
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the

14th USENIX Symposium on Operating

Systems Design and Implementation

is sponsored by USENIX

Automated Reasoning and Detection of
Specious Configuration in Large Systems

with Symbolic Execution
Yigong Hu, Gongqi Huang, and Peng Huang, Johns Hopkins University

https://www.usenix.org/conference/osdi20/presentation/hu

Automated Reasoning and Detection of Specious Configuration

in Large Systems with Symbolic Execution

Yigong Hu

Johns Hopkins University

Gongqi Huang

Johns Hopkins University

Peng Huang

Johns Hopkins University

Abstract

Misconfiguration is a major cause of system failures. Prior so-

lutions focus on detecting invalid settings that are introduced

by user mistakes. But another type of misconfiguration that

continues to haunt production services is specious configu-

ration—settings that are valid but lead to unexpectedly poor

performance in production. Such misconfigurations are subtle,

so even careful administrators may fail to foresee them.

We propose a tool called Violet to detect specious configu-

ration. We realize the crux of specious configuration is that

it causes some slow code path to be executed, but the bad

performance effect cannot always be triggered. Violet thus

takes a novel approach that uses selective symbolic execu-

tion to systematically reason about the performance effect of

configuration parameters, their combination effect, and the

relationship with input. Violet outputs a performance impact

model for the automatic detection of poor configuration set-

tings. We applied Violet on four large systems. To evaluate

the effectiveness of Violet, we collect 17 real-world specious

configuration cases. Violet detects 15 of them. Violet also

identifies 11 unknown specious configurations.

1 Introduction

Software is increasingly customizable. A mature program

typically exposes hundreds of parameters for users to control

scheduling, caching, etc. With such high customizability, it

is difficult to properly configure a system today, even for

trained administrators. Indeed, numerous studies and real-

world failures have repeatedly shown that misconfiguration is

a major cause of production system failures [32, 43, 45, 60].

The severity of the misconfiguration problem has motivated

solutions to detect [35, 61, 63], test [37, 57], diagnose [19, 21,

50, 52, 54] and fix [39, 48, 53] misconfiguration. While these

efforts help reduce misconfiguration, the problem remains

vexing [1–3, 5–10, 17, 18, 31]. They focus on catching invalid

settings introduced due to user mistakes. But another type of

misconfiguration that haunts production systems, yet not well

Best
Config

Suboptimal
Config

Invalid
Config

Specious
Config

Proper

Configuration Misconfiguration

Figure 1: Value space of a configuration

addressed, is valid but poor configuration. For simplicity, we

call them specious configuration.

Specious configuration has a broad scope. In this paper,

we focus on—and use the term to refer to—valid settings

that lead to extremely poor performance, which is a common

manifestation in production incidents. This scope of focus is

different from suboptimal configuration (Figure 1). The latter

happens when a setting does not yield the best performance,

but the performance is still acceptable. This scope is also

complementary to efforts on automated configuration perfor-

mance tuning [33, 51, 62, 64] to search for the best setting.

Take a real-world specious configuration that caused a ser-

vice outage as an example. An engineer changed the request

tracing code from a hard-coded policy (always tracing) to be

configurable with a tracing rate parameter. This rate parame-

ter was initially set to 0.0. To retain the same tracing behavior

as before, she decided to change the parameter to 1.0. Based

on her understanding, this change will turn on the tracing for

all message requests that come from internal users. But unfor-

tunately, there was a subtle caveat in the code that caused the

actual effect to be turning on tracing for all requests from all

users, which quickly overloaded all web servers as well as the

backend databases, leading to a catastrophic service outage.

Interestingly, before rolling out this specious configuration to

production, the change in fact went through a canary phase

on a small-scale testing cluster, which unfortunately did not

manifest dramatic failure symptoms.

Empirical evidence suggests that specious configuration

like the above is prevalent. Yin et al. [60] shows that miscon-

figuration in the form of legal parameters has similar or higher

percentage than illegal parameters. Facebook reports [49] that

more than half of the misconfiguration in their high-impact in-

cidents during a three-month period are subtle, “valid” config-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 719

urations. A recent study [51] on performance configurations

in distributed systems reports a similar finding.

To reduce specious-configuration-induced incidents, we

need to proactively detect it before production. However, what

makes specious configuration subtle to detect is that its value

is not a unconditionally poor choice. Rather, the setting is

only problematic under certain combination with some other

parameters, input, and/or environment. Currently, adminis-

trators either informally estimate the impact based on their

experience, or experimentally measure it by black-box test-

ing the program with configuration. However, neither of the

approaches is sufficient to reliably capture the pitfalls.

Through analyzing real-world cases (Section 2), we realize

that the crux of specious configuration lies in the fact that

some slow code path in the program or library gets executed;

but this effect can be only triggered with certain input, other

configurations, and environment. Therefore, we argue that

analytical approaches are needed to reason about the configu-

ration settings’ performance implications under a variety of

conditions. We propose a novel analytical tool called VIOLET

that uses symbolic execution [24, 38] to analyze the perfor-

mance effect of configuration at the code level.

The basic idea of Violet is to systematically explore the

system code paths with symbolic configuration and input,

identify the constraints that decide whether a path gets ex-

ecuted or not, and analytically compare different execution

paths that are explored. Violet derives a configuration perfor-

mance impact model as its analysis output. A Violet checker

leverages this model to contiguously catch specious config-

uration in the field. Making this basic idea work for large

system software faces several challenges, including the intri-

cate dependency among different parameters, the efficiency

of symbolic execution for performance analysis, complex in-

put structure, and path explosion problems. Violet leverages

program analysis and selective symbolic execution [26] to

address these challenges.

We implement a prototype of the Violet toolchain, with

its core tracer built as plugins on the S2E platform [26], the

static analyzer built on LLVM [40], and the trace analyzer

and checker built as standalone tools. We successfully apply

Violet on four large systems, MySQL, PostgreSQL, Apache

and Squid. Violet derives performance impact models for 471

parameters. To evaluate the effectiveness of Violet, we collect

17 real-world specious configuration cases. Violet detects

15 cases. In addition, Violet exposes 11 unknown specious

configuration, 8 of which are confirmed by developers.

In summary, this paper makes the following contributions:

• An analytical approach to detect specious configuration

using symbolic execution and program analysis.

• Design and implementation of an end-to-end toolchain

Violet, and scaling it to work on large system software.

• Evaluation of Violet on real-world specious configuration.

The source code of Violet is publicly available at:

https://github.com/OrderLab/violet

2 Background and Motivation

In this Section, we show a few cases of real-world specious

configuration from MySQL to motivate the problem and make

the discussion concrete. We analyze how specious configura-

tion affects system performance at the source code level. We

choose MySQL because it is representative as a large system

with numerous (more than 300) parameters, many of which

can be misconfigured by users and lead to bad performance.

2.1 Definition

A program expects its configuration parameters to obey cer-

tain rules, e.g., the path exists, the min heap size does not

exceed the max size. Invalid configurations violate those rules

and usually trigger assertions or errors.

We define specious configuration to be settings that are

valid but cause the software to experience bad performance

when deployed to production. Admittedly, bad performance

is a qualitative criterion. Like prior work, we focus on those

issues that cause severe degradation and hurt usability. Ulti-

mately, only users can judge whether the performance slow-

down is sub-optimal but tolerable or it is intolerable.

Specious configuration has two classes. One is purely about

performance, e.g., buffer size, number of threads. Another

class is settings that change the software functionality but

the changes also have performance impact. Both classes are

important and occur in real-world systems. For the latter class,

users might want the enabled functionality and are willing

to pay for the performance cost. Thus, whether the setting is

specious or not depends on users’ preferences. Our solution

addresses both forms. Its focus is to analyze and explain the

quantitative performance impact of different settings, so that

users can make better functionality-performance trade-offs.

2.2 Case Studies

autocommit parameter controls the transaction commit behav-

ior in MySQL. If autocommit is enabled, each SQL statement

forms a single transaction, so MySQL will automatically per-

form a commit. If autocommit is disabled, transactions need

to be explicitly committed with COMMIT statements. While

autocommit offers convenience (no explicit commit required)

and durability benefits, it also has a performance penalty since

every single query will be run in a transaction. For some users,

this performance implication may not be immediately appar-

ent (especially since it is enabled by default). Even if users are

aware of the performance trade-off, they might not know the

degree of performance loss, only to realize the degradation is

too much after deploying it to production. Indeed, there have

been user-reported issues due to this setting [13, 15, 60], and

the recommended fix is to disable autocommit, and manually

batch and commit multiple queries in one transaction.

To quantify the performance impact, we use sysbench [16]

to measure MySQL throughput with autocommit configura-

720 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 8 16 24 32 40 48 56 64

of Sysbench Worker Threads

0
1000
2000
3000
4000
5000
6000

Q
P
S

autocommit=0

autocommit=1

(a) Normal workload.

0 8 16 24 32 40 48 56 64

of Sysbench Worker Threads

0
300
600
900

1200
1500
1800

Q
P
S autocommit=0

autocommit=1

(b) Insertion-intensive workload.

Figure 2: MySQL throughput for autocommit under two workloads.

 1 int write_row() {

 2 if (autocommit) {

 3 ...

 4 trx_commit_complete();

 5 } else {

 6 trx_mark_sql_stat_end();

 7 }

 8 }

 9

10

ulint trx_commit_complete() {

 if (flush_at_trx_commit==1) {

 log_group_write_buf();

 fil_flush();

 } else if (flush_at_trx_commit==2) {

 log_group_write_buf();

 } else {

 /* do nothing */

 }

}

costly operation

Figure 3: Simplified code snippet from MySQL related to

autocommit. The elements with orange-colored background represent

configuration variables, and the pink ones represent slow operations.

tion set to be ON and OFF. The size of the database is 10 tables

and 10K records per table. We run both a normal workload

that consists of 70% read, 20% write and 10% other opera-

tions, and an insert-intensive workload. Figure 2 shows the

result. We can see that in the normal workload (Figure 2a),

the performance difference between ON and OFF are small.

