convolutional layers

and one fully-connected layer using a stack of four consecutive

frames as input. The output is the probability distribution over the

discrete action space of the Atari domain. The network is learned

using maximum likelihood estimation (MLE), finding the network

parameters that best match the provided state-action pairs ś states

𝑠𝑖 obtained from a demonstrated trajectory 𝜏𝑖 and actions 𝑎𝑖 recov-

ered from the inverse dynamics model. The new loss function is a

weighted combination of the standard cross-entropy loss for MLE

and CGL applied to the output of the last convolutional layer as

shown below.

L(𝜃 ) =

𝑁∑︁

𝑖=1

[
− (1 − 𝛼) log𝜋𝜃 (𝑎𝑖 |𝑠𝑖 ) + 𝛼 𝐶𝐺𝐿(𝑔(𝑠𝑖 ), 𝑐3 (𝑠𝑖 ))

]
(5)

Here, 𝜋𝜃 is the imitation policy network, 𝑔(𝑠𝑖 ) is the gaze map

of size 84 × 84, 𝑐3 (𝑠𝑖 ) is the collapsed and normalized feature map

(Equation (3)) from the last convolutional layer (7 × 7 size map

upsampled to 84 × 84).

3.2.3 Auxiliary Gaze Loss for T-REX. T-REX [7] is concerned with

the problem of reward learning from observation, using rankings

of demonstrations to efficiently infer a reward function. To the best



of our knowledge, gaze has not been incorporated as part of a deep

inverse reinforcement learning. Given a sequence of𝑚 demonstra-

tions ranked from worst to best, 𝜏1, . . . , 𝜏𝑚 , a parameterized reward

network 𝑟𝜃 is trained with a cross-entropy loss over a pair of tra-

jectories (𝜏𝑖 ≺ 𝜏 𝑗 ), where 𝜏 𝑗 is ranked higher than 𝜏𝑖 . We add CGL

to the reward network’s loss, so the new loss function becomes:

L(𝜃 ) =

(1 − 𝛼)

[
−

∑︁

𝜏𝑖 ≺𝜏 𝑗

log
exp

∑
𝑠∈𝜏 𝑗 𝑟𝜃 (𝑠)

exp
∑
𝑠∈𝜏𝑖 𝑟𝜃 (𝑠) + exp

∑
𝑠∈𝜏 𝑗 𝑟𝜃 (𝑠)

]

+ 𝛼

[ ∑︁

𝑠∈𝜏𝑖

𝐶𝐺𝐿(𝜏
𝑔
𝑖 (𝑠), 𝑐4 (𝑠)) +

∑︁

𝑠∈𝜏 𝑗

𝐶𝐺𝐿(𝜏
𝑔
𝑗 (𝑠), 𝑐4 (𝑠))

]
(6)

𝜏
𝑔
𝑖 (𝑠) represents the gaze map corresponding to the state 𝑠 from

the trajectory snippet 𝜏𝑖 and 𝑐4 (𝑠) represents the collapsed and

normalized version of the last convolutional layer’s output for the

same state 𝑠 . The loss function accumulates gaze over the entire

trajectory snippet for both trajectories used as input to the network.

We use the default implementation of T-REX from Brown et al.

[7]. The reward network has four convolutional layers. The gaze

loss is computed over the last convolutional layer output ś a spatial

map of size 16 × 7 × 7 (normalized, collapsed and upsampled to the

size of the gaze heatmaps 84 × 84). At the end, a fully connected

layer with 64 hidden units with a single scalar output is used to

determine the ranking between a pair of demonstrations.

Similar to the implementation of Brown et al. [7], the trajectories

are first subsampled by maximizing over every 3rd and 4th frame,

from which a stack of 4 consecutive frames with pixel values nor-

malized between 0 and 1 is passed as input to the reward network.

The snippets are ranked based on ground truth rewards or cumula-

tive game scores of the trajectories they are sampled from. A PPO

agent is then trained using the learned reward to obtain a policy

for gameplay.

3.3 Other Techniques to Incorporate Gaze

Here we describe two alternative methods incorporating human

gaze for imitation learning, which we compare against.

3.3.1 Gaze-modulated Dropout (GMD). As a baseline for learning

from human gaze, we implement GMD [9] for the first two convolu-

tional layers of the BCO policy network Torabi et al. [46]. The BCO

policy network does not originally use dropout layers. Gaze maps

are generated using a convolution-deconvolution network [54],

trained separately for each game on the Atari-HEAD dataset [57].

The gaze prediction network uses as input a stack of 4 consecutive

game frames, each of size 84 × 84. Details of the network architec-

ture are similar to Zhang et al. [54]. We employ this network for

gaze prediction, as it has been shown to work well for the Atari

domain, instead of the Pix2Pix network [22] used by Chen et al. [9]

for the autonomous driving domain. The generated gaze map is

then used as a mask for the additional dropout layer added after

first two the convolutional layers as described by Chen et al. [9].

Units of the convolutional layer near the estimated gaze location

are assigned a lower dropout probability than units far from the

estimated gaze location. This is similar to conventional dropout

[41], but with non-uniform dropout probability for spatial units

corresponding to different parts of the image space.

