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Abstract

The strong lottery ticket hypothesis (LTH) postulates that one can approximate
any target neural network by only pruning the weights of a sufficiently over-
parameterized random network. A recent work by Malach et al. [1]] establishes the
first theoretical analysis for the strong LTH: one can provably approximate a neural
network of width d and depth [, by pruning a random one that is a factor O(d*(?)
wider and twice as deep. This polynomial over-parameterization requirement is
at odds with recent experimental research that achieves good approximation with
networks that are a small factor wider than the target. In this work, we close the gap
and offer an exponential improvement to the over-parameterization requirement
for the existence of lottery tickets. We show that any target network of width d
and depth [ can be approximated by pruning a random network that is a factor
O(log(dl)) wider and twice as deep. Our analysis heavily relies on connecting
pruning random ReL U networks to random instances of the SUBSETSUM problem.
We then show that this logarithmic over-parameterization is essentially optimal for
constant depth networks. Finally, we verify several of our theoretical insights with
experiments.

1 Introduction

Many of the recent unprecedented successes of machine learning can be partially attributed to state-
of-the-art neural network architectures that come with up to tens of billions of trainable parameters.
Although test accuracy is one of the gold standards in choosing one of these architectures, in many
applications having a “compressed” model is of practical interest, due to typically reduced energy,
memory, and computational footprint [2-15]. Such a compressed form can be achieved by either
modifying the architecture to be leaner in terms of the number of weights, or by starting with a
high-accuracy network and pruning it down to one that is sparse in some representation domain,
while not sacrificing much of the original network’s accuracy. A rich and long body of research
work shows that one can prune a large network to a tiny fraction of its size, while maintaining (or
sometimes even improving) its original accuracy [2H15].
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Although network pruning dates back at least to the 80s [16-19], there has been a recent flurry of
results that introduce sophisticated pruning, sparsification, and quantization techniques which lead
to significantly compressed model representations that attain state-of-the-art accuracy [2,{14,|15].
Several of these pruning methods require many rounds of pruning and retraining, resulting in a
time-consuming and hard to tune iterative meta-algorithm.

Could we avoid this pruning and retraining cycle, by “winning” the weight initialization lottery, with
a ticket that puts stochastic gradient descent (SGD) on a path to, not only accurate, but also very
sparse neural networks? Frankle and Carbin [20] define lottery tickets as sparse subnetworks of a
randomly initialized network, that if trained to full accuracy just once, can reach the performance
of the fully-trained but dense target model. If these lottery tickets can be found efficiently, then the
computational burden of pruning and retraining can be avoided.

Several works build and expand on the lottery ticket hypothesis (LTH) that was introduced by Frankle
and Carbin [20]. Zhou et al. [21]] experimentally analyze different strategies for pruning. Frankle et
al. [22] relate the existence of lottery tickets to a notion of stability of networks for SGD. Cosentino
et al. [23] show that lottery tickets are amenable to adversarial training, which can lead to both
sparse and robust neural networks. Soelen et al. [24] show that the winning tickets from one task are
transferable to another related task. Sabatelli et al. [25] show further that the trained winning tickets
can be transferred with minimal retraining on new tasks, and sometimes may even generalize better
than models trained from scratch specifically for the new task.

Along this literature, a striking finding was reported by Ramanujan et al. [26] and Wang et al. [27]:
one does not even need to train the lottery tickets to get high test accuracy; they find that high-accuracy,
sparse models simply reside within larger random networks, and appropriate pruning can reveal them.
However, these high-accuracy lottery tickets do not exist in plain sight, and finding them is in itself
a challenging (as a matter of fact NP-Hard) computational task. Still, the mere existence of these
random substructures is interesting, and one may wonder whether it is a universal phenomenon.

The phenomenon corroborated by the findings of Ramanujan et al. [26] is referred to as the strong
lottery ticket hypothesis. Recently, Malach et al. [[1] proved the strong LTH for fully connected
networks with ReLU activations. In particular, they show that one can approximate any target neural
network, by pruning a sufficiently over-parameterized network of random weights. The degree of
over-parameterization, i.e., how much larger this random network has to be, was bounded by a
polynomial term with regards to the width d and depth [ of the target network. Specifically, their

analysis requires the random network to be of width 6(d5l2 /€2) and depth 2, to allow for a pruning
that leads to an e-approximation with regards to the output of the target network, for any input in a

bounded domain. They also show that the required width can be improved to O(d?1? /%) under some
sparsity assumptions on the input. Although polynomial, the required degree of over-parameterization
is still too demanding, and it is unclear that it explains the experimental results that corroborate the
strong LTH. For example, it does not reflect the findings in Ramanujan et al. [26] that only seem
to require a constant factor over-parameterization, e.g., a randomly initialized Wide ResNet50, can
be pruned to a model that has the accuracy of a fully trained ResNet34. In this work, our goal is to
address the following question:

What is the required over-parameterization so that a network of random
weights can be pruned to approximate a smaller target network?

Towards this goal, we identify the crucial step in the proof strategy of Malach et al. [1] that leads
to the polynomial factor requirement on the per-layer over-parameterization. Say that one wants
to approximate a weight w* € [—1,1] with a random number drawn from a distribution, e.g.,
Uniform([—1, 1]). If we draw n = O(1/¢) i.i.d. samples,

X1,..., X, ~ Uniform([—1, 1]),

then one of these X;’s will be € close to w*, with constant probability. In a way, this random sampling
generates an e-net, i.e., a set of numbers such that any weight in [—1, 1] is € close to one of these n
samples. Pruning that set down to a single number, i.e., selecting the point closest to w*, leads to an €
approximation for a single weight. At the cost of a polynomial overhead on the number of samples n,
one can appropriately apply this to every weight of a given layer, and then all layers of the network,
in order to obtain a uniform approximation result for every possible input of the neural network.



