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Abstract

We describe a new approach for managing
aleatoric uncertainty in the Reinforcement Learn-
ing (RL) paradigm. Instead of selecting actions ac-
cording to a single statistic, we propose a distribu-
tional method based on the second-order stochas-
tic dominance (SSD) relation. This compares the
inherent dispersion of random returns induced
by actions, producing a comprehensive evalua-
tion of the environment’s uncertainty. The nec-
essary conditions for SSD require estimators to
predict accurate second moments. To accommo-
date this, we map the distributional RL problem
to a Wasserstein gradient flow, treating the distri-
butional Bellman residual as a potential energy
functional. We propose a particle-based algorithm
for which we prove optimality and convergence.
Our experiments characterize the algorithm’s per-
formance and demonstrate how uncertainty and
performance are better balanced using an SSD
policy than with other risk measures.

1. Introduction
Often in Reinforcement Learning (RL), agents select ac-
tions to maximize their expected sum of future (discounted)
rewards. Many have pointed out how this strategy will some-
times lead to undesirable outcomes, particularly when the
environment is stochastic (Heger, 1994; Tamar et al., 2013;
Keramati et al., 2020). In these domains, an interesting sub-
class of problems require the agent to decide between sev-
eral competing alternatives with the same expected outcome.
These scenarios frequently arise in finance (Dentcheva &
Ruszczyński, 2006a), where mutliple portfolios can lead
to the same return but with different variability. In such
settings, the expected value does not capture the full state
of uncertainty, and it becomes prudent to employ the full
distribution of outcomes.
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The Conditional Value at Risk (CVaRα) is a popular statistic
that measures uncertainty with the expected outcome under
an α-fraction of possibilities (Artzner et al., 1999). A great
deal of recent RL research focuses on learning good CVaR
policies (Chow & Ghavamzadeh, 2014; Tamar et al., 2015b;
Dabney et al., 2018; Keramati et al., 2020). One point that
remains unresolved is how to choose the right fraction of
outcomes, i.e. the risk level α. It seems plausible that
the best α-subset could vary across the environment. To
our knowledge no one has considered this problem in RL,
when uncertainty is used to evaluate competing actions. To
address these issues, we introduce a distributional policy
that simultaneously captures many risk levels, therefore
removing the need to select one. Our policy is based on the
Second Order Stochastic Dominance (SSD) relation.

The SSD relation is defined using distribution functions and
compared over the continuum of their realizable values. We
say that X stochastically dominates Y in the second or-
der when their cumulative CDFs, F (2)(α) =

∫ α
−∞ F (x)dx,

satisfy (1), and we denote the relation X �(2) Y :

X �(2) Y ⇐⇒ F
(2)
X (α) ≤ F (2)

Y (α) ∀α ∈ R. (1)

The function F (2) defines the frontier of what is known as
the dispersion space (Figure 1). The volume reflects the
degree to which a random variable differs from its expected
value, or its deterministic behavior. Outcomes that are dis-
perse have more uncertainty and are considered risky in
decision making settings. Indeed, a fundamental result from
expected utility theory states that rational risk-averse agents
prefer X to Y when X �(2) Y (Dentcheva & Ruszczyński,
2006b). Drawing inspiration from this strategy, we apply
SSD as an action selection method to reduce dispersion in
the data distribution with which a policy is learned. Our
paper offers the following contributions:

A distributional policy: Metrics such as variance (Sato
et al., 2001; Tamar et al., 2013) and quantile statistics, like
CVaR, (Chow & Ghavamzadeh, 2014; Dabney et al., 2018;
Keramati et al., 2020) are prevalent in RL. A novel contribu-
tion of our work is the introduction of SSD for distributional
action selection. As we will show, this relation eliminates
the need to tune risk parameters. We apply the relation
in settings where there are many solutions, and the agent
wishes to select the least disperse (i.e. most certain) option.
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Figure 1. Dispersion space: The relative uncertainty of a random
variable is shown as the space between its cumulative CDF F (2)

X

and the asymptotes (dotted). Here, the line α−E[X] defines the
behavior of X as its uncertainty vanishes.