3.3.2 Attention Guided Imitation Learning (AGIL). AGIL adds more

parameters to a BC network to utilize gaze. The output of the gaze

prediction network is used as input to an additional convolutional

pathway in a modified version of standard behavioral cloning. AGIL

consists of two channels of 3 convolutional layers. One channel

takes as input a single image frame (game state) and another uses

a masked image which is an element-wise product of the original

image and predicted gaze saliency map. Finally, the outputs of the

two channels are averaged to predict one of the 18 actions within

ALE [4]. We use the same hyperparameters provided by Zhang et

al. [54] for the implementation of AGIL.

4 EXPERIMENTS AND RESULTS

We use demonstrations from 20 games in ALE [4] with varying

dynamics and features. Demonstrations and corresponding human

gaze data are from the publicly available Atari-HEAD dataset [57].

We augmented three imitation learning algorithms with CGL Ð BC,

BCO, and T-REX. These algorithms were implemented in the Ope-

nAI Gym platform [6], which contains Atari 2600 video games with

high-dimensional observation space (raw pixels). All reported re-

sults were game scores averaged over 30 different rollouts (episodes)

of the learned policy, similar to the procedure followed by Zhang

et al. [54]. We used the default settings from OpenAI baselines [12]

for parameters of ALE [4]. All experiments are conducted on server

clusters with NVIDIA 1080, 1080Ti, Titan V, or DGX GPUs.

For evaluation, we intend to show improvement in terms of

game scores using CGL. We calculate the improvement factor over

baseline in the following way: improvement = (new score - baseline

score) / baseline score. If both the baseline score and the new score

are zero, improvement is zero. However, for some games baseline

game scores are zeroes but new scores are non-zero. In such cases,

the improvement will not be calculated. We report average improve-

ment (including games in which improvements are negative) across

20 games. Details on the experiments and individual games scores

can be found in the Appendix. Note that the improvement factors

are underestimated, due to the way we handle zero score games.

4.1 CGL Improves BC

BC+CGL outperforms basic BC on 19 out of 20 games with 15 min-

utes of demonstration data (Fig. 3). On average, the improvement

is 95.1% (Table 6). With all 300 minutes of human gameplay data,

BC+CGL outperforms BC on all 20 games with an average improve-

ment of 86.2% (Table 7). The hyperparameter 𝛼 is tuned using a

grid search from a set of 7 values Ð 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9.

Batch size 𝑁 = 50 and Adadelta optimizer [53] is used for all models

based on BC.

4.1.1 Efficiency of CGL in terms of Learnable Parameters. Previous

methods (such as AGIL) incorporate human attention by introduc-

ing extra parameters to the model due to additional neural network

modules added. To tease apart whether improvement in these ap-

proaches comes from increased parameters to standard behavioral

cloning or from the gaze information itself, we perform the follow-

ing experiment. We re-train the AGIL network, but instead of using





Table 2: Average (across 20 games) improvement over the T-

REXbaseline. Result is presented as asmean±standard error

of the mean (N=20). Individual game scores of all agents can

be found in Tables 10 and 11.

Improvement over T-REX (%) T-REX+CGL

30min data 390.4 ± 203.5

300min data 373.6 ± 206.5

also beneficial in predicting human gaze [54], the average gain from

CGL is higher than that from motion, more so with 300 minutes

of demonstration data (Fig. 4). The games Berzerk, Centipede, and

River Raid show consistent performance improvements with CGL

compared to motion, regardless of the amount of training data used.

Prior work [52] has also shown that using optical flow between

two frames as the attention map provides moderate performance

improvements in Atari Games. Incorporating both gaze and motion

information simultaneously in an auxiliary loss can be investigated

as part of future work.

4.3 CGL Improves T-REX

T-REX is an inverse reinforcement learning algorithm which com-

pares pairs of trajectory snippet to learn the reward. Along with full

300 minutes of demonstration data, we evaluate with 30 minutes

of demonstration data to compare trajectories from two different

demonstrations (each demonstration in Atari-HEAD [57] was at

least 15 minutes long and T-REX requires at least two demonstra-

tions to compute the reward function). The hyperparameter 𝛼 is

tuned using a grid search from a set of 9 values Ð 0.001, 0.005,

0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 and the Adam optimizer [24] is used.

T-REX+CGL outperforms basic T-REX on 15 out of 20 games both

with 30 minutes and 300 minutes worth of training data (Tables

10 and 11). On average, the improvement due to CGL is 390.4%

with 30 minutes of data, and 373.6% with 300 minutes of data (Ta-

ble 2). There are four games that T-REX achieves scores of zero

but T-REX+CGL can achieve non-zero scores (Tables 10 and 11). To

the best of our knowledge, CGL is the first method to augment the

learning of an IRL algorithm with human gaze.

