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Abstract

Vector autoregression (VAR) is a fundamental tool for modeling multivariate time se-
ries. However, as the number of component series is increased, the VAR model becomes
overparameterized. Several authors have addressed this issue by incorporating regularized
approaches, such as the lasso in VAR estimation. Traditional approaches address overparam-
eterization by selecting a low lag order, based on the assumption of short range dependence,
assuming that a universal lag order applies to all components. Such an approach constrains
the relationship between the components and impedes forecast performance. The lasso-based
approaches perform much better in high-dimensional situations but do not incorporate the
notion of lag order selection. We propose a new class of hierarchical lag structures (HLag)
that embed the notion of lag selection into a convex regularizer. The key modeling tool is
a group lasso with nested groups which guarantees that the sparsity pattern of lag coeffi-
cients honors the VAR’s ordered structure. The proposed HLag framework offers three basic
structures, which allow for varying levels of flexibility, with many possible generalizations. A
simulation study demonstrates improved performance in forecasting and lag order selection
over previous approaches, and macroeconomic, financial, and energy applications further
highlight forecasting improvements as well as HLag’s convenient, interpretable output.
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1 Introduction

Vector autoregression (VAR) has emerged as the standard-bearer for macroeconomic forecast-
ing since the seminal work of Sims (1980). VAR is also widely applied in numerous fields, including
finance (e.g., Han et al. 2015), neuroscience (e.g, Hyvérinen et al. 2010), and signal processing
(e.g., Basu et al. 2019). The number of VAR parameters grows quadratically with the the num-
ber of component series, and, in the words of Sims, this “profligate parameterization” becomes
intractable for large systems. Without further assumptions, VAR modeling is infeasible except in
limited situations with small number of components and lag order.

Many approaches have been proposed for reducing the dimensionality of vector time series
models, including canonical correlation analysis (Box & Tiao 1977), factor models (e.g., Forni
et al. 2000, Stock & Watson 2002, Bernanke et al. 2005), Bayesian models (e.g., Banbura et al.
2010; Koop 2013), scalar component models (Tiao & Tsay 1989), independent component analysis
(Hyvérinen et al. 2010), and dynamic orthogonal component models (Matteson & Tsay 2011).
Recent approaches have focused on imposing sparsity in the estimated coefficient matrices through
the use of convex regularizers such as the lasso (Tibshirani 1996). Most of these methods are,
however, adapted from the standard regression setting and do not specifically leverage the ordered
structure inherent to the lag coefficients in a VAR.

This paper contributes to the lasso-based regularization literature on VAR estimation by
proposing a new class of regularized hierarchical lag structures (HLag), that embed lag order
selection into a convex regularizer to simultaneously address the dimensionality and lag selection
issues. HLag thus shifts the focus from obtaining estimates that are generally sparse (as measured
by the number of nonzero autoregressive coefficients) to attaining estimates with low mazimal lag
order. As such, it combines several important advantages: It produces interpretable models, pro-
vides a flexible, computationally efficient method for lag order selection, and offers practitioners
the ability to fit VARs in situations where various components may have highly varying maximal
lag orders.

Like other lasso-based methods, HLag methods have an interpretability advantage over factor
and Bayesian models. They provide direct insight into the series contributing to the forecasting of

each individual component. HLag has further exploratory uses relevant for the study of different



economic applications, as we find our estimated models on the considered macroeconomic data
sets to have an underlying economic interpretation. Comparable Bayesian methods, in contrast,
primarily perform shrinkage making the estimated models more difficult to interpret, although
they can be extended to include variable selection (e.g., stochastic search). Furthermore, factor
models that are combinations of all the component series can greatly reduce dimensionality but
forecast contributions from the original series are only implicit. By contrast, the sparse structure
imposed by the HLag penalty explicitly identifies which components are contributing to model
forecasts.

While our motivating goal is to produce interpretable models with improved point forecast
performance, a convenient byproduct of the HLag framework is a flexible and computationally
efficient method for lag order selection. Depending on the proposed HLag structure choice, each
equation row in the VAR will either entirely truncate at a given lag (“componentwise HLag”), or
allow the series’s own lags to truncate at a different order than those of other series (“own/other
HLag”), or allow every (cross) component series to have its own lag order (“elementwise HLag”).
Such lag structures are conveniently depicted in a “Maxlag matrix” which we introduce and use
throughout the paper.

Furthermore, HLag penalties are unique in providing a computationally tractable way to fit
high order VARs, i.e., those with a large maximal lag order (pmaz). They allow the possibility of
certain components requiring large max-lag orders without having to enumerate over all combina-
tions of choices. Practitioners, however, typically choose a relatively small pmaz. We believe that
this practice is in part due to the limitations of current methods: information criteria make it im-
possible to estimate VARs with large pmax by least squares as the number of candidate lag orders
scales exponentially with the number of components k. Not only is it computationally demanding
to estimate so many models, overfitting also becomes a concern. Likewise, traditional lasso VAR
forecasting performance degrades when pmax is too large, and many Bayesian approaches, while
statistically viable, are computationally infeasible or prohibitive, as we will illustrate through
simulations and applications.

In Section 2 we review the literature on dimension reduction methods to address the VAR’s

overparametrization problem. In Section 3 we introduce the HLag framework. The three aforemen-



tioned hierarchical lag structures are proposed in Section 3.1. As detailed above, these structures
vary in the degree to which lag order selection is common across different components. For each
lag structure, a corresponding HLag model is detailed in Section 3.2 for attaining that sparsity
structure. Theoretical properties of high-dimensional VARs estimated by HLag are analyzed in
Section 3.3. The proposed methodology allows for flexible estimation in high dimensional settings
with a single tuning parameter. We develop algorithms in Section 4 that are computationally ef-
ficient and parallelizable across components. Simulations in Section 5 and applications in Section

6 highlight HLag’s advantages in forecasting and lag order selection.

2 Review of Mitigating VAR Overparametrization
We summarize the most popular approaches to address the VAR’s overparametrization problem

and discuss their link to the HLag framework.