A new distributional RL algorithm: SSD implies an or-
dering on the first two moments of distributions. We propose
a new learning algorithm based on Wasserstein gradient
flows that is guaranteed to respect this, because its estimates
converge in the first two moments.

We validate our theoretical claims with several targeted ex-
periments. The main hypothesis we test is that the SSD pol-
icy induces the least-disperse data distribution from which
optimality can be achieved when learning off-policy.

2. Background
Reinforcement Learning describes a sequential decision
making problem, whereby an agent learns to act optimally
from rewards collected after taking actions. At each time
step, the agent selects an action A ∈ A based on its current
state S ∈ S, then transitions to the next state S′ ∈ S
and collects a reward R ∈ R. The interaction is formally
modeled as a Markov Decision Process (MDP) (Putterman,
1994), which we denote 〈S,A, p, γ〉. The transition kernel
p : S ×A → P(R× S) defines a joint distribution over the
reward and next state, given the current state-action pair.
Here, S and A are measurable Borel subsets of complete
and separable metric spaces, which we take as finite. And
for each state s ∈ S, the set As ⊂ A is a measurable set
indicating the feasible actions from s. The random return is

Z(s,a)
π ,

∞∑
t=0

γtR(St,At)

∣∣∣∣ S0 = s,A0 = a. (2)

Returns reflect the outcome of a decision sequence that
starts after taking action a in state s then following the
policy π ∈ Π thereafter. Polices are stationary distributions
over actions, coming from the set Π = {π|π : S → P(A)}.
Here, γ ∈ [0, 1) is a discount factor, and R(St,At) is the

real-valued random reward associated with the state and
action at time t ∈ N.

2.1. Bellman’s Equations

Bellman (1966) showed that the expected return (2), also
known as the value function, has a recursive decomposition:

Q(s,a)
π , E

µ
(s,a)
π

[Z(s,a)
π ] = Ep,π[R+ γQ(S′,A′)

π ],

Q
(s,a)
∗ , Eµ(s,a) [Z(s,a)] = Ep[R+ γ max

a′∈AS′
Q

(S′,a′)
∗ ].

Here the value, Q(s,a)
π , is defined as the expected return

(Sutton & Barto, 2018) of policy π. We denote µ(s,a)
π to be

the corresponding distribution of returns under π from (s, a).
Returns under µ(s,a) follow the greedy policy, π∗(s) =
arg maxa∈As Eµ(s,a) [Z(s,a)] for all s ∈ S. When clear
from context, we will drop the superscripts and refer to a
single measure µ(s,a) as µ. Viewed as a functional operator,
these equations are known to contract to a unique fixed
point. The contractive property motivates algorithms that
update representations of Q∗ to minimize the difference
formed between both sides. Two popular methods for model-
free learning are Sarsa (Rummery & Niranjan, 1994) and
Q-learning (Watkins & Dayan, 1992). These algorithms
use samples of the form (s, a, r, s′) to iteratively update
value estimates. Sarsa is an on-policy algorithm because it
evaluates the policy it uses to gather data:

Q(s,a)
π ← Q(s,a)

π + α(r − γEπ[Q(s′,A′)
π ]−Q(s,a)

π ).

Q-learning is off-policy because it gathers data with a sepa-
rate behavior policy to learn the target greedy policy:

Q
(s,a)
∗ ← Q

(s,a)
∗ + α(r − γ max

a′∈As′
Q

(s′,A′)
∗ −Q(s,a)

∗ ).