4.4 Best Performing Models for each Game

We then summarize the best game scores obtained from various

algorithms presented above. The results are shown in Table 3. We

notice that CGL augmented methods achieve the best results in 15

out of 20 games. For comparison, we also show DQN scores [18, 28]

as a reference (the evaluation methods are slightly different). With

human gaze information (especially with CGL), imitation learning

algorithms start to match and even outperform DQN. Note that

DQN is trained with 200M samples per game, while IL methods are

at most trained with 360K samples (300 minutes of human data).

4.5 Visualizing CGL Attention

We can analyze whether the CGL agents have successfully learned

to pay attention to the critical regions highlighted by human saliency

maps in two ways. First, we directly visualize the activation map

Table 3: A summary of the best game scores obtained. DQN

scores are from no-op starts evaluation regime table of [17]

, except for game Riverraid [28]. With human gaze infor-

mation (especiallywithCGL), imitation learning algorithms

start to match and even outperform DQN.

Game Algorithm (#demo) Score DQN Score

alien AGIL (300min) 2104.7 1620.0

asterix T-REX+CGL (30min) 66445.0 4359.0

bank_heist BC-2ch (300min) 174.3 455.0

berzerk BCO+CGL (15min) 687.67 585.6

breakout T-REX+CGL (300min) 438.4 385.5

centipede T-REX+CGL (30min) 20762.5 4657.7

demon_attack T-REX+CGL (300min) 17589.0 12149.4

enduro BC+CGL (300min) 445.1 729.0

freeway BC-2ch (300min) 31.4 30.8

frostbite BC+CGL (30min) 5897.7 797.4

hero BC+CGL (15min) 19023.2 20437.8

montezuma BC+CGL (300min) 1720.0 0.0

ms_pacman BC+CGL (30min) 2739.7 3085.6

name_this_game AGIL (300min) 5817.0 8207.8

phoenix AGIL (300min) 5140.0 8485.2

riverraid T-REX+CGL (300min) 7370.0 8316.0

road_runner BC+CGL (300min) 33510.0 39544.0

seaquest T-REX+CGL (30min) 759.3 5860.6

space_invaders T-REX+CGL (300min) 1563.7 1692.3

venture BC+CGL (15min) 376.7 163.0

of the networks trained with and without CGL, which has already

been shown in Fig. 1 for a trained BCO agent. However, this only

shows that the convolutional layer we applied CGL to behaves as

expected.

We use a second method to show that the whole trained network

has learned to attend to the desired region with CGL. We visualize

the attention maps of trained CGL agents with a method commonly

used to provide visual interpretations of deep RL agents [15]. The

algorithm takes an input image 𝐼 and applies a Gaussian filter to

a pixel location (𝑖, 𝑗) to blur the image. This manipulation adds

spatial uncertainty to the surrounding region and produces a per-

turbed image Φ(𝐼 , 𝑖, 𝑗). A saliency score for this pixel (𝑖, 𝑗) can be

defined as how much the blurred image changes the network out-

put [15]. Doing this for every pixel results in a saliency map that

approximates the łattention" of a network. The results for a case

of Breakout where CGL outperforms the baseline T-REX method

can be found in Fig. 6, where the T-REX+CGL agent successfully

learned to focus on the ball like the human did, while the T-REX

agent did not. We also highlight a failure case with MsPacman,

where the CGL agent does not outperform baseline T-REX. We find

that the network fails to attend to both modes of attention in the

human’s gaze map.

4.6 Reducing Causal Confusion with CGL

Discriminative models for IL such as BC are non-causal, i.e. the

training procedure is unaware of the causal structure of the in-

teraction between the demonstrator and the environment. Causal

misidentification is the phenomenon where cloned policies fail by





network with convolutional layers. Our experiments showed im-

proved performance on several Atari games over standard imitation

learning algorithms. Our approach provides these gains without

requiring gaze prediction at test time or increasing the model com-

plexity of existing algorithms. We outperform a baseline method

(GMD), which also does not increase model complexity. CGL is

more efficient in terms of both learnable parameters and data ef-

ficiency when compared to a state-of-the-art gaze-augmented IL

method (AGIL) which utilizes gaze in the form of additional input

to a BC algorithm. AGIL requires gaze prediction at test time and is

shown to gain performance by increasing model complexity alone.

Our approach improved performance by utilizing gaze without

these shortcomings. We also highlighted that utilizing human gaze

provides additional information to what is encoded implicitly in

the game state (such as motion). Our work confirms prior research

showing gaze can help extract more information from a demonstra-

tor than traditional state-action pairs, bridging some of the gap in

performance between IL and RL agents.

6 DISCUSSION AND FUTUREWORK

Human attention can be seen as a form of spatial prior on the visual

input. In deep learning research, this prior is often used as a mask to

filter out unimportant information (e.g., AGIL). This approach has

two main drawbacks. First, it requires the mask at testing time. Sec-

ondly, some unattended visual features handled by human memory

systems could still be useful for decisions. Therefore, completely

filtering out all unattended information seems inappropriate. In this

work, we present a novel method to incorporate gaze effectively

that only requires access to human gaze data at training time. More-

over, by utilizing a coverage-based loss, this method highlights the

attended features while keeping the unattended features available

for the learning agent. This novel method in training deep neural

networks can be applied to other learning tasks that utilize other

forms of spatial priors.