2.1 Information Criteria

Traditional approaches address overparametrization by selecting a low lag order. Early attempts
utilize least squares estimation with an information criterion or hypothesis testing (Liitkepohl
1985). The asymptotic theory of these approaches is well developed in the fixed-dimensional
setting, in which the time series length T grows while the number of components £ and maximal
lag order pmax are held fixed (White 2001). However, for small 7', it has been observed that
no criterion works well (Nickelsburg 1985). Gonzalo & Pitarakis (2002) find that for fixed & and
pmazx, when T is relatively small, Akaike’s Information Criterion (AIC) tends to overfit whereas
Schwarz’s Information Criterion (BIC) tends to severely underfit. Despite their shortcomings,
AIC, BIC, and corrected AIC (Hurvich & Tsai 1989) are still the preferred lag order selection
tools by most practitioners (Liitkepohl 2007, Tsay 2013).

A drawback with such approaches is, however, that they typically require the strong assump-
tion of a single, universal lag order that applies across all components. While this reduces the
computational complexity of model selection, it has little statistical or economic justification,
unnecessarily constrains the dynamic relationship between the components, and impedes forecast
performance. An important motivating goal of the HLag framework is to relax this strong assump-

tion. Gredenhoff & Karlsson (1999) show that violation of the universal lag order assumption can
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lead to overparameterized models or the imposition of false zero restrictions. They instead suggest
considering componentwise specifications that allow each marginal regression to have a different
lag order (sometimes referred to as an asymmetric VAR). One such procedure (Hsiao 1981) starts
from univariate autoregressions and sequentially adds lagged components according to Akaike’s
“Final Prediction Error” (Akaike 1969). However, this requires an a priori ranking of components
based on their perceived predictive power, which is inherently subjective. Keating (2000) offers

¥ componentwise VARs and utilizes

a more general method which estimates all potential pmax
AIC/BIC for lag order selection. Such an approach is computationally intractable and standard
asymptotic justifications are inapplicable if the number of components k is large. Ding & Karlsson
(2014) present several specifications which allow for varying lag order within a Bayesian frame-
work. Markov chain Monte Carlo estimation methods with spike and slab priors are proposed,
but these are computationally intensive, and estimation becomes intractable in high dimensions
though recent advances have been made by Giannone et al. (2017).

Given the difficulties with lag order selection in VARs, many authors have turned instead to

shrinkage-based approaches, which impose sparsity, or other economically-motivated restrictions,

on the parameter space to make reliable estimation tractable, and are discussed below.

2.2 Bayesian Shrinkage

Early shrinkage methods, such as Litterman (1979), take a pragmatic Bayesian perspective. Many
of them (e.g., Banbura et al. 2010; Koop 2013) apply the Minnesota prior, which uses natural
conjugate priors to shrink the VAR toward either an intercept-only model or a vector random walk,
depending on the context. The prior covariance is specified so as to incorporate the belief that
a series’ own lags are more informative than other lags and that lower lags are more informative
than higher lags. With this prior structure, coefficients at high lags will have a prior mean of zero
and a prior variance that decays with the lag. Hence, coefficients with higher lags are shrunk more
toward zero. However, unlike the HLag methods but similar to ridge regression, coefficients will
not be estimated as exactly zero.

The own/other HLag penalty proposed below is inspired by this Minnesota prior. It also has

the propensity to prioritize own lags over other lags and to assign a greater penalty to distant



lags, but it formalizes these relationships by embedding two layers of hierarchy into a convex
regularization framework. One layer (within each lag vector) prioritizes own lags before other
lags. Another layer (across lag vectors) penalizes distant lags more than recent lags since the
former can only be included in the model if the latter are selected.

The Bayesian literature on dealing with overparametrization of VARs is rapidly growing, with
many recent advances on, amongst others, improved prior choices (e.g., Carriero et al. 2012,
Giannone et al. 2015), stochastic volatility (e.g., Carriero et al. 2019), time-varying parameter
estimation (e.g., Koop & Korobilis 2013), and dimension reduction via compressing (Koop et al.

2019).

2.3 Factor Models

Factor models form another widely used class to overcome the VAR’s overparameterization and
have been used extensively for macroeconomic forecasting (e.g., Stock & Watson 2002). Here, the
factors serve the purpose of dimension reduction since the information contained in the original
high dimensional data set is summarized—often using principal component analysis—in a small
number of factors. While Factor Augmented VARs (FAVAR) (e.g., Bernanke et al. 2005) include
one or more factors in addition to the observables, all observables are expressed as a weighted

average of factors in Dynamic Factor Models (e.g., Forni et al. 2000).

2.4  Lasso-based Regularization

Other shrinkage approaches have incorporated the lasso (Tibshirani 1996). Hsu et al. (2008)
consider the lasso with common information criterion methods for model selection. The use
of the lasso mitigates the need to conduct an exhaustive search over the space of all 2krmaz
possible models but does not explicitly encourage lags to be small. HLag, in contrast, forces
low lag coefficients to be selected before corresponding high lag coefficients, thereby specifically
shrinking toward low lag order solutions. As will be illustrated through simulations and empirical
applications, this often improves forecast performance.

To account for the VAR’s inherent ordered structure, Lozano et al. (2009) use a group lasso

(Yuan & Lin 2006) penalty to group together coefficients within a common component. Song &



Bickel (2011) treat each variable’s own lags differently from other variables’ lags (similar to the
own/other Hlag penalty we propose), consider a group lasso structure and additionally down-
weight higher lags via scaling the penalty parameter by an increasing function of the coefficients’
lag. The authors note that the functional form of these weights is arbitrary, but the estimates
are sensitive to the choice of weights. A similar truncating lasso penalty is proposed by Shojaie
& Michailidis (2010) and refined by Shojaie et al. (2012) in the context of graphical Granger
causality. However, unlike HLag, this framework requires a functional form assumption on the
decay of the weights as well as a two-dimensional penalty parameter search which generally squares

the computational burden.

3 Methodology

Let {y; € RF}L | denote a k-dimensional vector time series of length 7. A pth order vector

autoregression VAR, (p) may be expressed as a multivariate regression
yi=v+®Yy, 1+ + <I>(p)yt_p +w, for t=1,...,T, (3.1)

conditional on initial values {y_(,_1),...,¥o0}, where v € R¥ denotes an intercept vector, {q)(e) €
RF¥*F1P_are lag-f coefficient matrices, and {u, € R*}L | is a mean zero white noise vector time
series with unspecified k£ X k nonsingular contemporaneous covariance matrix 3,,.