2.2. Distributional Bellman Operators

The return distribution, µ(s,a)
π , also satisfies a distributional

variant of Bellman’s equation T πµ(s,a)
π ,∫

R

∑
(s′,a′)∈S×A

f
(r,γ)
] µ(s′,a′)

π π(a′|s′)p(dr, s′|s, a). (3)

Here, T π is the distributional Bellman operator. It em-
beds a measurable mapping that reflects the Bellman action:
f (r,γ)(x) , r + γx, where the push-forward measure is
f#(µ(A)) , µ(f−1# (A)) = ν(A), for all Borel measurable
sets A. Just as the standard Bellman equation is the focus
of standard value-based RL, the distributional Bellman op-
erator (3) plays the central role in Distributional RL (DRL);
it motivates algorithms which attempt to represent µ(s,a)

π

and approximate it by repeated application of the update
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Figure 2. Stochastic dominance action selection: Imagine X and Y are returns induced by different actions. Our action selection rule
can be visualized with plots of the CDF. In Fig. 2a X �(2) Y , because X places more mass on points larger than α. In Fig. 2b, the area
left of z5 is greater than the area to its right, hence X �(2) Y . In Fig. 2c, neither variable dominates, because for α ≥ z4, the enclosed
area is larger than the other region. In these cases, we select from among the competing actions at random.

µ
(s,a)
π,t+1 ← T πµ

(s,a)
π,t , for any (s, a) ∈ S×A. The optimality

operator is realized under the greedy policy:

T µ(s,a) ,
∫
R

∑
(s′,a′)∈S×A

f
(r,γ)
] µ(s′,a∗)p(dr, s′|s, a). (4)

3. Distributional Action Selection
We consider scenarios where a DRL agent often encoun-
ters several outcomes which all appear equivalent under the
expected return. The uncertainty-sensitive decision prob-
lem is to select from among these choices, the option that
minimizes uncertainty. For this we propose the SSD policy,
whose comparisons are visualized in Figure 2.

At each state s, the agent makes a point-wise comparison
of the distribution functions F (2)

Z(s,a)(α), for all a ∈ As.
The dominating action is the one whose cumulative CDF
achieves the lowest value for every α ∈ R:

A(2)
s , {a ∈ As : Z(s,a) �(2) Z

(s,a′), ∀ a′ ∈ As \ {a}}.

3.1. Numerically tractable comparisions

Evaluating SSD appears to be a numerically intractable task,
involving point-wise comparisons over an infinite domain.
Fortunately, we can circumvent this problem by using cumu-
lative quantile functions (Dentcheva & Ruszczyński, 2006b):
F−2(τ) =

∫ τ
0
F−1(t)dt. Now the SSD relation becomes:

X �(2) Y ⇐⇒ F−2X (τ) ≥ F−2Y (τ) ∀ τ ∈ (0, 1), (5)

where we assume that F−2Y (0) = 0, and F−2Y (1) =∞.

Notice that F−2X (τ)/τ = E[X|X ≤ ξ(τ)] is the Condi-
tional Value at Risk for level τ . Thus, the SSD relation can
be interpreted as a continuum of CVaR comparisons for all
τ ∈ (0, 1). From this we can surmise that points along the

boundary of dispersion space (Figure 1) represent uncondi-
tional Values at Risk (VaR). Furthermore, this connection
suggests a numerically-tractable way to compute F−2.

Lemma 1. Let τ ∈ (0, 1) and consider ξ(τ) = F−1X (τ).
Then F−2X (τ) = E[X ≤ ξ(τ)].

Lemma 1 makes it possible to compare total expectations
on subsets of the return space, instead of dealing with prob-
ability integrals over an unbounded domain.

Computations simplify even further when we consider dis-
crete measure approximations to the return distribution. We
propose a Lagrangian (particle-based) discretization, where
the measure is supported on N ∈ N equally-likely diracs:

µ(s,a) ≈ 1

N

N∑
i=1

δ
(s,a)

z(i)
.

Values are straightforward to compute from the correspond-
ing samples: Q(s,a) = 1

N

∑N
i=1 z

(i).

To apply (5), denote the ordered coordinates of a return
distribution to be z[1] ≤ z[2] ≤ · · · ≤ z[N ]. Then given
particle sets for two random returns induced by the actions
a1 and a2, we have the following result.

