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Abstract

Non-native speakers show difficulties with
spoken word processing. Many studies at-
tribute these difficulties to imprecise phonolog-
ical encoding of words in the lexical memory.
We test an alternative hypothesis: that some of
these difficulties can arise from the non-native
speakers’ phonetic perception. We train a com-
putational model of phonetic learning, which
has no access to phonology, on either one or
two languages. We first show that the model
exhibits predictable behaviors on phone-level
and word-level discrimination tasks. We then
test the model on a spoken word processing
task, showing that phonology may not be nec-
essary to explain some of the word processing
effects observed in non-native speakers. We
run an additional analysis of the model’s lexi-
cal representation space, showing that the two
training languages are not fully separated in
that space, similarly to the languages of a bilin-
gual human speaker.

1 Introduction

Compared to native speakers, non-native speakers
perform differently in a variety of tasks related to
auditory language processing, both at the phone
and at the word level. At the phone level, these
tasks usually require speakers to compare individ-
ual phones (e.g., phone discrimination or identifica-
tion), while spoken word processing tasks usually
test the implicit activation of a certain word in the
memory (e.g., lexical priming, word translation).
In some cases, non-native speakers’ behavior is

consistent across the tasks: lower performance in
spoken word processing tasks is directly associated
with difficult phone contrasts. For example, upon
hearing a word rock, Japanese speakers activate
both rock and lock in their lexical memory (Cutler
and Otake, 2004), probably because they find it
difficult to discriminate the English [ô]–[l] phone
contrast (Miyawaki et al., 1975). In other cases,
however, non-native speakers’ behavior in spoken
word processing tasks cannot be explained by dif-
ficult phone contrasts (Cook et al., 2016; Amen-
gual, 2016; Darcy et al., 2012). For example, in a
translation task native English speakers may con-
fuse Russian words moloko [m@ë2"ko] (‘milk’) and
molotok [m@ë2"tok] (‘hammer’), even though this
pair of words does not have a difficult phone con-
trast (Cook et al., 2016).

This dissociation between the behavior in phone
discrimination vs. spoken word processing tasks
has been attributed to different kinds of representa-
tions involved. On the one hand, thanks to phonetic
knowledge, speakers recognize individual phones
in a given language. On the other hand, speak-
ers store phonological representations of the words
they know in their mental lexicon and use those rep-
resentations to recognize spoken words (e.g., Pal-
lier et al., 2001). It is often implicitly assumed that
any lexical processing effect should be attributed
to stored phonological representations of the words
(Gor and Cook, 2020; Cook et al., 2016; Cook and
Gor, 2015; Darcy et al., 2013, 2012; McQueen
et al., 2006). At the same time, phonetic effects are
not limited to the perception of individual phones:
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some existing theories argue that phonetic details
are encoded in the lexical memory (e.g., Pierrehum-
bert, 2002; Hawkins, 2003; Port, 2007). This raises
the question: can some of the spoken word pro-
cessing effects normally attributed to phonology be
instead explained in terms of phonetic perception?

In this study, we use computational modeling
to test a hypothesis that some spoken word pro-
cessing effects observed in non-native speakers
can be explained without involving phonolexical
representations—by phonetic perception, which
results from phonetic learning, or speakers’ at-
tunement to the sounds of their native language
(Werker and Tees, 1984). We use a model devel-
oped for speech technology applications (Kamper,
2019). Earlier, it was used to simulate early pho-
netic learning and successfully predicted some in-
fant phone discrimination data (Matusevych et al.,
2020b). This model learns from natural speech data
that is not segmented at the phone level. It never
receives information about individual phones in
isolation or about phone-level differences between
words. Therefore, the model is not equipped with
an explicit mechanism to learn abstract phonolex-
ical representations, making it a good candidate
to test our hypothesis: if our model without the
knowledge of phonology can correctly predict a
particular effect, that effect can at least partially be
attributed to phonetic learning. Because our goal
is to see whether phonetic perception can explain
some of the existing data in principle, even just one
phonetic model making correct predictions about
the data would be a positive result.