But in insertion-intensive workload (Figure 2b), enabling

autocommit causes dramatically worse (6×) performance.

Figure 3 shows the code relevant to autocommit. We can

see that the autocommit setting determines whether func-

tion trx_commit_complete() will be invoked. In this function,

another parameter flush_at_trx_commit1 further determines

which path gets executed. When that parameter is set to 1,

compared to 2, an additional fil_flush operation will be in-

curred, which has a complex logic but essentially will flush the

table writes cached by the OS to disk through the fsync sys-

tem call. The cost of fsync is the major contributor to the bad

performance of autocommit mode; if flush_at_trx_commit is

2 or 0, the performance impact of autocommit mode will be

much smaller. In addition, the function in which autocommit

is used—write_row()—is called when handling write type

queries but not select type queries. Therefore, the perfor-

mance hit only affects insertion/update-intensive workloads.

query_cache_wlock_invalidate controls the validation of

the query cache in MySQL. Normally, when one client ac-

quires a WRITE lock on a MyISAM table, other clients are not

blocked from issuing statements that read from the table if

the query results are present in the query cache. The effect of

setting this parameter to 1 is that upon acquisition of a WRITE

lock for a table, MySQL invalidates the query cache that refers

to the locked table, which has a performance implication.

As Figure 4 shows, enabling this parameter leads to the

free_query operation (➊). Different from the autocommit

case, this operation itself is not costly. But for other clients

that attempt to access the table, they cannot use the associated

1Its full name in MySQL is innodb_flush_log_at_trx_commit. We abbre-

viate it and some other parameter names in this paper for readability.

void mysql_parse(THD *thd) {

 if (send_result_to_client(thd) <= 0) {

 mysql_execute_command(thd);

 }

}

int mysql_execute_command(THD *thd) {

 case SQLCOM_SELECT:

 open_and_lock_tables(thd, all_tables);

 break;

 case SQLCOM_LOCK_TABLES:

 lock_tables_open_and_lock_tables(thd);

 if (query_cache_wlock_invalidate)

 invalidate_query_block_list();

}

void invalidate_query_block_list() {

 free_query(list_root->block());

}

incoming queries not in query cache

free query cache1

2

3

0

Figure 4: Code affected by query_cache_wlock_invalidate.

uint64_t log_reserve_and_open(uint len) {
 if (len >= log->buf_size / 2) {
 log_buffer_extend((len + 1) * 2);
 }
 len_upper_limit = LOG_BUF_WRITE_MARGIN + (5 * len) / 4;
 if (log->buf_free + len_upper_limit > log->buf_size) {
 mutex_exit(&(log->mutex));
 log_buffer_flush_to_disk();
 goto loop;
 }
}

Figure 5: Code affected by innodb_log_buffer_size.

query cache (➋), forcing them to open the table and wait (➌)

while the write lock is held. Therefore, the effect is additional

synchronization that decreases the system concurrency, which

in turn can severely hurt the overall system query throughput.

Similar to autocommit, the performance effect depends on

the parameters, execution environment and workloads. Specif-

ically, the bad performance is only manifestable with the

combination of MyISAM tables, LOCK TABLES statements and

other clients doing select type queries on the locked table.

innodb_log_buffer_size determines the size of the buffer

for uncommitted transactions. The default value (8M) is usu-

ally fine. However if MySQL has transactions with large

blob/text fields, the buffer can fill up very quickly and incur

performance hit. As shown in Figure 5, the parameter setting

has two possible performance impacts: (1) if the length of a

new log is larger than half of the buf_size, the system will

extend the buffer first by calling log_buffer_extend, which

in normal cases mainly involves memory allocation. But if

other threads are also extending the buffer, additional syn-

chronization overhead is incurred. If the buffer has pending

writes, they will be flushed to disk first; (2) if the buf_size is

smaller than the free size plus the length of new log, MySQL

will trigger a costly synchronous buffer flush operation.

2.3 Code Patterns

Based on the above and other cases we analyze, we summarize

four common patterns on how a specious configuration affects

the performance of a system at the source code level:

1. The parameter causes some expensive operation like the

fsync system call to be executed.

2. The parameter incurs additional synchronization that

itself is not expensive but decreases system concurrency.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 721

3. The parameter directs the execution flow towards a slow

path, e.g., not using cached result.

4. The parameter triggers frequent crossings of some thresh-

old that leads to costly operations.

The general characteristic among them is that specious

configuration controls a system’s execution flows—different

values cause the program or its libraries to execute different

code paths. However, the performance impact is also context-

dependent—a specious configuration is bad only when its

value and other relevant factors together direct the system to

execute a path that is significantly slower than others.

2.4 Approaches to Detect Specious Config

To detect specious configuration, operators rely on experience

or manuals, which are neither reliable nor comprehensive. A

more rigorous practice is to test the system together with

configuration and quantitatively measure the end-to-end per-

formance like throughput. However, if the testing does not

have appropriate input or related parameters, the performance

issue will not be discovered. Also, because the testing is car-

ried out in a black-box fashion, the approach is experimental.

The results are tied to the testing environment, which may not

have the same hardware, dependencies or scale as the produc-

tion. For example, in the incident described in Section 1, that

specious configuration was tested, and the result showed a

slight increase of logging traffic to a dependent database. But

this increase was deemed small, so it passed the testing.

We argue that while the experimental approach is indispens-

able, it alone is insufficient to catch specious configuration.

We advocate developing analytical approaches for reasoning

about configurations’ performance effect from the system

code. The outcome from an analytical approach includes not

only a conclusion, but also answers to questions “how the

parameter affects what operations get executed?”, “what kind

of input will perform poorly/fine?”, “does the effect depend

on other parameters?”, etc. In addition, the analysis should

enable extrapolation to different contexts, so users can project

the outcome with respect to specific workload or environment.

A potential approach is static analysis. Indeed, we can

leverage the code patterns in Section 2.3 to detect potential

specious configuration. However, mapping them at concrete

code construct level requires substantial domain knowledge.

Also, the performance effect involves many complex factors

that are difficult to be deduced by pure static analysis.

The observations in Section 2.3 lead us to realize that the

crux is some slow path being conditionally executed. Thus, we

can transform the problem of detecting specious configuration

to the problem of finding slow execution flow plus deducing

the triggering conditions of the slow execution.

3 Overview of Violet

We propose an analytical approach for detecting specious

configuration, and design a tool called VIOLET. Violet aims

to comprehensively reason about the performance effect of

system configurations: (1) explore the system without being

limited by particular input; (2) analyze the performance effect

without being too tied to the execution environment.

Our insight is that the subtle performance effect of a

specious parameter is usually reflected in different code paths

getting executed, depending on conditions involving the pa-

rameter, input and other parameters, and these paths have

significant relative performance differences. Based on this in-

sight, Violet uses symbolic execution with assistance of static

analysis to thoroughly explore the influence of configuration

parameters on program execution paths, identify the condi-

tions leading to each execution, and compare the performance

costs along different paths. After these analyses, Violet de-

rives a configuration performance impact model that describes

the relationship between the performance effect and related

conditions. In this Section, we give an overview of Violet

(Figure 6). We describe the design of Violet in Section 4.

3.1 Symbolic Execution to Analyze Perfor-

mance Effect of Configurations

Background. Symbolic execution [24, 38] is a popular tech-

nique that systematically explores a program. Different from

testing that exercises a single path of the program with con-

crete input, symbolic execution explores multiple paths of the

program with symbolic input and memorizes the path con-

straints during its exploration. When a path of interest (e.g.,

with abort()) is encountered, the execution engine generates

an input that satisfies the constraint, which can be used as a

test case. Compared to random testing, symbolic execution

systematically explores possible program paths while avoid-

ing redundancy. Consider this snippet:

void foo(int n) { if (n > 1000) bar(n); else bazz(n); }

Testing may blindly test the program many times with dif-

ferent n, e.g., 1, 10, 20, etc., but they all exercise the same

path without triggering the call to bar(). If we use symbolic

execution, we can explore the two paths of foo by deriving

only two concrete values of n to satisfy the path constraints.

Basic Idea. Configuration is essentially one type of input to a

program. The basic idea of Violet is simple—make the param-

eters symbolic, measure the cost along each execution path

explored, and comparatively analyze the costs. The path con-

straints that the symbolic execution engine memorizes char-

acterize the conditions about whether and when a parameter

setting is potentially poor. Take Figure 3 as an example. Violet

makes variable autocommit symbolic. Function write_row

will fork at line 2. The first path goes into the if branch, with

a constraint autocommit == 1. When trx_commit_complete

is called in the first path, it encounters another parameter

flush_at_trx_commit, which is also made symbolic. Two ad-

ditional paths are forked within that function. While exploring

these paths, Violet records a set of performance cost metrics.

722 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

system
code

config

{ }

Violet
Static

Analyzer

config vars,
control dep

1

2

4

Critical

Path
Cost

Config.

Constraint

Workload

Predicate

selective
symbolic execution

config1

config2

Violet
Checker

Config
Perf

Model

binary

Violet
Trace

Analyzer

3

autocommit=true+
autocommit=false-

potential perf
regression!

validation
test case

differential
critical path

INSERT INTO tbl(col) VALUES(val1);

INSERT INTO tbl(col) VALUES(val2);

…

+ innobase_commit() => ... =>

 log_write_buf() => fil_io()

 latency: 3x
 logical cost: 2x system calls

Violet
Tracer

S2E

hooks

make_
symbolic

Figure 6: Overview of Violet.

Since the subtle performance effect of specious configu-

ration is often only triggered under specific input, besides

configuration parameters, Violet can also make the input sym-

bolic. For the example in Figure 3, the input will determine

whether the write_row function will be called or not. Only

insert type queries will invoke write_row. This input con-

straint will be recorded so the analysis later can identify what

class of input can trigger the specious configuration.