Proposition 1. Z(s,a1) �(2) Z
(s,a2) if, and only if

j∑
i=1

z[i]a1 ≥
j∑
i=1

z[i]a2 , ∀ j = 1, · · · , N. (6)

The SSD policy is executed at each step by constructing
A(2)
s using (6) and a discrete representation of µ(s,a). In

some cases A(2)
s will be empty (Figure 2c), indicating that

total dominance cannot be established. There are several
heuristics that could handle this outcome, including a next-
best strategy, or an additional decision criterion. We choose
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to sample the greedy actions uniformly at random. This
increases uniform exploration when dominance cannot be
established and still constitutes a strict enhancement of the
greedy policy when multiple solutions are present.

3.2. Necessary conditions for SSD

When is it possible to apply the SSD policy? The following
result from Fishburn (1980) implies an ordering on the first
two moments of the distributions under SSD.

Proposition 2 (Fishburn (1980)). Assume µ has two fi-
nite moments. Then X �(2) Y implies µ(1)

X ≥ µ
(1)
Y or

µ
(1)
X = µ

(1)
Y and µ(2)

X ≤ µ
(2)
Y , where (·) denotes a particu-

lar moment of the distribution µ.

The ordering indicates that the dominating distribution either
has the greatest mean, or it has the smallest second moment
when means are equal. Given infinite precision and random
initialization, the chances of more than one action having
the same value may seem unlikely. However, in cases where
finite precision is used (e.g. finance), or cases where a
tolerance is applied to comparisons, equivalence arises often.
Proposition 2 imposes a necessary requirement on estimates
of the return distribution. Namely, the estimates must be
accurate enough to respect the ordering. Moving forward
we seek distributional learning algorithms that we know
converge in the first two moments.

4. Wasserstein Gradient Flows for RL
In this section we describe how return distributions can be
obtained from the solution of a Wasserstein Gradient Flow
(WGF). We detail the solution procedure and show how it
naturally integrates into the fitted value iteration paradigm
(Gordon, 1995). We expand on the WGF theory to show that
solutions converge in the first two moments, as we need to
respect Proposition 2.

4.1. Wasserstein convergence

The k-th order Wasserstein distance for any two univariate
measures µ, ν ∈ Pk(R), is defined as

Wk(µ, ν) , inf
γ∈Pk(µ,ν)

{∫
R2

|x− y|kdγ(x, y)

}1/k

,

where Pk(µ, ν) is the set of all joint distributions with
marginals µ and ν having k finite moments. The distance
describes an optimal transport problem, where one seeks to
transform µ to ν with minimum cost; here the cost is |x−y|k.
The Wk distance is appealing as a distributional learning
objective, because its convergence implies convergence in
the first k moments (Villani, 2008).

4.2. Distributional RL as free-energy minimization

We cast the distributional RL problem as a free-energy mini-
mization in terms of the functional:

E(µ) , F (µ) + β−1H(µ). (7)

Here, we have dropped the superscript notation. F is the po-
tential and H is the entropy of a single probability measure;
β ∈ R+ is an inverse temperature parameter.

The potential energy defines what it means for a distribution
to be optimal. We choose the low-energy equilibrium to
coincide with minimum expected Bellman error, formed
from (4). Energy is minimized when the mapping T reaches
its fixed point, T µ(s,a) = µ(s,a) for some (s, a). Given a
transition sample (s, a, r, s′), we compute the distributional
targets T z(s,a), which denote realizations of T µ(s,a), and
define Bellman’s potential energy as

F (µ) ,
1

2

∫ (
T z(s,a) − z(s,a)

)2
dµ =

∫
U(z)dµ. (8)

The optimal probability measure for these models is known
to be the Gibbs measure: µ∗(z) = Z−1 exp{−βU(z)},
whereZ =

∫
exp{−βU(z)}dz. Energy-based models have

been applied for policy optimization (Haarnoja et al., 2017;
Zhang et al., 2018), but to our knowledge, they have not
appeared in value-based methods for DRL.