By design, lexical processing tasks require at
least minimal knowledge of the target language.
That is why they are normally carried out with
bilingual speakers (or second language learners:
Gor and Cook, 2020; Amengual, 2016; Cook et al.,
2016, etc.). In bilingual speakers, the two lan-
guages interact at various levels, including lexi-
cal (e.g., Weber and Cutler, 2004; Sunderman and
Kroll, 2006). To take this into account, we sim-
ulate bilingual speakers by training the model on
two languages simultaneously.

We present three simulations. The first two show
that the model exhibits predictable behaviors in
discrimination tasks. In the third one, we present
a case study to test whether a lexical processing
effect commonly attributed to phonological repre-
sentations can be explained in terms of phonetic
learning alone, without the influence of phonol-

ogy. In addition, we examine whether the repre-
sentations in our bilingual model match the pattern
observed in bilingual lexical access. Existing stud-
ies (Weber and Cutler, 2004; Lagrou et al., 2011;
Shook and Marian, 2012, etc.) show that upon the
presentation of a word, competitor words in both
languages may get activated (non-selective lexical
access). We carry out a language classification task
with our model, showing that the two languages
are not fully separated in its representation space.

2 Method

2.1 Simulations

We train a computational model—a correspon-
dence autoencoder recurrent neural network (CAE-
RNN; Kamper, 2019)—on speech data from one
or two languages in order to simulate monolingual
and bilingual speakers. We then test these differ-
ent versions of the model on discrimination tasks
and compare the observed patterns to those found
in human speakers. This general methodological
framework is adopted from Schatz et al. (2019).

We run three simulations, described in more de-
tail in the respective sections below. Although it
would be ideal to use the same set of languages in
each simulation, the choice of languages is limited
by available results from studies with human par-
ticipants. We use language pairs for which human
data is available and where our model has previ-
ously been tested on the target languages in the
monolingual context. In Simulation 1, we look at
phone discrimination by infants exposed to two lan-
guages (English and Mandarin), showing that the
model correctly predicts a discrimination pattern
observed in such infants (Kuhl et al., 2003). In
Simulation 2, we show that the model can predict
discrimination effects at the word level, observed in
adult native English speakers and Japanese learners
of English (MacKain et al., 1981). In Simulation 3,
we show that the result obtained in a translation
judgment task with native Russian speakers and
English learners of Russian (Cook et al., 2016) can
be at least partially explained in terms of phonetic
learning, without the effects of phonology.

2.2 Model

The CAE-RNN (Kamper, 2019) is an extension
of a recurrent autoencoder (Chung et al., 2016),
in which both encoder and decoder are recurrent
neural networks. Unlike an autoencoder, the CAE-
RNN is trained on pairs of word tokens of the same



acoustic word
embedding

Figure 1: The model learns to reconstruct an acoustic
instance of a word, X ′, from another acoustic instance
of the same word, X .

type (e.g., two acoustic instances of the word ap-
ple). It receives one instance of a word (represented
as a speech sequence), encodes it into a vector of
a fixed dimensionality (an acoustic embedding),
and then tries to reconstruct the other instance in
the pair, as shown in Figure 1. Formally, each
training item is a pair of acoustic words (X,X ′).
Each word is represented as a sequence of vectors:
X = (~x1, . . . , ~xT ) and X ′ = (~x′1, . . . , ~x

′
T ′). The

loss for a single training item is:

`(X,X ′) =
T ′∑
t=1

||~x′t − ~ft(X)||2 (1)

where X is the input and X ′ the target output se-
quence, and ft(X) is the tth decoder output condi-
tioned on the embedding z. At inference time, we
can encode a sequence of arbitrary duration (e.g., a
phone or a word) into a fixed-dimensional acoustic
embedding in the model’s representation space.