3.2 Violet Workflow

Figure 6 shows the workflow of Violet. The input to Violet is

system code and target configuration. We require source code

to identify the program variables corresponding to parame-

ters. In addition, as we discuss later (Section 4.3), Violet uses

static analysis to assist the discovery of dependent parame-

ters. To symbolically execute the target system, we leverage

a state-of-the-art symbolic execution platform S2E [26] and

insert hooks into the system code to make parameters and

input symbolic. We design the Violet execution tracer as S2E

plugins to record the performance results to a trace during

state exploration. The Violet trace analyzer conducts com-

parative cost analysis, differential critical path analysis, etc.

The output is a configuration performance impact model that

describes the relationship among configuration constraints,

cost, critical path, and input predicate.

Violet further provides a checker to deploy with the soft-

ware at user sites. The checker consumes the constructed

configuration impact model to continuously detect whether a

user-site configuration file or update can potentially lead to

poor performance. Upon the detection of potential specious

configuration, the Violet checker reports not only the absolute

performance result, but also the logical cost and critical path

to explain the danger. The checker also outputs a validation

test case based on the input predict that provides hints to users

about what input can expose the potential performance issue.

4 The Design of Violet

In this Section, we describe the Violet design (Figure 6). We

need to address several design challenges. First, configura-

tions have intricate dependencies among themselves and with

the input, but making all of them symbolic easily leads to state

space explosion. Second, conducting performance analysis

in symbolic execution is demanding due to lack of explicit

assertion point, mixed costs, overhead, etc. Third, deriving

performance model from code requires balance between being

generalizable (not too tailored to specific input or environ-

ment) and being realistic (reflects costs in real executions).

4.1 Make Config Variable Symbolic

The starting point for Violet is to make parameters symbolic.

A naïve way is to make the entire configuration file a sym-

bolic blob. While this approach is transparent to the target

program, it easily leads to path explosion even at the program

initialization stage. An improvement could be only making

the configuration value string symbolic during parsing. e.g.,

make_symbolic(value, 2); buf_size=atoi(value); But the exe-

cution would still spend significant time in the parsing (atoi).

Also the parameter value range will be limited by the string

size, e.g., only explore buf_size from 0 to 99.

We should identify the program variables that store configu-

ration parameters and directly make these variables symbolic.

Prior works [56,57] observe that the mature software typically

uses uniform interfaces such as an array of struct to store

parameters. Thus they annotate these interfaces to extract

variable mappings in static analysis. For Violet, we need to

additionally identify the parameter type and value constraints

defined by the program (e.g., 1 to 10) to restrict the symbolic

value. This is because we are only interested in exploring the

performance effect of valid values.

Since typically all the config variables are readily acces-

sible after some point during initialization, we take a simple

but accurate approach: insert a hook function directly in the

source code right after the parsing function and programmat-

ically enumerates these variables and make them symbolic

using their type and other info. In this hook function, we read

an external environment variable VIO_SYM_CONFIGS to decide

which target parameter(s) to make symbolic.

Take MySQL as an example. Its configuration parame-

ters are represented by a number of Sys_var_* data structures

in the code, depending on the parameter’s type. We add a

make_symbolic API to these data structures, which uses the

type, name, value range information to call the Violet library

to make the backing store symbolic. Figure 7 shows an ex-

ample of the added hook API. Then after MySQL finishes

parsing its configurations, we iterate through all configuration

variables (Figure 8), which are stored in a global linked list

called all_sys_vars. If the parameter is in the target set, we

invoke its new make_symbolic API.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 723

template <typename T>
class Sys_var_unsigned: public sys_var {
public:

 Sys_var_unsigned(const char *name, T min_val, T max_val, ...) {
 option.min_value= min_val;
 option.max_value= max_val;
 ...
 }
 bool global_update(THD *thd, set_var *var) {
 global_var(T)= var->save_result.ulonglong_value;
 return false;
 }
 ...
+ bool make_symbolic() {
+ violet_make_symbolic(global_var_ptr(), sizeof(T), option.name);
+ violet_assume((unsigned)(*global_var_ptr()) <= option.max_value);
+ violet_assume((unsigned)(*global_var_ptr()) >= option.min_value);
+ return true;
+ }
}

Figure 7: Add API to one config. data structure in MySQL.

static int get_options(int *argc_ptr, char ***argv_ptr)
{

 my_init_dynamic_array(&all_options, sizeof(my_option));
 for (opt= my_long_options; opt < my_options_end; opt++) {
 insert_dynamic(&all_options, (uchar*) opt);
 ...
 }
+ violet_parse_config_targets();
+ violet_make_mysql_options_symbolic();
 return 0;
}

+ void violet_make_mysql_options_symbolic()
+ {
+ for (sys_var *var=all_sys_vars.first; var; var= var->next)
+ if (is_config_in_targets(var->name.str))
+ var->make_symbolic();
+ }

Figure 8: Call symbolic hooks after config. parsing in MySQL.

4.2 Make Related Config Symbolic

The performance effect of a parameter usually depends on the

values of other parameters. Thus, if we only make one param-

eter symbolic while leaving other parameters concrete, we

will only explore incomplete execution paths and potentially

miss some problematic combination that leads to bad perfor-

mance. A straightforward solution is to make all parameters

symbolic. Since symbolic execution only forks if a symbolic

value is used branch conditions, this approach seems to be

feasible. However, the problem with this approach is that most

combinations of configuration parameters are unrelated but

will be explored during symbolic execution.

Figure 9 illustrates the problem. Suppose we are interested

in the performance effect of opty. If we simply make all

parameters (optx, opty, optz) symbolic in hope of exploring

the combination effect, there will be at least 6 execution paths

being explored. But opty is unrelated to optx and optz. The

performance impact of opty is only determined by the cost of

its branches. For large programs, the target parameter could

be used deep in the code. Including unrelated parameters in

the symbolic set can cause the symbolic execution to waste

significant time or get stuck before reaching the interesting

code place to explore the target parameter. The analysis result

can also cause confusions. For example, it might suggest only

when optx>100 && optz==FILE && opty is true will there be a

performance issue and miss detecting specious configuration

when opty is true but optx <= 100 or optz != FILE.

Therefore, instead of making all parameters symbolic, we

carefully choose the set of parameters to symbolically execute

void main() {

 if (optx > 100)

 init_x();

 ...

 if (opty)

 task1();

 else

 task2();

}

void init_x() {

 if (optz == FILE)

 create_file();

}

optx>100

opty

optz==FILE

opty

…

opty

path1 path2 path3

execution tree

path4

path5 path6

unrelated paramstarget param

Figure 9: Making unrelated parameters symbolic results in excessive

state explorations and confusing conclusions.

target par.

enabler par.
influenced par.
unrelated par.

symbolic config set

autocommit: {binlog_format,

flush_at_trx_commit}

int decide_logging_format(){

 if (binlog_format !=

 BINLOG_FORMAT_ROW){

 if (autocommit)

 set_stmt_unsafe();

 }

}

int init_server_components(){

 if (query_cache_type==0)

 disable_query_cache();

}

int write_row(){

 if (autocommit){

 trx_commit_complete();

 }

}

ulint trx_commit_complete(){

 if (flush_at_trx_commit==1){

 log_group_write_buf();

 fil_flush();

 }

}

Figure 10: Symbolic config set based on control dependencies.

together. In particular, related parameters are usually control

dependent on each other. We discover the parameter control

dependency with methods described in the following Section.

4.3 Discover Control Dependent Configs

Violet statically analyzes the control dependency relationship

of parameters to determine a reduced symbolic parameter set.

The static analysis result can significantly help mitigate the

path exploration problem during symbolic execution phase.

For a target parameter C, Violet identifies two kinds of re-

lated parameters to put in its symbolic set. The enabler param-

eters are those that C is control dependent on. The influenced

parameters are those that are control dependent on C. Fig-

ure 10 shows an example. For target parameter autocommit, it

is used in decide_logging_format and write_row, it has an en-

abler parameter binlog_format, which decides if autocommit

will be activated. autocommit itself influences the perfor-

mance effect of parameter flush_at_trx_commit. Thus, for

autocommit, the set of related parameters to make symbolic

together is {binlog_format,flush_at_trx_commit}.

Informally, program element Y is control dependent on ele-

ment X if whether Y ’s executed depends on a test at X . More

formally, control dependency is captured by postdominator

relationship in program Control Flow Graph (CFG). Node b

in the CFG postdominates node a if every path from a to the

exit node contains b. Y is control dependent on X if there is

a path X → Z1 → . . .→ Zn → Y such that Y postdominates

all Zi and Y does not postdominate X . We use postdomina-

tor as a building block for our analysis. But our notion of

control dependency is broader than the classic definition. For

example, if (X) { if (Z1) { if (Z2) { if (Y) { foo(); } } }

} , the classic definition does not regard X and Y as being

control-dependent, because Y does not postdominate Z1 or Z2;

724 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

it regards Z2 and Y as being control-dependent. But for us, all

the four parameters are control dependent.

Our analysis is divided into two steps. The first step com-

putes the enabler parameters. Violet builds a call graph of the

program. For target parameter p, it locates the usage points of

p and extracts the call chains starting from the entry function

to the function f that encloses a usage point. If any caller g

in the call chain uses some other parameter q, we check if the

callsite in g that eventually reaches f is control dependent on

the usage point of parameter q in g. If so, q is added to the en-

abler parameter set of p. Violet identifies enabler parameters

within f through intra-procedural control dependency. Our

technical report [34] lists the algorithm.

In the second step, Violet calculates the influenced pa-

rameters from the computed enabler parameter sets of all

parameters. The related config set is a union of the in-

fluenced set and enabler set. We also capture control de-

pendency that involves simple data flow. For example,
void query_cache_init() {

 if (query_cache_type == 0)

 m_cache_is_disabled = TRUE;

}

bool is_disabled() {

 return m_cache_is_disabled;

}

any parameter that is control dependent on the regular variable

m_cache_is_disabled or return value of is_disabled() is also

considered to be related to parameter query_cache_type.

The static analysis result can be inaccurate due to impre-

cision in the alias analysis, call graph, infeasible path prob-

lem, etc. Our general principle is to be conservative and over-

approximate the set of related parameters for a target param-

eter. During symbolic execution, having a few false control

dependent parameters does not greatly affect the performance

or analysis conclusion and they can manifest through the

symbolic execution log if they do cause issues.