4.3. The Fokker-Planck Equation

We would like to understand the convergence behavior of
return distributions as the free-energy is minimized. Sys-
tems of this nature are typically modeled as continuous-
time stochastic diffusion processes, where the distributions
{µt}t∈[0,1] evolve over a smooth manifold of probability
measures from P2(R). The dynamics of µt is known to obey
a diffusive partial differential equation called the Fokker-
Planck equation (Risken, 1984):

∂tµt = ∇ ·
(
µt∇(

δE

δµt
)

)
. (9)

Here, the sub-gradient with respect to time is denoted ∂t,
and the first variation (Gâteaux derivative) of free energy δE

δµ .
The Fokker-Plank equation plays a central role in statistical
physics, chemistry, and biology. In optimization, it defines
the solution path, or gradient flow, of µ as it evolves over
the manifold of probability measures.

Proposition 3 (Ambrosio (2005)). Let {µt}t∈[0,1] be an
absolutely-continuous curve in P2(R). Then for t ∈ [0, 1],
the vector field vt = ∇( δEδt (µ)) defines a gradient flow on
P2(R) as ∂tµt = −∇·(µtvt), where∇·u is the divergence
of the vector u.

Intuitively, the free-energy E characterizes the diffusion
process and thus, the optimization landscape of our new
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distributional RL problem. Convergence to an optimal point
can be guaranteed provided E is convex, which we know to
be the case for (7), which is quadratic and logarithmic in µ.

4.4. Discrete Time Solutions

To approximately solve (9), we adopt an iterative procedure
due to Jordan et al. (1998). The method discretizes time in
steps of h ∈ R+ and applies the proximal operator

ProxWhE(µk) , arg min
µ∈P2(µ,µk)

W2
2(µ, µk) + 2hE(µ). (10)

For every step k ∈ N, the operator generates a path of dis-
tributions {µt}Kt=1 such that µk+1 = ProxWhE(µk) is equiva-
lent to µK . In contrast with DRL methods that apply (4), we
apply the proximal operator to minimize a free energy with
a W2

2-regularizer via (semi-)gradient steps. And because E
is convex, this method obtains the unique solution to (9).
Proposition 4 (Jordan et al. (1998)). Let µ0 ∈ P2(R) have
finite free energy E(µ0) < ∞, and for a given h > 0, let
{µ(h)

t }Kt=1 be the solution of the discrete-time variational
problem (10), with measures restricted to P2(R), the space
with finite second moments. Then as h → 0, µ(h)

K → µT ,
where µT is the unique solution of (9) at T = hK.

Furthermore, one can evaluate the free-energy (8) over the
solution sequence and observe it becomes a decreasing func-
tion of time (i.e. a Lyapunov function). The result implies
that the expected distributional Bellman residual is mini-
mized when using the JKO approach.

Proposition 5. Let {µ(h)
k }Kk=0 be the solution of the

discrete-time variational problem (10), with measures re-
stricted to P2(R), the space with finite second moments.
Then E(µk) is a decreasing function of time.

Finally, we can show that as β is annealed, the output of our
free-energy optimization (10) is equivalent to the solution
obtained from the distributional Bellman operator (4).
Theorem 1. If T µ = µ, then ProxWhE(µ) = µ as β →∞.

4.5. Discrete Measure Solutions

Given an initial set of particles at some state-action pair
z(s, a) = {z(1), · · · , z(N)}, we evolve them forward in
time with steps of h to obtain the solution at t+h. We apply
a finite number of gradient steps to approximate the con-
vergence limit T = hK. Finally we consider an entropic-
regulated form of W2

2 (Cuturi, 2013) for two finite distribu-
tions µ =

∑N
i=1 µiδx(i) and ν =

∑N
j=1 νjδy(j) :

Wβ(µ, ν) , inf
P∈RN×N+

〈P,C〉+ βKL(P |µ⊗ ν),

s.t.
N∑
j=1

Pij = µi,
N∑
i=1

Pij = νj .