We choose this model because it showed promise
for the study of human cognition: it correctly pre-
dicted some patterns of infant phonetic learning
(Matusevych et al., 2020b), and some of its basic
properties are compatible with human auditory cog-
nition and lexical access (Matusevych et al., 2020a).
The advantage of this model compared to others
(e.g., Schatz et al., 2019) is its ability to represent
speech sequences of any duration in a common
representation space (the embeddings have a fixed
number of dimensions), in which perceptual sim-
ilarity between sequences can be computed using
a simple distance function. The model handles in-
dividual phones and acoustic words in exactly the
same way, allowing us to easily generalize from
phone-level to word-level representations. In ad-

A. Training data.
Sim.
#

Language Corpus Duration
(hh:mm)

No. of
spk.

1

EN WSJ1 19:30 96
JA GlobalPhone2 19:33 96
EN Buckeye3 9:13 20
JA CSJ4 9:11 20

2

ZH AIShell5 58:59 166
EN WSJ 58:49 166
ZH GlobalPhone 11:51 48
EN WSJ 11:49 48

3
RU GlobalPhone 11:07 58
EN WSJ 11:07 58

B. Test data.

1 EN
WSJ 9:39 47
Buckeye 9:01 20

2 ZH
AIShell 58:45 165
GlobalPhone 11:51 48

3 RU GlobalPhone 11:01 57
1 Wall Street Journal CSR corpus (Paul and Baker, 1992).
2 Multilingual text and speech database (Schultz, 2002).
3 Buckeye corpus of conversational speech (Pitt et al.,

2005).
4 Corpus of spontaneous Japanese (Maekawa, 2003).
5 Open-source Mandarin speech corpus (Bu et al., 2017).

Table 1: Corpus samples used in the simulations.

dition, the model has been successfully trained on
multiple languages for a speech technology applica-
tion (Kamper et al., 2020a,b), potentially making it
a good candidate for simulating bilingual speakers.

Following earlier studies (Kamper, 2019; Matu-
sevych et al., 2020b), we first pretrain the model as
an autoencoder RNN for 15 epochs without early
stopping using the Adam optimization (Kingma
and Ba, 2015) with a learning rate of 0.001. We
then train the model for 3 epochs on 100k ground
truth pairs from either one or two languages as de-
scribed next. We use 3 hidden layers (400 gated
recurrent units each) in both the decoder and the
encoder, and an embedding dimensionality of 130.

2.3 Training and test data

The model is trained on isolated words and tested
on either phones or words extracted from corpora
of natural speech based on existing forced align-
ments (Matusevych et al., 2020b; Kamper et al.,
2020b). All speech data is encoded using a com-
mon approach in speech processing: each speech
sequence is divided into 25-ms-long frames (sam-
pled every 10 ms), from which 13 Mel-frequency



cepstral coefficients (MFCCs) are extracted using
Kaldi (Povey et al., 2011).

The subsets of the corpora that we use are listed
in Table 1. Within each pair in part A of the table,
the subsets are matched on the number of speakers,
their gender, and the amount of data per speaker.
This ensures that we only compare models trained
on the same amount and type of data. In Simula-
tions 1 and 2, we follow the setup from a previous
study and use two subsets from different corpora
per language. In Simulation 3, we could not ob-
tain two different corpora of Russian speech, and
instead train the model five times with different
random initializations on the same data.

In case of bilingual models, we train them simul-
taneously on both languages, using mixed input.
We use the relative amount of training data in each
language as a simple proxy variable for language
proficiency: the higher the model’s relative expo-
sure to a language, the higher its proficiency in that
language. In bilingual training, we use the same
total amount of data as for the corresponding mono-
lingual models—in terms of both the number of
tokens (for pretraining the model) and of training
pairs. For example, consider a monolingual En-
glish model and a monolingual Mandarin model,
each trained on 10k tokens and 100k pairs. Then
for training a ‘balanced’ bilingual model we take
the 5k most frequent tokens from English and Man-
darin each, generate 50k pairs in each language,
and use the combined 10k English–Mandarin to-
ken data for pretraining and the combined 100k
pairs for training the CAE-RNN.

