
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the

14th USENIX Symposium on Operating

Systems Design and Implementation

is sponsored by USENIX

Predictive and Adaptive Failure Mitigation to
Avert Production Cloud VM Interruptions

Sebastien Levy, Randolph Yao, Youjiang Wu, and Yingnong Dang, Microsoft Azure;

Peng Huang, Johns Hopkins University; Zheng Mu, Microsoft Azure; Pu Zhao, Microsoft

Research; Tarun Ramani, Naga Govindaraju, and Xukun Li, Microsoft Azure; Qingwei

Lin, Microsoft Research; Gil Lapid Shafriri and Murali Chintalapati, Microsoft Azure

https://www.usenix.org/conference/osdi20/presentation/levy

Predictive and Adaptive Failure Mitigation to Avert

Production Cloud VM Interruptions

Sebastien Levy†, Randolph Yao†, Youjiang Wu†, Yingnong Dang†, Peng Huang⋄

Zheng Mu†, Pu Zhao⋆, Tarun Ramani†, Naga Govindaraju†, Xukun Li†

Qingwei Lin⋆, Gil Lapid Shafriri†, Murali Chintalapati†

†Microsoft Azure ⋄Johns Hopkins University ⋆Microsoft Research

Abstract

When a failure occurs in production systems, the highest

priority is to quickly mitigate it. Despite its importance, fail-

ure mitigation is done in a reactive and ad-hoc way: taking

some fixed actions only after a severe symptom is observed.

For cloud systems, such a strategy is inadequate. In this pa-

per, we propose a preventive and adaptive failure mitigation

service, NARYA, that is integrated in a production cloud, Mi-

crosoft Azure’s compute platform. Narya predicts imminent

host failures based on multi-layer system signals and then

decides smart mitigation actions. The goal is to avert VM

failures. Narya’s decision engine takes a novel online experi-

mentation approach to continually explore the best mitigation

action. Narya further enhances the adaptive decision capabil-

ity through reinforcement learning. Narya has been running

in production for 15 months. It on average reduces VM inter-

ruptions by 26% compared to the previous static strategy.

1 Introduction

Failures are common in large systems. High-availability sys-

tem designs require techniques that address a key question:

once a failure occurs, how to quickly detect and mitigate

it so the system can continue running? Mitigating a failure

here means attempting to make the failure symptom disappear

without necessarily diagnosing and fixing the underlying bugs

first. However, for a large cloud infrastructure like Microsoft

Azure that serves millions of customers running virtual ma-

chines and various software atop, only employing post-failure

detection and mitigation techniques is insufficient.

This is because if a system only takes mitigation actions

after a failure is detected, users may already be having bad

service experience as the system runs in a degraded mode (not

completely failing) [15, 17, 29]. Moreover, when a failure is

detected, the system will be under intense pressure to mitigate

the failure fast in order to minimize downtime; but in practice

failure mitigation takes time for large systems, and expediting

mitigation could even worsen the situation [12]. In addition,

our experience suggests that even short, mitigated failures can

be impactful to customers due to the interruptions themselves.

Therefore, cloud systems should also design techniques to

address the question of, whether a failure may be imminent,

and if so, what preventive actions should be taken to avert

this failure? Several recent works tackle the failure prediction

problem [14, 27, 38] in the context of disk failures. But they

focus on prediction alone, with the goal of alerting operators

or providing allocation hints [25]. The questions of how much

benefit does the prediction bring, and more importantly what

preventive mitigation actions should the system take in re-

sponse to predicted failures remain open. Answering these

questions requires a holistic solution—one that is closely in-

tegrated in the system’s control loop, which not only predicts

host failures in real time, but also automatically decides the

proper mitigation actions, measures the benefits, and continu-

ously adjusts its actions based on the measured benefits.

In this paper, we present NARYA to fill this aforementioned

gap. Narya is an end-to-end service with predictive and smart

failure mitigation fully integrated in the Azure compute plat-

form for its Virtual Machine (VM) host environment. The de-

sign goal of Narya is to prevent VM failures ahead of time and

enhance the self-managing capability of the Azure compute

platform for providing smooth VM experience to customers.

Narya’s design is informed by several observations we had.

First, while failure mitigation is a crucial step in cloud opera-

tion, the current practice is ad-hoc. To mitigate a (predicted)

failure, developers use static policies that prescribe actions

based on the symptoms and domain knowledge. While this

approach works for simple systems, it does not work well at

Azure scale. With multi-tenancy, heterogeneous infrastructure

components, and diverse customer workloads, it is difficult

to comprehensively categorize different failure scenarios in a

large cloud system beforehand and determine good mitigation

actions (or their parameters), especially without trying it.

Moreover, as the cloud system is constantly changing (soft-

ware/hardware updates, customer workload changes), some

mitigation action that worked well in the past may no longer

be optimal. As a result, developers keep reactively adjust-

ing the actions based on hind sights from service incidents.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1155

For example, initially restarting a host node upon receiving a

predictive failure signal may be effective as the system fail-

ures tend to be caused by some transient hardware issues;

but gradually permanent node failures become more common

so restarting is not the best mitigation action anymore—live

migrating the virtual machines from the node predicted to fail

to a healthy node may be a better action. Therefore, for cloud-

scale systems, we need smart and adaptive failure mitigation.

Our insight is that the effectiveness of taking some mitiga-

tion action in a complex and changing system is often prob-

abilistic as there are too many factors affecting it (network

condition, VM size, applications, hardware health, customer

activities, etc.), which may not be thoroughly accessed or as-

sessed. We usually do not know beforehand whether some

mitigation action is good or not, or whether there is a bet-

ter action, unless we try it. Consequently, explorations with

production workload is indispensable to determine the (near-

)optimal failure mitigation action. Nevertheless, we should

ensure that the actions taken maximize the expected effective-

ness (minimize the potential customer impact) over time.

Based on this insight, Narya takes a novel online exper-

imentation approach. In particular, Narya predicts whether

host nodes in the production fleet will likely fail and then

leverages A/B testing to continually experiment with different

mitigation actions, measure the benefits, and discover optimal

actions. The rationale behind the A/B testing strategy is that

it, in essence, introduces randomization that avoids biased piv-

ots of the diverse nodes, which helps surface the statistically

significant effective actions.

One important drawback of the A/B testing strategy is

its cost of exploring each action until statistical signifi-

cance is found and then always choosing the estimated

best action. This problem is essentially the classic explo-

ration–exploitation trade-off [32] in learning systems that

need to make decisions with incomplete information (about

the system stack, customer workloads, etc.), constant changes,

and uncertain pay-offs (whether the action will prevent future

failures). The dilemma is whether the learning agent should

repeat a mitigation action that has worked well so far, i.e.,

exploit, or it should try some novel choices in the hope of

getting better rewards, i.e., explore. We address this issue by

enhancing the Narya decision engine using a dynamic assign-

ment learnt through a multi-armed Bandit model [2, 33]. This

helps decrease overall cost by better leveraging the early cost

estimation of each action and by continuously exploring each

of them to adapt to system changes.