Here, 〈P,C〉 denotes the Frobenius norm between the joint
P and the square Euclidean cost Cij = (xi − yj)

2, and
KL(P |µ ⊗ ν) =

∑
i,j [Pij log(Pij/µiνj) − Pij + µiνj ].

The entropic term promotes numerical stability by acting as
a barrier function in the positive octant. JKO stepping under
this new distance is denoted

ProxWβ

hF (µk) , arg min
µ∈P2(µ,µk)

Wβ(µ, µk) + 2hF (µ). (11)

One can compute the entropic-regularized distance, Wβ ,
using Sinkhorn iterations (Sinkhorn, 1967). This procedure
(detailed in the appendix) is differentiable, which allows
us to update represent particle locations with parametric
models and update their predictions with gradient steps
computed through auto-differentiation.

4.6. Online WGF Fitted Q-iteration

We are now ready to describe Online WGF Fitted Q-
iteration (Alg. 1). The algorithm combines the solution
of (11) into a Fitted Q-iteration framework to repeatedly fit
return distributions. The loss is computed with Alg. 2. The
principles apply in both the on-policy and off-policy settings.
Here, we consider the off-policy case to compare different
behavior policies. Both distributional policies and those
based on point estimates are represented with the operator
B : P(R)|A| → P(A). Given a set of return distributions,
this outputs a distribution over actions.

Algorithm 1 Online WGF Fitted Q-iteration

1: # Initialize particles
2: z(s, a) = {z(i)}Ni=1 ∀ (s, a) ∈ S ×A
3: for t = 1, 2, · · · do
4: # Explore with the behavior policy
5: s′, r ∼ p(·|s, a) with a ∼ Bz(s, :)
6: # Exploit with the greedy target policy
7: a∗ ← arg maxa∈A{ 1

N

∑N
i=1 z

(i)(s′, a)}
8: T z[i] ← r + γz[i](s′, a∗) ∀ i ∈ [N ]
9: # Update particles with proximal step

10: z(s, a)← arg minz L
Wβ

hFT
(z, z(s, a))

11: end for

Algorithm 2 Proximal Loss

1: input: Source and target particles z, z0; T z
2: FT (z)← 1

2N

∑N
i=1[T z[i] − z[i]]2

3: Wβ(z, z0)← Sinkhornβ(z, z0)
4: # Output JKO loss
5: output: LWβ

hFT
= Wβ(z, z0) + 2hFT (z)

5. Connections with Related Work
Modeling Risk for RL: Many have employed measures
of uncertainty to replace or regulate the optimization ob-
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Figure 3. Policy evaluation in the CliffWalk domain: The left plot shows WGF estimates of the smoothed target distributions. Con-
vergence of the proximal loss and the squared value error are shown in the top two plots. Outcome-risk diagrams (right) derived from
distribution estimates illustrate the relative dispersion space size at s1. The two inflections represent the bimodality of the distribution.

jective in RL using the Markowitz mean-variance model
(Markowitz, 1952). Among these include policy gradient
methods (Tamar et al., 2015a), actor-critics (Tamar & Man-
nor, 2013) and TD methods (Sato et al., 2001; Tamar et al.,
2013; Keramati et al., 2020). Constraint techniques have
also been considered using CVaR within a policy gradient
and actor-critic framework (Chow et al., 2017). In contrast
to methods that directly constrain the policy parameters, we
constrain the data distribution with action selection using
SSD among the return distributions. Dabney et al. (2018)
trains risk-averse and risk-seeking agents from return dis-
tributions sampled from various distortion risk measures.
However, they do not address problems involving multiple
solutions. Furthermore, is it unclear how to sample from
SSD-equivalent distortions when total dominance cannot be
established. This investigation is left for future work.

