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A unified account of numerosity perception

Samuel J. Cheyette ® > and Steven T. Piantadosi

People can identify the number of objects in sets of four or fewer items with near-perfect accuracy but exhibit linearly increas-
ing error for larger sets. Some researchers have taken this discontinuity as evidence of two distinct representational systems.
Here, we present a mathematical derivation showing that this behaviour is an optimal representation of cardinalities under a
limited informational capacity, indicating that this behaviour can emerge from a single system. Our derivation predicts how the
amount of information accessible to viewers should influence the perception of quantity for both large and small sets. In a series
of four preregistered experiments (N=100 each), we varied the amount of information accessible to participants in number
estimation. We find tight alignment between the model and human performance for both small and large quantities, implicating
efficient representation as the common origin behind key phenomena of human and animal numerical cognition.

accurately than large numerosities'”, suggesting that we

possess two separate representational systems"’: a precise
small-number system, which allows for the rapid identification
of quantities up to around four objects with little error'~*; and an
imprecise large-number system, where the standard deviation of
estimates increases linearly with numerosity*’-'°. This hallmark of
large-number estimation is known as scalar variability and can be
found in many species across the animal kingdom'*"*. However,
the reason why two qualitatively different patterns of representa-
tion would arise in evolution remains obscure. Here we show that
the distinct behaviour on small and large numerosities is actually
expected from a single system that optimally represents quantity
under a resource constraint.

Building on recent information-theoretic approaches to visual
perception’* and studies showing the adaptation of perceptual
systems to environmental statistics*, we assume that the goal
of a numerical processing system is to minimize estimation error.
We further assume that there is a time-dependent constraint on
the numerical system’s ability to process information. Under these
assumptions, we present a derivation that recovers the core proper-
ties of number psychophysics, including (1) nearly exact representa-
tions for small sets*>***, (2) scalar variability in estimation for larger
numbers®'’, (3) an underestimation bias*>*’ that diminishes with
exposure time®, (4) large-number estimation acuity that is modu-
lated by time™' and display contrast, (5) a subitizing range that is
moderated by time’ and contrast®” and (6) roughly normally shaped
response distributions for estimation”*. Beyond these general prop-
erties, we test the quantitative predictions of the model about how
subitizing range, estimation acuity and response distribution shape
should change as functions of the amount of information perceptu-
ally available. Our results show a close agreement between human
participants and bounded-optimal numerosity perception.

People estimate small numerosities much more rapidly and

Results

Model set-up and assumptions. The consensus among cognitive
psychologists is that at least two different systems support numeri-
cal cognition, giving rise to veridical representations of small
numerosities and approximate representations of large numerosi-
ties. However, an alternative possibility is that different performance
characteristics on large and small numbers result from a single psy-
chophysical function, which itself reflects a trade-off between the

benefits of veridical perception and the costs of processing sensory
input. To intuitively understand this alternative, note first that most
decisions that depend on numerosity involve only a small number
of objects. In fact, the ‘need probability’* of number—how often
a numerosity # is encountered and represented—robustly follows
a P(n) x1/n* law. Empirically, the need probability is reflected in
both the frequency of number words**® and how often numerosi-
ties are encountered and used for decision-making in the wild'.
This means, for instance, that we should expect that organisms
need to represent seven about 1/7°=1/49th as often as they need
to represent one. Efficient representational systems will take advan-
tage of this non-uniformity and be better at representing the more
frequently encountered numerosities. Second, universally in infor-
mation theory, rare events require more bits of information to rep-
resent or communicate’**, meaning that high and low numbers
will naturally place differing information processing demands
in virtue of their different probabilities. Third, any organism will
have a finite amount of information processing capability. This is
a physical necessity and a consequence of limited perceptual sys-
tems: the amount of internal precision reserved for representations
should not in general exceed the amount of information provided
by perception®.

Taken together, these facts mean that we should expect different
behaviour from high and low numbers since they differ in prob-
ability; and moreover, we might expect a relatively sharp behav-
ioural discontinuity between them if we assume a hard bound on
information processing ability, with low numbers operating below
the bound and high numbers operating above (and indeed, what is
considered low versus high is determined by the information pro-
cessing bound). We formalize these intuitions by applying standard
measures from information theory and analytically computing the
optimal representation given an information processing bound.
These standard assumptions give rise to the details of number psy-
chophysics as previously determined in behavioural experiments.
As we show, the representation that minimizes mean squared error
subject to a bounded information capacity transitions from exact-
ness to approximation above and below the capacity bound, even
though what is being optimized is a single objective function, itself
representing a single system.