One limitation of our approach is the need for extensive hyperpa-

rameter tuning to balance the linear combination of loss functions

during training. Moreover, finding good solutions to optimally bal-

ance multi-objective losses can be especially challenging if the

Pareto front of the loss landscape is concave [5]. Often the shape of

the Pareto front for neural network architectures is unknown and it

can be hard to find an optimal solution to minimize multi-objective

loss functions. Platt and Barr [31] proposed a theoretical framework

(a modified differential method of multipliers) to tune the balance

between the losses in a semantically useful way using stochastic

gradient descent, no matter the shape of the invisible Pareto front.

They introduce an additional damping hyper-parameter which

trades the time to find the Pareto front with the time to converge

to a solution on that front. Going forward, we envision that uti-

lizing such theoretical findings [23] can help the training of CGL

based deep networks by potentially reducing the effort for tuning

hyper-parameters and further improving the performance gains of

incorporating gaze.

Additionally, human gaze and actions from demonstrations may

be correlated in time. Our approach only utilizes gaze per game

state, and so do all other approaches we compare against. Utilizing

temporal connections in the gaze signal is a direction for future

work. We hope our work encourages the research community to

innovate on other novel ideas for efficiently incorporating human

attention as part of different learning frameworks.
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Table 4: The human demonstration data used for BC and

BCO (15 minutes) experiments. The trial IDs are human

data trial IDs from Atari-HEAD dataset, each trial contains

15 minutes of human demonstration data. For experiments

with 300 minutes of data, we include all human trials.

Game Trial ID

alien 474

asterix 213

bank_heist 456

berzerk 468

breakout 198

centipede 204

demon_attack 475

enduro 473

freeway 616

frostbite 479

hero 443

montezuma_revenge 480

ms_pacman 199

name_this_game 484

phoenix 180

riverraid 463

road_runner 483

seaquest 185

space_invaders 455

venture 486

Table 5: The human demonstration data used for TREX (30

minutes) experiments. The trial IDs are humandata trial IDs

from Atari-HEAD dataset, each trial contains 15 minutes of

human demonstration data. For experiments with 300 min-

utes of data, we include all human trials.

Game Trial IDs

alien 464, 474

asterix 213, 301

bank_heist 438, 456

berzerk 454, 468

breakout 198, 218

centipede 204, 210

demon_attack 445, 475

enduro 453, 473

freeway 616, 617

frostbite 466, 479

hero 431, 443

montezuma_revenge 469, 480

ms_pacman 199, 209

name_this_game 458, 484

phoenix 180, 408

riverraid 444, 463

road_runner 460, 483

seaquest 185, 212

space_invaders 364, 455

venture 471, 486

A DEMONSTRATION DATA

We use demonstrations collected in the Arcade Learning Environ-

ment (ALE) [4] for a total of 20 games. Demonstrations from four

participants are publicly available as part of the Atari-HEAD dataset

[57]. The participants were only allowed to play for 15 minutes and

were required to rest for at least 5 minutes before the next trial. The

trial IDs corresponding to 15 minutes and 30 minutes of human

demonstration data are listed in Tables 4 and 5 respectively.

Gaze data was recorded using an EyeLink 1000 eye tracker at

1000Hz. The game screen was 64.6×40.0 cm (or 1280×840 in pixels),

and the distance to the subjects’ eyes was 78.7 cm. The visual angle

of the screen was 44.6 × 28.5 visual degrees, where the visual angle

of an object is a measure of the size of the object’s image on the

retina. In the default ALE setting, the game runs continuously at 60

Hz, a speed that is very challenging even for expert human players.

An innovative feature of the Atari-HEAD [57] setup is that the

game pauses at every frame, until a keyboard action is taken by the

human player. This allows users to fixate at all critical locations of

the state space before taking an action, giving enough reaction time

to a participant and producing a richer gaze signal at every time

step. If desired, the subjects can hold down a key and the game will

run continuously at 20Hz, a speed that is reported to be comfortable

for most players.

A.1 Human Gaze Models

Since our baseline methods require gaze estimates at test time, we

use gaze heatmaps from a prediction network for consistency across

all methods. Gaze data collected with demonstrations is used to

generate gaze heatmaps, which are in turn used for training gaze

prediction networks with the four frames of image stack represent-

ing the game state, optical flow and saliency maps as input. We use

convolution-deconvolution networks trained on real human gaze

data, following the architecture by Zhang et al. [54] for gaze predic-

tion. For experiments with 15 minutes of demonstration data, we

use the gaze data corresponding to the same set of demonstrations

to train the gaze prediction network. We follow a similar approach

for experiments with 30 minutes and 300 minutes of demonstration

data. To generate gaze heatmaps from the data collected during

demonstrations, the discrete gaze positions are converted into a

continuous distribution [8] by blurring each fixation location using

a Gaussian with a standard deviation equal to one visual degree

[26].

B INDIVIDUAL GAME SCORES

The individual game scores corresponding to the aggregated results

shown in Fig. 3, Fig. 4 and Table 2 are listed below.