Perhaps the surprising fact is that one can achieve the same approximation, with exponentially smaller
number of samples, while still using a pruning algorithm. The idea is that instead of approximating
the target weight w* with only one of the n samples X1, ..., X,,, one could add a subset of them to
get a better approximation. Indeed, when n = O(log(1/¢)), then, with high probability, there exists
asubset S C [1,...,n], such that

‘w Zies X

Hence, approximating w* by the best subset sum } _, ¢ Xj, offers an exponential improvement on
the sample complexity requirement compared to approximating it with one of the X’s.

<e.

The above approximation result for random X;’s is drawn from a line of work on the random SUBSET-
SUM problem [28-31]. In particular, Lueker [31] showed that one can achieve an e-approximation
of any target number ¢ € [—1, 1], with only O(log (1/€)) i.i.d. samples from any distribution that
contains a uniform distribution on [—1, 1], by using the solution to the following (NP-hard in general)

problem
in |t — X .
mle-3 .,

Adapting this result to ReLU activation functions is precisely what allows us to get an exponential
improvement on the over-parameterization required for the strong LTH to be true.

Our Contributions: In this work, by adapting the random SUBSETSUM results of Lueker [31]
to ReLU activation functions, we offer an exponential improvement on the over-parameterization
required for the strong LTH to be true. In particular we establish the following result.

Theorem 1. (informal) A randomly initialized network with width O(dlog(dl/min{e,d})) and
depth 21, with probability at least 1 — §, can be pruned to approximate any neural network with width
d and depth 1, up to error e.

The formal statement of Theorem|[I]is provided in Section[3] Note that in the above result, no training
is required to obtain the sparser network within the random model, i.e., pruning is all you need.
Further, note that we guarantee a good approximation to any network of fixed width and depth by
pruning a single larger network that is logarithmically wider. That is, the set of networks obtained by
pruning the larger random network amounts to an e-net with regards to the smaller target networks.

We then show that this logarithmic over-parameterization is essentially optimal for constant depth
networks. Specifically, we provide a lower bound for 2-layered networks that matches the upper
bound proposed in Theorem I} up to logarithmic terms with regards to the width (see Theorem [2]in
Section {4| for a formal statement):

Theorem 2. (informal) There exists a 2-layer neural network with width d which cannot be approxi-
mated to error within € by pruning a randomly initialized 2-layer network, unless the random network

has width at least Q(d1og(1/¢)).

To the best of our knowledge, the only prior work that proves the validity of the strong LTH is Malach

et al. [1]. However, as discussed earlier, their result gives an upper bound of O(d®I?) on the required
width of the random networked to be pruned, which we improve to O(dlog(dl)). A concurrent and
independent work by Orseau et al. [32] also prove a version of the strong LTH, where they use a
hyperbolic distribution for initialization, and require the over-parameterized network to have width
O(d?log(dl)). Although Orseau et al. [32] prove their result for the hyperbolic distribution, they
conjecture that it also holds for the uniform distribution. Theorem|[I proves this conjecture with an
improved guarantee that a O(dlog(dl)) wide network suffices (which is smaller by a factor of d).
Furthermore, our result holds for a broad class of distributions beyond the uniform distribution (see
Remark [T).

Notation We use lower-case letters to represent scalars, e.g., we may use w to denote the weight of
a single link between two neurons. We use bold lower-case letters to denote vectors, for example,
v,u, vy, ve. The i-th coordinate of the vector v is denoted as v;. Finally, matrices are denoted
by bold upper-case letters. For a vector v, we use ||v|| to denote its ¢3 norm. If a matrix W has
dimension d; x dy, we say W € R% %92 The operator norm of a d; x dy dimensional matrix M is
defined as |[M|| = supycgas xj=1 [ Mx||. We denote the uniform distribution on [a, b] by Ula, b].
We use ¢, C' to denote positive absolute constants, which may vary from place to place, and their
exact values can be inferred from the proof details



2 Preliminaries and Setup

In this work, our goal is to approximate a target network f(x) by pruning a larger network g(x),

where x € R%. The target network f is a fully-connected, ReLU neural network of the following
form
f(X) :WlO'(Wl,1 ...O‘(W1X>), (1)

where W, has dimension d; x d; 1, x € R%, and o(-) is the ReLU activation that is, o(z) = z-1,>0.
A second, larger network g(x) is of the following form

9(x) = Myio(Mg_y ...0(M;x). 2)
Our goal is to obtain a pruned version of g by eliminating weights, i.e.,
§(x) = (So; © My )o((S21—1 © Myg;—1)...0((S1 © M1)x)), 3)

where each S; is a binary (pruning) matrix, with the same dimension as M,;, and ® represents
element-wise product between matrices. Our objective is to obtain a good approximation while
controlling the size of g(+), i.e., the width of M;’s. In this work we only prune neuron weights,
and not entire neurons. We refer the reader to Malach et al. [1] for the differences between the two
approaches: pruning weights and pruning neurons.

We consider the case where the weight matrices My, ..., M, of g(-) are randomly initialized. In
particular, each element of the matrices is an independent sample from U[—1, 1].

The error metric that we use is the uniform approximation over the normed-ball, i.e., g is e-close to f
in the following sense:

max _||f(x) —g(x)[| <e.
x€eR0:||x||<1

Observe that a result of this kind can be generalized from the domain {||x|| < 1} to an arbitrarily
large radius 7, {||x|| < r}, by scaling € appropriately. It is necessary, though, to consider only
bounded domains because ReLU neural networks are positive-homogeneous (f(ax) = af(x) for
a > 0) and thus, any non-zero error can be made arbitrarily large for unbounded domains.

3 Lottery Tickets via Subset Sum

We now present our results for approximating a target network by pruning a sufficiently over-
parameterized neural network. In fact, we prove that a single random, logarithmically over-
parameterized neural network can be pruned to approximate any neural network of a fixed architecture,
with high probability. We define F to be the set of target ReLLU neural networks f such that (i)
f: R% — R%, (ii) f has depth [ (iii) weight matrix of i-th layer has dimension d; x d;_; and
spectral norm at most 1. That is,

F= {f : f(X) = WlO‘(W[,1 . ..U(W1X>), Vi Wz S Rdi’Xdi’l and HW,H < 1} (4)
We prove that a randomly initialized neural network

g(x) = Mygio(Mg;_1 ...0(M;x)),

which has 2/ layers and layer widths log Igi"g{ljgl} times the corresponding layer widths of F, with

probability 1 — §, can approximate any neural network in F up to error €. For simplicity, we state
our results for matrices with spectral norm at most 1, but they can readily be generalized to arbitrary
norm bounds.