4.4 Execute Software Symbolically

After the target software is instrumented with the symbolic

execution hooks, Violet symbolically executes the software

with a concrete configuration file. The hook function reads

the VIO_SYM_CONFIGS environment variable and makes sym-

bolic the program variables corresponding to the specified

parameter. In addition, the function parses the control depen-

dency analysis (Section 4.3) result file and makes variables in

the related parameter set symbolic as well. Other parameters’

program variables get the concrete values from the configura-

tion file. Besides parameters, Violet can also make program

input symbolic to explore its influence on the configuration’s

performance impact. This is done through either symbolic

arguments (sym-args) or identifying the input program vari-

ables and inserting make_symbolic calls in the code.

4.5 Profile Execution Paths

To measure the symbolic parameters’ performance effect,

Violet implements a tracer on top of the symbolic execution

engine, specifically as a set of plugins on the S2E platform.

CallList

RetList

eip:

ret:
time:

0xb7b0f8

0x5f738a

cid:

ret:

time:

0x5f738a

10

90

eip:

ret:
time:

0xb7c164

0xb7b211

24

ret:

time:

0xb7b211

45

…

…

1 cid: 9

…

parentId: 0 parentId: 1

f1 EIP

f2(); return addr

f3 EIP

f4(); return addr

void f1() {

 ...

 f2();

}

void f3() {

 ...

 f4();

}

Figure 11: Match call/return records.

Measure Function Call Latency. We measure function call

latency by capturing the call and return signals emitted by

S2E during symbolic execution. To calculate the latency, a

straightforward way is to maintain a stack of call record and

pops the top element upon receiving a return signal. This

algorithm assumes that the call/return signals are paired and

the callee’s return signal comes before the caller’s. But we

observe this assumption does not always hold under S2E. We

use a safer method based on return addresses to calculate

latency. In particular, the Violet tracer records the EIP register

value, return address, and timestamp on each call and return

signal. The records are stored in two lists. Later, the tracer

matches call record list with return record list based on return

address fields (Figure 11). The latency for a matched function

call is the return record’s timestamp minus the call record’s

timestamp. The total latency of each state (execution path)

can be obtained from the latency of the root function call.

For multi-threaded programs, function calls from different

threads can get mixed up. To address this issue, the Violet

tracer stores the current thread id in each profile record and

partitions the call and return lists by thread id.

Re-Construct Call Paths. The tracer records the function

call profile to break down total latency and to enable dif-

ferential critical path analysis (§4.6). To get the call chain

relationship, instead of costly stack frame walk, the tracer

uses a simple method with little overhead that just assigns

each call record a unique incrementing cid. Later, the tracer

reconstructs the call chain by iterating through all call records

in order. If (1) call record A’s cid is larger than call record

B’s cid, (2) the return address of A is larger than B’s EIP (the

start address of that function), and (3) the difference of the

two addresses is smallest among all other pairs (i.e., B’s start

address is closest to the return address in A), then we assign

A’s parentId to be B’s cid and update the current distance.

Measure Logical Costs. Besides absolute latency, we also

measure a set of logical cost metrics by a similar method

of capturing low-level signals from S2E. In particular, for

each execution path, we measure the number of instructions,

the number of system calls, the number of file I/O calls, the

amount of I/O traffic, the number of synchronization opera-

tions, network calls, etc. These logical costs are useful to sur-

face performance issues other than just long latency. They are

also crucial for reducing the test environment’s biases and en-

abling extrapolation of the result to different settings. For ex-

ample, if the tracer finds one execution path has a much higher

number of write syscalls compared to other paths whereas

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 725

Configuration Constraint Cost Workload Predicate

autocommit!=0 && flush_log_at_trx_commit==1 2.6 s, {log_write_buf→fil_flush}, 17K syscalls, 100 I/O insts, . . . sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit==2 1.7 s, {log_write_buf}, 16.9K syscalls sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit!=1

&& flush_log_at_trx_commit!=2
1.2 s, {}, 16.9K syscall sql_command==INSERT

autocommit==0 0.6 s, {trx_mark_sql_stat_end}, 16.8K syscalls sql_command==SELECT||. . .

Table 1: Example raw cost table Violet generates for autocommit parameter from symbolic execution of MySQL code in Figure 3.

their latencies are similar. This could be an artifact of the test

server having a powerful hard disk or a large buffer cache.

But the software might perform poorly in a different envi-

ronment. The Violet tracer maintains a separate performance

profile for each execution path (state) so we can compare the

performance effect of different paths. We also need to record

the path constraints to identify the parameter combination

and the class of input that leads to the execution path. The

tracer records the final path constraint when an execution path

terminates or it exceeds some user-specified cost threshold.

4.6 Analyze State Traces

Once the symbolic execution finishes, the Violet trace ana-

lyzer parses the performance traces. It then builds a cost table.

Each row represents a state (path) that was explored in sym-

bolic execution. The analyzer does a pair-wise comparison of

performance in different rows. If the performance difference

ratio exceeds a threshold (default 100%), the analyzer marks

that state suspicious. The analyzer compares not only the ab-

solute latency metric but also the collected logical metrics.

Even if the latency difference does not exceed the threshold

but some logical metric does, the analyzer still marks the state.

Not all pair comparisons are equally meaningful when the

symbolic execution explored multiple symbolic variables. To

elaborate, assume our target parameter is autocommit, which

has a related parameter flush_log. Since both are made sym-

bolic, one state could represent constraint autocommit==0 &&

flush_log==1 and another state could represent constraint

autocommit==1 && flush_log==2. In this case, comparing the

costs of these two states is not very meaningful.

The analyzer tries to compare state pairs that are most

“similar” first. Determining the similarity of two paths can

be challenging. We use a simple approach: in one state’s

constraints formula, for each constraint involving a related

parameter, if it also appears in the other state’s formula, the

similarity count is incremented by one. This method is im-

precise as it merely checks the appearances, not constraint

equivalence. For our use cases, the inaccuracies are gener-

ally acceptable. Besides, the analyzer can compare all pairs

first, surface the bad state-pairs, and then we can decide the

meaningfulness of the suspicious pairs.

For each pair that has a significant performance differ-

ence, the analyzer computes the differential critical path. It

first finds the longest common subsequence of the call chain

records in the two states. Then it creates a diff trace that stores

the common records with performance metrics subtracted, as

well as the records that only appear in the slower state. The

analyzer finally locates the call record (excluding entry) with

the largest differential cost and constructs the critical call path

based on the cid and parentId of the call records.

When Violet makes the input symbolic, the path constraints

in each state will contain constraints about the input. The ana-

lyzer separates the input related constraints as input predicate.

This is useful to tell what class of input can expose the po-

tential performance issue for the combination of parameter

values that satisfies the configuration constraint in a state.

The final output from the Violet analyzer is the configuration

performance impact model that consists of the raw cost table

(Table 1) with configuration constraints, cost metrics, and in-

put predicate for each state, the state pairs that have significant

performance difference, and the differential critical paths.

4.7 Continuous Specious Config Checker

Violet provides a standalone checker tool to detect specious

configuration. It leverages the configuration performance im-

pact model from the analyzer and validates a concrete user

configuration file. The checker tool supports three modes:

1. Some config update introduces performance regression.

2. Some default parameter is poor for users’ specific setup.

3. Code upgrade or workload change make old setting poor.

For scenario 1, the checker references the cost table and lo-

cates the state(s) that have configuration constraints satisfying

the updated parameter’ old value and the parameter’s new

value. If the state pair has significant performance difference,

the checker alerts the operators and generates a test case

based on the input predicate for operators to confirm the per-

formance regression. For scenario 2, the checker validates if

the state that the default value lies in appears in some poor

state-pair. If so, it means this default value potentially per-

forms significantly worse than another value. For scenario

3, if the system code changes, Violet rebuilds the cost im-

pact table. The checker then identifies if some state in the

new table performs much worse compared to the old cost

table. If workload changes, the checker validates if cost table

rows that previously satisfy the input predicate perform worse

compared to rows that satisfy the input predicate now.

5 Scaling Violet to Large Software

In this section, we describe the challenges and our solutions

for scaling Violet to large software.

5.1 Choice of Symbolic Execution Engine

We initially build Violet on the KLEE [24] symbolic execu-

tion engine because it is widely used and convenient to exper-

726 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

iment with. However, while KLEE works well on moderate-

sized programs, it cannot handle large programs like MySQL.

KLEE models the environment (POSIX runtime and libc)

with simplified implementation. Large programs use many

libc or system calls that are unimplemented or implemented

partially/incorrectly, e.g., fcntl, pread, and socket. KLEE also

does not support symbolic execution of multi-threaded pro-

grams. We spent several months patching KLEE to fix the

environment model and add multi-threading support. When

we were finally able to run MySQL with KLEE, it took 40

minutes to just pass initialization even without symbolic data.

We thus decided to switch to the S2E platform [26]. S2E

uses real environment with complete OS and libraries. Execut-

ing large software would encounter almost no compatibility

issues. In addition, S2E uses QEMU and dynamic binary trans-

lation to execute a target program. For instructions that access

symbolic data, they are interpreted by the embedded KLEE

engine; but instructions that access concrete data are directly

executed on host CPU. Overall, while the choice of using real

environment in symbolic execution in general means slower

analysis compared to using simplified models like KLEE,

executing concrete instructions on host CPU offsets that slow-

ness and allows S2E to achieve significant speed-up. After

migrating Violet to S2E and with some minor adjustments,

we can start MySQL server within one minute.

5.2 Handle Complex Input Structure

Since specious configuration is often only triggered by certain

input, Violet makes input symbolic besides configuration. For

small programs, the input type is typically simple, e.g., an

integer, a string, which is easy to be made symbolic. However,

large programs’ input can have very complex structure. If we

make such complex input symbolic, the program may be stuck

in the input parsing code for a long time and the majority of

the input generated is invalid. For example, we make input

variable char *packet (32 bytes) in MySQL symbolic and

execute it in S2E for 1 hour, which generates several hundred

test cases, but none of which is a legal SQL query. Even after

adding some additional constraints, the result is similar.