Table 6: Game scores obtained when using 15 minutes of human demonstration data to train the agents. Results are presented

as mean±standard error of the mean (N=30). The agents we compare are behavioral cloning agent (BC), two channeled be-

havioral cloning agent (BC-2ch), Attention-guided imitation learning agent (AGIL), and proposed coverage-based loss agent

(CGL). The improvement columns show the relative improvement over the BC baseline. Average results over all 20 games are

presented in Fig. 3.

BC BC-2ch AGIL BC+CGL Improv-BC-2ch Improv-AGIL Improv-CGL

alien 1575±176.8 1296.7±140.8 1866.7±171.3 2044.7±242.1 -17.7% 18.5% 29.8%

asterix 285±28.2 283.3±31.1 275±35.9 426.7±27.8 -0.6% -3.5% 49.7%

bank_heist 86.3±9.0 129.3±17.7 169±13.1 143±14.8 49.8% 95.8% 65.7%

berzerk 330.7±22.0 350±22.5 251.7±19.1 366.7±19 5.8% -23.9% 10.9%

breakout 2.2±0.3 2.7±0.3 4.9±0.4 3.7±0.4 22.7% 122.7% 68.2%

centipede 4378.8±442.6 5762.1±687.6 4600.2±333.8 6075.9±845.1 31.6% 5.1% 38.8%

demon_attack 112.2±13.9 177±18.7 148±16.9 205.2±41.9 57.8% 31.9% 82.9%

enduro 11.7±2.0 7.8±1.4 0±0 4.2±1.4 -33.3% -100.0% -64.1%

freeway 29.4±0.2 28.5±0.3 28.1±0.3 30±0.3 -3.1% -4.4% 2.0%

frostbite 1628.3±246.4 1406.3±266.5 3185±352.9 2973±279 -13.6% 95.6% 82.6%

hero 13255.3±845.1 18877.2±509.0 15582.7±789.7 19023.2±679.7 42.4% 17.6% 43.5%

montezuma_revenge 100±31.6 0±0.0 0±0 1200±159.2 -100.0% -100.0% 1100.0%

ms_pacman 843.3±62.8 783.3±55.8 1072.3±74.8 1348.3±206.9 -7.1% 27.2% 59.9%

name_this_game 1917.3±130.2 2153.3±169.1 2832±194.2 2646.3±156.3 12.3% 47.7% 38.0%

phoenix 1060±172.4 1105±159.7 1171.7±147.6 2193.7±200.5 4.2% 10.5% 107.0%

riverraid 2771.7±141.8 2701.3±128.0 3900.3±223.6 2965.3±184.8 -2.5% 40.7% 7.0%

road_runner 7840±553.3 3820±372.3 6920±518.8 12723.3±376.7 -51.3% -11.7% 62.3%

seaquest 194±11.4 162±9.8 198±12.7 216±11.2 -16.5% 2.1% 11.3%

space_invaders 275±26.2 275±29.3 254.7±21.1 314±26 0.0% -7.4% 14.2%

venture 196.7±26.5 273.3±27.1 73.3±24.9 376.7±16.1 38.9% -62.7% 91.5%

average - - - - 1.0% 10.1% 95.1%

Table 7: Game scores obtained when using all 300 minutes of human demonstration data to train the agents. Results are pre-

sented as mean±standard error of the mean (N=30). The agents we compare are behavioral cloning agent (BC), two channeled

behavioral cloning agent (BC-2ch), Attention-guided imitation learning agent (AGIL), and proposed coverage-based loss agent

(CGL). The improvement columns show the relative improvement over the BC baseline. Average results are shown in Fig. 3.