Narya has been running in production for 15 months in

Azure as part of the Gandalf [24] suite. Narya successful pre-

vents many VM interruptions for customers. In nine produc-

tion experiments that Narya runs for different failure types,

Narya on average reduces VM interruptions by 26% com-

pared to the previous static strategy. This reduction is close to

what the oracle optimal strategy could achieve (35%).

The major contributions of this work are:

• We propose a holistic failure avoidance solution that in-

cludes failure prediction, new failure mitigation actions,

and intelligent mitigation strategies.

• We design a novel approach of using A/B testing for online

experimentation with production workload to automatically

identify good failure mitigation actions.

• We explore a more advanced reinforcement learning ap-

proach to optimize choice of mitigation action.

• We evaluate the proposed solution in a large-scale, produc-

tion cloud service, Azure, to validate its effectiveness.

2 Background and Motivation

A traditional system’s operation cycle is as follows: a failure

is detected; developers diagnose the failure and find out the

root cause; a patch is written; the system is re-deployed. For

cloud systems, operating in this exact sequence is problematic

because the time it takes to identify the root cause and develop

a fix is usually long and exceeds the downtime budget. Instead,

once a failure is detected, some mitigation action like restart

will be applied first without necessarily knowing the bug.

2.1 Target System and Goal

We tackle the problem of preventive and smart failure mit-

igation for cloud systems. Our specific target system is the

VM host environment, a node, in the Azure compute plat-

form. The host environment is a complex stack consisting of

guest OSes, guest agents, hypervisor, host OS, host agents,

firmware, and hardware. The node is backed by locally at-

tached disks and remote virtual disks. Each node is connected

to various compute services, together referred to as controller,

that is responsible for provisioning resources and performing

management actions such as creating and destroying VMs.

Azure already employs layers of monitoring mechanisms

to actively detect if a host node has failed (e.g., via periodic

pings), and mitigate the failure with actions such as rebooting

the node. We aim to further develop techniques that predicts

whether a host environment might fail soon and automati-

cally decides an appropriate mitigation plan among multiple

choices. The end goal is to avoid future VM failure events.

2.2 Are Failures Predictable?

To predict failures, there are two basic requirements: (i) the

imminent failure is not abrupt; and (ii) there is telemetry

recorded to indicate the degradation. One type of predictable

hardware issue is certain hardware parts wear out. We could

predict using the age or the wear-out rate. Combined with

other system signals such as workload patterns, we can predict

if a host will fail soon. Resource leak, including memory/file

handle/network ports leak, is a common type of predictable

software failure. We could predict them using the resource

usage trend. If failures are correlated with certain hidden

factors such as timeout settings, bugs related to timers, and

release schedule, they may also occur on a predictable basis.

1156 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

collect various telemetry signals about the host environment

(➊, §4.1). The prediction component in Narya continuously

consumes these signals and predicts whether some node will

fail soon (➋). The prediction is made by both static domain

rules (2.a , §4.2) and running machine learning inference (2.b ,

§4.3). Each prediction result is streamed into the decision

component in Narya as a mitigation request. Narya supports

two decision schemes: A/B testing (3.a , §6.1), and Bandit

model (3.b , §6.2). The decision component computes a proba-

bility distribution of applicable mitigation action choices (➍,

§5) and then picks an action based on the distribution. The

mitigation controller applies the chosen mitigation action to

the suspected node (➎). This whole process is an automated

feedback loop that optimizes a key objective metric—VM

interruption rate (§3.2). Narya observes (➏) the effect of the

mitigation actions and adapts (➐) future prediction and miti-

gation decisions based on the observations from production.

Building Narya to work for a production cloud requires

both algorithm designs and systems support. We first describe

the core prediction and mitigation algorithms in Section 4 and

Section 6, respectively. Section 7 describes the Narya systems

design and implementation.

3.2 Key Optimization Metric

Narya’s objective is to reduce and minimize the overall cus-

tomer impact caused by node failures on the fleet. Defining a

good cost metric for customer impact is critical for the Narya’s

decision engine to optimize that metric. In Azure, we focus

on the Annual Interruption Rate (AIR) defined as:

AIR =
VM interruption count in T

Total VM lifetime in T
×365 days×100 VMs

T is any given measured interval duration in days. VM in-

terruption in this paper mainly refers to reboots or loss of

heartbeats. Internally, we also measure performance drop

with a sub-metric we call AIR-blips.

We optimize this metric instead of the traditional availabil-

ity metric for a few of reasons. First, long-duration incidents

are now rare in Azure. VM interruptions become more com-

mon that require addressing. Second, short VM interruptions

can significantly disrupt user experiences, e.g., for gaming-

type applications. Third, for VMs that run applications like

databases, even if the VM only experiences a short interrup-

tion, the applications take time to recover, which translates

into a longer user-perceived interruption. Fourth, based on

communications with customers, customers can be more an-

noyed if their VMs get frequently interrupted when compared

to a single longer-time interruption.

3.3 Challenges

We need to address several design challenges. First, failure

mitigation has to act with incomplete information since the

underlying root cause is not known. For Narya, this challenge

is even more pressing since the failure has not occurred yet.

Second, due to the massive scale of a cloud system, there

are many factors to consider in the decision logic. A decision

may work well for some nodes but not others. If not careful,

some corner cases can mislead or bias the decision logic.

Narya must be robust enough while still being flexible.

Third, our experience suggests that when incorporating fail-

ure prediction into a production cloud system, false positives

are unavoidable due to the complex system environment, large

number of noisy signals, unexpected customer workloads, etc.

If the system blindly trusts the failure prediction results and

reacts, it could cause unnecessary disruptions. When consum-

ing the prediction results, the mitigation mechanisms should

take this into account and operate in a way that minimizes the

impact due to unavoidable false positives.

Lastly, failure mitigation is a mission critical procedure. If

not designed well, a decision engine may do more harm than

good. Ensuring safety should be a top priority for Narya.

4 Predicting Node Failures

The first step in Narya is to predict a host failure before it

occurs. In this Section, we describe two prediction methods

Narya uses: (1) static threshold rules written by domain ex-

perts; (2) machine learning model-based prediction.

4.1 Input Signals

Narya consumes telemetry signals from the entire stack of the

host environment to make informed prediction. For hardware

and firmware, the monitoring agents collect low-level logs

from disk SMART attributes, memory (e.g., uncorrectable er-

rors), CPU (e.g., machine check error), motherboard (e.g., bus

error), etc. A higher-level source of signals comes from device

drivers, e.g., timeout events. Repetition of such events is often

an indicator of an imminent failure. Faults in individual com-

ponent do not necessarily cause customer impact. Some could

be transient that would go away after retries. Others may be

tolerated by redundancy. Narya further consumes critical OS

events and aggregate application performance counters.

Another important source of signals used by the predictor

are results from the control-plane operations. For example,

repetitive VM creation operation errors could indicate serious

host issues even if the host still appears to be running. Such

signals help reduce the observability gap [16].