Consider a psychophysical function Q that maps from an
observed quantity to a subjective estimate. Specifically, let Q(k|n)
give the probability that an observed numerosity # is represented
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Fig. 1| Response distributions for two possible forms of Q, with probabilities of estimates for numerosities 1-6. a, The form of a precise estimation
system. b, The form of a scale variable estimation system. The numerosities are indicated by different colours.

internally with quantity k. Thus, maximally precise, veridical repre-
sentations have the form

1, ifk=n

0, otherwise.

Q(k|n) = { (1)

In general, any Q that puts a high probability on k close to n will
have low error rates. Models of large-number estimation typically
assume that estimates are drawn from

Q(k|n) ~ Gaussian(n, wn), (2)

for some constant w, corresponding to scalar variability (a linear
increase in the standard deviation of Q with 7). The response distri-
butions for numerosities 1-6 under these two possible forms of Q
are shown in Fig. 1.

In principle, many forms of Q are logically possible, includ-
ing, for example, agents that precisely represent numbers in some
intermediate range or that fail completely above a given cardinality.
However, we will show that the optimal Q transitions from exact
solutions (as in Fig. 1a) to scalar variability (as in Fig. 1b) under
some basic assumptions. First, we assume that Q(k|n) is chosen to
minimize the expected squared error between an input n and its
representation k:

Eltn— k7] = 32 P03 QK=K (3)

Here, P(n) denotes the need probability of number, which follows a
P(n) x 1/n* power law. Note, however, that this particular power law
is not necessary to recover the key properties of the model—other
need distributions exhibit similar behaviour (Supplementary Fig. 2).

If organisms had unlimited neural resources at their disposal,
then the optimal Q would be given in equation (1)—that is, they
would perfectly encode the numerosity of every set. But neural
resources are not unlimited. Just as scientists do not usually attain
measurements to more than a few digits of precision, an organism’s
information processing systems cannot extract arbitrary amounts of
information from the world. We can formalize this constraint using
a fundamental information-theoretic measure called Kullback-
Leibler divergence (KL divergence)*. KL divergence intuitively
measures how far one distribution differs from another in terms
of bits of information. For instance, two overlapping distributions
will have a small KL divergence, and two distributions that put most
of their probability masses on different outcomes will have a high
KL divergence. For us, KL divergence quantifies how many bits of
information it takes to represent the distribution Q(-|n) starting
with the distribution P(-), or equivalently how much information
processing an organism must do to change its beliefs from P(-) to

Q(+|n). It is natural, therefore, to assume that organisms with limited
information processing ability will only be able to form Q(:|n) that
are boundedly far away from P(-) as measured by KL divergence. In
general, this bound should depend on the amount of time that an
organism has to process a stimulus, since perceptual systems pro-
vide a limited bandwidth. Specifically, we assume that perception
extracts information linearly in time at rate R until an overall capac-
ity bound B is reached. Using Dx1.[Q(+|n) || P(-)] to denote the KL

divergence between P(-) and any hypothetical Q(-|n), the definition
of KL divergence therefore yields the bound

D [Q(1n) || P()] = 3, Q(kln) log %4

o < min(B, Rt) Vn.

(4)

To summarize, we are seeking a function Q(k|n) that gives the
probability that an organism represents n with an internal quan-
tity k. Equation (3) defines an objective function indicating how
accurate any hypothesized Q is in terms of representing the world.
Equation (4) indicates how costly any hypothesized Q is in terms of
information processing. Standard methods in mathematical analy-
sis can directly derive the Q that optimizes equation (3) subject to
the bound in equation (4). This is an optimization problem that can
be solved (Methods) using the method of Lagrange multipliers to
yield an exact analytical solution:

20 0 k) 5)

Q(k|n) o P(k) exp<f
for 4, chosen to satisfy the bound in equation (4). This solution has
a form of a weighted Gaussian with variance 4,/2P(n), though in
our formulation this distribution is discretized. Note that the Euler-
Lagrange equations of the calculus of variations can derive an analo-
gous equation for continuous Q.