2.4 Simulating discrimination tasks

To test a model’s ability to discriminate a partic-
ular phonetic or lexical contrast, we use the ma-
chine ABX task (Schatz et al., 2013), which is
standard in research on zero-resource speech tech-
nology for evaluating discriminability of speech
units (Versteegh et al., 2015; Dunbar et al., 2017,
2020, etc.) and is commonly used for simulating
human speech discrimination tasks (e.g., Martin
et al., 2015; Schatz et al., 2019; Millet et al., 2019).
The machine ABX task allows us to easily design
precise comparisons (e.g., compare words that only
differ in 1 phone) and is not sensitive to the abso-
lute distances in the embedding spaces, which may
vary across simulations.

In the ABX task, A and X are two instances of
the same word type (e.g., right), while B is a differ-

ent word type (e.g., light). If A and X are closer to
each other in a model’s representation space than
B and X, the model’s prediction is correct, other-
wise it is not. Irrespective of the test units (phones,
words), an acoustic segment in our model is rep-
resented by a single vector. We perform the ABX
task directly on the vectors, allowing us to compare
segments of different duration (without doing any
type of alignment). Following earlier studies, we
use angular cosine distance to measure the distance
between the stimuli in the embedding space. The
model is evaluated by considering the proportion of
ABX triplets for which it makes correct predictions:
0% error corresponds to perfect discrimination, and
50% to chance performance.

To test whether the difference between the ABX
error rates of several models is significant, we fit
mixed-effects regressions to the error rates of these
models. Significance for the effect of interest is
then determined using two-tailed ANOVA tests
(with Satterthwaite degrees of freedom approxi-
mation) on the predicted values of the regressions.

3 Simulation 1: Phone discrimination

Previously, the monolingual CAE-RNN was shown
to correctly predict the crosslinguistic difference
in the discrimination of the Mandarin [C]–[tCh]
contrast (Matusevych et al., 2020b), observed
in Mandarin-learning vs. English-learning infants
(Tsao et al., 2006). Considering this, it may seem
trivial to show that a model with some exposure to
Mandarin data (bilingual) would also achieve lower
error than a model with no such exposure (English
monolingual). However, potentially complex inter-
actions between training languages may result in an
unpredictable phonetic space. This is why we need
to ensure the bilingual model behaves as expected,
before we move on to the word-level tasks. To do
this, we run a simple sanity check: whether a model
trained on two languages behaves in a predictable
way on the same Mandarin contrast.

3.1 Setup

We focus on the experiment of Kuhl et al. (2003),
who showed that exposing English-learning infants
to a small amount of Mandarin Chinese improves
their ability to discriminate [C]–[tCh]. Our goal is
to test whether the model also correctly predicts
the pattern for English-learning infants with vs.
without exposure to Mandarin.

It is difficult to estimate how the infants’ amount
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Figure 2: Models’ ABX error rates in the Mandarin [C]–
[tCh] phone discrimination task. Error bars show stan-
dard error of the mean over two training corpus sam-
ples × two test samples.

of Mandarin exposure in the experiment maps onto
the English–Mandarin ratio of training data in our
model. We therefore try the ratios of 90:10 and
75:25 (to simulate an infant with a higher exposure
to English than to Mandarin), as well as 50:50 (a
control condition, a balanced bilingual). As a base-
line to compare our bilingual models to, we train
the model on English speech alone (100:0 ratio).
For reference, we also train a model on Mandarin
speech alone (0:100). Using each model, we em-
bed a set of [C] and [tCh] phones from the test corpus
and run a [C]–[tCh] discrimination task. We expect
each bilingual model to show lower error than the
English monolingual model.