4.2 Rule-based Prediction

Rule-based prediction leverages domain knowledge from

hardware, firmware and software experts. We analyze the

common failure patterns and the available telemetry signals

to predict failures that have significant customer impact. For

example, in some cases, CPU Internal Error (IERR) is a good

indicator that the node will fail again soon; a prediction rule

could be marking the node if IERR occurs twice within 30

days. Rules are typically written as Json files, Python scripts

or sometimes C++. Since rules are manually written, they

are simple and easy to understand. The prediction rules are

deployed directly in the host and can be executed fast.

1158 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

t1 t2

positive labelsnegative labels

…

t0

Prediction

Horizon

Figure 2: Prediction horizon and label timeline. t1: host failure time.

t2: component permanent failure time.

Rule-based prediction works best for definitive signals that

indicate some severe issue with high confidence. An exam-

ple is the AvailableSpare signal in NVMe device health log.

When it drops below a certain threshold, we know the device

is almost at the end of its life.

Since many failure signals are not definitive, rule-based

prediction cannot cover a wide range of imminent failures.

In addition, the prediction may come late and do not provide

enough lead time for the mitigation engine. The number of

prediction rules also keeps growing, which becomes a burden

to manage and tune. We have a total of 51 rules in use.

4.3 Learning-based Prediction

To address the limitation of rule-based prediction, Narya em-

ploys an additional learning-based predictor, which analyzes

more signals and patterns during a larger time window. It can

predict many complex host failures. It also can predict earlier,

thus leaving longer time for the mitigation engine to react.

Prior work predict disk failures [14, 27, 38] and node

faults [25] with supervised learning. Our learning-based pre-

diction aligns with prior solutions. A main difference is that

we focus on overall host health and failures that result in cus-

tomer impact, instead of failures of individual components.

Because of this, Narya analyzes more diverse signals across

layers such as control-plane operation signals.

Prediction Horizon and Label. Deciding the labels to use

for learning is crucial for Narya. In prior work that predicts

hardware failures for alerting, the positive labels are signals

close to when the hardware is completely broken. For Narya,

the host view of a failure is different from individual com-

ponents’ view. The host failures could be unresponsive host,

VM creation failure, host OS crash, etc. In our observation,

they happen much earlier than the permanent failure of a com-

ponent (e.g., disk unusable). As Figure 2 shows, if we assign

positive labels from time t2 (permanent component failure),

it can yield late prediction which comes after host failure at

time t1. The consequence is that the prediction does not give

enough time for Narya to take proper mitigation actions.

Additionally, certain faults might not be a problem to the

source component but could be problematic from host’s view.

For example, a series of memory correctable errors might

seem fine for an ECC DRAM because they are corrected. But

the host may already suffer slowness and impact VMs.

To get accurate and useful prediction result, we only use

host failures that result in customer impact and are later con-

firmed to be caused by some hardware component faults dur-

ing diagnosis. For a given host failure, if it occurs at time t, we

Device
signals

Driver
signals

…

OS
signals

Dimension

Adapter Layer

Spatial Info

Encoder

Temporal Info

Encoder

Fusion

Layer

… …… …

will fail

healthy

Figure 3: Deep learning model structure.

assign positive (failure) labels for signals from t −1 to t −n,

where n is the prediction horizon and using an hour unit. We

assign negative (normal) labels for signals from t − (n+1),
. . . We also sample negative labels from healthy nodes.

In production, our prediction horizon is set to 7 days. We

made the choice based on how discriminative the feature will

be given different horizons. Specifically, we looked at the

feature distribution of failed nodes and measured the same

distribution of healthy nodes. We then measure the similarity

between the two distribution groups. Beyond 7 days, we could

not observe a significant difference.

Machine Learning Model. With the signals, labels, and host

metadata, Narya trains a binary classifier. The predictor out-

puts the failure probability of a host (we use 0.5 as the cutoff).

To train the classifier, we use the gradient boosted tree

model [18] commonly used in supervised learning, which

combines decisions from a sequence of simple decision trees

with a model ensembling technique called gradient boost-

ing [10]. This simple model works fine for our scenario in

terms of its predictive power, but we have to carefully craft ag-

gregated features from the signals. We engineer 2k+ features

from 100+ time series data. Those engineered features are

combined with other categorical features to build the learning-

based model feature set.

We further explore reducing the feature engineering efforts

by directly learning the features with an attention-based deep

learning model [20, 35]. At a high level, we aim to learn

both spatial features and temporal features. Spatial features

compare one component to its neighbors. For example, one

host often has multiple disks configured under RAID 0, thus

they are expected to perform similarly. If one disk performs

worse than its neighbors, it could indicate imminent host

failures. Attention-based deep models are designed to capture

such patterns so that more weights (attention) are assigned

to anomalous neighbors. The temporal features characterize

changes in components over time.

Figure 3 shows the structure of this model. First, we use

a dimension adapter layer to unify the dimension of signals

from different sources. Next, we employ a spatial information

encoder based on self-attention. It calculates weights of a

component’s neighbors. The weighted sum of the neighbors’

feature vector represent its spatial information. Then, we use

the temporal information encoder, which consists of positional

encoding, self-attention, and location-based attention layers.

Finally, we employ a fusion layer to do binary classification.

We omit the attention implementation details as they are based

on an existing technique proposed by Lee et al. [20].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1159

Action Description

P
ri

m
it

iv
e

Avoid Deprioritize new VM alloc. on this node

Unallocatable (UA) Block new VM allocations on this node

Live Migration (LM) Migrate VMs to other nodes on the fly

Service Healing (SH) Discon. VMs, move them to healthy nodes

Soft Reboot (SR) Reload host OS kernel, VM states preserved

Human Investigate (HI) Shut down node and send it to diagnostics

C
o

m
p

o
si

te UA-LM-HI Block alloc., attempt LM and HI after T

UA-SR Block alloc., attempt soft reboot

UA-LM-RH Block alloc., LM and unblock after T

Avoid-RH Avoid alloc. to this host if possible

Table 2: Primitive and composite mitigation actions for Narya. Com-

posite actions are sorted by decreasing priority.

Overall, this model achieve 5–10% improvement compared

to the decision tree model with hand-crafted features.

5 Mitigation Actions

When a host is predicted to fail, Narya chooses among several

possible actions. Table 2 lists the main primitive actions in

Azure. Mitigating a failure often requires multiple primitive

actions. An aggressive goal for Narya is to explore the actions

arbitrarily and figure out the optimal combination. But this

could potentially bring significant customer impact. Instead,

Narya mitigation engine focuses on exploring pre-defined

composite actions (Table 2). This set of composite actions is

constantly enriched with new combination and by modifying

parameters (e.g., unallocatable duration).

Live Migration moves a running VM from one host to an-

other with minimum disruptions. The migration process in-

volves transfer of the VM’s memory, processor and virtual

device state [7]. The LM engine iteratively copies the VM’s

memory pages while maintaining a dirty page set for the VM

on the source host. Based on the dirty page rate, network

bandwidth, the engine determines the maximum iterations

to stop the VM. After the VM is stopped, the LM engine

synchronizes the dirty state with the target and resumes the

VM on the target host. Note that not all VMs are eligible for

LM and LM could fail for various reasons.