Figure 2 shows the value of Q(:|n) across possible numerical
estimates k and the presented numerosity n, for various informa-
tion capacity bounds B (faceted). The derived equation captures the
following properties commonly reported in the literature on the
psychophysics of number: (1) the estimation error is almost zero
for small sets because they are high probability in P(n) and thus
require little information to specify exactly; (2) large sets exhibit
scalar variability since the Gaussian component of equation (5) has
a standard deviation proportional to 1/4/P(n) o n for need distri-
bution P(n) e 1/n% (3) there is an underestimation bias at low infor-
mation bounds (such as two bits) due to the skew caused by the P(k)
term; (4) the estimation acuity (the standard deviation of Q(k|n))
varies with the information bound and thus presentation time; (5)
the subitizing range varies with the information bound; and (6) the
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Fig. 2 | The model's posterior probability over numerosities, when shown
1to 15 objects. The top panel shows the predictions when the model has
two bits of information, the middle panel shows the predictions when it has
four bits, and the bottom panel shows the predictions when it has six bits.
The numerosities are indicated by different colours.

response distributions for large numerosities are roughly normally
distributed, as a result of the form of equation (5).

It is important to emphasize that the roughly Gaussian tuning
curves, exact representations for small sets and scalar variability are
not built in as representational assumptions, but rather arise solely
as a solution to the above optimization problem. The model does
not even assume that Q(k|n) is centred on n, and, in fact, this prop-
erty only approximately holds. Note, though, that while this model
shares many properties with existing psychophysical theories, equa-
tion (5) is neither an exact system nor merely an implementation of
Weber’s law. Instead, this equation recovers the expected behaviour
of both systems in specific regimes.

Experiment. The model makes testable predictions about how esti-
mation acuity, subitizing range and underestimation bias should
depend on the amount of information available to participants. We
evaluated these predictions against human behaviour in a preregis-
tered online numerical estimation experiment (Methods). On each
trial, between 1 and 15 dots were flashed, followed by a noise mask.
The participants were then presented with a text box in which they
typed their guess of how many dots were displayed. There were four
between-participant experiments (N=110 per experiment), which
reflect different ways of manipulating available information (vari-
able exposure time versus display contrast) and different ways of
controlling non-numerical properties of the stimuli (the average dot
size, surface area or density of the dots). Following the preregistra-
tion plan, we removed the 10 participants with the highest mean
absolute error, leaving 100 participants per condition to exclude
participants who weren't paying attention.

We first varied the presentation time of the dot arrays’ (in this
case holding the mean dot size constant). Varying the exposure
time affects the time f in equation (4)—longer presentation times
allow more information to be gathered, until the bound B is met.
The dots were presented for 40 ms, 80 ms, 160 ms, 320 ms or 640 ms.
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We fit B and R using a hierarchical Bayesian model, which partially
pools parameter estimates across participants* with individual par-
ticipant effects on each parameter. Additionally, to account for the
effects of inattention, we fit a ‘guessing’ parameter G, which assumes
that on G proportion of trials, participants had zero bits of informa-
tion about the display, meaning their estimate was effectively a ran-
dom sample from their prior. Group-level parameters were given
(improper) flat priors with standard deviations constrained to be
positive; participant-level parameters were drawn from a normal
distribution centred on the group-level mean.

The inferred group-level information rate was 48.6 bits per sec-
ond (s.d.=10.8), and the group-level bound was 4.2 bits (s.d. =0.6),
which corresponds to a subitizing range of about four. The infor-
mation bound also translates to an average coefficient of variation
of 0.17 for numerosities above the subitizing range. The minimum
information bound (2.8 bits) corresponds to a subitizing range of
merely two. This was about half of the highest information bound
(5.7 bits), which corresponds to a subitizing range of five and nearly
six. The inferred guessing rate was 0.05 (s.d. =0.05), meaning that
estimates in about 1 of 20 trials were probably the result of inatten-
tion. Note that some of the observed variability across participants
is probably due to differences in the display, which were not tightly
controlled, as is the nature of online experiments. Another point
of caution is that the inferred rates and bounds would probably be
lower had we not excluded the 10% of participants with the highest
mean absolute error.