This challenge is not unique to our problem domain. Com-

piler testing [58] or fuzzing [11] also faces this challenge

of how to generate valid input to programs like C compiler

or DBMS. We address this problem through a similar prac-

tice by introducing workload templates. Instead of having the

parser figure out a valid structure, we pre-define a set of input

templates that have valid structures. Then we parameterize

the templates so that they are not fixed, e.g., the query type,

insertion value, the number of queries, etc. In this way, we

can make the workload template parameters symbolic.

5.3 Reduce Profiling Overhead

Profiling large programs can incur substantial overhead. We

build Violet tracer using low-level signals emitted by S2E

rather than intrusive instrumentation. Nevertheless, symbolic

execution is demanding for performance analysis as the pro-

gram runs much slower compared to native execution. Fortu-

nately, Violet cares about the relative performance between

different paths. We can still identify specious configuration if

the relative differences roughly match the native execution,

which we find is true for most cases. Violet conducts differen-

tial analyses to capture performance anomalies. We describe

three additional optimizations in Violet tracer.

First, the Violet tracer controls the start and end of its func-

tion profiler. This is because if we enable the function profiler

at the very beginning, it can be overwhelmed by lots of irrele-

vant function calls. We add APIs in the tracer and will start

the tracer when the target system finishes initialization and

stop the tracer when the system enters the shutdown phase.

Second, the tracer avoids guest memory accesses and on-

the-fly calculation. Accessing memory in an execution state

goes through the emulated MMU in QEMU. Violet tracer

only accesses and stores key information (most from registers)

about the call/return signals. It defers the record matching,

call chain and latency calculation to path termination.

Third, Violet will disable state switching during latency

tracking if necessary. Since the function profiler calculates

the execution time by subtracting the return signal timestamp

from call signal timestamp, if S2E switches to execute an-

other state in between, the recorded latency will include the

state switching cost. This in general does not cause serious

problems because the costs occur in all states and roughly

cancels out with our differential analysis. But in rare cases,

the switching costs can distort the results. When this happens,

Violet will force S2E to disable state switching.

5.4 Path Explosion and Complex Constraints

A common problem with symbolic execution is path explo-

sion, especially when the symbolic value is used in library or

system calls. In addition, some library calls with symbolic

data yield complex constraints that make the symbolic execu-

tion engine spend a long time in solving the constraints.

Violet leverages a core feature in S2E, selective symbolic

execution [26], to address this problem. Selective symbolic

execution allows transition between concrete and symbolic

execution when crossing some execution boundary, e.g., a

system call. Violet uses the Strictly-Consistent Unit-Level

Execution consistency model, which silently concretizes the

symbolic value before entering the boundary and adds the

concretized constraint to the symbolic value after exiting the

boundary. This consistency model sacrifices completeness

but it would not invalidate the analysis result. To improve

completeness, we add some relaxation rules in Violet without

causing functionality errors: 1) if the library call does not add

side effect, such as strlen/strcmp, we make the return value

symbolic and remove the concretized constraint; 2) if the

library call has side effect but does not hurt the functionality,

such as printf, we directly remove the concretized constraint.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 727

Software Desc. Arch. Version SLOC
Configs

Hook

MySQL Database Multi-thd 5.5.59 1.2M 330 197

Postgres Database Multi-proc 11.0 843K 294 165

Apache Web server Multi-proc-thd 2.4.38 199K 172 158

Squid Proxy server Multi-thd 4.1 178K 327 96

Table 2: Evaluated software. Hook: SLOC of core Violet hooks.

One issue we encounter with the S2E silent concretiza-

tion is that its concretize API will only concretize the sym-

bolic variable. The symbolic variable can taint other variables

(make them symbolic) when it is assigned to these variables,

but these tainted variables are not concretized during silent

concretization. Having these tainted variables remain sym-

bolic can add substantial overhead. We thus add a new API in

S2E, concretizeAll, that concretizes not only the given sym-

bolic variable but also its tainted variables. We implement

this API by recording in each write operation a mapping from

the symbolic expression to the target address in the memory

object. Later when concretizeAll is called, we will look up

the memory objects to find addresses that contain the same

symbolic expression and also concretize them.

6 Implementation

We implement the major Violet components in C/C++. The

Violet checker is implemented in Python. The Violet tracer is

written as S2E plugins and leverages S2E’s existing plugin to

capture low-level signals. The Violet static analyzer is built

on top of LLVM framework [40]. The Violet trace analyzer

is implemented as a standalone tool.

In function profiling, for efficiency, the tracer captures the

addresses instead of names of invoked functions. This means

the analyzer needs to resolve the addresses to names. The

problem is that the virtual address of the target program can

change in each run. We address this issue by modifying the

ELF loader of the S2E Linux kernel to expose the load_bias.

Then the tracer will record the offset from the load_bias. The

analyzer can then use the offsets to resolve the names.

7 Evaluation

We evaluate Violet to answer several key questions:

• How effective is Violet in detecting specious configuration?

• Can Violet expose unknown specious configuration?

• How useful is Violet’s checker to the user?

• What is the performance of Violet?

The experiments are conducted on servers with Dual Pro-

cessor of Intel Xeon E5-2630 (2.20GHz, 10 cores), 64 GB

memory, 1 TB HDD running a Ubuntu 16.04. Since S2E en-

gine runs in QEMU, we create a guest image of Debian 9.2.1

x86_64 with 4 GB memory for all the Violet tests.

7.1 Target Systems
We evaluate Violet on four popular and large (up to 1.2M

SLOC) open-source software (Table 2): MySQL, PostgreSQL,

Apache, and Squid. Violet can successfully analyze large

multi-threaded programs (MySQL and Squid) as well as multi-

process (PostgreSQL, Apache) programs.

The manual effort to use Violet on a target system is small,

mainly required in two steps: (1) add configuration hooks

(Section 4.1); (2) supply input templates (Section 5.2). The

other steps in the workflow are automated.

Table 2 shows SLOC of the core hooks we add to the four

systems. The hook size varies across systems. MySQL hooks

are largest in size mainly because the system defines many

(22) configuration types (Sys_var_*) so we need to add hook

(about 7 SLOC) to each type. But the overall effort for differ-

ent systems is small. The changes are typically contained in a

few places with other codes untouched. In addition, most soft-

ware rarely modifies the configuration data structure design,

so the effort can carry through versions.

For (2), users typically already have some workload profiles.

The effort needed is to parameterize and organize them into

our format. In our experience with the four evaluated software,

this process is straightforward and can be done in a few hours.

7.2 Detecting Known Specious Config

To evaluate the effectiveness of Violet we collect 17 real-

world specious configuration cases from the four systems.

Table 3 lists the case descriptions. We collect them from

ServerFault [14], dba [4], blog posts [12], and prior work [19].

A case is marked as detected when Violet explores at least

one poor state in its trace and the poor states enclose the

problematic parameter value(s).

In total, Violet detects 15 of the 17 cases. Table 4 shows

the detailed result. For each case, Table 4 lists the total states

Violet explored, poor states, related configs, and maximum

cost metric differences. The explored states include forks

from related configurations and the symbolic workload pa-

rameters. In most cases, the specious configuration requires

specific related settings to expose the issue. The high suc-

cess rate of Violet comes from its in-vivo multi-path profiling,

dependency analysis, and differential performance analysis.

Another aspect to interpret the high success rate is that

the 17 cases we collect admittedly have a selection bias—all

cases cause severe performance impact. This is reflected in

the max diff column. If a misconfiguration only introduces

mild performance issue, Violet may miss it due to the noises

in symbolic execution. However, Violet’s goal is to exactly

target specious configuration that has severe performance

impact, rather than suboptimal configurations.

Violet misses two Apache cases, c14 and c15. Triggering

them requires enabling the HTTP KeepAlive feature in the

workload. In our Apache workload templates, this feature is

not part of the workload parameters and is disabled by default.

We describe two representative cases. MySQL c1 is the

running example in the paper. Violet identifies four related

parameters for autocommit and explores 88 states in total, 4

of which are identified as poor. The configuration constraints

728 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Id. Application Configuration Name Data Type Description

c1 MySQL autocommit Boolean Determine whether all changes take effect immediately

c2 MySQL query_cache_wlock_invalidate Boolean Disable the query cache when after WRITE lock statement

c3 MySQL general_log Boolean Enable MySQL general log query

c4 MySQL query_cache_type Enumeration Method used for controlling the query cache type

c5 MySQL sync_binlog Integer Controls how often the MySQL server synchronizes binary log to disk

c6 MySQL innodb_log_buffer_size Integer Set the size of the buffer for transactions that have not been committed yet

c7 PostgreSQL wal_sync_method Enumeration Method used for forcing WAL updates out to disk

c8 PostgreSQL archive_mode Enumeration Force the server to swtich to a new WAL periodically and archive old WAL segments

c9 PostgreSQL max_wal_size Integer Maximum number of log file segments between automatic WAL checkpoints

c10 PostgreSQL checkpoint_completion_target Float Set a fraction of total time between checkpoints interval

c11 PostgreSQL bgwriter_lru_multiplier Float Set estimate of the number of buffers for the next background writing

c12 Apache HostNamelookup Enumeration Enables DNS lookups to log the host names of clients sending requests

c13 Apache Deny/Domain Enum/String Restrict access to the server based on hostname, IP address, or env variables

c14 Apache MaxKeepAliveRequests Integer Limits the number of requests allowed per connection

c15 Apache KeepAliveTimeOut Integer Seconds Apache will wait for a subsequent request before closing the connection

c16 Squid cache String Requests denied by this directive will not be stored in the cache

c17 Squid Buffered_logs Integer Whether to write access_log records ASAP or accumulate them in larger chunks

Table 3: Description of 17 known specious configuration cases we collect in the four evaluated software.

Id.