VM Preserving Soft Reboot preserves the VM state across

a reboot of the host OS. At a high level, the host OS kernel is

reloaded into memory, the VM memory and device state are

persisted to the newly loaded kernel. The host reboots into the

loaded kernel while preserving the persisted state. Once the

reloaded kernel starts, the persisted state is restored and the

rest of the state in the prior kernel are discarded. The restored

VM experiences a brief pause similar to the live migration.

Service Healing is used to restore the service availability of

unhealthy or faulted VMs. Live Migration can move running

VMs transparently, but it could fail or cannot be applied due to

certain constraints such as network boundary. Service healing

works for more general scenarios. The VMs will be isolated by

powering down or disconnecting from network. The controller

generates new assignment of the VM to healthy nodes. During

the process, there is some interruption.

Mark Unallocatable blocks allocation of new VMs to a host

for some time T (default 7 days). Composite actions typically

start with marking a suspected host unallocatable. In UA-LM-

HI, after marking host unallocatable, the controller attempts

to live migrate the VMs on this host to other hosts. After all

VMs have been migrated or destroyed by customers or this

host fails, the host will be sent to diagnostics. If at the end

of the unallocatable period T some VMs are still running

(e.g., because they are not eligible for LM) we service heal

them before pushing the host to diagnostics. UA-LM-RH is

a variant of UA-LM-HI where we unblock allocation (reset

node health) at the end of T . In UA-SR, the controller blocks

the allocation and then try the kernel soft reboot action. If

the soft reboot succeeds, the controller unblocks allocation.

Otherwise, we use a fallback strategy, typically LM-HI.

Avoid informs the allocator to try to avoid adding new VMs

on this host. Blocking allocation has a strong impact on ca-

pacity since the host is not eligible for getting new VMs.

Thus, the number of hosts that can be marked unallocatable

at the same time is limited. Avoid action provides a weaker

constraint. The behavior on host failure is still to send it to

diagnostics. At the end of T , we reset the node availability.

NoOp is a special action for predicted failure, in which the

controller does not take any action. This is the baseline to

measure the benefits of prediction and taking actions.

6 Decision Logic for Adaptive Mitigation

With different prediction rules/models as well as different mit-

igation actions, relying on static assignment based on domain

knowledge to map each prediction to an action can soon get

intractable and ineffective. This motivates the design of Narya

decision engine for adaptive mitigation.

6.1 Online Experimentation with A/B testing

One straightforward way for choosing mitigation action is

to estimate offline the impact for each possible action for a

predicted failure. In our experience, given the complexity of

cloud systems, it is extremely hard to estimate the impact of

actions and know which one performs best without trying

them in production. Based on this insight, Narya takes an on-

line experimentation approach to evaluate different mitigation

actions by testing them at scale.

A/B testing, also called online experiments, is widely

used [19] in front-end designs to test the effect of UI fea-

tures. Narya adopts the A/B testing methodology and adapts

it for discovering good mitigation actions. In classic A/B test-

ing, one experiment is about one UI feature and each unit is

a user. For Narya, one experiment is about the mitigation of

one failure prediction (e.g., CPU IERR, slow memory access

latency), and each unit is a failure mitigation request about a

node marked by the corresponding prediction rule/model.

The workflow of the A/B testing in Narya is as follows: (1)

each predicted node is assigned to different action groups with

1160 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

node Id

0.5

0.25

1

0.75

experiment
name

actionA

actio
n

B

actionC

actio
n

Dhash()

probability
ring

Figure 4: Hash node ID and experiment name for sticky assignment.

equal probability (2) after taking each action, we measure the

customer impact within an observation window; (3) we use

hypothesis testing to test if an action yields significantly less

customer impact than others; (4) once statistical significance

is reached, we consider this least-impacting action optimal

and apply it for all nodes; (5) we keep monitoring the cus-

tomer impact per node for the used action; (6) if customer

impact significantly increases, we run a new A/B testing ex-

periment to validate that the action is still optimal.

Cost. The cost (=−1× reward) models the customer impact.

It should balance the trade-off between key metrics of our

system. The pros and cons of each action should be modeled

into the cost to correctly optimize for the mitigation action.

We use the number of VM interruptions in the node during

an observation window and the VM interruptions in nodes to

which we migrated VMs in live migration or service healing.

An additional constraint we need to consider is capacity. As

capacity does not directly impact customers and is not visible

at the node level, it cannot be easily added into the cost. We

currently incorporate the constraint by limiting the number of

nodes that can be marked unallocatable for the same rule in the

same cluster at the same time. With this, capacity indirectly

impacts the cost of marking nodes unallocatable.

Assignment Strategy. A crucial point for A/B testing is to

decide for each node marked by the failure predictor, in which

experiment group should it go to. In classic A/B testing, each

experiment unit is assigned randomly, based on the assump-

tion that the units are independent and identically distributed

(i.i.d). For Narya, we make several changes.

The same node can be marked by the same prediction

rule multiple times during an A/B experiment. In this case,

if Narya assigns it different mitigation actions, e.g., assigns

node X in action A group at time t1 and then to action B at

time t2, the i.i.d assumption can be violated. This is because

the underlying node condition at t1 and t2 could be highly cor-

related, especially for hardware issues. Then the observations

from the treatment and control group are correlated.

To address this issue, we introduce sticky assignment: for

each node, the group is determined through the hash of the

node Id and experiment name (Figure 4); then, if a node is

assigned to action A for an experiment, it will always take

action A for subsequent requests.

Classic A/B experiments are typically done sequentially.

In our case, sequential experimentation takes too long; so

Narya allows different experiments to take place concurrently.

While most experiments are independent, some experiments

could have prediction rules that are correlated. In this case, it

UA-SH-

HI group

NoOp

group

…

…
A1 A2

Unrelated reboots

A1 NoOp action time

A2 UA-SH-HI action time

DP E
P Prediction time
D Decision time

E End of observation

Figure 5: Using decision time as the start of observation window.

is important to test all possible action combinations to analyze

their compound effect later. For example, with experiment X

testing actions {a,b} and a correlated experiment Y testing

actions {c,d}, we need to have observations that take each of

the four scenarios: (a,c), (a,d),(b,c), (b,d).

Action Overriding. Since many fault handling policies, in-

cluding our A/B experiments, can take place concurrently, a

host can potentially be marked by several prediction rules. As

a result, the host might need to follow different composite

actions at the same time. A common reason for this is the

incomplete information factor (Section 3.3). To handle this

situation, Narya uses a specific override logic based on the

priority from the order in Table 2. When we try to assign a

node with a lower-priority action than its current one, we skip

it. In case of equal priority, Narya honors the older actions.

The rationale is that later prediction can often be a side effect

of the earlier one. Since we often do AB testing between

actions with different priorities, it is critical to also observe

cases where the action was skipped or later overridden.

Effect Observation and Attribution. Depending on the

complexity of the actions, some need longer time to get trig-

gered. In the time between the decision and the start of the

action, unrelated VM interruptions can happen. However, to

fairly compare action, we should still count the cost in this

time gap because, for instantaneous actions, it would be im-

possible to differentiate the costs caused by the action from

the unrelated ones. Like for overrides, we monitor decision

instead of action, hence we use the decision time instead of

the action time as the start of the observation window. Fig-

ure 5 shows an example where if we used the actual action

time we would ignore some unrelated reboots for one action

and not the other, while they happen in both groups.