3.2 Results

The ABX error rates of the models (see Figure 2)
show the expected pattern: the higher the expo-
sure to Mandarin, the lower the error rates in the
target discrimination task. Even having 10% of
Mandarin data (90:10 model) on average results
in 1.6% reduction in absolute error compared to
the monolingual English model. A mixed-effects
regression fitted to the models’ error rates shows
that this difference is not significant, but the other
two bilingual models do show significantly lower
error rate than the monolingual English model: we
observe a 2.2% error reduction in the 75:25 model
and 3.5% in the 50:50 model compared to the En-
glish baseline. This suggests that even a relatively
small amount of training data in a given language
(under 25%) can improve the model’s ability to dis-
criminate between some contrasts in that language,
consistent with the empirical findings of Kuhl et al.
(2003) with infants. To summarize, the bilingual
CAE-RNN model behaves as we expected: it can

correctly predict infant-like behavior in phone dis-
crimination. In the next simulation, we test the
model on a word discrimination task.

4 Simulation 2: Word discrimination

Simulation 2 tests whether our bilingual model be-
haves in predictable ways at the word level. Recall
that it represents a sequence of any given duration
as a fixed-dimensional vector. The compression
of a dynamic speech sequence that unfolds in time
into a ‘static’ vector results in information loss.
Since words are normally longer speech sequences
than phones, it is not obvious whether the model’s
behavior in word discrimination and phone discrim-
ination will be consistent. To examine this, we test
the model on minimal pairs of words with [ô]–[l],
a phone contrast on which the monolingual CAE-
RNN previously showed an infant-like crosslin-
guistic discrimination pattern (Matusevych et al.,
2020b). As before, we train the model on one or
two languages and see if it behaves in a predictable
way, this time in a word discrimination task.

4.1 Setup

MacKain et al. (1981) tested adult native speakers
of American English and native Japanese learners
of English on the discrimination of English words
rock–lock (i.e., [ô]–[l] contrast). Learners with low
English proficiency scored nearly at chance in this
task, while highly proficient learners showed the
discrimination scores close to those of native En-
glish speakers. This result is also in line with stud-
ies showing that native Japanese speakers’ discrimi-
nation of [ô]–[l] can improve after relevant phonetic
training in English under certain conditions (e.g.,
Strange and Dittmann, 1984; Logan et al., 1991;
Bradlow et al., 1997; Iverson et al., 2005). Our goal
is to test whether our model can correctly predict
this word-level discrimination pattern.

Similarly to Simulation 1, we train the model on
Japanese (for reference) or English speech alone
(as the baseline to compare to), or on a combination
of the two in proportion 90:10, 75:25, or 50:50, to
simulate native Japanese learners of English with
variable proficiency. For each model, we embed a
set of acoustic words ([ô]–[l] minimal pairs) from
the test corpus. As in the original experiment, we
compare the bilingual models to the native English
model: to make correct predictions, a bilingual
model needs to show higher ABX discrimination
error than the English model. Also, we expect
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Figure 3: Models’ ABX error rates in the word discrim-
ination task with [ô]–[l] minimal pairs (e.g., rock–lock).
Error bars show standard error of the mean over two
training × two test corpus samples.

the error rate to decrease with higher exposure to
English: 90:10 > 75:25 > 50:50.

4.2 Results

It is clear from Figure 3 that the monolingual
Japanese model (100:0) shows higher ABX error
rate on the word discrimination task than the mono-
lingual English model (0:100). This extends the
previous result for phone-level [ô]–[l] discrimina-
tion (Matusevych et al., 2020b) to word level.

Comparing all the models, we observe that the
error rate decreases as the relative amount of En-
glish exposure increases. Even 10% of English
in the training data (90:10 model) improves the
discrimination by 6.9% in absolute error rate com-
pared to the monolingual Japanese model (25.5%
vs. 18.6%), and more so for the models with higher
English exposure. A mixed-effects regression fit-
ted to the error rates shows that the pairwise differ-
ences between most models are statistically signifi-
cant, except that the 50:50 model shows error rates
too close to both its neighbors: 75:25 and 0:100.
Despite that, the expected trend is still present.
In other words, our model successfully replicates
the direction of the main effect in MacKain et al.
(1981): the discrimination error rate decreases with
higher English exposure.