BC BC-2ch AGIL BC+CGL Improv-BC-2ch Improv-AGIL Improv-CGL

alien 694±97.5 1303.7±147.6 2104.7±180.2 2027.3±140.1 87.9% 203.3% 192.1%

asterix 516.7±54.9 465±32 455±50.1 773.3±63.4 -10.0% -11.9% 49.7%

bank_heist 102.3±8 174.3±13.9 117.3±13.3 156.3±12.5 70.4% 14.7% 52.8%

berzerk 256.7±17.4 379.3±29.3 188.3±24.5 435±42.3 47.8% -26.6% 69.5%

breakout 1.7±0.3 3.6±0.4 3.6±0.4 2.9±0.3 111.8% 111.8% 70.6%

centipede 7704.5±967 7856.8±903.1 9073.7±914.8 9330±922 2.0% 17.8% 21.1%

demon_attack 848.2±140.3 333.8±38.6 2156.2±295.2 1375±216.7 -60.6% 154.2% 62.1%

enduro 386±12.1 385.4±12 278.7±17.5 445.1±17 -0.2% -27.8% 15.3%

freeway 27.6±0.3 31.4±0.1 28.9±0.3 30.2±0.2 13.8% 4.7% 9.4%

frostbite 2016.7±180.2 2331.7±240.4 1980±176.4 3253±254.5 15.6% -1.8% 61.3%

hero 9519.7±874.9 11152±1079.9 7685.7±1100.6 16936.5±1342.6 17.1% -19.3% 77.9%

montezuma_revenge 490±109 1480±168.8 553.3±70.3 1720±156.3 202.0% 12.9% 251.0%

ms_pacman 1200±123.2 1511±144.1 1272.3±128.6 1590±197.1 25.9% 6.0% 32.5%

name_this_game 2887±177.8 5732±288.2 5817±341.7 5405.3±267 98.5% 101.5% 87.2%

phoenix 4029±279.8 4597.3±324.1 5140±405.2 4472.7±440.2 14.1% 27.6% 11.0%

riverraid 2806±164.5 2266.3±65.7 2555.7±56.2 3452.7±242.1 -19.2% -8.9% 23.0%

road_runner 29433.3±1230.3 31776.7±1426.2 29410±1516.2 33510±1026.3 8.0% -0.1% 13.9%

seaquest 175.5±30.7 182.1±12.4 443±124.6 610.7±106.8 3.8% 152.4% 248.0%

space_invaders 243.8±26.7 196±26.4 206±23 363.5±35.7 -19.6% -15.5% 49.1%

venture 73.3±27.9 43.3±20.9 330±21.7 313.3±29 -40.9% 350.2% 327.4%

average - - - - 28.4% 52.3% 86.2%



Table 8: Game scores obtained when using 15 minutes of human demonstration data to train the agents. Results are presented

as mean±standard error of the mean (N=30). The agents we compare are behavioral cloning from observation agent (BCO),

gaze-modulated dropout (GMD), BCO with motion information, and BCO+CGL. The improvement columns show the rela-

tive improvement over the BCO baseline. ł-" indicates that the baseline score is zero hence the relative improvement is not

calculated and is not counted in the average. Average results over all 20 games are presented in Fig. 4.

BCO BCO+GMD BCO+Motion BCO+CGL Improv-GMD Improv-Motion Improvement-CGL

alien 0.0 ± 0.0 140.00 ± 0.00 140.00 ± 0.00 140.00 ± 0.00 - - -

asterix 288.33 ± 30.48 645.00 ± 33.28 700.00 ± 0.00 253.33 ± 9.11 123.70% 142.80% -12.10%

bank_heist 0.0 ± 0.0 0.00 ± 0.00 8.67 ± 0.62 0.00 ± 0.00 0% - 0%

berzerk 158.33 ± 16.45 263.67 ± 26.36 528.33 ± 17.11 687.67 ± 27.98 66.50% 233.70% 334.30%

breakout 0.0 ± 0.0 2.30 ± 0.08 2.30 ± 0.08 0.60 ± 0.17 - - -

centipede 646.83 ± 79.70 2707.83 ± 309.30 3234.13 ± 167.51 5047.93 ± 410.74 318.60% 400% 680.41%

demon_attack 157.33 ± 20.87 844.00 ± 88.40 806.00 ± 85.25 791.83 ± 77.56 436.50% 412.30% 403.30%

enduro 0.0 ± 0.0 0.13 ± 0.13 1.57 ± 0.72 7.77 ± 0.76 - - -

freeway 0.0 ± 0.0 21.30 ± 0.21 21.30 ± 0.21 21.30 ± 0.21 - - -

frostbite 116.33 ± 6.86 79.33 ± 2.94 80.67 ± 6.43 160.00 ± 0.00 -31.80% -30.70% 37.50%

hero 0.0 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

montezuma_revenge 0.0 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

ms_pacman 60 ± 0 379.00 ± 11.27 210.00 ± 0.00 210.00 ± 0.00 531.70% 250% 250%

name_this_game 694.67 ± 86.88 2183.00 ± 52.93 2770.00 ± 0.00 2770.00 ± 0.00 214.20% 298.80% 298.80%

phoenix 282 ± 28.95 352.67 ± 29.26 407.33 ± 66.01 256.67 ± 22.43 25.10% 44.40% -9%

riverraid 360 ± 0 1029.33 ± 13.48 236.00 ± 10.93 1250.00 ± 0.00 185.90% -34.40% 247.20%

road_runner 0.0 ± 0.0 473.33 ± 77.16 500.00 ± 91.29 956.67 ± 9.05 - - -

seaquest 0.0 ± 0.0 102.00 ± 4.46 140.00 ± 0.00 140.00 ± 0.00 - - -

space_invaders 220.83 ± 27.76 195.17 ± 17.64 285.00 ± 0.00 270.00 ± 0.00 -11.60% 29.10% 22.30%

venture 0.0 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

average - - 132.8% 134.3% 160.9%

Table 9: Game scores obtained when using 300 minutes of human demonstration data to train the agents. Results are pre-

sented as mean±standard error of the mean (N=30). The agents we compare are behavioral cloning from observation agent

(BCO), gaze-modulated dropout (GMD), BCO with motion information, and BCO+CGL. The improvement columns show the

relative improvement over the BCO baseline. ł-" indicates that the baseline score is zero hence the relative improvement is

not calculated and is not counted in the average. Average results over all 20 games are presented in Fig. 4.