Figure 3a—d shows model posterior predictive fits including par-
ticipant effects and human data for absolute estimation error, mean
estimates and the shape of the response distributions. Critically, Fig.
3a shows that the model predicts that the error of Q(-|n) should also
vary with presentation time, an effect found in human behaviour
in Fig. 3b. Zero estimation error is found for low numbers—subi-
tizing—in both the model and human participants at long display
times. However, error increases even for small quantities at short
presentation times both for the model and for human participants,
reverting instead to scalar variability (a linear relationship) when
the amount of available information is low. This is because less
information in the input reduces the allowable KL divergence in
equation (4), which forces the model to begin to approximate lower
numerosities—even those in the typical subitizing range. Thus, in
both people and the model, subitizing is not driven by a fixed object
capacity, but rather flexibly responds to the amount of information
that is visually available.

Figure 3c shows that the model predicts an underestimation bias
in mean responses that diminishes at longer exposures, which is also
found in human behaviour in Fig. 3d. Note that even at the shortest
durations, the estimates are not random—the mean estimates still
monotonically increase with the number shown in both the model
and people. As predicted by the model, participants’ mean estimates
become increasingly unbiased at longer durations, such that the
average estimate converges on the veridical number after around
160ms. This plot shows that the model is less gradiently sensitive
to time than people are, and this is probably due to our assumption
of strictly linear accumulation in equation (4). Figure 3e shows the
shapes of the model and human response distributions for n=3,
6, 9. These make it clear that it is not just the means and standard
deviations which match closely, but rather the shape of the entire
distribution derived in equation (5) (which was also preregistered).

One popular alternative to a two-systems theory is that number
representations are scale variable even throughout the subitizing
range”**: the error in this range under scalar variability may be
small enough to yield essentially perfect accuracy. We first com-
pared the performance of the model with an implementation of this
theory, which assumes that a participant’s estimate of a number n
is drawn from Gaussian(n, w - n), where w is a constant fit for each
participant. To compare models, we use the Akaike information
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Fig. 3 | Model posterior predictive fits including participant effects and human data for absolute estimation error, mean estimates and the shape of the
response distributions. a,b, Model predictions (a) and human data (b) for the absolute error of the estimates as a function of the number displayed and
the time for the experiment with variable duration and size-controlled stimuli (N=100 participants). ¢,d, Model predictions (¢) and human data (d) for
mean estimates. e, The probability of numeric responses over presentation times for n=3, n=6 and n=9. Bars are shown for the human data, and lines

are shown for the model predictions; all error bars represent s.e.m.

criterion (AIC), which gives better (lower) scores for models that
fit data well and have few free parameters. Using maximum likeli-
hood fits for each model, the difference in AIC scores was 3,076
in support of our model, where a difference over 10 is considered
strong evidence®. We then fit a Weber model with linear time
effects, which had an AIC difference of 768 in favour of our model.
Together, these results provide strong evidence that human behav-
iour cannot be explained by assuming only scalar variability, or even
with ad hoc modifications to scalar variability that allow acuity to
vary with time and display contrast.

While the model assumes a prior P(k) « 1/k* for @ =2, the mod-
el’s qualitative behaviour is robust to changes in @ and can be fit with
participant effects to yield similar results (Supplementary Fig. 2).

Replications. Following our preregistration plan, we sought to rep-
licate these effects under different conditions. First, to ensure that
the participants are actually using number rather than a correlated

dimension, we had two groups of participants perform the same
task as above but with either the total surface area or the average
density of the dots controlled. Second, because other manipulations
of information should have similar effects as time, we varied the
display contrast® of the dot arrays, which affects the rate R at which
information about numerosity could be extracted from the scene.
In the variable-contrast experiment, the colours of the dots varied
between the background (grey) and pitch black, by Weber contrasts
of 10%, 20%, 40%, 80% and 160%, at a constant presentation time
of 200 ms.

The inferred group-level rates and bounds were similar to those
in first experiment, similarly corresponding to an average subitiz-
ing range of about four. As shown in Fig. 4a,c,e, the participants
tended to underestimate larger numbers for short exposure times
and low levels of contrast, matching the predictions of the model
(for example, Fig. 3a). Likewise, Fig. 4b,d,f shows that in each
experiment, absolute error is scale variable at low levels of informa-
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Fig. 4 | Mean estimates and absolute error of the estimates as a function of number shown in the three replication experiments. a,c,e, Mean estimates.
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with the total surface of the dots controlled (¢,d) and variable display contrast with the average dot size controlled (e,f). All error bars represent s.e.m.