Theorem 1. Let F be as defined in Eq. @). Consider a randomly initialized 2l-layered neural
network
g(x) = Myo(Mg;_1 ...0(M;x)),
where every weight is drawn from U|[—1, 1], My; has dimension
d;—1d;l
d; x Cdi—y log ———,
x Cdi—y log min{e, 0}

and Mo;_1 has dimension
d;_1d;l

Cdi_l log m X

di—l-
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Then, with probability at least 1 — 6, for every f € F,

min sup ||f(X) — (SQI ® MQ[)J((SQZ,1 ® Mglfl) e 0((81 ® Ml)X)” < €.
Sie{0,1}4%di-1 | x||<1

Note that the above result offers a uniform approximation guarantee for all networks in F by only
pruning a single over-parameterized network g. In this sense if G is the set of all pruned versions of
the base neural network g(x), then our guarantee states that, with probability 1 — 4,

sup min_ - sup |1 (x) = g(x)]| < e
feF Ix)€g |x|I<

We note two generalizations of Theorem [I]in the remarks below:

Remark 1. Although Theoreml|I is stated for initialization with the uniform distribution, Leuker’s
result allows us to extend it to a wide family of distributions. Suppose P is a univariate distribution
that contains a uniform distribution in the following sense: there exists a distribution (), a constant

€ (0,1, and a constant ¢ > 0 such that P = (1 — «)Q + aU[—c, c|. Then a random network
initialized with P also satisfies the guarantee of Theorem([I, up to constants depending on o and c.
For example, the standard normal distribution and the Laplace distribution with zero mean and unit
variance satisfy this condition.

Remark 2. Theorem|I assumes that both the target network and the over-parameterized network
have ReLU activations. This assumption can be relaxed to some extent. Looking at Eq. (in the
proof of Theorem[l} Appendix[A.3), we see that the target network f can have any activation function,
as long as it is 1-Lipschitz. The over-parameterized network g would still have 2l layers, where
every odd layer would have a ReLU (or linear) activation and every even layer would have the same
activation as the target network.

In Subsection[3.T} we illustrate the connection between the SUBSETSUM problem and approximating
a single weight via pruning by considering a linear network. Later, in Subsection[3.2] we show how
to do the same by pruning a ReLU network. Towards the end of Subsection we outline a proof
sketch of Theorem|I] The complete proof of Theorem [I|can be found in Appendix [A.

3.1 Single Link: Pruning a Linear Network

We now explain our approximation scheme for a single link weight by pruning a random two-layered
linear neural network. Let the scalar target function be f(z) = w - x, where |w| < 0.5. To make the
task simpler, let us assume (just for this subsection) that the second layer is deterministic, and has
weights that are all equal to 1. Thus, the over-parameterized neural network g(-), that we will prune,
has the following linear architecture:

where 1 is all-ones vector, a = [ay, ..., a,]T, and the weights a; are sampled from U[—1, 1]. Figure
shows a visual representation of this network.

Then, the question is how large does n (the width of the random network) need to be so that we can
approximate wz by pruning weights in a. As |z| < 1, we see that it is equivalent to following:

P(35 C ]+ jw— esai|§€>21—6, 5)

where the probability is taken over the randomness in a;’s. Note that this condition is tightly related

to a random instance of the subset sum problem, i.e., mingcy1,....n} |w — Zies ai| . This problem
was studied by Lueker [31], who obtains the following result:

Theorem 3 (Corollary 2.5 [31]) Let X1,..., X, be iid. uniform over [—1,1]|, where n >

Clog mm{e 5T Then, with probability at least 1 — 0, we have

Vz € [-0.5,0.5], 3S C [n] such that |z — Y X;| <e.
i€S



(b) Over-parameterized linear network

(c) Over-parameterized ReLU network

Figure 1: (a) Target network is a linear univariate wz. (b) A simplified construction, where we approximate the
weight w by pruning an over-parameterized two-layered linear network with deterministic second layer of all
1s. We only prune the second layer by setting weights to 0. (c) Our construction from the proof of Lemmall]
that uses ReLU units. Our construction adds an additional hidden layer of size 2n = O(log(1/¢)). Without
loss of generality, assume w > 0. As the hidden layer also has ReLU activation, we make use of the identity
wz = o(wx) — o(—wx) and approximate the two terms separately. We prune the network such that the (i) top
half of the network (a;, b;) approximates o(wzx), (i) and the bottom half (c;, d;) approximates —o (—wzx) . We
only prune the weights in the second layer (shown in red) for a technical reason which helps us reuse the weights
in the first layer subsequently in the proof of Theoremm

Lueker in [31], establishes this theorem by a beautiful and intricate proof that employs concentration
of martingales, and is crucial for the proof of our upper bound. Using Theorem [3, we see that if
n > Clog(1/ min{e, ¢}), then Eq. (5) holds. We can prune the network by simply setting a; to 0 for
1 ¢ S. Equivalently, we could instead prune the output layer at indices that are not in S, as shown
in Figure[Ibl Note that the dependence on ¢ is only logarithmic, which leads to only logarithmic
dependence on width in Theorem I}

3.2 Single Link: Pruning a ReLU Network

We now show how the ideas from Subsection[3.1]can be extended to random ReLLU networks.
Lemma 1. (Approximating a weight) Let g : R — R be a randomly initialized network of the form
g(z) = vlo(uz), where v,u € R*", n > Clog 2, and all v;, w;’s are drawn i.i.d. from U[—1,1].
Then with probability at least 1 — €,

Ywe [-1,1], 3 s€{0,1}*": sup |wz — (vos)lo(ur)| <e.
z:|z| <1

Proof. We decompose wx as wz = o(wz) — o(—wz) and WLOG assume w > 0. Let

o~ [+ [2)

where a, b, ¢,d € R", 51,82 € {0,1}". Thus, (vos)To(uz) = (bos;) o(ar)+(dosz) o(cz).
See Figure [l c|for a diagram.