BCO BCO+GMD BCO+Motion BCO+CGL Improv-GMD Improv-Motion Improvement-CGL

alien 140.00 ± 0.00 140.00 ± 0.00 140.00 ± 0.00 140.00 ± 0.00 0% 0% 0%

asterix 181.00 ± 13.02 276.67 ± 24.24 650.00 ± 0.00 690.00 ± 27.33 52.90% 259.10% 281.20%

bank_heist 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

berzerk 145.00 ± 15.87 229.00 ± 22.40 539.00 ± 22.99 572.33 ± 17.71 57.90% 271.70% 294.70%

breakout 0.30 ± 0.08 2.00 ± 0.00 0.60 ± 0.17 0.17 ± 0.07 566.60% 100% -43.30%

centipede 184.00 ± 0.91 3309.03 ± 186.34 3668.27 ± 192.32 8391.03 ± 557.52 1698.40% 1893.60% 4460.30%

demon_attack 127.67 ± 19.33 180.00 ± 18.60 806.00 ± 85.25 806.00 ± 85.25 41.00% 531.30% 531.30%

enduro 2.93 ± 0.81 0.37 ± 0.17 0.07 ± 0.05 0.00 ± 0.00 -87.20% -97.60% -100%

freeway 0.00 ± 0.00 21.30 ± 0.21 21.30 ± 0.21 21.30 ± 0.21 - - -

frostbite 102.33 ± 6.14 329.67 ± 53.65 160.00 ± 0.00 124.00 ± 12.68 222.20% 56.40% 21.20%

hero 0.00 ± 0.00 150.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - 0% 0%

montezuma_revenge 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

ms_pacman 60.00 ± 0 210.00 ± 0.00 210.00 ± 0.00 210.00 ± 0.00 250.00% 250.00% 250.00%

name_this_game 1158.00 ± 50.88 1808.00 ± 75.44 2770.00 ± 0.00 2770.00 ± 0.00 56.10% 139.20% 139.20%

phoenix 147.33 ± 6.22 444.00 ± 52.35 474.00 ± 75.41 356.43 ± 70.41 201.40% 221.70% 141.90%

riverraid 360.00 ± 0.00 1646.33 ± 50.27 440.00 ± 0.00 1222.00 ± 3.98 357.30% 22.20% 239.40%

road_runner 0.00 ± 0.00 493.33 ± 97.52 956.67 ± 9.05 0.00 ± 0.00 - - 0%

seaquest 0.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 180.00 ± 0.00 - - -

space_invaders 398.00 ± 16.65 278.00 ± 11.71 285.00 ± 0.00 273.17 ± 11.93 -30.20% -28.40% -31.40%

venture 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0% 0% 0%

average - - - - 211.7% 212.9% 343.6%



Table 10: Game scores obtained when using 30 minutes of human demonstration data to train the T-REX agents. Results are

presented as mean±standard error of the mean (N=30). The improvement columns show the relative improvement over the

T-REX baseline. ł-" indicates that the baseline score is zero hence the relative improvement is not calculated and is not counted

in the average. Average results over all 20 games are presented in Table 2.

T-REX T-REX +CGL Improv-CGL

alien 727.00 ± 52.24 800.33 ± 66.44 10.1%

asterix 5023.33 ± 431.17 66445.00 ± 7444.18 1222.7%

bank_heist 0.00 ± 0.00 19.33 ± 3.86 -

berzerk 273.33 ± 10.20 584.00 ± 22.18 113.7%

breakout 46.33 ± 1.75 386.77 ± 25.42 734.8%

centipede 8369.30 ± 971.79 20762.47 ± 2120.94 148.1%

demon_attack 3846.00 ± 513.18 6767.33 ± 783.84 75.9%

enduro 0.00 ± 0.00 0.00 ± 0.00 0.0%

freeway 0.00 ± 0.00 0.07 ± 0.05 -

frostbite 1.00 ± 0.55 36.67 ± 1.28 3567.0%

hero 0.00 ± 0.00 0.00 ± 0.00 0.0%

montezuma_revenge 0.00 ± 0.00 0.00 ± 0.00 0.0%

ms_pacman 967.00 ± 84.22 577.33 ± 61.54 -40.3%

name_this_game 2262.00 ± 104.89 4081.00 ± 175.34 80.4%

phoenix 303.67 ± 28.24 502.67 ± 39.24 65.5%

riverraid 1748.00 ± 31.49 5201.67 ± 203.35 197.6%

road_runner 0.00 ± 0.00 2660.00 ± 359.77 -

seaquest 0.00 ± 0.00 759.33 ± 12.56 -

space_invaders 607.00 ± 44.32 923.50 ± 59.82 52.1%

venture 0.00 ± 0.00 0.00 ± 0.00 0.0%

average - - 390.4%



Table 11: Game scores obtained when using 300 minutes human demonstration data to train the T-REX agents. Results are

presented as mean±standard error of the mean (N=30). The improvement columns show the relative improvement over the

T-REX baseline. ł-" indicates that the baseline score is zero hence the relative improvement is not calculated and is not counted

in the average. Average results over all 20 games are presented in Table 2.