D
et

ec
t

Explored

States

Poor

States R
el

a
te

d

C
o

n
fi

g
s

Cost

Metrics

Analysis

Time

Max

Diff*

c1 ✓ 88 17 4 Latency 6 m25 s 14.5×
c2 ✓ 24 3 1 Lat.&Sync. 3 m13 s 15.7×
c3 ✓ 224 88 5 I/O 19 m41 s 2.0×
c4 ✓ 787 100 2 Latency 53 m50 s 11.7×
c5 ✓ 494 44 3 Latency 17 m56 s 29.9×
c6 ✓ 891 12 5 I/O 112 m24 s 3.0×
c7 ✓ 89 7 2 Lat.&I/O 4 m6 s 4.3×
c8 ✓ 195 8 3 Latency 13 m8 s 1.8×
c9 ✓ 110 2 3 Lat.&I/O 15 m20 s 3.5×
c10 ✓ 231 13 7 Latency 23 m30 s 2.4×
c11 ✓ 61 9 2 Latency 13 m17 s 8.6×
c12 ✓ 34 4 2 Latency 7 m15 s 3.8×
c13 ✓ 50 5 3 Latency 6 m10 s 8.9×
c14 ✗ 112 0 2 Latency 3 m42 s 0.6×
c15 ✗ 23 0 3 Latency 6 m12 s 0.2×
c16 ✓ 81 1 0 Latency 433 m32 s 4.3×
c17 ✓ 3 1 0 I/O 1 m32 s 2.0×

Table 4: Violet detection result. Poor states are what Violet considers

as suspicious. *: relative difference, α× means B = (1+α)∗A.

of the four poor states describe the combination conditions

for the 5 parameters to incur significant cost.

In c6, innodb_log_buffer_size controls the size of the log

buffer. Interestingly, in this case, Violet determines the latency

metric difference is not significant, but the I/O logical cost

metric is. Specifically, Violet explores almost 100 different

queries, and finds that in states with queries involving large

row changes and a relatively small buffer size, the I/O metric—

pwrite operations—is much larger than other states.

7.3 Comparison with Testing

We evaluate the 17 cases with testing as well. We use popular

benchmark tools sysbench and ab. For each case, we set the

target parameter and related parameters with concrete values

from one of the poor states discovered. We enumerate the

standard workloads in the benchmark to test the software with

the configurations. Since the absolute performance result are

difficult to judge, we use configurations from the good states

and collect performance result with them as a baseline. If the

performance difference ratio exceeds 100% (the same thresh-

old used by Violet), we consider the case detected. In total,

testing detects 10 cases, with a median time of 25 minutes.

Violet is not meant to replace configuration performance

testing. In theory, exhaustive testing can expose all cases, but

the cost of it is not affordable in practice. Violet systemati-

cally explores program states while avoids the redundancy in

exhaustive testing (Section 3.1). Even though in some cases,

as shown in Table 4, the Violet analysis time is relatively long,

Violet is exploring the performance effects thoroughly, includ-

ing the combination effect with other parameters and input.

Therefore, the performance impact models Violet derives are

complete. Once the exploration is done, the outcome can be

reused many times while testing needs to be done repeatedly.

Another challenge with testing is to find the baseline for

good performance. Our experiment above assumes the exis-

tence of good configuration, which users may not have. Violet,

in comparison, conducts in-vivo, multi-path analysis, so it nat-

urally has baselines to compare with. The analysis enables

Violet to collect deeper logical metrics, which can reveal per-

formance issues that end-to-end metrics may not find.

7.4 Exposing Unknown Specious Config

Besides detecting know specious configuration, we evaluate

whether Violet can expose unknown specious configuration.

We first apply Violet to derive performance models for all pa-

rameters if possible (Section 7.6). We then analyze the results

for parameters not in the known case dataset (Section 7.2).

We manually check (1) if some parameter’s default or sug-

gested value is in a poor state; (2) if a poor state of a parame-

ter contains related parameters that are undocumented. The

manual inspection involves checking the Violet output, the

descriptions in the official documentation and tuning guide,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 729

C1 C2 C3 C4 C5 C6 Overall

Case

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

\%
)

Group A Group B

Figure 12: Overall accuracy of judgment in the

user study.

C1 C2 C3 C4 C5 C6 Overall

Case

0

4

8

12

16

T
im

e
 (

m
in

u
te

) Group A Group B

Figure 13: Average decision time in the user

study.

MySQL PostgreSQL Apache Squid
100

101

102

103

104

T
im

e
 (

s
)

206
117

1171
554

Figure 14: Violet analysis times for the con-

figs in the four software.

Sys Configuration Performance Impact

Postgres
vacuum_cost Default value 20 ms is significantly worse
_delay than low values for write workload.

Postgres archive_timeout Small values cause performance penalties.

Postgres random_page_cost Values larger than 1.2 (default 4.0) cause

bad perf on SSD for join queries.

Postgres log_statement Setting mod causes bad perf. for write work-

load when synchronous_commit is off.

Postgres parallel_setup_cost A higher value would avoid unnecessary

parallelism when executing join query

Postgres
parallel_leader Enabling it can cause select join query
_participation to be slow if random_page_cost is high.

MySQL
optimizer_search Default value would cause bad performance
_depth for join queries

MySQL concurrent_insert Enable concurrent_insert would cause bad

performance for read workload

Squid ipcache_size The default value is relatively small and

may cause performance reduction

Squid cache_log Enable cache_log with higher debug_option

would cause extra I/O

Squid
store_objects Higher objects per bucket would enlarge

per_bucket the search time

Table 5: Unknown perf. effect of 11 parameters Violet identifies.

and running tests to confirm, which takes significant time. We

only carefully inspect a subset of the results.

The four systems are very mature and maintain high-quality

documentations, so it is not easy to find many errors in them.

Indeed, a significant portion of the poor states we examined

turns out to be already documented. Still we have identified

11 parameters that have potential bad performance effect and

the documentation is incomplete or incorrect.

Table 5 lists the cases. For example, our analysis of

vacuum_cost_delay shows that a higher value can incur large

cost for write-intensive workloads, but the default value is

20 ms. Interestingly, we find PostgreSQL 12 (our experiments

use v11) changes the default to 2 ms. For log_statement,

Violet discovers multiple poor states that are not mentioned

in the official document. Our analysis revels that setting

it to mod causes performance issues for write query when

synchronous_commit is off. Violet finds some unexpected

parameter combination that leads to bad performance, e.g.,

parallel_leader_participation and random_page_cost.

We reported our findings to the developers. Eight reports

are confirmed. Five lead to documentation or Wiki fixes. For

some confirmed cases, developers do not fix them because

they assume users should know the performance implications

or such performance description should not be put in the ref-

erence manual (e.g., “There are a lot of interactions between

settings, and mentioning all of them would be impossible”).

7.5 User Study on Violet Checker
To understand whether Violet checker helps users catch

specious configuration, we conduct a controlled user study

with 20 programmers (no authors are included). Fourteen are

undergraduate students who have taken the database class.

Six are graduate students. They all have decent experience

with databases and Unix tools. We further give a tutorial of

MySQL and PostgreSQL, the descriptions of the common

configuration, and available benchmark tools they can use.

We use 6 target parameters from MySQL and PostgreSQL.

For each parameter, we prepare two versions of configuration

files. In one version (bad), the parameter is set with the poor

value and the related parameters are also set appropriately that

would cause bad performance impact under a workload. In

another version (good), we set the target parameter to a good

value, or we change the related parameter values, or we tell

users the production workloads are limited to certain types

(e.g., read-intensive). So in total, we have 12 cases.

Each participant is given 6 configuration files. They need

to make a judgment regarding whether the configuration file

would cause potential performance issue. Since a configura-

tion file contains many parameters, we explicitly tell users

the set of parameters they can focus on, which disadvantages

Violet because users in practice do not have this luxury.

The participants are randomly assigned into two groups:

group A (w/ Violet checker help) and group B (w/o checker

help). Users in group B can run any tools to help them make

the decision. We also tell group A users that they do not have

to trust the checker output and are free to run other tools.

Figure 12 shows the accuracy of user study result for

each group. Overall, programmers w/o Violet checker’s help

have 30% misjudgment rate while programmers with Violet

checker’s help only have 5% misjudging rate. Figure 13 shows

the time for making a judgment. On average, participants

took 20.7% less time (9.6 min. versus 12.1 min.) to make a

judgment when they were provided with Violet checker. The

reason that time saving is not very large is partly because

we explicitly tell users the set of parameters, which creates a

biased advantage to group B users; and some of our group A

users are extra cautious and spend time running other tools.

7.6 Coverage of Analyzed Configs

We conduct a coverage test of Violet by applying Violet on

the four software and try to derive performance models for as

many parameters as possible. We manually filter the parame-

730 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

MySQL PostgreSQL Apache Squid Total

169 (51.2%) 210 (71.4%) 51 (29.6%) 176 (53.3%) 606 (53.9%)

Table 6: Number of configs Violet derives performance models for.

The number in parentheses is the percentage of total configs.

parA parB parC parD

=0 =1 =0 =1 =0 =1 =2 =0 =1 =2

Violet 12.0 23.0 9.81 10.19 9.05 10.92 10.74 4.68 4.77 5.27

S2E 10.8 21.0 7.67 8.94 6.24 7.77 7.92 3.57 3.91 4.59

Native 0.7 1.2 0.55 0.77 0.45 0.63 0.67 0.07 0.07 0.08

Table 7: Absolute latency (ms) for four parameters’ different settings

w/ Violet, vanilla S2E and native execution. parA: autcommit, parB:

synchronous_commit, parC: archive_mode, parD: HostNameLookup.

ters that are not related to performance based on the parameter

description (e.g., listen_addresses). Table 6 shows the result.

Violet successfully derives models for a total of 606 parame-

ters. The average ratio of analyzed parameters over the total

number of parameters for software is 53.9%. The average

number of states explored in these generated models is 23.