Step 0: Equivalence between pruning u and v. Note that (v ® s)To(ur) = vio((s ® u)z).
Thus, in the the following construction, we will prune u (a and c) instead of v, for simplicity.

Step 1: Pre-processing a. Let a™ = max{0, a} be the vector obtained by pruning all the negative
entries of a. Thus, a®™ contains 7 i.i.d. random variables from the mixture distribution: (1/2)P, +
(1/2)U]0, 1], where P, is the degenerate distribution at 0.

Since w > 0, then for < 0 we have that o(wz) = bTJ(a+x) = 0. Moreover, further pruning of
a™ would not affect this equality for x < 0. We thus focus our attention on x > 0 in steps 1 and 2.
Therefore, we get that o(wz) = wx and bTo(atz) = bTate =Y, baf .

Step 2: Pruning a via SUBSETSUM. Consider the random variable Z; = bia:r. We show that
Theorem 3]also holds for Z;’s (See Corollary[T]and Corollary 2]in Appendix [C). Therefore, as long as



n > C'log 2/e, with probability 1 — €/2, we can choose a subset of { Z1, Zs, ..., Z, } to approximate
w up to €. That is with probability 1 — €/2,

Vw € [0,1], Is; €{0,1}": |w—bT(s;0ah)| <e/2,
and because || < 1, we can uniformly bound the error between the linear function wz and the

pruned version of the network. Therefore, with probability 1 — ¢/2,

Yw e [0,1], Is; €{0,1}": sup |o(wz) —bTo((s; ©at)z)| < €/2, (6)
ze[—1,1]

where we use that for z < 0, o(wz) = bTo((s1 -at))z = 0.

Step 3: Pre-processing c. We now turn our attention to < 0 with a similar procedure as steps 1
and 2. We begin by pre-processing c. Let ¢~ = min{0, c} be the vector obtained by pruning the
positive entries of c. Therefore, ¢~ contains n i.i.d. random variables from the mixture distribution:
(1/2)Py + (1/2)U[-1, 0], where P, is the degenerate distribution at 0.

Step 4: Pruning c via SUBSETSUM. For x > 0, we have that o(—wz) = 0 and dTo(c™z) = 0.
Moreover, pruning ¢~ further does not affect the equality. Thus, we only consider the case = < 0.
For z < 0, we get that —o(—wz) = —(—wz) = wz and also o(c~ ) = ¢~ z. Thus d7o(c™z) =
(dTc™)z. Observe that the b;a;” and d;c; have the exact same distribution and thus similar to the
step 2 above, as long as n > C'log 2/¢, with probability at least 1 — €/2,

Yw € [0,1], s € {0,1}": sup | —o(~wz) —dTo((s ®c)z)| < €/2, (7
z€[—1,1]
where we use that wz = —o(—wz) and A7 (se © ¢ ™)z = d¥ 0 ((s2 ® ¢™)z) for z < 0.

Step 5: Tying it all together. Recall that w > 0. By a union bound, we assume that Equations (6)
and (7) hold with probability at least 1 — €. On that event, we get that

inf  sup jwz —vio((u®s)r)| = inf sup |wzr —bTo((s; ®a)z) —dlo((sy © c)z)]
s€{0,1}2" ||<1 S1,82 |z|<1
< inf sup |wz — b’ o((s; ®at)z) —do((s2 © c7)x)| (Using steps 1 and 3)

S1,S2 lz|<1

= inf sup |o(wz) —o(—wz) —blo((s; ®at)z) —dlo((sy ® ¢ )z)]
31052 Ja|<1

<inf sup |o(wz) — bl o((s; ©@at)z)| +inf sup | — o(—wz) —d?o((s2 © ¢7)x)|
*t lz|<t ®2 |z|<1

<,

where the last step uses (6) and (7). O

Proof Sketch of Theorem [l Lemma [l states that we can approximate a single link with a
O(log(1/€)) wide network. Then we show that we can approximate a neuron with d weights
using O(dlog(d/e)) wide network. Moreover, reusing weights allows us to approximate a whole
layer of d neurons with a O(d log(d/e€)) wide network. Finally, we show that if we can approximate
each layer in the target network individually, we also get a good approximation as a whole.

4 Lower Bound by Parameter Counting

We now state the lower bound for the required over-parameterization by showing that even approxi-
mating a linear network requires blow up of width by log(1/¢). For a matrix W, we can express the
linear function Wx as a ReLU network hw (see Eq. (8)). Let F be the set of neural networks, that
represent linear functions with spectral norm at most 1, i.e.,

Fom{hw :WER™ . [W| <1}, where hyw(x)=]I —I]a({vgv} x). ®

We prove that if a random network (with arbitrary distribution) approximates every hyy € F with
probability at least 0.5, then the random network needs at least d” log(1/¢) parameters. For a two-
layered network, this means that the width must be at least dlog(1/¢). Note that our lower bound



does not require a uniform approximation over F, which is achieved by Theorem 1| with d log(d/€)
width. Therefore, Theorem 2 shows a lower bound to the version of the lottery ticket hypothesis
considered by Malach et al. 1], whereas Theorem [I|shows an upper bound for a stronger version of
the LTH. Formally, we have the following theorem:

Theorem 2. Consider a neural network, g : R — R of the form g(x) =
Mio(M;_1...0(M;1x)), with arbitrary distributions on M;y,..., M. Let G
be the set of neural networks that can be formed by pruning g, ie, G =
{G:9x)=(S;oM;)o(...0((S1 ®M;)x)), where S1,...S) are pruning matrices}. Let
F be as defined in Eq. (8). If the following statement holds:
Vhef,P(Hg’EQ: sup ||h(x) — ¢ (x)|| <6> > %, 9
x:|x|| <1

then g(x) has Q(d? log(1/€)) parameters. Further, if | = 2, then width of g(x) is Q(dlog(1/€)).