Hypothesis Testing. After collecting the cost metrics for each

action, the decision engine performs hypothesis testing to

decide whether an action is optimal and the experiment can

be stopped. Since our cost function is complex and depends

on external variables, we simplify the hypothesis testing by

assuming that the number of VM reboots per node is i.i.d

and follows a normal distribution. Since different actions

can highly change the VM reboots per node, we will not

assume equal variance for the different actions. Under these

assumptions, we use Welch’s t-test [36] when testing for two

actions and Welch ANOVA test for 3 and more. In the latter,

we use post-hoc analysis to remove all statistically worse

actions until one action remains.

6.2 Bandit Modeling

One drawback of A/B testing is its static group assignment.

Before statistical significance, we do not leverage the esti-

mated difference between the groups to minimize our cost,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1161

and once an experiment reaches statistical significance, we

will almost always use the discovered optimal action. This

is essentially the classic exploration-exploitation dilemma.

Naturally, we explore modeling the adaptive mitigation as a

Multi-Armed Bandits problem [32, 33], where we aim to min-

imize the customer impact over time by ensuring a balance

between exploring potential better actions and exploiting the

discovered best action. At training time, we observe tuples

(node, rule, chosen action, cost) to estimate the proba-

bility to choose each action, while at serving time, we match

a request tuple (node, rule), to the learnt action.

Actions. The output of the bandit model is the composite

action we want to attempt. The available actions are typi-

cally defined per experiment based on offline analyses of the

prediction signals characteristics: false positive ratio, time to

failure/impact and actions feasibility (Section 5).

Exploration Algorithm. To minimize customer impact over

time, we face the classical exploration-exploitation trade-off.

We need to explore different actions to see which one mini-

mizes the customer impact but at the same time we want to use

the action with minimum estimated cost as much as possible.

In other words, we need to balance between short-term and

long-term benefits. We experimented with multiple different

exploration models including Epsilon Greedy and UCB, and

decided to use Thompson Sampling model since it provides

more explainability and continuous probability changes. In

Thompson Sampling, we model the reward as a function of ac-

tions and a model parameter and choose the action according

to the probability that it maximizes expected rewards. This

Bayesian approach updates the prior using observations of

actions taken and chooses each action with probability equal

to the chance that it minimizes the expected cost:

P(a∗) =
∫

I
(

E(c|a∗,θ) = minaE(c|a∗,θ)
)

P(θ|obs)dθ

where P(a∗) is the probability to choose action a∗, θ is a

hidden parameter, c is the cost and obs are the past observation

as list of tuples (ai,ci). Our technical report [?] describes in

more detail the Thompson Sampling algorithm in Narya.

6.3 Extension to Bandits

Compared to traditional Bandits, our system faces several

challenges. In addition to the effect observation solution de-

scribed in Section 6.1, we made 4 main adaptations as follows.

Accommodate Temporal Changes. Since our system can

change in time, older observations will gradually become less

and less relevant. To account for this factor, we use an expo-

nentially decaying weight for observations to focus on recent

data. We will apply a multiplying weight to past observation

in the format of decay = σT−Tobs , where σ is the decaying

factor, T is the current time and Tobs the time of the observa-

tion. We set σ by default to 0.99 based on simulation-based

experiments and so that the weight would be close to 0 after

3 months which is our typical retention policy. In the case of

Thompson Sampling with Gamma Prior, the distribution to

sample from becomes:

P(θ|a,obs)∼ Γ

(

1+ ∑
i,ai=a

ciσ
T−Ti ,1+ ∑

i,ai=a

σT−Ti

)

Delayed Reward Collection. A key challenge in our settings

is the potential long time between the action taken and its

impact. This forces us to observe for at least 10 days and up to

30 days the impact of choosing each action. This observation

window highly depends on the duration of the action and

its effect: UA-LM-HI for 7 days would require around 10

days while Avoid-RH for 15 days would require a full 30

days to observe potential failures following the health reset.

The drawback of a long observation window is the delay

for the reward to be integrated into the model. Thus, wrong

estimation could be used for a while before the observed cost

can readjust the probabilities. One way to counteract this

effect is to observe the reward as it comes. But we can suffer

from the opposite effect of getting biased by reboots close

to the decision time. Our experience suggests that we need

to wait for the full initial observation window and then can

collect partial rewards incrementally.

Bandit stickiness. Since the probability to choose each action

over time changes, we cannot rely on a hash function like in

A/B testing to ensure a node is always assigned to the same

action. We define the bandit stickiness for time T as reusing

the previously chosen composite action if the node has an

available decision for the same rule within the T time window.

Deal with Unexpected Spikes. Another potential issue in

our system is the unexpected spike of VM interruption events

that could affect one action group more than the other. One

approach would be to perform an outlier removal step before

using such observation, but in that case it could also filter out

spikes inherent to a specific action, which should be integrated

into our learned model. We address the issue with the safe

guards mechanism described below.

6.4 Safe Guards

Safety is a top priority in Narya mitigation decision logic.

We take several measures to ensure safety. In addition to

action overriding (Section 6.1), we also apply safety con-

straints—domain-specific restrictions to prohibit certain ac-

tions in some failure scenarios. Narya decision engine also

requires a minimal number of observations before following

the recommendation from the Bandit. The Bandit model will

output a premature flag for insufficient observations, in which

case we would fall back to default action probabilities simi-

larly to A/B testing. This also helps dilute the potential effect

of spikes in a larger observation set.

Moreover, we support configuration of minimum and max-

imum constraints for each action probability. The maximum

constraint limits the possible reactions to high cost, while the

minimum constraint guarantees some exploration for actions

that could seem irrelevant at a specific time. In practice, any

1162 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

policy tree in DFS order and creates an action plan. Dur-

ing this process, the generator performs many steps such as

checking predicates, checking rate limit condition etc. If a

node is entered, the generator first checks if we need to ap-

ply sticky mitigation action (Section 6.1) and if there were

decisions made within certain period of time for the same

experiment and tree node. In that case, the last mitigation

action is retrieved from a distributed storage service.

Otherwise, one action is sampled based on the probability

distribution from the config if in A/B testing mode and from

Resource Central if in bandit mode. If there is insufficient data

learned in bandit mode, a specific flag is returned to indicate

the Bandit model is pre-mature. The generator then falls back

to use the action probabilities from A/B testing mode. This

allows us to bootstrap bandit learning from A/B testing safely,

especially considering the delayed cost in the feedback loop.

We follow the same fallback strategy if there is any error in

calling the model serving platform.

Carry out Action Plan. The Action Orchestrator microser-

vice is responsible for carrying out the action plan from the

policy tree walk session. This step involves making API calls

to the corresponding compute managers since different ac-

tions may be implemented by different managers. The orches-

trator executes actions asynchronously to avoid blocking.