Apache and Squid have a relatively small number of param-

eters analyzed. This is because the configuration program

variables in the two systems are set via complex function

pointers and spread in different modules, which make it chal-

lenging to write hooks to enumerate all of them (Section 4.1).

For parameters that Violet did not generate impact models,

one reason is that they are used in code for special environ-

ment. Another reason is that the data type of some parameter

is too complex (e.g., timezone) to make symbolic.

7.7 Accuracy of Violet Profiling

Since symbolic execution can introduce significant overhead,

it seems that the latency traced by the symbolic engine will

not be accurate. However, we observe that while the absolute

latency under symbolic execution is indeed much larger than

native execution, the comparative results between different

paths are usually similar. We add a micro-benchmark experi-

ment to test the latency measurement from Violet, vanilla S2E

and native mode. Table 7 shows the result from four repre-

sentative parameters. Take parA as an example. The latency

results from Violet and S2E are much later than native result.

But the ration of setting 1 to setting 0 is similar: 1.92× for

Violet, 1.94× for S2E, and 1.71× for native execution.

7.8 False Positives

The Violet differential performance analysis in general can

absorb the performance noises in symbolic execution. But

we observe some false positives in the Violet performance

analysis output. For example, S2E somehow has a delay in

emitting the return signal of some system call functions like

gettimeofday, which causes Violet to record inaccurate la-

tency. These false positives are relatively easy to suppress by

discounting the cost of the noisy instructions.

We manually inspect the performance models of 10 random

parameters that Violet analyzes in the coverage experiment.

10 20 50 100 200

Diff threshold (%)

1

2

3

4

#
 o

f
p
o
o
r

s
ta

te
s

(n
o
rm

a
li
z
e
d
)

10 20 50 100 200

Diff threshold (%)

0

10

20

30

40

#
 o

f
fa

ls
e
 p

o
s
it

iv
e
s

archive_mode

autocommit

deny

lru_multipiler

query_cache_type

wal_sync_method

Figure 15: Sensitivity of the performance diff threshold (default

100%). For readability, the number of poor states is normalized by

values under the default threshold.

We check the accuracy of the reported bad states by verifying

them with sysbench. The false positive rate is 6.4%.

7.9 Performance
We measure the Violet analysis time for the 471 parameters

in the coverage experiment (Section 7.6). Figure 14 shows

the result in boxplots. The median analysis times are 206 s

(MySQL), 117 s (PostgreSQL), 1171 s (Apache), and 554 s

(Squid). On average, the log analyzer time is 68s. As ex-

plained in Section 7.3, even though for some parameters the

analysis time is relatively long, the benefit is that Violet de-

rives a thorough performance model for different settings of

the target parameter and the combined effect with other param-

eters and input. The outcome can be re-used many times by

the Violet checker. With the performance models, the checker

time is fast. On average the checking only takes 15.7 seconds.

7.10 Sensitivity Analysis

Violet uses a differential threshold (default 100%) to detect

the suspicious state from the trace log (Section 4.6). We eval-

uate the sensitivity of this threshold by measuring how many

poor state pairs Violet reports when analyzing a parameter

under threshold t. For each poor state pair Violet reports, we

run benchmarks on the native machine to check whether it is

false positive (performance difference is ≥ t%).

Figure 15 shows the result for six representative param-

eters. We can see that if the threshold is set to a relatively

lower value, the number of detected specious configuration

can dramatically increase, but at cost of higher false positives.

8 Limitations

Violet has several limitations that we plan to address in future

work. First, Violet explores the configuration under normal

conditions. Some specious configuration may be only used in

error handling. Exploring their effect requires specific faults.

One solution is to combine symbolic execution with fault in-

jection. Another potential solution is to use under-constrained

symbolic execution [46]. Second, our handling of floating

point type parameters is imperfect due to limited support in

existing symbolic execution engines. We currently explores

float parameters by choosing from a set of concrete floating-

point values in the valid value range. Third, we use concrete

(the host) hardware in the symbolic execution, which may not

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 731

capture specious configuration that is only visible in specific

hardware. We rely on logical cost metrics to surface such

issues. Lastly, Violet does not work on distributed systems.

9 Related Work

Misconfiguration detection and diagnosis. A wide body

of work has been done to detect and troubleshoot miscon-

figuration [20–22, 27, 30, 30, 48, 50, 52, 54, 61, 63]. For ex-

ample, ConfAid [21] uses dynamic taint tracking to locate

configuration errors that lead to failures; Strider [52] and

PeerPressure [50] take statistical approaches to identify mis-

configuration; EnCore [63] enhances statistical learning with

environment information to detect misconfiguration.

These solutions mainly target illegal configuration and have

limited effects on specious configuration. X-ray [19] targets

performance-related misconfiguration. Our work is inspired

by X-ray and is complementary to it. X-ray is a diagnosis tool

and uses deterministic record and replay of a specific program

execution. Violet focuses on detecting specious configuration

beforehand. Violet uses symbolic execution to explore the

performance effect in multiple execution paths. Violet is more

suitable for performance tuning/bug finding, whereas X-ray

is better at diagnosing misconfiguration that has occurred.

LearnConf [41] is recently proposed to detect performance

misconfiguration using static analysis. LearnConf summa-

rizes common code patterns of performance configuration

and uses simple formulas to approximate the performance

effect, e.g., linear relationship. It uses static analysis to iden-

tify these patterns and derive parameters to the formulas. The

solution is simpler compared to Violet, but its completeness

is limited because obtaining comprehensive code patterns is

hard. Moreover, the performance effect is often quite com-

plex, which cannot be accurately captured by simple formulas.

Static analysis also suffers from well-known inaccuracies for

large software. Violet explores a configuration’s influence

in the code without requiring or being limited by common

patterns; it analyzes the performance effect by executing the

code. Additionally, Violet explores the performance impact

of input and a large set of related configurations together.

Performance tuning of configuration. There is a wealth of

literature on automatic performance tuning, e.g., [33,44,51,55,

59, 62, 64]. They work basically by devising an approximate

function between configuration values and the performance

metrics measured through testing. While tunable parame-

ters are common specious configuration, performance tuning

and detecting specious configuration are two directions. The

former searches for settings that yield the best performance,

while the latter identifies settings that lead to extremely poor

performance. Violet takes an analytical approach to derive

configuration performance impact model from the code, in-

stead of exhaustive testing. The result from our in-vivo, multi-

path analysis is also less susceptible to noises and enables

extrapolation to different contexts.

System resilience to misconfiguration. ConfErr [37] uses

a human error model to inject misconfiguration. SPEX [57]

uses static analysis to extract configuration constraints and

generates misconfiguration by violating these constraints. The

injected misconfigurations are illegal values that can trigger

explicit errors like crash. Specious configuration typically

does not cause explicit errors.

Configuration languages. Better configuration languages

can help avoid misconfiguration. Several works make such

efforts [23, 25, 28, 29, 35, 42, 47]. PRESTO [29] proposes a

template language to generate device-native configuration.

ConfValley [35], proposes a declarative validation language

for generic software configuration. These new designs do not

prevent specious configuration from being introduced.

Symbolic execution in performance analysis. Symbolic ex-

ecution [24, 38] is typically used for finding functional bugs.

S2E [26] is the first to explore performance analysis in sym-

bolic execution as one use case to demonstrate the generality

of its platform. The Violet tracer leverages the advances made

by S2E, particularly its low-level signals, to build our custom

profiling methods (Section 4.5). Our tracer also addresses

several unique challenges to reduce the performance analy-

sis overhead (Section 5.3). Bolt [36] extracts performance

contracts of Network Function code with symbolic execu-

tion. Violet targets general-purpose software and analyzes

performance effect of system configuration.

10 Conclusion

Specious configuration is a common and challenging problem

for production systems. We propose an analytical approach

to tackle this problem and present a toolchain called Violet.

Violet uses symbolic execution and program analysis to sys-

tematically reason about the performance effect of config-

uration from code. The derived configuration performance

impact model is used for subsequent detections of specious

configuration. We successfully apply Violet on four large

system software and detect 15 out of 17 real-world specious

configuration cases. Violet exposes 11 unknown specious

configuration, 8 of which are confirmed by developers.

Acknowledgments

We would like to thank our shepherd, Jason Flinn, and the

anonymous OSDI reviewers for their thoughtful comments.

We appreciate the discussion and suggestions from Xi Wang.

We thank Varun Radhakrishnan and Justin Shafer for their

contributions to the Violet tool and study cases. We thank

our user-study participants and the open-source developers

who responded to our requests. We also thank the S2E authors,

especially Vitaly Chipounov for maintaining the S2E platform

and answering our questions. We thank Chunqiang Tang for

the prior collaboration that provided early motivation for this

work. This work is supported by the NSF CRII grant CNS-

1755737 and partly by NSF grant CNS-1910133.

732 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon AWS S3 outage for several hours on February 28th, 2017.

https://aws.amazon.com/message/41926.

[2] Amazon EC2 and RDS service disruption on April 21st, 2011. http:

//aws.amazon.com/message/65648.

[3] AWS service outage on October 22nd, 2012. https://aws.amazon.com/

message/680342.

[4] Database administrators. https://dba.stackexchange.com.

[5] Facebook global outage for 2.5 hours on September 23rd,

2010. https://www.facebook.com/notes/facebook-engineering/

more-details-on-todays-outage/431441338919.

[6] Google API infrastructure outage on April 30th, 2013.

http://googledevelopers.blogspot.com/2013/05/google-api-

infrastructure-outage_3.html.

[7] Google compute engine incident #16007. https://status.cloud.

google.com/incident/compute/16007?post-mortem.

[8] Google service outage on January 24th, 2014. http://googleblog.

blogspot.com/2014/01/todays-outage-for-several-google.html.

[9] Microsoft Azure storage disruption in US south on December 28th,

2012. http://blogs.msdn.com/b/windowsazure/archive/2013/01/

16/details-of-the-december-28th-2012-windows-azure-storage-

disruption-in-us-south.aspx.

[10] Microsoft Azure storage disruption on February 22nd, 2013. http://

blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-

the-february-22nd-2013-windows-azure-storage-disruption.aspx.