Remark 3. Note that Theorem 2 focuses on approximating (linear) multivariate functions, which
is an important building block in approximating multilayer neural networks. At the same time, our
bounds are tight only for networks with constant depth. Generalizing Theorem 2|for deeper networks
would require a better understanding of the increase in representation power of neural networks with
depth. We leave further investigation of both of these questions for future work.

Proof Sketch: Our proof strategy is a counting argument, which shows that |G| has to be large
deterministically. Particularly, there exists a matrix W that is far from all the pruned networks in
G with high probability, unless |G| is large enough. Together with the fact that |G| scales with the
number of parameters, we get the desired lower bound. See Appendix [B]for the complete proof.

5 Experiments

We verify our results empirically by approximating a target network via SUBSETSUM in Experiment
1, and by pruning a sufficiently over-parameterized neural network that implements the structures in
Figures[Ib|and[Ic/in Experiment 2. In both setups, we benchmark on the MNIST [33] dataset, and all
training and pruning is accomplished with cosine annealing learning rate decay [34] on a batch size
64 with momentum 0.9 and weight decay 0.0005.

Experiment 1: SUBSETSUM. We approximate a two-layer, 500 hidden node target network with
a final test set accuracy of 97.19%. Every weight was approximated in this network with a subset
sum of n = C'logy (%) ~ 21 coefficients, for e = 0.01 and C' = 3. To solve SUBSETSUM more
efficiently, we implement the following mixed integer program (MIP) for every weight w in the target
network and solve it using Gurobi’s [35] MIP solver:

n n
w — E a;T; w — E a;X;
i=1 i=1

a; € [LLulVi=1,...,n,

subject to <e z;€{0,1}Vi=1,...,n,

Tl @

where [ and u are the bounds of the uniform coefficient distribution and e is sufficiently large. Every
set of a; coefficients is unique to the approximation of w, and these coefficients are drawn uniformly
from a range which is fine-tuned for the target network. We recommend that the set [I, u] be large
enough to at least contain all weights in the target network, making the solution to any SUBSETSUM
problem less likely to be infeasible. When the bounds are close to the minimum and maximum
weight values in the network, we find that we can decrease n, either by increasing e or decreasing
C, thereby reducing time complexity. Since the solver finds the optimal solution, most weights in
our approximated network were well below 0.01 error, and our approximated network maintained
the 97.19% test set accuracy. The 397,000 weights in our target network were approximated with
3,725, 871 coefficients in 21.5 hours on 36 cores of a c¢5.18xlarge AWS EC2 instance. Such a running
time is attributed to solving many instances of this nontrivial combinatorial problem.

Experiment 2: Pruning Random Networks. We train baseline networks, including two-layer and
four-layer fully connected networks with 500 hidden nodes per layer (learning rate 0.1 for 10 epochs)
and LeNet5 (learning rate 0.01 for 50 epochs). In Figure 4, we show the result of implementing the



structure in Figure|lc|(with and without ReL U activation) in each of these networks, and compare the
result with their respective baselines and wide-network counterparts. More specifically, we compare
the results of pruning our structure with pruning a wider, random network such that the number of
parameters is approximately equal to the number of parameters in the network with our structure. We
use the edge-popup [26] algorithm to prune the networks, which finds a subnetwork in each of these
two architectures without training the weights. Since our structure in Figure[Ic]is well-defined only
for fully connected layers, we prune LeNet5 by randomly initializing and freezing the convolutional
filters and pruning the fully connected layers. The weights and scores in the pruned networks are
initialized with a Kaiming Normal [36]] and Kaiming Uniform distribution, respectively. The LeNet5
networks are pruned with learning rate 0.01; the fully connected networks utilize a learning rate of
0.1. Experiments are run on these pruned architectures for 10, 20, 30, 50, and 100 epochs, and the
maximum accuracy for each architecture for a particular number of parameters is then selected. We
vary the number of parameters in each network by adjusting the [0, 1] sparsity parameter.

Accuracy vs Number of Parameters Accuracy vs Number of Parameters Accuracy vs Number of Parameters
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Figure 2: Performance of pruning our structure shown in Figure with and without ReLU activation, using 5
(as, b;) coefficient pairs per weight. The number of parameters is a function of the sparsity of each network.
Results are benchmarked on MNIST.

Note that the use of additional ReLU activations leads to worse performance than the use of an
identity mapping when the number of parameters is small. We posit that the additional sparsification
from ReL.U degrades the performance of our already sparsified network.

The findings from this second experiment indicate that the performance of a pruning algorithm can
vary with regards to its approximation capacity of the target network, depending on the network
topology. Note that the different network topologies all contain, approximately, the same number of
weights, hence should lead to similar approximations. However we see that the choice of architecture
plays an important role in the performance and efficiency of a given pruning algorithm.

6 Discussion

In this paper we establish a tight version of the strong lottery ticket hypothesis: there always exist
subnetworks of randomly initialized over-parameterized networks that can come close to the accuracy
of a target network; further this can be achieved by random networks that are only a logarithmic
factor wider than the original network. Our results are enabled by a very interesting paper on the
random subset sum problem from Lueker [31]], and the essential building block of our analysis is to

show that a linear function f(x) = Zle w;x; on d parameters, can be approximated by selecting a
subset of the coefficients of a random one that has dlog(dl/e) parameters.

Our current work focuses on general fully connected networks. It would be interesting to extend
the results to convolutional neural networks. Other interesting structures that come up in neural
networks are sparsity and low-rank weight matrices. This leads to the question of whether we can
leverage the additional structure in the target network to improve our results. An interesting question
from a computational point of view is whether our analysis gives insights to improve the existing
pruning algorithms [26]. As remarked in Malach et al. [1], the strong LTH implies that pruning an
over-parameterized network to obtain good accuracy is NP-Hard in the worst case. It is an interesting
future direction to find efficient algorithms for pruning which provably work under mild assumptions
on the data.