The result shows that our bilingual model be-
haves in a predictable way at the word level, ruling
out potentially damaging effect that crosslinguistic
interactions can have on its lexical representation
space. With this knowledge, in the next simulation
we proceed with applying our model to a spoken
word processing task.

5 Simulation 3: Spoken word processing

In this section, we present a case study to show
how the model can be used to get a better under-
standing of spoken word processing. Specifically,
we are interested to know if some of the effects
reported in the literature can be explained in terms
of phonetic learning alone. Difficulties with spoken
word processing have been attributed to imprecise
phonological encoding of non-native lexical repre-
sentations (Gor and Cook, 2020; Cook et al., 2016;
Cook and Gor, 2015; Darcy et al., 2013, 2012),
which results in a spurious activation of similarly
sounding competitor words. To give an example
from Cook et al. (2016), if the word parent is en-
coded as [pEr@(n)t], with an optional [n], it may
often be confused with parrot [pEr@t].

We focus on one of the experiments in Cook
et al. In a translation judgment task, native Russian
speakers (proficient in English) and native English
speakers (learning Russian) heard a Russian word
(e.g., moloko [m@ë2"ko] ‘milk’) and then saw an
English word (e.g., hammer, which translates into
Russian as ‘molotok’ [m@ë2"tok]). The participants
had to decide if the English word was a good trans-
lation of the Russian one. Cook et al. manipulated
the phone edit distance between the true translation
and the competitor word: in the example above, the
distance between [m@ë2"ko] and [m@ë2"tok] is 2.
They found that non-native speakers made more
mistakes than native speakers, and that increasing
the phone edit distance between the target words
decreased the size of this effect. They explain the
effect by ambiguous (‘fuzzy’) non-native phonolex-
ical representations. It is unclear, however, whether
lexical phonology is necessary to explain the ob-
served effect. To answer this question, we test
whether our model with no access to phonology
can correctly predict the described effect.

Clearly, our model does not know anything about
word meanings and cannot be tested on a transla-
tion task. Instead, we use a series of ABX discrim-
ination tasks to test whether the lower performance
of non-native speakers can be explained in terms
of acoustic embeddings of individual word tokens
in the model’s representation space. Recall that the
model has no access to phonology, and its acoustic
embeddings result from phonetic learning alone.

Figure 4 shows the error rates of human partic-
ipants in Cook et al. (2016). The patterns that we
focus on are: (1) lower error rate is associated with
higher proficiency (exposure to Russian) and higher
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Figure 4: Average error rate of participants in the Rus-
sian translation judgment task of Cook et al. (2016) de-
pending on their amount of exposure to Russian and
the edit distance between the target and the competitor
word. Error bars show mean standard error over partic-
ipants. Based on Table 3 in Cook et al. (2016).

edit distance; and (2) the difference between the
proficiency groups is the highest when the phone
edit distance between the target and the competitor
word is low. Cook et al. also looked at the effect of
competitor word frequency (hence the two panels
in Figure 4), but we do not consider this effect here.

5.1 Setup

We train the model on only Russian or only En-
glish data (for reference), and also on the combi-
nation of the two in proportion 75:25 (to simulate
native Russian speakers with some knowledge of
English), 50:50, 25:75, or 10:90 (to simulate na-
tive English speakers with variable proficiency in
Russian). Each model is trained five times with
different random initializations.

For testing, we prepare four ABX discrimination
tasks: in each task, the words A and X are of the
same type, and the words B and X differ in 1, 2, 3
or 4 phones (phone edit distance). We could not
obtain the list of the original stimuli from Cook
et al. (2016), therefore we sample ABX triplets
from our test corpus subset. Following the original
experiment, we only consider words containing 4–
10 phones. Furthermore, we only consider triplets
in which all pairwise ratios of the absolute dura-
tions of the words are within the factor of 1.1 (we
know from previous work that this model is sensi-

tive to the absolute duration of the test stimuli) and
in which B and X are not morphological forms of
the same word (such stimuli could not have been
used in the original translation judgment task by
design). We then sampled 5000 triplets per task,
except for edit distance 1 we only had 766 triplets.