Log Actions. Logging in general is very important for data

analysis, Bandit training, and counterfactual evaluation of

different mitigation policies. The logging format for Bandit

learning is special since it requires not only recording the

chosen action but also the associated probability. In particular,

the mitigation engine will log the action timestamp, experi-

ment name, model type, model name, model version, action

distributions, chosen action, chosen action parameters, etc.

Track Node Health. The Health Tracker tracks node and

VM health information during the mitigation process. For

example, while rebooting a node, if we get a new signal (e.g.,

a WindowsEvent) that it is a hardware issue, then we can HI

the node early instead of waiting for reboot to fail/timeout.

7.3 Learner

Learner is a centralized component in Narya. It learns the

effect of mitigation action across different data center regions.

Compared to a regional learner design, a global learner has

the advantage of observing more data points and hence more

confidence in the cost estimation. Additionally, a mitigation

effect change in certain region due to software/firmware up-

dates could be quickly learned and applied to other regions

rolling out the same updates.

The learner runs two main jobs: cost collection and Bandit

model training. The cost collection job retrieves the mitigation

engine’s decisions from the logs. This information is then

correlated with the VM availability measurements and other

important information (LM status, VM workload, etc.) to

determine the cost of the mitigation action for training. The

a b c d e f g h i All

Experiment Id.

0

20

40

S
a
v
in

g
s
 (

%
)

a b c d e f g h i All

Experiment Id.

102

103

104

A
ff

e
c
te

d
 N

o
d
e
s

a 2 Ierr

b E500

c E11 Soft Reboot

d E7

e 1 Ierr

f 63023 Orange

g E52

h 63019 E11

i ML Prediction

Figure 8: AIR improvement of all A/B testing and Bandit experi-

ments in March 2020, breakdown per experiment.

01 02 03 04 05 06 07 08

Month (2020)

0

20

40

60

S
a
v
in

g
s
 (

%
)

raw corrected

Figure 9: AIR improvement per month.

Bandit model training runs on a Spark cluster. The output

model of the learner is a categorical distribution, which the

model server can easily draw samples from.

8 Evaluation

Narya has been running in production since June 2019 to

prevent VM interruptions in Azure compute platform. Our

evaluation answers several questions: (1) how effective is

Narya in averting VM interruptions? (2) how accurate and

timely is the failure prediction? (3) how does Bandit model

compare with A/B testing?

8.1 VM Interruption Savings

The main metric we use to evaluate the effectiveness of Narya

is the VM Annual Interruption Rate (AIR) (Section 3.2). We

measure the delta between the AIR using the old static as-

signment and the AIR under new mitigation decisions from

Narya. We specifically compute three metrics: the estimated

daily AIR savings, the oracle daily AIR savings (savings if

we already knew what was the best action), the regret (how

much additional AIR we could have saved). The estimated

daily AIR savings (Ŝ) is obtained by comparing the impact

of each tested action to the impact of the original action pro-

jected on the whole fleet. The oracle daily AIR savings (S∗) is

estimated by mapping the best performing action to the whole

population compared to the original action on the whole fleet.

Our technical report [?] shows the formulas to calculate Ŝ and

S∗. The regret is the expected difference between the reward

sum associated with an optimal strategy and the sum of the

collected rewards. We consider R = S∗− Ŝ to be our AIR re-

gret, meaning how much additional AIR we could have saved

if we knew the best action all along.

Due to the confidentiality nature of AIR, we report Ŝ,S∗,R

as relative percentages compared to the overall AIR con-

tributed by all of our target failure types (host failures caused

by various hardware problems). For the month of March

2020, Ŝ is a 26.2% improvement, i.e., Narya successfully

1164 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

03-03 03-10 03-17 03-24 03-31

DateTime

0.0

0.5

1.0

P
ro

b
a
b
il
it

y

Delayed Reward Collection

action1

action2

premature

03-03 03-10 03-17 03-24 03-31

DateTime

Immediate Reward Collection

action1

action2

premature

Figure 17: Probabilities in taking two actions using delayed versus

immediate reward collection. Action1 is optimal.

day where the action is completed, and we update the Bandit

model. In (c), we update and associate the cost daily.

Across different A/B testing experiments we run, the three

schemes have varied effectiveness. But overall delayed reward

collection outperforms immediate scheme. In particular, (b)

yields an average 7.12% AIR improvement, while (a) yields

an average 8.50% AIR improvement. This is because immedi-

ate reward collection can be easily affected by noises and does

not account for action impact that takes a while to manifest

itself. Figure 17 illustrates the comparison in one experiment.

We expected that the incremental scheme (c) would per-

form slightly better than (a), since it could use more infor-

mation and would not need to wait for the full observation.

Contrary to our expectation, in our experiments, the incremen-

tal scheme performs slightly worse than the delayed scheme,

with a 8.45% AIR improvement. One reason is that, if the

environment is relatively steady, adding partial observation

does not provide much new information. Additionally, the col-

lected cost from the partial schema might not be distributed

evenly across the observation window. In this case, the in-

cremental scheme would be misled by partial observations.

However, the incremental scheme does have the advantage

of a faster response to system changes, since it can make

decisions based on the latest cost data.

8.8 Safe Guards

The safe guards can influence the system in many ways. First,

it allows a constant exploration of all action to enable timely

adaptation to system changes. In the I/O time out case studies,

the bandit could not have readjusted to use UA-LM-RH, hence

losing 3.7% of cost. Second, it prevents early convergence

to a wrong policy. In the E11 case study, when simulating

the bandit without safe guards, we converged (probability >

0.95) to use a single action in 27% of cases, 19% of which

was UA-SR, the worst action. Third, safe guards decrease the

impact of unexpected spikes. In the IO timeout experiment,

on 2020-04-25, cascading failures resulted in 106 VM inter-

ruptions on a single node for the NoOp group. Although this

significantly impacted the probability to choose NoOp, we

still keep exploring that option.

8.9 Scale and Performance

Narya runs in each data center region of Azure. The mitigation

engine handles hundreds to thousands of requests daily. The

failure predictor processes tens of TBs of health signals per

day. Figure 18a shows the number of daily mitigation request

04-10 04-17 04-24 05-01 05-08

Date

101

103

105

S
e
s
s
io

n
 c

n
t

total A/B testing Bandit

(a) Session count

100 101 102 103 104

Session Duration (minutes)

0.6

0.7

0.8

0.9

1.0

C
D

F

(b) Session duration

Figure 18: Mitigation request handling sessions

sessions (including all fault handling), and the number of

requests that go through our A/B testing experiments and

requests handled by our Bandit model. Figure 18b shows the

CDF of the session duration of the mitigation actions.

9 Discussion and Limitations

Lessons. We share some operational issues and summarize

the lessons we learned from running Narya in production.

First, given the sheer complexity of Azure cloud infrastruc-

ture, it is inevitable that some Narya decision could go wrong.

We encountered two kinds of service misbehavior: (1) some

prediction rules are outdated and incorrectly mark many nodes

in a short period of time; (2) an increase of customer impact

that is not incorporated within the cost model. For (1), the

issue would impact AB testing and cause Bandit to take time

to adjust. Our rate limit mechanism described in Section 7.2

would help. We also designed a separate anomaly detection

algorithm to catch such misbehavior so we can pause and

refine the offending prediction rules. To overcome (2), we

added monitoring of the support tickets filed by customers.