Compare with the model in Fig. 2a,c.

tion and then becomes precise for small numbers at higher levels
of information. The model provides a significantly better fit to the
data from each experiment than the classic psychophysical model
and its time-varying extension described above (Supplementary
Information).

Discussion

Empirical studies dating back more than a century have charted
many robust characteristics of numerosity perception in humans
and other animals. However, most of these properties are treated as
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separate phenomena without a common explanation. For instance,
the finding that people are able to exactly represent small sets">*%*
and show scalar variability in estimation for larger sets>'° has been
explained in terms of two different representational systems*’. The
tendency to underestimate larger quantities’” has been explained
in terms of a miscalibration of response scales”. The sensitiv-
ity of numerical acuity to display time>**' seemingly requires ad
hoc modifications to processing theories. Our derivation, however,
shows that these phenomena—underestimation, distinctive behav-
iour on large and small sets, sensitivity to timing and contrast,
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and even the shape of response distributions—can be explained
as natural consequences of optimal representation under a
resource constraint.

The sensitivity of numerosity judgements to certain non-numeric
properties of the visual scene, such as object spacing®’ and arrange-
ment>*, also fit naturally in this framework if they are considered
as manipulations of information in the visual scene. For instance,
regularly spaced objects appear more numerous than randomly
spaced objects*. Likewise, objects with similar orientations appear
more numerous than objects with randomly distributed orienta-
tions®. These effects are predicted under our model since regulari-
ties should decrease the information processing demands on the
visual system.

An information-theoretic approach connects number psycho-
physics to the broader emerging picture of visual working memory.
Contrary to a once dominant conception of visual working memory
as discrete and ‘slot-like®*!, recent behavioural and neural evi-
dence suggests instead that visual memory flexibly allocates limited
resources in a continuous manner*>*>***, Like such accounts, our
model assumes that bits of information are the common currency
that limit numerosity perception®. While others have hypothesized
that subitizing is driven by a capacity limit*, no work has formally
derived how such a limit gives rise to the psychophysics of both
subitizing and estimation.

Prior accounts of numerosity perception have also not explained
why infants®, some primates'®** and other animals®**” may have a
smaller subitizing range than human adults. A two-systems theory
would require a separate small-number system to suddenly arise in
either evolution or development. However, the model we describe
suggests a simple alternative: infants and many animals may have
a lower visual memory capacity™, leading the model to predict
numerical approximation and scalar variability even through-
out the small number range. Conversely, chimpanzees may have
a subitizing range up to four or five*, exceeding that of humans,
because they have a greater visual memory capacity®. Similarly, an
information-theoretic perspective predicts that the point at which a
person transitions from subitizing to estimation should depend on
their visual memory capacity, which it does**"**,

More generally, this work highlights that behavioural dis-
continuities are not always good markers of distinct systems.
Discontinuities often arise in biology when single systems face con-
straints—for instance, when an animal’s gait varies discontinuously
with its speed® or a neuron spikes when its input exceeds a thresh-
old. Our results illustrate that the optimization of a single objec-
tive function may in fact show starkly different behaviour above
and below a capacity bound, thus providing a resource-rational®
account of qualitatively different patterns of numerical perception.

In sum, the theory we present relies on combining an a priori
biological consideration (bounded informational capacity) with an
environmental input distribution P(n) and analytically computing
the optimal internal representation. The resulting representational
system replicates all of the standard properties of number psycho-
physics and explains them with a simple, resource-rational model.
Our experiment has also shown that human numerical cognition
quantitatively tracks this bounded optimal solution as the amount
of information available varies, a fact not explainable in existing
psychophysical theories. Together, these results suggest that the
core properties of numerical cognition arose as efficient solutions
to the problem of representing the world with finite cognitive and
neural resources.

Methods

We preregistered the experiment and analysis with the Open Science Foundation
on 30 October 2019. The preregistration can be found at https://osf.io/svcy5/. The
experiments were approved by the University of California, Berkeley Institutional
Review Board and comply with all relevant ethical regulations. Informed consent
was obtained from all participants before beginning the study.