[11] Oss-fuzz: Continuous fuzzing for open source software. https://

github.com/google/oss-fuzz.

[12] Percona blogs. https://www.percona.com/blog.

[13] RDS MySQL insights: Top query "commit". https://serverfault.

com/questions/1029595/rds-mysql-insights-top-query-commit.

[14] Serverfault. https://serverfault.com.

[15] Slow InnoDB insert/update. https://www.serveradminblog.com/2014/

01/slow-innodb-insertupdate/.

[16] Sysbench. https://github.com/akopytov/sysbench.

[17] Cisco loses customer data in Meraki cloud muckup due to misconfig-

uration. https://www.theregister.co.uk/2017/08/06/cisco_meraki_

data_loss, Aug 6th, 2017.

[18] Amazon. AWS service outage on December 24th, 2012. http://aws.

amazon.com/message/680587.

[19] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause

diagnosis of performance anomalies in production software. In Pro-

ceedings of the 10th USENIX Conference on Operating Systems Design

and Implementation, OSDI’12, pages 307–320, 2012.

[20] M. Attariyan and J. Flinn. Using causality to diagnose configuration

bugs. In Proceedings of the 2008 USENIX Annual Technical Confer-

ence, ATC’08, pages 281–286, 2008.

[21] M. Attariyan and J. Flinn. Automating configuration troubleshooting

with dynamic information flow analysis. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation,

OSDI’10, pages 1–11, 2010.

[22] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy

misconfigurations in access-control systems. In Proceedings of the

13th ACM Symposium on Access Control Models and Technologies,

SACMAT ’08, pages 185–194, 2008.

[23] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t

mind the gap: Bridging network-wide objectives and device-level con-

figurations. In Proceedings of the 2016 ACM SIGCOMM Conference,

SIGCOMM ’16, pages 328–341, Florianopolis, Brazil, 2016.

[24] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation, OSDI’08, pages 209–224, San Diego,

California, 2008.

[25] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative

configuration management for complex and dynamic networks. In

Proceedings of the 6th International Conference, Co-NEXT ’10, pages

6:1–6:12, 2010.

[26] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for

in-vivo multi-path analysis of software systems. In Proceedings of

the Sixteenth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XVI, pages

265–278, Newport Beach, California, USA, 2011.

[27] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting

access control misconfigurations. In Proceedings of the 19th USENIX

Conference on Security, USENIX Security’10, pages 11–11, 2010.

[28] J. DeTreville. Making system configuration more declarative. In Pro-

ceedings of the 10th Conference on Hot Topics in Operating Systems,

HOTOS’05, pages 11–11, 2005.

[29] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,

S. Rao, and W. Aiello. Configuration management at massive scale:

System design and experience. In Proceedings of the 2007 USENIX

Annual Technical Conference, ATC’07, pages 6:1–6:14, 2007.

[30] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults

with static analysis. In Proceedings of the 2nd Conference on Sym-

posium on Networked Systems Design & Implementation, NSDI’05,

pages 43–56, 2005.

[31] Google. Twilio billing incident post-mortem: Breakdown, analy-

sis and root cause. https://www.twilio.com/blog/2013/07/billing-

incident-post-mortem-breakdown-analysis-and-root-cause.html.

[32] J. Gray. Why do computers stop and what can be done about it? In

Proc. Symposium on Reliability in Distributed Software and Database

Systems, pages 3–12, 1986.

[33] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and

S. Babu. Starfish: A self-tuning system for big data analytics. In In

CIDR, pages 261–272, 2011.

[34] Y. Hu, G. Huang, and P. Huang. Automated reasoning and detection

of specious configuration in large systems with symbolic execution

(technical report). http://arxiv.org/abs/2010.06356, 2020.

[35] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou. ConfValley: A sys-

tematic configuration validation framework for cloud services. In

Proceedings of the Tenth European Conference on Computer Systems,

EuroSys ’15, pages 19:1–19:16, Bordeaux, France, 2015.

[36] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, and

G. Candea. Performance contracts for software network functions.

In Proceedings of the 16th USENIX Conference on Networked Systems

Design and Implementation, NSDI’19, page 517–530, Boston, MA,

USA, 2019.

[37] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A tool for assess-

ing resilience to human configuration errors. In Proceedings of the

38th International Conference on Dependable Systems and Networks,

DSN’08, pages 157–166, 2008.

[38] J. C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, July 1976.

[39] N. Kushman and D. Katabi. Enabling configuration-independent au-

tomation by non-expert users. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI’10,

pages 1–10, 2010.

[40] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the 2004 Inter-

national Symposium on Code Generation and Optimization, CGO ’04,

pages 75–, Palo Alto, California, 2004.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 733

[41] C. Li, S. Wang, H. Hoffmann, and S. Lu. Statically inferring perfor-

mance properties of software configurations. In Proceedings of the

Fifteenth European Conference on Computer Systems, EuroSys ’20,

Heraklion, Greece, 2020.

[42] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative

routing: Extensible routing with declarative queries. In Proceedings

of the 2005 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, SIGCOMM ’05, pages

289–300, 2005.

[43] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet

services fail, and what can be done about it? In Proceedings of the

4th Conference on USENIX Symposium on Internet Technologies and

Systems (USITS), Seattle, WA, Mar. 2003.

[44] T. Osogami and T. Itoko. Finding probably better system configura-

tions quickly. In Proceedings of the Joint International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS

’06/Performance ’06, pages 264–275, Saint Malo, France, 2006.

[45] A. Rabkin and R. Katz. How Hadoop clusters break. IEEE Softw.,

30(4):88–94, July 2013.

[46] D. A. Ramos and D. Engler. Under-constrained symbolic execution:

Correctness checking for real code. In Proceedings of the 24th USENIX

Conference on Security Symposium, SEC’15, page 49–64, Washington,

D.C., 2015.

[47] A. Schüpbach, A. Baumann, T. Roscoe, and S. Peter. A declarative

language approach to device configuration. In Proceedings of the 6th

International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS’11. ACM, March 2011.

[48] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: Improving configura-

tion management with operating system causality analysis. In Proceed-

ings of Twenty-first ACM SIGOPS Symposium on Operating Systems

Principles, SOSP ’07, pages 237–250, 2007.

[49] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,

A. Narayanan, P. Dowell, and R. Karl. Holistic configuration manage-

ment at facebook. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 328–343, Monterey, California,

2015.

[50] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic

misconfiguration troubleshooting with PeerPressure. In Proceedings

of the 6th Conference on Symposium on Opearting Systems Design &

Implementation, OSDI’04, pages 17–17, 2004.

[51] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro.

Understanding and auto-adjusting performance-sensitive configura-

tions. In Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’18, page 154–168, Williamsburg, VA, USA, 2018.

[52] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,

and Z. Zhang. Strider: A black-box, state-based approach to change

and configuration management and support. In Proceedings of the

17th USENIX Conference on System Administration, LISA ’03, pages

159–172, 2003.

[53] X. Wei, S. Shen, R. Chen, and H. Chen. Replication-driven live recon-

figuration for fast distributed transaction processing. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), ATC 17, pages 335–

347. USENIX Association, July 2017.

[54] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging

as search: Finding the needle in the haystack. In Proceedings of

the 6th Conference on Symposium on Opearting Systems Design &

Implementation, OSDI’04, pages 6–6, 2004.

[55] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-

climbing algorithm for application server configuration. In Proceedings

of the 13th International Conference on World Wide Web, WWW ’04,

pages 287–296, New York, NY, USA, 2004.

[56] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy. Early

detection of configuration errors to reduce failure damage. In Proceed-

ings of the The 12th USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’16, November 2016.

[57] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and

S. Pasupathy. Do not blame users for misconfigurations. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 244–259, 2013.

[58] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding

bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation,

PLDI ’11, page 283–294, San Jose, California, USA, 2011.

[59] T. Ye and S. Kalyanaraman. A recursive random search algorithm for

large-scale network parameter configuration. In Proceedings of the

2003 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’03, pages 196–

205, San Diego, CA, USA, 2003.

[60] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-

pathy. An empirical study on configuration errors in commercial and

open source systems. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, SOSP ’11, pages 159–172,

2011.

[61] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar.

Context-based online configuration-error detection. In Proceedings of

the 2011 USENIX Conference on USENIX Annual Technical Confer-

ence, ATC’11, pages 28–28, 2011.

[62] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,

T. Cheng, L. Liu, and et al. An end-to-end automatic cloud database

tuning system using deep reinforcement learning. In Proceedings of

the 2019 International Conference on Management of Data, SIGMOD

’19, page 415–432, Amsterdam, Netherlands, 2019.

[63] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and

Y. Zhou. EnCore: Exploiting system environment and correlation

information for misconfiguration detection. In Proceedings of the 19th

International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, pages 687–700, 2014.

[64] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang.

BestConfig: Tapping the performance potential of systems via auto-

matic configuration tuning. In Proceedings of the 2017 Symposium on

Cloud Computing, SoCC ’17, page 338–350, Santa Clara, California,

2017.

734 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Definition
	Case Studies
	Code Patterns
	Approaches to Detect Specious Config

	Overview of Violet
	Symbolic Execution to Analyze Performance Effect of Configurations
	Violet Workflow

	The Design of Violet
	Make Config Variable Symbolic
	Make Related Config Symbolic
	Discover Control Dependent Configs
	Execute Software Symbolically
	Profile Execution Paths
	Analyze State Traces
	Continuous Specious Config Checker

	Scaling Violet to Large Software
	Choice of Symbolic Execution Engine
	Handle Complex Input Structure
	Reduce Profiling Overhead
	Path Explosion and Complex Constraints

	Implementation
	Evaluation
	Target Systems
	Detecting Known Specious Config
	Comparison with Testing
	Exposing Unknown Specious Config
	User Study on Violet Checker
	Coverage of Analyzed Configs
	Accuracy of Violet Profiling
	False Positives
	Performance
	Sensitivity Analysis

	Limitations
	Related Work
	Conclusion