Second, as Narya consumes telemetry signals from the

whole stack, Narya may be broken if the updates of host

OS, firmware, and hardware involve uncoordinated schema

changes. We recently had an issue in which the schema change

of a few critical OS signals was not captured by Narya. Our

monitoring component caught the issue and we had to patch

Narya. Besides schema changes, the data and label quality

may also fluctuate due to improvements or regressions of

tracing capability introduced by different component teams.

The aforementioned challenges can be addressed if the

cross-team collaboration and communication are perfect,

which unfortunately is not realistic in large organizations.

Through continuous learning from failures, we build multiple

channels based on social alignment principles to include rele-

vant component teams, so that the right team can be involved

in time to avoid broken contract, adjust prediction rules, etc.

While we try to ensure sufficient communication, we can-

not just rely on it. We build a comprehensive monitoring

pipeline that detects anomalies at all layers for Narya, from

input data to prediction results, mitigation actions, etc. We

proactively investigate alerts and follow up on issues caused

by external dependencies or fix Narya’s own defects. More-

over, we re-train our ML model on a regular basis to accom-

modate the evolution of telemetry data and label quality.

Third, Narya may output unexpected decisions, which re-

quire verifying its correctness and diagnosing the root cause.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1167

In general, diagnosing issues in Narya’ Bandit decisions is

easy. The exploration model is explainable and solely de-

pends on the total VM reboots observed and the total nodes

observed. Any unexpected change in probability can be traced

down to the observations that had large customer impact.

Limitations. We describe several limitations of Narya. While

Narya can be fully automated, it currently still involves some

human intervention to analyze the experiment results and up-

date the system. This is because our cost model for customer

impact is incomplete. We believe limited human intervention

is key to catch any gaps in customer complaints and improve.

We currently focus on predicting and mitigating hardware

or firmware-induced VM failures. We plan to extend Narya to

software-induced VM failures. While generic software failure

prediction is very challenging due to their frequent changes

and complex dependencies, there are potentials for addressing

issues like memory leak, repeated crashes, and timeout bugs.

The multi-armed Bandits model we use has the advantage

of simplicity and easy explainability of the mitigation deci-

sion. However, this model can segment the data. In particular,

Narya divides nodes into different experiments based on fault

code and node metadata (e.g., h/w generation). But mitigation

actions for nodes from different experiments may share the

same characteristics, which may not be learned because each

model is trained separately. We are exploring the contextual

Bandit model [23] to leverage context information like node

features to the model input.

10 Related Work

Our work is related to three subareas in system resilience:

failure detection, prediction and mitigation. Failure detection

has been extensively studied, while failure prediction and mit-

igation are not as well explored. Narya’s major contribution

is improving the latter two in the context of a large-scale, pro-

duction cloud VM infrastructure, and designing an end-to-end

preventive mitigation service to achieve failure avoidance.

Detecting crash failures reliably and quickly in asyn-

chronous distributed systems is a classic topic [3, 5, 6, 9, 13,

22, 34]. Recent work has discussed the prevalence of gray

failures [11,17,26] in cloud. Panorama [16] proposes to lever-

age observability to detect gray failures [17]. Narya focuses

on predicting failures ahead of time. Many of the failures we

target fall into gray failure category. But our aim is to identify

risky hosts before they cause customer impact.

Several recent work proposes using machine learning to

predict disk failures [14, 27, 38] and node faults [25]. Narya

predictor aligns with these solutions’ basic approach. But we

focus on predicting failures in the complex VM host envi-

ronment as a whole and only those with customer impact.

Additionally, we design the prediction pipeline to closely

integrate with the mitigation engine.

The Recovery-Oriented-Computing project [31] advocates

the importance of failure mitigation, particularly reboot [4].

Piegon [21] proposes to expose uncertainty of failures to

allow better failure reactions for applications. But applications

have to manually decide whether to wait or start recovery.

IASO [30] is a framework for detecting fail-slow issues and

supports mitigating slow issues with multiple options such as

process restart or VM shutdown. But it relies on customers to

manually configure the mitigation option.

NetPilot [37] aims to automate the failure mitigation in a

data center network by determining the suspected network

devices and mitigating failures based on estimated impact.

Narya differs with NetPilot in several ways. First, Narya tar-

gets automating the failure mitigation of a system with het-

erogeneous components and complex stack. In our setting,

estimating the impact of an action offline is challenging and

often mismatches with production observations. Narya takes

an online exploration and learning approach. Second, the mit-

igation actions available in NetPilot are few and simple like

device restart. Narya needs to consider diverse and complex

actions. Third, Narya aims to avoid failures whereas NetPi-

lot focuses on mitigating failures that have occurred. Lastly,

Narya is deployed in production at large scale.

A/B testing experimentation is a common practice to test

the effects of UI features using production data (user requests).

The idea is simple, but it often yields surprising power [19].

Thus, leading companies conduct thousands of A/B exper-

iments annually. Narya mitigation engine adopts the A/B

testing methodology in a novel way to the failure mitigation

scenario with several changes. Narya also adopts multi-armed

Bandits reinforcement learning [32]. Our contribution is ad-

dressing several unique challenges and the system support that

make the approach work in a large-scale, production cloud

infrastructure to avert real cloud VM interruptions.

11 Conclusion

We investigate an important topic in fault-tolerant system

designs—failure avoidance—in the context of cloud infras-

tructure. Drawing from our experience in operating a large

production cloud system, we propose a novel online experi-

mentation and learning approach to tackle this problem. We

present Narya, an end-to-end service consisting of failure pre-

diction and smart mitigation. Narya continually evaluates the

optimal action in production using A/B testing and Bandit

models. Narya has been running in Azure compute infrastruc-

ture for 15 months and yields a 26% improvement in reducing

VM interruptions compared to previous static strategy.

Acknowledgments

We would like to thank our shepherd, Haryadi Gunawi, and the

anonymous reviewers for their thoughtful and comprehensive

comments. We thank all the Azure engineers who partnered

with us on building the solution and providing feedback to us.

Peng Huang is supported by the National Science Foundation

CAREER award CNS-1942794.

1168 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Apache Kafka: A distributed streaming platform. https://kafka.

apache.org.

[2] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits

with linear payoffs. In Proceedings of the 30th International Confer-

ence on International Conference on Machine Learning - Volume 28,

ICML’13, page III–1220–III–1228, Atlanta, GA, USA, 2013.

[3] M. K. Aguilera and M. Walfish. No time for asynchrony. In Pro-

ceedings of the 12th Conference on Hot Topics in Operating Systems,

HotOS ’09, pages 3–3, Monte Verità, Switzerland, 2009.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-

croreboot — a technique for cheap recovery. In Proceedings of the 6th

Conference on Symposium on Opearting Systems Design & Implemen-

tation, OSDI ’04, pages 31–44, San Francisco, CA, 2004.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. J. ACM, 43(2):225–267, Mar. 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of

failure detectors. IEEE Trans. Comput., 51(5):561–580, May 2002.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield. Live migration of virtual machines. In Proceedings

of the 2nd conference on Symposium on Networked Systems Design

& Implementation-Volume 2, pages 273–286. USENIX Association,

2005.