In the classical low-dimensional setting in which 7" > kp, one may perform least squares to fit

the VAR (p) model, minimizing

T p
Sllye—v =3 @Oy 3 (3.2)
t=1 /=1

over v and {®“}, where ||af, = (3., a?)/? denotes the Euclidean norm of a vector a. We will

[’

find it convenient to express the VAR using compact matrix notation:



Y =ly -yl (k x T); & =80 ... V] (kx kp);
zo =yl - yi,l" (kpx1); Z =z - z7] (kp x T); (3.3)
U=[w - ugl (k x T); 1= 1T (T x 1).

Equation (3.1) is then simply
Y=vl' +®Z+ U,
and the least squares procedure (3.2) can be expressed as minimizing
IY - 01" — 272

over v and ®, where ||A||> denotes the Frobenius norm of the matrix A, that is the Euclidean
norm of vec(A) (not to be mistaken for the operator norm, which does not appear in this paper).

Estimating the parameters of this model is challenging unless T is sufficiently large. Indeed,
when T > kp but kp/T ~ 1, estimation by least squares becomes imprecise. We therefore seek
to incorporate reasonable structural assumptions on the parameter space to make estimation
tractable for moderate to small 7. Multiple authors have considered using the lasso penalty,
building in the assumption that the lagged coefficient matrices ® are sparse (e.g., Song & Bickel
2011, Davis et al. 2016, Hsu et al. 2008); theoretical work has elucidated how such structural
assumptions can lead to better estimation performance even when the number of parameters is
large (e.g., Basu & Michailidis 2015, Melnyk & Banerjee 2016, Lin & Michailidis 2017). In what
follows, we define a class of sparsity patterns, which we call hierarchical lag or HLag structures,

that arises in the context of multivariate time series.

3.1 HLag: Hierarchical Lag Structures

In Equation (3.1), the parameter @gf) controls the dynamic dependence of the ith component of y;

on the jth component of y;_,. In describing HLag structures, we will use the following notational



convention: for 1 < ¢ < p, let

) — [.1.(@) (I)(p)] c RExk(p—t+1)
o . (I)(p)] c Rlxk(p—é—l—l)

o . (I,g))] c RIX(@—6+1).

Consider the k x k matrix of elementwise coefficient lags L defined by
L;; = max{(: ®) # 0},

in which we define L;; = 0 if @Ef) =0forall £ =1,...,p. Therefore, each L;; denotes the maximal
coefficient lag (maxlag) for component j in the regression model for component i. In particular,
L;; is the smallest ¢ such that <I>§J[-£+1]:p ) = 0. Note that the maxlag matrix L is not symmetric,
in general. There are numerous HLag structures that one can consider within the context of the
VAR (p) model. The simplest such structure is that L;; = L for all  and j, meaning that there
is a universal (U) maxlag that is shared by every pair of components. Expressed in terms of
Equation (3.1), this would say that &) — 0 and that <I>Z(-J-L) #0forall 1 <i,57 < k. While

the methodology we introduce can be easily extended to this and many other potential HLag

structures, in this paper we focus on the following three fundamental structures.

1. Componentwise (C). A componentwise HLag structure allows each of the k marginal
equations from (3.1) to have its own maxlag, but all components within each equation must

share the same maximal lag:

Lij :Lz V], for Z:Lk‘
Hence in Equation (3.1), this implies @E[L#l]:p) = 0 and <I>§jLi) # 0 for all ¢ and j. This
componentwise HLag active set structure (shaded) is illustrated in Figure 1.

2. Own-Other (O). The own-other HLag structure is similar to the componentwise one, but
with an added within-lag hierarchy that imposes the mild assumption that a series’ own lags

(1 = j) are more informative than other lags (i # j). Thus, diagonal elements are prioritized
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Figure 1: A componentwise (C) HLag active set structure (shaded): HLag$ (5).

L =
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Figure 2: An own-other (O) HLag active set structure (shaded): HLag$ (5).

LY =

ot Ot Ot
T O W
N Ot

¢(1) 0(2) 0(3) 0(4) °(5)

Figure 3: An elementwise (E) HLag active set structure (shaded): HLagZ (5).

before off-diagonal elements within each lag, componentwise (i.e., row-wise). In particular,
L = LI for i # j and Ly € {Lo%Mer Lo 41}, for i=1,... k.

This HLag structure allows each component of y; to have longer range lagged self-dependence

than lagged cross-dependencies. This own-other HLag structure is illustrated in Figure 2.

3. Elementwise (E). Finally, we consider a completely flexible structure in which the elements

of LL have no stipulated relationships. Figure 3 illustrates this elementwise HLag structure.

In the next section, we introduce the proposed class of HLag estimators aimed at estimating
VAR (p) models while shrinking the elements of L towards zero by incorporating the three HLag

structures described above.
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3.2 HLag: Hierarchical Group Lasso for Lag Structured VARs

In this section, we introduce convex penalties specifically tailored for attaining the three lag
structures presented in the previous section. Our primary modeling tool is the hierarchical group
lasso (Zhao et al. 2009, Yan & Bien 2017), which is a group lasso (Yuan & Lin 2006) with a nested
group structure. The group lasso is a sum of (unsquared) Euclidean norms and is used in statistical
modeling as a penalty to encourage groups of parameters to be set to zero simultaneously. Using
nested groups leads to hierarchical sparsity constraints in which one set of parameters being zero
implies that another set is also zero. This penalty has been applied to multiple statistical problems
including regression models with interactions (Zhao et al. 2009, Jenatton et al. 2010, Radchenko
& James 2010, Bach et al. 2012, Bien et al. 2013, Lim & Hastie 2015, Haris et al. 2016, She et al.
2018), covariance estimation (Bien et al. 2016), additive modeling (Lou et al. 2016), and time
series (Tibshirani & Suo 2016). This last work focuses on transfer function estimation, in this case
scalar regression with multiple time-lagged covariates whose coefficients decay with lag.

For each hierarchical lag structure presented above, we propose an estimator based on a convex

optimization problem:

_ 1
mip { S 1Y =017 = B2 + APy (). (3.4
in which Py, denotes a hierarchical lag group (HLag) penalty function. We propose three such

penalty functions: componentwise; own-other; and elementwise; and discuss their relative merits.