Distributional RL: Our learning algorithm is inspired by
the class of DRL algorithms (Bellemare et al., 2017). These
methods model a distribution over the return, whose mean
is the familiar value function, and use it to evaluate and opti-
mize a policy (Barth-Maron et al., 2018; Hessel et al., 2018).
Bellemare et al. (2017) first showed the distributional Bell-
man operator contracts in the supremal Wasserstein distance.
They proposed a discrete-measure approximation algorithm
(C51) using a fixed mesh in return space and later showed
it converges in the Cramer distance (Rowland et al., 2018).
Particle-based methods that use Quantile Regression (QR),
have shown encouraging progress on empirical benchmarks
(Dabney et al., 2017; 2018). However, understanding their
convergence beyond the first moment has been more chal-
lenging. By casting the optimization problem as free-energy
minimization in the space of probability measures, we show
that DRL can be modeled as the evolution of a WGF. Updates
in this framework have well-defined dynamics, permitting
us to better understand convergence and optimality.

Wasserstein Gradient Flows in RL: To our knowledge
WGF solutions have only been applied to policy gradient
algorithms. Zhang et al. (2018) models stochastic policy
inference as free-energy minimization, and applies the JKO
scheme to derive a policy gradient algorithm. Their method
is couched within the Soft-Q learning paradigm (Haarnoja
et al., 2017; 2018). These algorithms train a deep neural
network to sample from a target Gibbs density using Stein
Variational Gradient Descent (Liu & Wang, 2016). Our
algorithm learns distributions of the underlying return and
thus can be considered value-based. Furthermore, we are
concerned with decision making in the presence of aleatoric
uncertainty, and when the agent must select the most certain
outcome from among many alternatives.

6. Experiments
In this section we verify several prior assertions. Namely,
we test the hypothesis that WGF regression produces two
accurate moment estimates. Next we show WGF solutions
from Alg. 1 can recover the latent return distribution in a
policy evaluation setting. We extend these results to the
control setting with bootstrapped off-policy updates under
function approximation. In our final experiment, we quan-
tify an agent’s ability to mitigate uncertainty while gathering
training data with the SSD behavior policy. Details of each
experiment can be found in the Appendix.

6.1. Regression Comparison

Given that standard quantile regression learns samples from
a uniform mesh in probability space, theory suggests ac-
curacy improvements can be gained with a non-uniform
mesh produced from the solution of a WGF. To evaluate this
hypothesis, we compared the root mean squared error on a
five component one-dimensional Gaussian mixture model,
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Figure 4. Distributions of moment estimation error: Quantile
regression and WGF regression produce similar estimates in one di-
mension. The number of support samples is shown in parentheses.

intended to be representative of a geometrically-complex
return distribution. Ablations informed the parameterization
of the proximal loss (See appendix). We collected data over
100 independent trials, varying the number of samples each
method regressed. Our data shows there to be no statistical
difference between QR and WGF regression (Figure 4).

We interpret the observed insignificance as a consequence
of using low-dimensional data. The error from a uniform
grid is expected to become more pronounced as dimen-
sionality increases. Given that we are concerned with one-
dimensional return distributions, however, these results in-
form different message within our problem setting. Namely,
the distributions regressed through QR may be reasonably
employed for SSD action selection. We believe practitioners
will find this result valuable when choosing a regression
method where two accurate moment estimates are required.

6.2. WGF Policy Evaluation

Proposition 5 argues that repeated application of the prox-
imal step (10) produces a decreasing function of time, im-
plying that the Bellman free energy is minimized at conver-
gence. Here, we verify this is indeed the case by learning
the return distribution in a policy evaluation setting. The
problem is set within the CliffWalk domain (Fig. 3). The
transition dynamics follow those in Sutton & Barto (2018).
However, we include a five-percent chance of falling off the
cliff from adjacent states. We used fixed Monte Carlo (MC)
targets from the optimal greedy policy.

Figure 3 shows the convergence of the proximal loss and
the mean square value error from the start state. As we can
see, the estimated distribution (the histogram) accurately
captures the target’s features: the near certainty of walking

off the cliff when moving right, the added chance of doing
the same when choosing left or down, and finally the most
profitable choice, moving up.