Using Lagrange multipliers to find the optimal Q. We find a form of Q(k|n)
chosen to minimize the expected squared error between an input # and its
representation k:

El(n—k2 =" P(m)Y 7 Qkin)(n — k)? (6)

where we have assumed an arbitrary upper bound on # of N. Here P(#) is the prior
on how often a number # is encountered. Assuming R is the information rate and
B is the maximum allowable information, we optimize equation (6) subject to
time-dependent bounds on KL divergence between Q and P:

Dxi[Q(:|n) || P(+)] = ZZIZI Q(k|n)log % < min(B,Rt) Vn. (7)

Since Q is a distribution, we also have a constraint that ), Q(k|n) =1 for all .
To apply the method of Lagrange multipliers, we encode the objective function
and constraints into a single equation:

FlQUkm)] = 3230, Pn) 3, Qlkln)(n — k>2N
+3N 4, (min(s, Rt) — k:zl Q(k|n)log %Q)
+ 25:1 7i(1 - ZkN:I Q(H”))

We then solve for the zeroes of the derivative of F with respect to Q(k|n) (that is,
treating Q(k|n) as a separate variable for each n and k). These zeroes occur when

P(n)(n — k)* + Ay (1 + log Qp%‘(?) +7,=0 (8)
Q(kln) o P(K) exp(— 20 k). )

Here, 4, is chosen to satisfy the bound in equation (7).

We solve for 4, using numerical methods. Specifically, given a bound,
rate and time, we used gradient descent to find 4, that allows the maximum
Dxi[Q(:|n) || P(-)] that satisfies the constraints. This optimizer was run for
5,000 steps for each 4, for all numbers up to 100, which was sufficient to find KL
divergences within 0.0001 bits of the bound.

Participants. We recruited 440 US adults from Amazon Mechanical Turk to
participate in the experiments (110 per experiment), and they were paid US$2.50.
The sample sizes were chosen on the basis of what we believed would provide reliable
measures, given pilot data from the task; these sample sizes are larger than is typical
for human psychophysics studies. 233 participants were female, and the mean age
was 35.4 (s.d.=12.2). We allowed only Mechanical Turk users who had above 95%
acceptance rates for their work to participate. Following our preregistration plan,

we removed the ten participants in each experiment whose mean absolute error was
highest, leaving N=100 per experiment. The data collection and analysis were not
performed blind to the condition of the experiment.

Design. There were four between-participant experiments, which differed along
two dimensions: the way the available information was manipulated (duration or
contrast) and the way non-numerical properties of the stimuli were controlled.
The two ways of manipulating the available information were varying the duration
of presentation and the contrast of the dots with the background. The three
non-numerical stimuli controls were the average dot size, the total surface area
and the average density. Table 1 lists the pairs of these variables and controls that
comprise the four experiments. The participants were randomly assigned to one of
the four experimental conditions.

The experimental window was fixed to 500 x 500 pixels in any browser.
However, because this was an online experiment, there were probably a range of
monitor sizes and screen resolutions. We had access only to data on any browser
size changes in pixels, and so we can confirm only that all browsers allowed the
participants to see the full experiment, but not the physical size of the display.
There was a range of window sizes, from 820 x 524 pixels to 2,560 X 1,349 pixels.
The median width was 1,280 pixels, and the median height was 768 pixels.

Table 1| The manipulated variable and how the stimuli were
controlled for each of the four experiments

Experiment Variable Controlled
Experiment 1 Duration Dot size
Experiment 2 Duration Density
Experiment 3 Duration Surface area
Experiment 4 Contrast Dot size
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The dots were presented in a 200-pixel radius around the centre of the screen. In
experiments 1, 2 and 4, the average radius of the dots was fixed to 5 pixels, and each
individual dot’s diameter could vary between 4 and 6 pixels. In experiment 3,
the total surface area of the dots was held constant by dividing the average dot size
by the square root of the number of dots displayed, starting with a radius of
20 pixels for a single dot. In experiment 2, the density was fixed at approximately 900
pixels per dot, whereas in experiments 1, 3 and 4 the dots were allowed anywhere.

In each experiment, the number of dots shown was always between 1 and 15,
inclusive. The participants saw each cardinality in this range twice within each of
the five exposure times or contrasts (depending on the experiment). This means
that, in total, the participants each completed 150 trials. The order of the stimuli
was randomized over number-duration (or number-contrast) pairs.