1. HLag® aims for a componentwise hierarchical lag structure and is defined by

PlLag(®) = > > @25, (3.5)

p
i=1 (=1

in which ||A||> denotes the Euclidean norm of vec(A), for a matrix A. As the penalty

p)

- (¢
parameter A > 0 is increased, we have <I>§ " = 0 for more 7, and for smaller /. This

. (¢ . (¢
componentwise HLag structure builds in the condition that if <I>§ - 0, then <I>Z(~ "2 0 for
all ¢/ >/, for each ¢ = 1,..., k. This structure favors lower maxlag models componentwise,

rather than simply giving sparse ® estimates with no particular structure.
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2. HLag® aims for a own-other hierarchical lag structure and is defined by

p

k
Pas(®) = DD [1@17 o + (@, @), (3.6)
i=1 (=1
in which <I>§Qz = {<I>Z(-f) : j # i}, and where we adopt the convention that qlg[pH]:p) = 0. The
first term in this penalty is identical to that of (3.5). The difference is the addition of the
second penalty term, which is just like the first except that it omits <I>§f>. This penalty allows
sparsity patterns in which the influence of component i on itself may be nonzero at lag ¢
even though the influence of other components is thought to be zero at that lag. This model
ensures that, for all ¢/ > ¢, @EZ) = 0 implies @Eel) = 0 and <i>l(l = 0 implies <I>(Z/ Y _o.
This accomplishes the desired own-other HLag structure such that L; _; = Lfth@rlk_l and

L € {Lother Lother 4+ 1}, componentwise.
3. HLag” aims for an elementwise hierarchical lag structure and is defined by

p

k k
Phiae(®) =D D >80P, (3.7)

i=1 j=1 ¢=1

Here, each of the k? pairs of components can have its own maxlag, such that @Efzp )

= 0 may
occur for different values of ¢ for each pair ¢ and j. While this model is the most flexible
of the three, it also borrows the least strength across the different components. When L;;
differ for all 7 and j, we expect this method to do well, whereas when, for example L;; = L;,

we expect it to be inefficient relative to (3.5).

Since all three penalty functions are based on hierarchical group lasso penalties, a unified compu-
tational approach to solve each is detailed in Section 4. First, we discuss theoretical properties of

HLag.

3.3 Theoretical Properties

We build on Basu & Michailidis (2015) to analyze theoretical properties of high-dimensional VARs
estimated by HLag. Consider a fixed realization of {yt}tT:_(p_l) generated from the VAR model

12



(3.1) with fixed autoregressive order p and u, YN (0,3,). Denote the corresponding true maxlag

matrix by L. We make the following assumptions.

Assumption 1. The VAR model is stable, such that det{®(z)} # 0 for all {z € C: |z| < 1},
where

IENED P Ay O P— AP

and the error covariance matrix 3, is positive definite such that its minimum eigenvalue A (3,) >

0 and its mazimum eigenvalue Aq.(2,) < 0o.

These assumptions are standard in the time series literature. Define the following two measures
of stability of the VAR process, which will be useful for our theoretical analysis (see Basu &

Michailidis 2015 for more detail)

Lnin () = |H|1111 Anin(D*(2)®(2)), and pimax(P®) = Ilnlax Apax (P (2)P(2)),
z|=1 z|l=1
where ®*(-) denotes the conjugate transpose of a complex matrix.
We derive a bound on the in-sample prediction error. Define the in-sample, one-step-ahead

mean squared forecast error to be

2

> @ - a9y,

Y

2

1 - 1
MSFE, = E | —[|Y — ®Z||; | z} = tr(Z) + >

with Y, @ and Z as defined in equation (3.3). While tr(3,) is the irreducible error, an unavoidable
part of the forecast error, a good estimator of the autoregressive parameters should allow us to
control the size of the second term. In Theorem 1, we provide such a bound on the in-sample

prediction error for the most flexible HLag method, namely elementwise HLag.

Theorem 1. Suppose T > max{25log(pk?),4} and pk? > 1. Under Assumption 1 and taking all

lag  coefficients to  be  bounded in  absolute  walue by M, we  choose
A =< (P, 3,)\/1og(pk?) /T, where v(®,X,) = Apa(24) <1 + i’””—“(z(g))) Then, with probabil-
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12

ity at least 1 — DL

<MU 33, \/log (pk?) ZZLS’J/{

i=1 j=1

p
~ (g
Z ())Yt ¢

where ® is the elementwise HLag estimator with pmax = p.

The proof of Theorem 1 is included in Section A of the appendix. Theorem 1 establishes
in-sample prediction consistency in the high-dimensional regime log(pk?)/T — 0. Hence, the
same rate is obtained as for i.i.d. data, modulo a “price” paid for dependence. The temporal and
cross-sectional dependence affects the rate through the internal parameters Apax(24), fimin (®) and
fmax(®).

While Theorem 1 is derived under the assumption that p is the true order of the VAR, the
results hold even if p is replaced by any upper bound pmax on the true order since the VAR (p)
can be viewed as a VAR (pmaz) with ®© = 0 for ¢ > p, see Basu & Michailidis (2015). The

convergence rate then becomes y/log(pmaz - k2)/T instead of \/log(pk?)/T.

The bound includes terms of the form L;] 32 The 3 /2 exponent can be removed if one adopts a
more complicated weighting scheme (see e.g., Jenatton, Audibert & Bach 2011, Bien et al. 2016),
which would avoid high order lag coefficients from being aggressively shrunken. However, in the
context of VAR estimation, we find through simulation experiments that this aggressive shrinkage

is in fact beneficial (see Section C.3 of the appendix).

4 Optimization Algorithm
We begin by noting that since the intercept v does not appear in the penalty terms, it can
be removed if we replace Y by Y (Iy — £117) and Z by Z(Iy — £117). All three optimization

problems are of the form

mm{—HY <I>Z||2+>\ZZP:QZ } (4.1)

=1 (=1

14



and (3.5), (3.6), and (3.7) only differ by the form of the norm €2;. A key simplification is possible

by observing that the objective above decouples across the rows of ®:

1 b .
o[ Yi = 2ZI3+ A Y (@)

(=1

Y

k
min E
@ i=1

in which Y; € R™T and ®; = ®'%?) € RI**. Hence, Equation (4.1) can be solved in parallel by

i

solving the “one-row” subproblem

1 u .
min{ —||Y; — ®,Z|2+ 2> (@) L
i {2TH 3+ 0(2()
Jenatton, Mairal, Obozinski & Bach (2011) show that hierarchical group lasso problems can
be efficiently solved via the proximal gradient method. This procedure can be viewed as an
extension of traditional gradient descent methods to nonsmooth objective functions. Given a
convex objective function of the form f;(®;) = L£;(®;) + A2 (P;), where L; is differentiable with a