Broader Impact

As discussed in the Introduction, our results establish that we can “train” a neural network by only
pruning a slightly larger network. As shown in Strubell et al. [37], training a single deep model
(including hyper-parameter optimization and experimentation) has the carbon footprint equivalent to
that of four cars through their lifetime, motivating the search for a more efficient training algorithm.
Pruning is a radically different way of optimization as compared to the usual gradient based one, and
recent works show that either using it alone or in tandem with conventional optimization techniques
can lead to good performance [20,[26127]. Moreover, a sparse network is also useful when the models
are deployed for inference. One of the major benefits of pruning is that sparser models can have
smaller memory and computational requirements, leading in some cases to less energy consumption.
As a result, pruned networks are useful in resource-constrained settings and have smaller carbon
footprint. Nonetheless, the pruning algorithms, if proved to be successful, will need to go through the
same scrutiny as the existing optimization algorithms such as robustness to adversarial examples [23].

Another contribution, which is more subtle, is that we connect the SUBSETSUM problem with pruning
of neural networks and their optimization in general. We believe that both these fields can benefit
from the existing literature of the SUBSETSUM problem [28-31]. We use the result by Lueker [|31]
which says that we only need a logarithmic sized set of random numbers on a bounded domain
to approximate any number in that domain with high accuracy and high probability. It would be
interesting to see the Machine Learning community apply these kind of results to other theoretical
and practical problems.
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A Proof of the upper bound

Complete proof of the Theorem In the following subsections, we hierarchically build the
construction for our proof of Theorem [I. We have shown how we approximate a single weight
in Subsection [3.2] This first step is slightly different than the sketch above, in the sense that we
approximate a single weight with a ReLU random network, rather than a linear one. We then
approximate a single ReLU neuron in Subsection[A.T] and a single layer in Subsection[A.2] Finally,
we approximate the whole network in Subsectlon | which completes the proof of Theorem I}

A.1 Approximating a single neuron

In this subsection we prove the following lemma on approximating a (univariate) linear function

w’x, which highlights the main idea in approximating a (multivariate) linear function Wx (see

Lemma 3]in Subsection[A.2).

Lemma 2. (Approximating a univariate linear function) Consider a randomly initialized neural

network g(x) = vZo(Mx) with x € R? such that M € R824 gng v € ROM8 £ \where each
weight is initialized independently from the distribution U[—1, 1].

Let §(z) = (s ©v)To((T © M)x) be the pruned network for a choice of binary vector s and matrix
T. If fw(x) = w' x be the linear function, then with probability at least 1 — e,

Yw: || Wl <1,3 s, T: sup |l fw(x) —g(x)| <e.

xX: %] o0 <1

T

Proof. We will approximate w* x coordinate-wise. See Figure for illustration.

Figure 3: Approx1mat1ng a single neuron o(w” z): A diagram showing our construction to approximate a single
neuron (w7 x). We construct the first hidden layer with d blocks (shown in blue), where each block contains
k=0 (log < ) neurons. We first pre-process the weights by pruning the first layer so that it has a block structure
as shown. For ease of visualization, we only show two connections per block, i.e., each neuron in the i block is
connected to x; and (before pruning) the output neuron. We then use Lemma|_|to show that second layer can
be pruned so that 7" block approximates w;z;. Overall, the construction approximates w x. Note that, after
an initial pre-processing of the first layer, we only prune the second layer so that we can re-use the weights to
approximate other neurons in a layer.
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Step 1: Pre-processing M We first begin by pruning M to create a block-diagonal matrix M.
Specifically, we create M’ by only keep the following non-zero entries:

u 0 ... 07
0 Uz ... 0

M =|. ol WhereuieRCIOg(%)
(') 0 Ug |

We choose the binary matrix T to be such that M’ = T © M. We also decompose v and s as

S1 Vi

S9 Vo q
s=1|.]1, v=| .|, wheres;,v; e RCWs(%),

Sd Vdl

Using this notation, we can express our network as the following:

d

(sov)lo(M'x) = Z(sz ovi)lo(wz;). (10)

i=1

Step 2: Pruning v Let n = C'log(d/¢) and define the event E; . be the following event from the
Lemma

Eic:= sup inf  sup |wz — (v; ©s;) o(wz)| < e
wel-1,1] si€{0,1}" z:|z|<1

Define the event F, := ﬂl E; ., the intersection of all the events. We consider the event Ei’ where
the approximation parameter is 5. For each ¢, Lemma|l{shows that event E; < holds with probability
at least 1 — § because the dimension of v; and w; is at least C'log(d/¢). Taking a union bound we

get that the event E'< holds with probability at least 1 — €. On the event E'c, we obtain the following
series of inequalities:

sup inf sup |[wix— (sp ®v) o ((S1®M)x)|
IWlloo <18 T fIx]lo0 <1

< sup inf sup |wix — (s @ v)To(M'x)|
Iwlloo <1801} f1x]| e <1

(Pruning M according to Step 1 (Pre-processing M).)

d
= sup inf wxT; — s; ©vi)To(wz;)| (Using Eq. (10))
w0 <1515 .,8a€{0, 1}n Ime<1 Z (e ; i 1) ( ( 7,) .
< sup inf sup Z fw,xl —(s8;® Vz‘)TU(uixi)|

[Wlloo <1815,8a €01} ||| oo <1 5=

— Z sup inf  sup |wlxl — (s, ® vi)TJ(uizi)|
T lwi|<18i€H0,1}" 2 <1

< Z d; (By definition of the event E'<)

<e.

A.2 Approximating a single layer

In this subsection, we approximate a layer from the target network by pruning 2 layers of a randomly
initialized network. The overview of the construction is given in Figure
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X

Z2

Td

Figure 4: Approximating a layer o(Wx): A diagram showing our construction to approximate a layer. Let
Wi, Wa,...,Wq be the d rows of W, i.e., the weights of d neurons. Our construction has an additional hidden
layer, which contains d blocks (highlighted in blue), where each unit contains k& = O(log(%) neurons. We
first pre-process the weights by pruning the first layer so that it has a block structure as shown. For ease of
visualization, we only show two connections per block, i.e., each neuron in the i" block is connected to z; and
(before pruning) all the output neurons.

Lemma 3. (Approximating a layer) Consider a randomly initialized two layer neural network
g(x) = No(Mx) with x € R% such that N has dimension (dy x Cdylog %1% and M has

€

dimension (C’ dy log % X dl), where each weight is initialized independently from the distribution
U[-1,1].