T-REX T-REX +CGL Improv-CGL

alien 359.67 ± 8.48 1007.33 ± 48.94 180.10%

asterix 15231.67 ± 2401.26 17073.33 ± 2253.10 12.10%

bank_heist 2.33 ± 0.77 7.00 ± 1.17 200.40%

berzerk 411.67 ± 40.87 596.67 ± 32.52 44.90%

breakout 53.33 ± 1.30 438.40 ± 17.59 722.10%

centipede 16363.07 ± 1993.35 13532.70 ± 1550.44 -17.30%

demon_attack 463.17 ± 138.3 17589.00 ± 1727.02 3697.50%

enduro 0.90 ± 0.57 0.67 ± 0.16 -25.60%

freeway 0.00 ± 0.00 0.07 ± 0.05 -

frostbite 22.67 ± 1.88 208.00 ± 6.28 817.50%

hero 0.00 ± 0.00 2.50 ± 2.46 -

montezuma_revenge 0.00 ± 0.00 0.00 ± 0.00 0%

ms_pacman 314.00 ± 22.41 527.33 ± 38.74 67.90%

name_this_game 3331.67 ± 185.85 4010.67 ± 147.50 20.40%

phoenix 4322.33 ± 363.98 2123.67 ± 164.78 -50.90%

riverraid 5812.67 ± 233.48 7370.00 ± 262.18 26.80%

road_runner 0.00 ± 0.00 1286.67 ± 111.73 -

seaquest 0.00 ± 0.00 729.33 ± 16.32 -

space_invaders 410.50 ± 46.54 1563.67 ± 144.76 280.90%

venture 0.00 ± 0.00 0.00 ± 0.00 0%

average - - 373.6%

Table 12: Confounding study results. Game scores are obtained when using 15 minutes of human demonstration data to train

the agents. Results are presented as mean±standard error of the mean (N=30). The change columns show the relative change

over the non-confounded baselines. On average CGL agents suffer less when trained with confounded data, and still perform

better than behavioral cloning (BC) agents. These results are discussed in Sec. 4.6.

BC CGL Improv-CGL BC-confounded CGL-confounded Improv-CGL-confounded Change-BC Change-CGL

alien 1575±176.8 2044.7±242.1 29.8% 73±9.3 439.3±63.4 501.8% -95.4% -78.5%

asterix 285±28.2 426.7±27.8 49.7% 243.3±23.1 363.3±30 49.3% -14.6% -14.9%

bank_heist 86.3±9.0 143±14.8 65.7% 22.3±3.2 15.3±2.8 -31.4% -74.2% -89.3%

berzerk 330.7±22.0 366.7±19 10.9% 101.7±11.2 322±21.5 216.6% -69.2% -12.2%

breakout 2.2±0.3 3.7±0.4 68.2% 0±0 0.4±0.1 - -100.0% -89.2%

centipede 4378.8±442.6 6075.9±845.1 38.8% 5320.8±705.5 5808.5±640.5 9.2% 21.5% -4.4%

demon_attack 112.2±13.9 205.2±41.9 82.9% 120.5±10 200.7±32.1 66.6% 7.4% -2.2%

enduro 11.7±2.0 4.2±1.4 -64.1% 3.3±0.7 8.3±1.5 151.5% -71.8% 97.6%

freeway 29.4±0.2 30±0.3 2.0% 23.9±0.2 26.5±0.2 10.9% -18.7% -11.7%

frostbite 1628.3±246.4 2973±279 82.6% 189.3±3.7 710±99.3 275.1% -88.4% -76.1%

hero 13255.3±845.1 19023.2±679.7 43.5% 109.7±97.8 10038.3±647.6 9050.7% -99.2% -47.2%

montezuma_revenge 100±31.6 1200±159.2 1100.0% 0±0 0±0 0.0% -100.0% -100.0%

ms_pacman 843.3±62.8 1348.3±206.9 59.9% 281±65.4 397±31 41.3% -66.7% -70.6%

name_this_game 1917.3±130.2 2646.3±156.3 38.0% 2204.7±196.1 3179.3±173.4 44.2% 15.0% 20.1%

phoenix 1060±172.4 2193.7±200.5 107.0% 550.3±76.8 1657±263.9 201.1% -48.1% -24.5%

riverraid 2771.7±141.8 2965.3±184.8 7.0% 2457±113.8 2105±67.1 -14.3% -11.4% -29.0%

road_runner 7840±553.3 12723.3±376.7 62.3% 6290±364.1 10023.3±396 59.4% -19.8% -21.2%

seaquest 194±11.4 216±11.2 11.3% 182.7±10.3 182±10.1 -0.4% -5.8% -15.7%

space_invaders 275±26.2 314±26 14.2% 219.3±21.9 265.5±26.9 21.1% -20.3% -15.4%

venture 196.7±26.5 376.7±16.1 91.5% 6.7±6.6 20±11 198.5% -96.6% -94.7%

average - - 95.1% - - 571.1% -47.8% -34.0%
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