Lipschitz continuous gradient, the proximal gradient method produces a sequence 5151-[1], ®,[2],...

with the guarantee that
fi(@i[m]) — H&)iﬂ [i(®;)

i

is O(1/m) (cf. Beck & Teboulle 2009). For m = 1,2, ..., its update is given by

A

®;[m] = Prox;,, oz (i’z[m —-1] - smVE(‘i)i [m — 1])) ,

where s, is an appropriately chosen step size and Prox,,aq: is the proximal operator of the
function s,, AQ2f(+), which is evaluated at the gradient step we would take if we were minimizing £;
alone. The proximal operator is defined as the unique solution of a convex optimization problem

involving {27 but not L;:
. ]- 2 *
Prox,,, xq: (u) = argmin §Hu — 0|5 + smAQ; (v) ¢ . (4.2)

The proximal gradient method is particularly effective when the proximal operator can be evalu-

ated efficiently. In our case, Qf(®;) = > ), Q;(®{"?) is a sum of hierarchically nested Euclidean
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norms. Jenatton, Mairal, Obozinski & Bach (2011) show that for such penalties, the proximal
operator has essentially a closed form solution, making it extremely efficient. It remains to note
that £;(®;) = 55||Y; — ®,Z||3 has gradient VL (®;) = —7(Y; —®,Z)Z" and that the step size sy,
can be determined adaptively through a backtracking procedure or it can be set to the Lipschitz
constant of V.L;(®;), which in this case is 01(Z)~? (where o1(Z) denotes the largest singular value
of Z).

We use an accelerated version of the proximal gradient method which leads to a faster conver-
gence rate and improved empirical performance with minimal additional overhead. Our particular
implementation is based on Algorithm 2 of Tseng (2008). It repeats, for m = 1,2,... to conver-

gence,

b Bifm—1]+ 60, 1(0°1, — 1) ( m — 1] — &:[m — z])
d,

b,
[m] <— PI‘OX5m>\Q;k (g& — SmVCZ(QZ))> s

with 6,,, = 2/(m+2) as in Tseng (2008) and converges at rate 1/m? (compared to the unaccelerated
proximal gradient method’s 1/m rate). Alternatively, one could set 0, = & (1/01,_, +46%,_, — 62,_,)
which is essentially the Fast Iterative Soft-Thresholding Algorithm developed by Beck & Teboulle
(2009). We verified that our findings in the simulation study are unaffected by this choice.

Our full procedure is detailed in Algorithm 1 and is applicable to all three HLag estimators.
Note that the algorithm requires an initial value ®[0]. As is standard in the regularization lit-
erature (e.g., Friedman et al. 2017), we use “warm starts”. We solve Algorithm 1 for a grid of
penalty values starting at Ayna.x, the smallest value of the regularization parameter in which all
coefficients will be zero. For each smaller value of A along this grid, we use the previous solution
as a “warm start” (®[0]) to run Algorithm 1 with the new A-value. A key advantage of our HLag
estimates being solutions to a convex optimization problem is that the algorithms are stable and
not sensitive to the choice of initialization (Beck & Teboulle 2009). As stopping criterion, we use
| — ®;[m]||s < €, while one could also use ||®;[m] — ®;[m — 1]||c < e. We opt for the former
since we have numerically observed in our simulation experiments that considerably less iterations
are needed without affecting accuracy.

The algorithms for these methods differ only in the evaluation of their proximal operators
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Algorithm 1 General algorithm for HLag with penalty €2

Require: Y,Z, ®[0],\,e = 10~
®[1] < ®[0]; P[2] + P[0
S < O'l(Z)_Q
fori=1,....k do
for m=3,4,... do
b Bylm — 1] 4 =2 (i’i[m 1] = &,fm— 2])
®;[m] < Prox.q; (QS + 7 (Y- QSZ)ZT>
if ||¢ — ®;[m]||o < € then
break
end if
end for

end for
return ®[m|

(since each method has a different penalty Q). However, all three choices of 2} correspond to
hierarchical group lasso penalties, allowing us to use the result of Jenatton, Mairal, Obozinski &
Bach (2011), which shows that the proximal operator has a remarkably simple form. We write

these three problems generically as

H
X = arguin {%HX -3+ Azwhuxghuz} , (4.3)
h=1
where g C -+ C gg. The key observation in Jenatton, Mairal, Obozinski & Bach (2011) is
that the dual of the proximal problem (4.2) can be solved exactly in a single pass of blockwise
coordinate descent. By strong duality, this solution to the dual provides us with a solution to
problem (4.2). The updates of each block are extremely simple, corresponding to a groupwise-
soft-thresholding operation. Algorithm 2 shows the solution to (4.3), which includes all three of
our penalties as special cases.

Selection of the penalty parameters. While some theoretical results on the choice of penalty
parameters are available in the literature (Basu & Michailidis 2015), such theoretical results can not
be used in practice since the penalty parameter’s value depends on properties of the underlying
model that are not observable. For this reason, we use cross validation, one of the standard

approaches to penalty parameter selection.
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Algorithm 2 Solving Problem (4.3)

Require: x, A\, wy,...,wy
r<x
for h=1,...,H do
vy, (1= Awn/Ileg l12) s,
end for
return r as the solution x.

Following Friedman et al. (2010), the grid of penalty values is constructed by starting with
Amax, an estimate of the smallest value in which all coefficients are zero, then decrementing in
log linear increments. The grid bounds are detailed in the appendix of Nicholson et al. (2017).
The HLag methods rely on a single tuning parameter A in equation (4.1). Our penalty parameter
search over a one-dimensional grid is much less expensive than the search over a multi-dimensional
grid as needed for the lag-weighted lasso (Song & Bickel 2011). To accommodate the time series
nature of our data, we select the penalty parameters using the cross-validation approach utilized
by Song & Bickel (2011) and Banbura et al. (2010). Given an evaluation period [T}, Ts], we use

one-step-ahead mean-squared forecast error (MSFE) as a cross-validation score:

k Tx—1

1
MSFE(Ty,T) = ———— Jita1 — Yitr1)? 4.4
(71, Tz) KTy — Th) Z“ZT:(Q 41— Yitr1) (4.4)
i=1 t=Ty
with g, +4+1 representing the forecast for time ¢ + 1 and component ¢ based on observing the series
up to time ¢. If multi-step ahead forecast horizons are desired, we can simply substitute (4.4) with
our desired forecast horizon h. Since this penalty search requires looping over many time points,

we have coded most of the HLag methods in C++ to increase computational efficiency.