In the variable-duration experiments, the dots were presented for 40 ms,
80ms, 160 ms, 320 ms or 640 ms. The background was grey (hex value #B4B4B4),
which was the same in the contrast experiment. The dots were darker grey, with a
constant Weber contrast of 200%. In the variable-contrast experiment, the colours
of the dots varied between the contrast of the background (grey) and pitch black,
by Weber contrasts of 10%, 20%, 40%, 80% and 160%. This is, equivalently, black
dots (hex value #000000) with opacities 4%, 8%, 16%, 32% and 64% on the grey
background. The exposure duration in the variable-contrast experiment was
constant at 200 ms. The noise mask covered the entire experimental window with
dense, multicoloured static for 250 ms. We note that the precise display times
reported here may be approximate because this study was conducted online and
there may have been, for example, variation in the refresh rates of computer
monitors across participants.

Procedure. After providing consent and reading the instructions, the participants
were taken to the main experiment. On every trial in each experiment, a fixation
cross was displayed for 750 ms, after which a number of dots were flashed on

the screen. A noise mask was then applied to the screen for 250 ms, and the
participants were presented with a text box in which they typed their guess of how
many dots were displayed. No feedback was given. The participants were given the
opportunity to take a break every ten trials.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The anonymized data from the experiments have been posted at the Open Science
Foundation at https://osf.io/svcy5/.

Code availability
The code for the model can be found at https://github.com/samcheyette/
info_theory_number.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The experiment was implemented using Psiturk (version 2.3.6), with custom code in HTML and Javascript. We collected data using
Amazon Mechanical Turk.

Data analysis The model was implemented using Python 2.7.15, with custom functions for computing the model's predictions at different amounts of
information and for fitting the data. We used R 3.4.4 for all other statistical analyses, using the Ime4 package.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Anonymized data from the experiments have been posted at the Open Science Foundation at https://osf.io/svcy5/.
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Data exclusions
Replication
Randomization

Blinding
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Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.
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Study description

Research sample

Sampling strategy
Data collection
Timing

Data exclusions

Non-participation

Randomization

Ecologica

We ran 4 experiments on human adult subjects, collecting and analyzing their behavioral data (their estimates of numbers at different
exposure durations/levels of contrast) .

We collected data from 440 participants (233 female, mean age 35.4 (SD=12.2)). Each participant completed 150 trials.

We ran the four experiments simultaneously, randomly assigning participants to each. We pre-determined the sample size (as noted in
our pre-registration).

Participants were linked to the experiment on Amazon Mechanical Turk's website. The only equipment was each participant's computer.
The number of dots shown, the location of every dot, the amount of time the dots were shown, the contrast level of the dots, and the
participants' reaction times were all recorded.

Data were collected in 8 batches (to minimize server load) over the course of 2 days: October 30th and November 2nd.

We excluded the 10 participants with the highest mean absolute error in each experiment, following the pre-registratrion plan. This left
us with 100 participants per experiment.

71 participants began but did not complete the experiment. No reasons were given.

Participants were randomly assigned to one of the four experimental conditions (with counter-balancing to ensure correct numbers).
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Study description
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Sampling strategy

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
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Sampling strategy calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [ ]Yes [ ]No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies D D ChlIP-seq
D Eukaryotic cell lines D D Flow cytometry
D Palaeontology D D MRI-based neuroimaging

D Animals and other organisms
D Human research participants

D Clinical data
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
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Mycoplasma contamination mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pome any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement),
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new
dates are provided.

D Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics All participants were U.S. adults (age 18 and over).
Recruitment Participants were recruited on the Amazon Mechanical Turk platform, required to have high work-acceptance rates (>95%).

Ethics oversight The study was approved by the University of California, Berkeley IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone 8
name, and lot number. wn
c
Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and g
index files used. ]
<
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold
enrichment.
Software Describe the software used to collect and analyze the ChiIP-seq data. For custom code that has been deposited into a

community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
D The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

D The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state,; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MINI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: D Whole brain D ROI-based |:| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte
Carlo).

Models & analysis

n/a | Involved in the study
|:| D Functional and/or effective connectivity

|:| D Graph analysis

D D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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