[8] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and

R. Bianchini. Resource central: Understanding and predicting work-

loads for improved resource management in large cloud platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles,

SOSP ’17, page 153–167, Shanghai, China, 2017.

[9] C. Fetzer. Perfect failure detection in timed asynchronous systems.

IEEE Trans. Comput., 52(2):99–112, Feb. 2003.

[10] J. H. Friedman. Greedy function approximation: A gradient boosting

machine. Annals of Statistics, 29:1189–1232, 2000.

[11] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,

X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider,

P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,

P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale:

Evidence of hardware performance faults in large production systems.

In Proceedings of the 16th USENIX Conference on File and Storage

Technologies, FAST’18, pages 1–14, Oakland, CA, USA, 2018.

[12] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan,

P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou. Failure recovery:

When the cure is worse than the disease. In Proceedings of the 14th

USENIX Conference on Hot Topics in Operating Systems, HotOS’13,

pages 8–8, Santa Ana Pueblo, New Mexcio, 2013.

[13] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical

accountability for distributed systems. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,

pages 175–188, Stevenson, Washington, USA, 2007.

[14] G. Hamerly and C. Elkan. Bayesian approaches to failure prediction for

disk drives. In Proceedings of the Eighteenth International Conference

on Machine Learning, ICML ’01, page 202–209. Morgan Kaufmann

Publishers Inc., 2001.

[15] T. Hauer, P. Hoffmann, J. Lunney, D. Ardelean, and A. Diwan. Mean-

ingful availability. In 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 20), pages 545–557. USENIX As-

sociation, Feb. 2020.

[16] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing and

enhancing in situ system observability for failure detection. In 13th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI ’18, pages 1–16, Carlsbad, CA, October 2018.

[17] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and

R. Yao. Gray failure: The Achilles’ heel of cloud-scale systems. In

Proceedings of the 16th Workshop on Hot Topics in Operating Systems,

HotOS XVI. ACM, May 2017.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and

T.-Y. Liu. Lightgbm: A highly efficient gradient boosting decision

tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 30, pages 3146–3154. Curran Associates, Inc.,

2017.

[19] R. Kohavi and S. Thomke. The surprising power of online experiments.

Harvard Business Review, 95(5):74–82, 2017.

[20] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set

transformer: A framework for attention-based permutation-invariant

neural networks. In International Conference on Machine Learning,

pages 3744–3753. PMLR, 2019.

[21] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Improving

availability in distributed systems with failure informers. In Proceed-

ings of the 10th USENIX Conference on Networked Systems Design and

Implementation, NSDI ’13, pages 427–442, Lombard, IL, Apr. 2013.

[22] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish.

Detecting failures in distributed systems with the Falcon spy network.

In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles, SOSP ’11, pages 279–294, Cascais, Portugal, Oct. 2011.

[23] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings

of the 19th International Conference on World Wide Web, WWW ’10,

page 661–670, Raleigh, North Carolina, USA, 2010.

[24] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,

Q. Lin, Y. Wu, S. Levy, and M. Chintalapati. Gandalf: An intelligent,

end-to-end analytics service for safe deployment in large-scale cloud

infrastructure. In Proceedings of the 17th USENIX Symposium on

Networked Systems Design and Implementation, NSDI ’20. USENIX,

Feburary 2020.

[25] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,

Y. Wu, R. Yao, M. Chintalapati, and D. Zhang. Predicting node failure

in cloud service systems. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, ESEC/FSE 2018,

page 480–490, Lake Buena Vista, FL, USA, 2018.

[26] C. Lou, P. Huang, and S. Smith. Understanding, detecting and localiz-

ing partial failures in large system software. In Proceedings of the 17th

USENIX Symposium on Networked Systems Design and Implementa-

tion, NSDI ’20. USENIX, Feburary 2020.

[27] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi. Making disk

failure predictions SMARTer! In 18th USENIX Conference on File and

Storage Technologies (FAST 20), pages 151–167. USENIX Association,

Feb. 2020.

[28] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model

predictions. In Proceedings of the 31st International Conference on

Neural Information Processing Systems, NIPS ’17, page 4768–4777,

Long Beach, California, USA, 2017.

[29] J. C. Mogul and J. Wilkes. Nines are not enough: Meaningful metrics

for clouds. In Proceedings of the Workshop on Hot Topics in Operating

Systems, HotOS ’19, page 136–141, Bertinoro, Italy, 2019.

[30] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S. Gunawi.

IASO: A fail-slow detection and mitigation framework for distributed

storage services. In Proceedings of the 2019 USENIX Conference on

Usenix Annual Technical Conference, USENIX ATC ’19, page 47–61,

Renton, WA, USA, 2019.

[31] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,

P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,

N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery oriented

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1169

computing (ROC): Motivation, definition, techniques, and case studies.

Technical Report UCB/CSD-02-1175, EECS Department, University

of California, Berkeley, Mar 2002.

[32] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

A Bradford Book, Cambridge, MA, USA, 2018.

[33] W. R. Thompson. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika,

25(3-4):285–294, 12 1933.

[34] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure

detection service. In Proceedings of the IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing,

Middleware ’98, pages 55–70, The Lake District, United Kingdom,

1998.

[35] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang. Dy-

namic attention deep model for article recommendation by learning hu-

man editors’ demonstration. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

KDD ’17, page 2051–2059, Halifax, NS, Canada, 2017.

[36] B. L. Welch. The generalization of ‘student’s’ problem when several

different population variances are involved. Biometrika, 34(1/2):28–35,

1947.

[37] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and

M. Zhang. NetPilot: Automating datacenter network failure mitigation.

SIGCOMM Comput. Commun. Rev., 42(4):419–430, Aug. 2012.

[38] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,

W. Zhang, J.-G. Lou, M. Chintalapati, and D. Zhang. Improving service

availability of cloud systems by predicting disk error. In Proceedings of

the 2018 USENIX Conference on Usenix Annual Technical Conference,

USENIX ATC ’18, page 481–493, Boston, MA, USA, 2018.

1170 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Target System and Goal
	Are Failures Predictable?
	Why Reacting on Predicted Failure?
	Why Static Mitigation Is Insufficient?

	Overview
	Narya Workflow
	Key Optimization Metric
	Challenges

	Predicting Node Failures
	Input Signals
	Rule-based Prediction
	Learning-based Prediction

	Mitigation Actions
	Decision Logic for Adaptive Mitigation
	Online Experimentation with A/B testing
	Bandit Modeling
	Extension to Bandits
	Safe Guards

	Narya System Design and Implementation
	Failure Predictor
	Mitigation Engine
	Learner

	Evaluation
	VM Interruption Savings
	Savings Trend Over Time
	Accuracy and Timeliness of Prediction
	Comparing AB Testing and Bandit
	Convergence to Optimal Action
	Case Studies
	Reward Collection Schemes
	Safe Guards
	Scale and Performance

	Discussion and Limitations
	Related Work
	Conclusion