5 Simulation Study

We compare the proposed HLag methods with 13 competing approaches: (i) AIC-VAR: least
squares estimation of the VAR and selection of a universal lag order ¢ using AIC, (ii) BIC-VAR:
same as in (i) but lag order selection using BIC, (iii) Lasso-VAR: estimation of the VAR using
an L;-penalty, (iv) Lag-weighted (LW) Lasso-VAR: estimation of the VAR using a weighted L;-
penalty, which applies greater regularization to higher order lags, (v) BGR-BVAR: Bayesian VAR
of Banbura et al. (2010), (vi) GLP-BVAR: Bayesian VAR of Giannone et al. (2015), (vii) CCM-

18



e i g “Hy b l Chd i .
o e °® @ o
(1) Componentwise structure in Scenario 1. (2) Own-other structure in Scenario 2.
. i o i - D) - 0 I-
VL ol I st N
0.(1) o® o.“’ o@ o @ o® )
(3) Elementwise structure in Scenario 3. (4) Data-based structure in Scenario 4.

Figure 4: Sparsity patterns (and magnitudes) of the HLag based simulation scenarios. Darker
shading indicates coefficients that are larger in magnitude.

BVAR: Bayesian VAR of Carriero et al. (2019) (viii) DFM: Dynamic Factor Model (see e.g.,
Forni et al. 2000), (ix) FAVAR: Factor Augmented VAR (Bernanke et al. 2005) (x) VAR(1): least
squares estimation of a VAR(1) (xi) AR: univariate autoregressive model, (xii) Sample mean:
intercept-only model, (xiii) Random walk: vector random walk model. The comparison methods

are detailed in Section B of the appendix.

5.1 Forecast Comparisons

To demonstrate the efficacy of the HLag methods in applications with various lag structures, we
evaluate the proposed methods under four simulation scenarios.

In Scenarios 1-3, we take k = 45 components, a series length of 7" = 100 and simulate from a
VAR with the respective HLag structures: componentwise, own-other, and elementwise. In this
section, we focus on simulation scenarios where the sample size T is small to moderate compared
to the number of parameters to be estimated (pmaz - k* + k). We investigate the impact of
increasing the time series length in Section C.4 of the appendix. The coefficient matrices used in
these scenarios are depicted in Figure 4, panel (1)-(3) respectively.

In Scenario 4, we consider a data generating process (DGP) with £ = 40 and 7' = 195 that
does not a priori favor the HLag approaches vis-a-vis the competing approaches but follows the
“data-based Monte Carlo method” (Ho & Sorensen 1996) to make the simulation setting robust to

arbitrary DGPs. This DGP does not have any special lag structure; all variables in all equations
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have p = 4 non-zero lags, as can be seen from Figure 4, panel (4).

All simulations are generated from stationary coefficient matrices. Full details on each simula-
tion design together with the steps taken to ensure the stationarity of the simulation structures are
given in Sections C.1 and C.2 of the appendix. In each scenario, the error covariance is taken to be
3. = 0.01-I,. We investigate the sensitivity of our results to various choices of error covariance in
Section C.5 of the appendix. To reduce the influence of initial conditions on the DGPs, the first
500 observations were discarded as burn-in for each simulation run. We run M = 500 simulations
in each scenario.

Forecast performance measure. We focus on the problem of obtaining reliable point forecasts.
To evaluate how well our methods and their competitors do in the context of providing such point
forecasts, we measure their performance in terms of out-of-sample point forecast accuracy and
choose mean squared forecast error as our main measure of performance. We generate time series
of length T, fit the models to the first T'— 1 observations and use the last observation to compute

the one-step-ahead mean squared forecast error

M
1 ZZ (5) _ ~()\2
MSFE - kM — (yZ,T - yZ,T) )

(s)

with y;'7- the value of component time series ¢ at the time point 7" in the st simulation run, and

g’ffr} is its predicted value.

Figure 5 gives the forecast performance of the methods in Scenarios 1-4. Concerning the VAR-
based methods, we report the results for known (p = 5 in Scenario 1, p = 2 in Scenario 2 and
p =4 in Scenario 3 and 4) maximal lag order. We first discuss these results and then summarize
the differences in results when the maximal lag order is unknown, for which we take pmaz = 12.

Scenario 1: Componentwise HLag. Componentwise and own-other HLag perform best, which
is to be expected since both are geared explicitly toward Scenario 1’s lag structure. Elementwise
HLag outperforms the lag-weighted lasso, and both do better than the lasso. Among the Bayesian
methods, the BGR and CCM approaches are competitive to elementwise HLag, whereas the GLP

approach is not. All Bayesian methods perform significantly worse (as confirmed with paired ¢-

tests) than componentwise and own-other HLag. The factor models are not geared towards the
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Figure 5: Out-of-sample mean squared forecast error for VARs in Scenario 1 to 4. Error bars of
length two standard errors are in blue; the best performing method is in black.
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DGP of Scenario 1: They select around five factors, on average, in their attempt to capture the time
series dynamics and are not competitive to HLag. Regarding lag order selection with AIC/BIC,
we can not estimate the VAR model for £ > 1 with least squares, thus for a simple benchmark we
instead estimate a VARy(1) by least squares. Despite the explicit orientation toward modeling
recent behavior in the VARy5(1) model, it suffers both because it misses important longer range
lag coefficients and because it is an unregularized estimator of ®) and therefore has high variance.
The univariate AR benchmark also suffers because it misses the dynamics among the time series:
its MSFE is more than twice as large as the MSFEs of the HLag methods.

Scenario 2: Own-other HLag. All three HLag methods perform significantly better than the
competing methods. As one would expect, own-other HLag achieves the best forecasting perfor-
mance, with componentwise and elementwise HLag performing only slightly worse. As with the
previous scenario, the least-squares approaches are not competitive.