6.3. WGF in the Control Setting

In this experiment we test the hypothesis that WGF Fitted Q-
iteration is scalable to function approximation in the control
setting. We parameterize return distributions with a two-
layer fully-connected neural network of 256 hidden units.
We use off-policy updates with bootstrapped targets and
compare performance results with an agent trained using the
QR loss (Dabney et al., 2017) on three common control tasks
from the OpenAI Gym (Brockman et al., 2016): Mountain-
Car, CartPole, and LunarLander. The results in Figure 5
show that the WGF method matches the performance of QR.

6.4. Control in the Presence of Uncertainty

This experiment studies how aleatoric uncertainty is handled
during training. Specifically, we compare different policies
for selecting among a multiplicity of competing solutions.
We consider the ε-greedy, SSD, and CVaRα behavior poli-
cies for α ∈ {0.05, 0.25, 0.45}. Each policy gathers data to
update a greedy target policy. Different data distributions
arise from the way each measures uncertainty.

We expect the data distribution under the SSD policy to favor
outcomes with higher certainty, because SSD compares the
expected outcome over all represented risk levels. CVaR
policies consider the expected outcome for a single risk
level. Uncertainty drives action selection only when the
specified risk level captures the true risk in the current state.
Otherwise, we expect CVaR policies to become risk neutral.

We revisit the CliffWalk domain with a modified reward
structure (See appendix). Traversing the top and bottom
rows have equal value. Each path has different reward un-
certainty; the top row is deterministic, whereas the bottom
row samples rewards from the Gaussian N (−1, 10−3). Un-
der these conditions, we expect the SSD policy to prefer the
top path and risk neutral methods to prefer the bottom row,
since it will be more likely under a risk neutral policy.

Figure 6 shows the average episodic step count and return,
along with their 95% confidence intervals computed from
50 trials. The step count data confirms our hypothesis that
the SSD policy induces the least-disperse data distribution,
since it takes the top path on average. We can also confirm
that the ε-greedy policy chooses the bottom path, which
is more likely under the sampling distribution from s0 and
incidentally more dispersed. We observe similar behavior
between QR to WGF Q iteration, consistent with results in
Figure 4. Both methods induce similar data distributions
over the top path at around the 75th episode. And in this
domain, the WGF method learns the quickest.
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Figure 5. Performance on control problems: The WGF method
matches the final average return of quantile regression.

Figure 6. The SSD behavior policy recovers the optimal target
policy using samples from the least-disperse data distribution:
We compare the episodic step count and return using the SSD and
ε-greedy policy. The distributional methods differ in their sample
complexity but realize the same final solution.

We find the greatest differences between the SSD and CVaR
policies occur in the transient phase of learning (Figure 7).
The CVaR agent takes more exploratory steps as a result of
using a single uniform risk level. In high-stakes settings,
the consequence of exploration can vary from undesirable
to catastrophic. Here a cliff fall models a very costly out-
come. Figure 7 shows the number of cliff falls encountered
throughout learning. Using the SSD policy results in a sig-
nificantly lower number of these experiences. We interpret
this as positive evidence to suggest that SSD provides a more
comprehensive measure of uncertainty than CVaR.

7. Conclusion
This paper argues for the use of SSD to select among a multi-
plicity of competing solutions. This can be useful in settings
where one wishes to minimize exposure to uncertainty. We
presented a convergent, online algorithm for learning re-
turn distributions (WGF Fitted Q-iteration). Our simulations
demonstrated the algorithm can learn good policies, and
that it scales up to function approximation. Based on our

Figure 7. Using many risk levels can improve exploration: One
risk level is not always appropriate for every state. Here, the CVaR
policy leads the agent away from its goal, causing it to explore
more than with the SSD policy, which uses many risk levels.

experimental results, we concluded that the SSD behavior
policy can reduce dispersion in the data distribution and
improve exploration in the presence of uncertainty.
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