As in the original experiment, we first look at the
error rates within each model: the error rates are
expected to decrease with greater edit distance. Sec-
ond, we compare the bilingual models to each other:
to match the findings from the human study, models
with less exposure to Russian (50:50, 25:75, 10:90)
must show a higher ABX discrimination error than
the model with more exposure (75:25). As a sanity
check, we also consider the monolingual Russian
(100:0) and English (0:100) models.

5.2 Results

Figure 5 shows the model’s ABX error rates across
tasks and training conditions. We first observe that
all lines have a negative slope: all the six models
show lower error in the tasks with greater edit dis-
tance between the words, which is the expected
pattern. Note that comparing the absolute values
to the results of human participants (Figure 4) is
not necessarily meaningful because of the task dif-
ference: human participants of Cook et al. (2016)
had to compare an acoustic word in Russian to a
translation of an English word they saw, whereas
our model directly compared two Russian acoustic
words embedded in its representation space.

Second, we see in Figure 5 that the models with
less exposure to Russian have higher error rates.
This is especially evident for the data points with
edit distance 1, whereas the difference across the
models gets smaller with greater edit distances.
Again, this is the expected pattern. A mixed-effects
regression fitted to the models’ error rates suggests
that there are significant effects of (1) the amount
of Russian language exposure (higher exposure is
associated with lower error) and (2) the edit dis-
tance (higher edit distance is associated with lower
error). A similar pattern is observed when we only
consider the bilingual models, for a better anal-
ogy with the original experiment: the 75:25 model
shows significantly lower error rates than both the
10:90 model and the 25:75 model (but not the 50:50
model), and also the error rates generally get lower
as the edit distance increases.

Recall that in each discrimination task, we con-
sidered pairs of words with a certain edit distance.
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Figure 5: Average ABX discrimination error rate depending on the amount of the model’s exposure to Russian
and the edit distance between the words in ABX triplets. Error bars show mean standard error over random model
initializations.

Most edit operations involve Russian phone con-
trasts that are also linguistically meaningful in En-
glish (e.g., [v]–[s]). However, there is a small num-
ber of Russian phone contrasts that are allophones
of the same phoneme in English (e.g., [d]–[dj]). If
our data included a substantial number of contrasts
of this type, the model’s higher error rates could
be attributed to these difficult phone contrasts. To
ensure that was not the case, we looked at the con-
trasts in our pairs with edit distance 1 and found
that out of 29 contrasts present in that data, only 1
([ë]–[lj]) was not phonemic in English, and exclud-
ing the corresponding test pairs from the analysis
had only minor impact on the absolute error rates,
but not on the reported patterns.

To summarize, our model could correctly pre-
dict the direction of the two main effects found in
a translation judgment task of Cook et al. (2016).
This suggests that their result can at least partially
be explained in terms of comparing two acoustic
instances: the word a participant hears and the
translation of a word that (s)he sees. This presents
an alternative explanation of the non-native speak-
ers’ difficulties with spoken word processing in
terms of phonetic perception, which does not in-
volve phonology.

6 Analyzing the model’s representations

Most studies on bilingual lexical access advocate
its non-selective nature: that is, speakers activate
words in both languages in parallel, including in
spoken word processing (e.g., Weber and Cutler,
2004; Lagrou et al., 2011; Shook and Marian,
2012). Ideally, our model should show a similar
pattern and not completely separate the two lan-
guages in its representation space. To examine this,

Russian–English ratio
75:25 50:50 25:75 10:90

Mean 84.6 86.5 84.3 80.3
SD 1.0 0.9 0.4 1.6

Table 2: Accuracy (in %) of logistic regression classi-
fiers predicting language identity of a given word from
its acoustic embedding, averaged over five random ini-
tializations of each model.

we run a language classification task, similar to
Kamper et al. (2020a). We are interested whether
the model can identify the language of a given word
based on its acoustic embedding.