Let §(x) = (S ® N)To((T ® M)x) be the pruned network for a choice of pruning matrices S and
T. If fw(x) = Wx is the linear (single layered) network, where W has dimensions ds X d, then
with probability at least 1 — e,

sup 38, T: sup |fw(x)—gx) <e
W: || W[ <1,WeRd2xd1 x:|[x[leo <1

Proof. Our proof strategy is similar to the proof in Lemma 2]

Step 1: Pre-processing M Similar to Lemma |2, we begin by pruning M to get a block diagonal
matrix M.

up 0 0
0 Uz ... 0 1d2
M = |. . , where u; € R® log( 22 )
: O 0
0 0 RPN Uq,

Thus, T is such that M’ = T ® M. We also decompose N and S as following

T T T T

Si1 .- Sia, Vii - Vig

shy ... sb, Vi o v, o
S=1 . Sl N= . where v; ;, u; € RO 1°%(

T T T T

Sd271 Sdg,dl Vd2,1 de,dl
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Using this notation, we get the following relation:

d
>k (s1, @ viy)To(ujz;)

(S © N)o (M'x) = : (1
YL (Sasj © Vay )T (ujz;)

Step 2: Pruning N Note that v; ; and u; contain i.i.d. random variables from Uniform distribution.
Let n = C'log(did2/€) and define E; ; . be the following event from the Lemma

E;jc:=4 sup inf sup |wx — (vi; ©si;) o(wz)| <e
we[—1,1] 84, €{0,1}" z1z|<1

Define E, ==, <i<ds n1g i<ds E; ;. to be the intersection of all individual events. Lemmastates

that each event E; ; __<_ holds with probability 1 — 7%~ because u; and v; ; have dimensions at
192

least C log(@). By a union bound, the event E_<_ holds with probability 1 — €. On the event

‘142

Edfd2 , we get the following inequalities:

sup inf sup |[Wx— (SON)To((ToM)x)|
W[ W< 5T x| o<1

< sup inf sup [[Wx — (S0 N)To(M'x)|
WH[WII<1 8 [lx]| o0 <1
(Pruning M according to Step 1 (Pre-processing M))

dso d1 dy

< sup inf sup Z Zwi’jxj — Z(Si’j o vij)o(ur;)

B W:[W]<1 si,;€{0,1}" Ix]lo <177 j=1 j=1
(Using Eq. (L1))

dy dy
. T
< sup inf . sup E E |wi7jxj — (si; ©®Vvij) O’(Ujl’j)|
wi,j:\wi,j\glsi,je{oﬂ} '$]':|wjlgl i=1 j=1
dy dy
. T
< sup inf § E E sup |wi7j1'j — (si; ©Vvij) a(ujxj)|
wijilwi, ;| <1805 €01} j=1%jlzi]<1
dy dy
. T
=) sw inf osup Jwija; — (805 © vig)' o ()]
i=1j=1 w; 5i|w; 5| <1865 E{013 251025 <1
€ ..
< dyds <e. (By definition of the event E_<_)
d1d2 dyda
O

A.3 Proof of Theorem [l

We now state the proof of Theorem [I] with the help of the lemmas in the previous subsection.
Proof. (Proof of Theorem Let x; be the input to the 4-th layer of fw, ... w,)(x). Thus,

1. x1 =x,

2. forl1 <i<l—1,%11 =0(W;x;).
Thus fow,,.. w,)(x) = Wix.

For it" layer weights W, let So; and S,;_; be the binary matrices that achieve the guarantee in
Lemma Lemma states that with probability 1 — 5; the following event holds:

sup 3S2i,S2i—1: sup [[Wix — (Ma; ® Sg;)0((S2; © Mai_1)x)|| < ¢/2L.
Wi eR%i+1 X4 W, <1 x:[|x|| <1
(12)
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As ReLU is 1-Lipschitz, the above event implies the following:

sup 382:,82i-1: sup [lo(Wix) — o((Ma; © S2:)0((S2i © My;—1)x))]|| < €/2l.
W, eR®i+1% 4 | W, <1 x:[|x(| <1
(13)

Taking a union bound, we get that with probability 1 — ¢, the above inequalities and hold
for every layer simultaneously. For the remainder of the proof, we will assume that this event holds.
For the any fixed function f, let g; = g(w,,...,-w,) be the pruned network constructed layer-wise,
by pruning with binary matrices satisfying Eq. and Eq. (13), and let these pruned matrices be
M. Let x/ be the input to the 2¢ — 1-th layer of g;. We note that x/ satisfies the following recurrent
relations:

1. xj =x,
2. forl <i<1—-1,xj, = 0o(Mjo(Mj;_xj)).
Because the input x has ||x|| < 1, Equation also states that [|x| < (1+ i)i_l. To see this,
note that we use Equation togetforl <i<l—1as
lo(Wixi) = x| < [Ixill(e/20)
= Ixipall < lIxill(e/20) + [lo(Waxi)[| < [l (e/21) + [Waxil| < [Ix5](e/21) + [Ix]l-

Applying this inequality recursively, we get the claim that for 1 <i <1 —1, [|x}|| < (1 + 2%)2'—1-
Using this, we can bound the error between x; and x}. For 1 <14 <[ —1,
%51 — Xj || =[lo(Wix;) — o (Mo (My; _1x;))||
<llo(Wix;) — o(Wixi)|| + [[o(Wix;) — o(Mj;0(Mb;_1x;))|
<|lx; — x| + [Wix; — Mj;0(Mp; _1x;) ||
i—1 ¢

€
el (16 5) 7L

21
where we use Equation (12). Unrolling this we get
-1

, eNi—1 ¢
I —xil <> (1+5;) 5

=1
Finally using the inequality above, we get that with probability at least 1 — ¢,

[fowr,.ow) (%) = 9w, wn (X) || = [Wixg — Myo(My,_x)|
< Wixp = Wixg|| 4 [Wix; — Mo (MY, xp) ||

< s = | + Wi — Mo (M)
<+ (14 5) o

X; — X — —

P 21) 2

A e\i—! € e\l €
S(;(”ﬁ 2z>+<1+21> 2

i=1
en!
=(1+5) -1
(1+3
<e/? -1
< e (Since € < 1.)
Replacing € in this proof with min{e, 0} gives us the statement of the theorem. O
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B Proof of Lower Bound

Proof. (Proof xof Theorem @ Firstly, note that hw (x) = Wx. Another fact we use in this proof
is that matrices W of dimension d x d can be considered as points in the space R?*? = R The
metric that we would be using on this space would be the operator norm of matrices || - ||. Note that
G is a random set of functions, but we abuse the notation by using |G| denote the maximum number
of sub-networks that can be formed, starting from any initialization with the given architecture.