Scenario 3: Elementwise HLag. As expected, elementwise HLag outperforms all others. The
lag-weighted lasso outperforms componentwise and own-other HLag, which is not surprising as
it is designed to accommodate this type of structure in a more crude manner than elementwise
HLag. The relatively poor performance of componentwise and own-other HLag is likely due to the
coefficient matrix explicitly violating the structures in all 45 rows. However, both still significantly
outperform the Bayesian methods, factor-based methods and univariate benchmarks.

Scenario 4: Data-based. Though all true parameters are non-zero, the HLag approaches per-
form considerably better than the lasso, lag-weighted lasso, Bayesian, factor-based and univariate
approaches. HLag achieves variance reduction by enforcing sparsity and low max-lag orders.
This, in turn, helps to improve forecast accuracy even for non-sparse DGPs where many of the
coefficients are small in magnitude, as in Figure 4, panel (4).

Unknown maximal lag order. In Figure 6, we compare the performance of the VAR-based
methods for known and unknown maximal lag order. For all methods in all considered scenarios,
the MSFEs are, overall larger when the true maximal lag order is unknown since now the true
lag order of each time series in each equation of the VAR can be overestimated. With a total
of pmax - k* = 12 x 45? autoregressive parameters to estimate, the methods that assume an

ordering, like HLag, are greatly advantaged over a method like the lasso that does not exploit
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Class  Method Computat ion time (in seconds)

HLag  Componentwise 17.1
Own-other 6.5
Elementwise 10.9

VAR  Lasso 8.4
Lag-weighted lasso 154.2

BVAR BGR 0.4
GLP 348.8
CcCM 79.5

Factor DFM 3.5
FAVAR 3.1

Table 1: Average computation times (in seconds), including the penalty parameter search, for the
different methods in Scenario 1 (T = 100, k = 45, p = 5). The results for the least squares,
sample mean, VAR(1), AR model and random walk are omitted as their computation time is
negligible.

this knowledge. Indeed, in Scenario 3 with unknown order, componentwise and own-other HLag
outperform the lasso.

Computation time. Average computation times, in seconds on an Intel Core i7-6820HQ
2.70GHz machine including the penalty parameter search, for Scenario 1 and known order are
reported in Table 1 for comparison. The relative performance of the methods with regard to
average computation time in the other scenarios was very similar. The HLag methods have a
clear advantage over the Bayesian methods of Giannone et al. (2015), Carriero et al. (2019) and
the lag-weighted lasso. The latter minimally requires specifying a weight function, and a two-
dimensional penalty parameter search in our implementation, which is much more time intensive
than a one-dimensional search, as required for HLag. The Bayesian method of Banbura et al.
(2010) is fast to compute since there is a closed-form expression for the mean of the posterior
distribution of the autoregressive parameters conditional on the error variance-covariance matrix.
While the Bayesian method of Banbura et al. (2010) and lasso require, in general, less computa-
tion time, HLag has clear advantages over the former two in terms of forecast accuracy, especially
when the maximal lag length pmax is large, but also in terms of lag order selection, as discussed

in the following sections.
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Figure 6: Out-of-sample mean squared forecast error for VARs in Scenario 1 to 4 for known (black)
and unknown (gray) order. Error bars of length two standard errors are in blue.
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Figure 7: Componentwise structure in the Robustness simulation Scenario 5.

5.2 Robustness of HLag as pmaz Increases

We examine the impact of the maximal lag order pmax on HLag’s performance. Ideally, provided
that pmax is large enough to capture the system dynamics, its choice should have little impact on
forecast performance. However, we expect regularizers that treat each coefficient democratically,
like the lasso, to experience degraded forecast performance as pmax increases.

As an experiment, we simulate from an HLag$,(5) while increasing pmaz to substantially
exceed the true L. Figure 7 depicts the coefficient matrices and its magnitudes in what we will
call Scenario 5. All series in the first 4 rows have L = 2, the next 3 rows have L = 5, and the
final 3 rows have L = 0. We consider varying pmax € {1,5,12,25,50} and show the MSFEs of all
VAR-based methods requiring a maximal lag order in Figure 8. As pmax increases, we expect the
performance of HLag to remain relatively constant whereas the lasso and information-criterion
based methods should return worse forecasts.

At pmax = 1 all models are misspecified. Since no method is capable of capturing the true
dynamics of series 1-7 in Figure 7, all perform poorly. As expected, after ignoring pmazr = 1,
componentwise HLag achieves the best performance across all other choices for pmax, but is
very closely followed by the own-other and elementwise HLag methods. Among the information-
criterion based methods, AIC performs substantially worse than BIC as pmax increases. This is
likely the result of BIC assigning a larger penalty on the number of coefficients than AIC. The
lasso’s performance degrades substantially as the lag order increases, while the lag-weighted lasso
and Bayesian methods are somewhat more robust to the lag order, but still achieve worse forecasts

than every HLag procedure under all choices for pmazx.
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Figure 8: Robustness simulation scenario: Out-of-sample mean squared forecast errors, for differ-
ent values of the maximal lag order pmaz.

5.3 Lag Order Selection

While our primary intent in introducing the HLag framework is better point forecast performance
and improved interpretability, one can also view HLag as an approach for selecting lag order.
Below, we examine the performance of the proposed methods in estimating the maxlag matrix L
defined in Section 3.1. Based on an estimate ® of the autoregressive coefficients, we can likewise

define a matrix of estimated lag orders:
A~ A~ ([)

where we define iij = 0 if ég) = 0 for all /. It is well known in the regularized regression
literature (cf., Leng et al. 2006) that the optimal tuning parameter for prediction is different from
that for support recovery. Nonetheless, in this section we will proceed with the cross-validation
procedure used previously with only two minor modifications intended to ameliorate the tendency
of cross-validation to select a value of A\ that is smaller than optimal for support recovery. First,
we cross-validate a relaxed version of the regularized methods in which the estimated nonzero
coefficients are refit using ridge regression, as detailed in Section C.6 of the appendix. This

modification makes the MSFE more sensitive to f;ij being larger than necessary. Second, we use
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Figure 9: L;-lag selection performance for Scenario 1 to 5. Error bars of length two standard
errors are in blue; the best performing method is in black.

the “one-standard-error rule” discussed in Hastie et al. (2009), in which we select the largest value
of A whose MSFE is no more than one standard error above that of the best performing model
(since we favor the most parsimonious model that does approximately as well as any other).