Using the bilingual models from Simulation 3,
we embed 5000 words per language. We then train
a logistic regression classifier on 80% of this data
to predict the language of a given word from its
acoustic embedding, and test the classifier on the
remaining 20% of words. The higher the accu-
racy of the classifier, the more linearly separable
the two languages—specifically, their lexicons—in
our model’s representations. The results (Table 2)
show that all models reach accuracy much higher
than the 50% chance, although no model reaches
100% accuracy. This means that the lexical rep-
resentations of words in two languages (acoustic
word embeddings) in our bilingual models are not
fully linearly separable, indicating a substantial
(13.5–19.7%) overlap between the two languages.
Because some of the representations from the two
languages are close to each other in the embedding
space, the model may confuse them, similar to the
non-selective lexical access in bilingual speakers.



7 Discussion

We started by asking whether some of the diffi-
culties in non-native spoken word processing can
be explained at the level of phonetic perception,
without involving phonolexical representations. To
address this question, we presented a case study
(Simulation 3) with a computational model that
learns from unsegmented speech data and does not
have access to phonology. Our model showed pat-
terns similar to those found by Cook et al. (2016) in
human speakers. This suggests that their results can
be at least partly explained by phonetic learning.
While we cannot estimate the relative contribution
of the two factors—non-native phonetic perception
vs. imprecise phonolexical representations—to the
behavior of non-native speakers in the experiment
of Cook et al., we argue that both factors need to be
considered as possible explanations of the spoken
word processing difficulties in non-native speak-
ers. Note, however, that this result does not tell us
whether the phonetic or the phonolexical explana-
tion is more parsimonious—a question that should
be addressed in the future.

One could interpret our main result differently:
that our model, in fact, has succeeded in learning
phonological systems from speech data and cannot
be considered a purely phonetic model. Indeed, we
know that deep neural networks can learn to encode
various types of linguistic structure without explicit
supervision (e.g., Manning et al., 2020; Linzen and
Baroni, 2021). In particular, speech models can
achieve high accuracy in phone discrimination (Al-
ishahi et al., 2017) and classification (Chung et al.,
2019), a finding sometimes interpreted as a success-
ful acquisition of phonetic/phonological categories.
While our model can discriminate at least some
phone contrasts, too (Simulation 1), this does not
necessarily mean that it learns phonetic categories
(see Schatz et al., 2019, for a relevant discussion).
More importantly, what our model does not do is
store explicit phonolexical representations in its
memory, whereas the (imprecise) storage of word
forms is one of the key premises of the phonolex-
ical account explaining non-native speakers’ dif-
ficulties in spoken word processing (Cook et al.,
2016). Therefore, we conclude that our results
highlight the effects of phonetic perception on non-
native word processing.

In Simulation 1 and 2 we showed that our model
trained simultaneously on two languages could cor-
rectly predict some phone- and word-level discrim-

ination effects in infants and adults (Kuhl et al.,
2003; MacKain et al., 1981). This extends previous
results on phone discrimination with monolingual
model (Matusevych et al., 2020b) to word discrimi-
nation and to bilingual speakers. Also, our analysis
of model’s representations indicates a substantial
overlap between the lexicons of the two languages,
mimicking non-selective lexical access in bilingual
speakers (e.g., Lagrou et al., 2011). All together,
this suggests that the CAE-RNN can be used as a
tool to study not only native/non-native phonetic
learning, but also native/non-native spoken word
processing, including in bilingual speakers.

Our model helps to tease apart the potential im-
pact of phonetic learning from other effects on spo-
ken word processing. At the same time, it is not
a cognitive model of the human mental lexicon,
for example because it is devoid of semantics. A
method to learn acoustic and semantic embeddings
in parallel has been proposed in speech engineering
(Chen et al., 2018), and future research could shed
some light on whether this method can be used for
studying human mental lexicon.
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