Step 1: Packing argument. Consider the normed space of d x d matrices, W = {W € R*? .
W]l < 1}, with the operator norm || - ||. Let P be a 2e-separated set of (W, || - ||), i.e. P C W and
[IM — M| > 2¢ for all distinct M, M’ € P.

Note that any function ¢’ can only approximate at most one member of P. To see this, let us assume

on the contrary that a ¢’ can approximate two distinct members W1 and Wy of P. Then a triangle

inequality states that

[Wi—Wy| = sup [[Wix—Wox| < sup [¢'(x)—Wix|[[+ sup |[|¢g'(x)—Wax| < 2,
x:[|x[ <1 xi[|x[ <1 x:[|x|[<1

which is a contradiction to the definition of a 2¢-separated set. Hence, ¢’ can approximate at most
only one member of P.

Step 2: Relation between |G| and [P|. The goal of this step is to show that, under the theorem
assumptions, |P| < 2|G|. If |P| > 2|G|, then we show that one of the matrices in P is the difficult
matrix W that we’re looking for.

Let us assume that [P| > 2|G|. Recall that the previous step states that, for any realization of g, the
corresponding G can only approximate at most |G| matrices in P. Therefore, for a fixed realization of
G, we get that

Swepl (3 €6 swuir l9x) - Wl <) g
S =<
P P
Taking the expectation over the distribution of g, we get that
SwerP (39 € Gt subs i< l9'(x) — Wxl <€) 4
< —.
P 2
As the minimum is less than the average, there exists a W & P such that
P (Elg’ € G 1 supyx <1 19'(x) — Wx]| < e) < %, which is a contradiction to Eq. (9). Therefore,
29[ > [P].

N |

Step 3: Lower bound on |P|.  We will now choose P with the maximum cardinality of all
2e-separated sets, i.e., that achieves the packing number. As packing number is lower bounded by
the covering number, we will try to find a lower bound on the size of an 2¢-net of WV 38, Lemma

4.2.8]. Now, any 2e-cover has has to have at least W elements, where the volume

is the Lebesgue measure in R4*? = R%*. We also have that Vol({W : ||W] < ¢} > 0 because

. Vol({W:|| W <1 —d?
{W.: IW| < c} contains {W : ||W/||Frobenius < ¢}. Thus, we get that W = (2¢)~ 7.
Putting everything together, we get that

—d?
1
261> [Pl > WOV, 1,291 = (5:) -

Case [ = 2 Let the dimension of M5 be d x s and the dimension of M be s x d. We need a lower
bound on s. Now, the number of matrices that can be created by pruning M are 2°¢ and similarly
the number of matrices that can be created by pruning M are 2°¢. Thus, the total number of ReLUs
that can be formed by pruning M and M is at most 22°¢, Thus, |G| < 225?. Therefore, we get that

—d2
1
92sd+1 o (L )
2e

This shows that s = © (dlog (4 )) is needed to approximate every function in F by pruning g with
probability 1/2.

18



Case [ > 2 Let the total number of parameters be m. Therefore, we get that |G| < 2™. Following
the same arguments as before, we get that m = Q (d?log (5-)). O

C Subset sum results

C.1 Product of uniform distributions contains a uniform distribution

Lemmad. Let X ~ UJ0,1] (or X ~ U[—1,0])andY € U[—1, 1] be independent random variables.
Then the PDF of the random variable XY is

Llog & |21 <1
={2 |2] =
Fxr(2) {0 otherwise

Proof. 1t is easy to see why fxy(z) = 0 for z > 1. We prove for X ~ UJ0,1]. The proof for
X ~ U[-1,0] is similar.

Let us first try to find the CDF of XY'.

Let 0 < z < 1 be a real number. Note that XY < 1. Now, if XY < z,and if Y > z,then X < 2/Y.
However, if Y < z, then X can be anything in its support [0, 1]. Thus,

Z 1 1 1 1 z/y
:/ 7/ ldzdy + - 1dzdy
0 2 0 z 2 0

z 1 [tz
= -+ = —d
2t Q/Z y
2z zlogz
2 2
Differentiating this, the pdf for 0 < z < 1is
1 1
= —log —.
fxv(2) =3 0g

Now, because XY is symmetric around 0, we get that for |2| < 1

1 1
— Zlog —.
Ixv(2) 5 log P

O

Corollary 1. Let X ~ UJ0,1] (or X ~ U[-1,0]) and Y € U[—1,1] be independent random
variablles. Lelt P be the distribution of XY . Let §q be the Dirac-delta function. Define a distribution
D = 500+ 5P.

-2
Then, there exists a distribution QQ such that

1 11 1
P={(zlog2)U|—=,=| +(1-=1log2

Proof. The corollary follows from the observation that Lemma [4] shows that pdf of P is lower
bounded by (log 2)U [—l l] on [_l 1]_ =

272 272
C.2 Subset sum problem with product of uniform distributions

Corollary 2 ([31)). Let X1,..., X, bei.i.d. from the distribution in the hypothesis of Corollary][l]
where n > C'log % (for some universal constant C'). Then, with probability at least 1 — €, we have

€S

Vz e [-1,1], 3S C [n] such that <e
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Proof. This is a direct application of Markov’s inequality on Corollary 3.3 from [31]] applied to the
distribution in the hypothesis of Corollary [T} O
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