We consider Scenario 1 to 5 and estimate a VAR(12). A procedure’s lag order selection
accuracy is measured based on the sum of absolute differences between L and L and the maximum

absolute differences between L and L:
IL = Ljy => L — Ly| and [|L - L|jo = max |Lij — Lyjl. (5.1)

The former can be seen as an overall measure of lag order error, the latter as a “worst-case”
measure. We present the values on both measures relative to that of the sample mean (which
chooses f;ij = 0 for all i and j). Figure 9 gives the results on the L;-based measure. We focus
our discussion on the VAR-methods performing actual lag order selection. We first discuss these
results then summarize the differences in results for the L..-based measure.

Lq-lag selection performance. In Scenarios 1-3, the HLag methods geared towards the design-
specific lag structure perform best, as expected. Least squares AIC/BIC always estimates a
V ARy(1) and performs considerably worse than the best performing HLag method in Scenarios
1-2. In Scenario 3, they attain the best performance since around 82% of the elements in the
true maxlag matrix are equal to one, and hence correctly recovered. However, the higher order
dynamics of the remaining 18% of the elements are ignored, while elementwise HLag—which
performs second best—better captures these dynamics. This explains why in terms of MSFE,

elementwise HLag outperforms the VAR (1) by a factor of 10.
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In Scenario 4, least squares AIC consistently recovers the true universal order p = 4. Neverthe-
less, it has, in general, a tendency to select the highest feasible order, which happens to coincide
here with the true order. Its overfitting tendency generally has more negative repercussions, as
can be seen from Scenario 5, and even more importantly from its poor forecast performance.
Componentwise HLag and least squares BIC perform similarly and are second best. Own-other,
elementwise HLag, lasso and lag-weighted lasso perform similarly but underestimate the lag order
of the component series with small non-zero values at higher order lags. While this negatively
affects their lag order selection performance, it helps for forecast performance as discussed in
Section 5.1.

In Scenario 5, componentwise and own-other HLag achieve the best performance. Their per-
formance is five times better than the least squares AIC, and roughly 1.5 times better than the
lasso, lag-weighted lasso and least squares BIC. Elementwise HLag substantially outperforms the
lasso and least squares AIC, which consistently severely overestimates the true lag order. The
least squares BIC, on the other hand, performs similarly to elementwise HLag on the lag selection
criterion but selects the universal lag order at either 1 or 2 and thus does not capture the true
dynamics of series 5-7 in Figure 7.

In Figure 10, we examine the impact of the maximal lag order pmaz on a method’s lag order
error. At the true order (pmazr = 5), all methods achieve their best performance. As pmax
increases, we find the methods’ performance to decrease, in line with the findings by Percival
(2012). Yet, the HLag methods and lag-weighted lasso remain much more robust than the AIC
and lasso, whose performance degrade considerably.

Loo-lag selection performance. Results on the “worst-case” L..-measure are presented in Fig-
ure 11. Differences compared to the L;-measure are: (i) Least squares AIC/BIC are the best
performing. This occurs since the true maximal lag orders are small, as well as the estimated lag
orders by AIC/BIC due to the maximum number of parameters that least squares can take. Hence,
the maximal difference between both is, overall, small. Their negative repercussions are better
reflected through the overall Li-measure, or in case of the AIC as pmax increases (see Figure
10). (ii) Componentwise and own-other HLag are more robust with respect to the L.,-measure

than elementwise HLag. The former two either add an additional lag for all time series or for
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Figure 10: Robustness simulation scenario: Lag order error measures, for different values of the
maximal lag order pmazx.
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Figure 11: L..-lag selection performance for Scenario 1 to 5. Error bars of length two standard
errors are in blue; the best performing method is in black.

none, thereby encouraging low lag order solutions—and thus controlling the maximum difference
with the small true orders—even more than elementwise HLag. The latter (and the lag-weighted
lasso) can flexibly add an additional lag for each time series separately. Their price to pay for this
flexibility becomes apparent through the L.-measure. (iii) A noticeable difference occurs between
the methods that assume an ordering, like HLag and the lag-weighted lasso, and methods, like
the lasso, that do not encourage low maximal lag orders. The lasso often picks up at least one
lag close to the maximally specified order, thereby explaining its bad performance in terms of the
L..-measure. As pmax increases, its performance deteriorates even more, see Figure 10.

Stability across time. We verified the stability in lag order selection across time with a rolling
window approach. We estimate the different models for the last 40 time points (20%), each time
using the most recent 160 observations. For each of these time points, the lag matrices are obtained

and the lag selection accuracy measures in equation (5.1) are computed. For all methods, we find
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the lag order selection to be very stable across time with no changes in their relative performance.

6 Data Analysis

We demonstrate the usefulness of the proposed HLag methods for various applications. Our
first and main application is macroeconomic forecasting (Section 6.1). We investigate the perfor-
mance of the HLag methods on several VAR models where the number of time series is varied
relative to the fixed sample size. Secondly, we use the HLag methods for forecast applications
with high sampling rates (Section 6.2).

For all applications, we compare the forecast performance of the HLag methods to their com-
petitors. We use the cross-validation approach from Section 4 for penalty parameter selection on
time points 77 to Ty: At each time point ¢ = T3 — h,..., Ty — h (with h the forecast horizon),
we first standardize each series to have sample mean zero and variance one using the most recent
Ty — h observations. We do this to account for possible time variation in the first and second
moment of the data. Then, we estimate the VAR with pmax and compute the weighted Mean

Squared Forecast Error

1 P yz(st)—i-h - gz(st)-i-h :
WMSEE = ) ;t:;_h (T) ’
where o; is the standard deviation of the i to be forecast series, computed over the forecast
evaluation period [T}, T3] for each penalty parameter. We use a weighted MSFE to account for the
different volatilities and predictabilities of the different series when computing an overall forecast
error measure (Carriero et al. 2011). The selected penalty parameter is the one giving the lowest
wMSFE.

After penalty parameter selection, time points 73 to T, are used for out-of-sample rolling
window forecast comparisons. Again, we standardize each series separately in each rolling window,
estimate a VAR on the most recent T3 — h observations and evaluate the overall forecast accuracy
with the wMSFE of equation (6.1), averaged over all k time series and time points of the forecast
evaluation period. Similar results are obtained with an expanding window forecast exercise and
available from the authors upon request.

Finally, to assess the statistical significance of the results, we use the Model Confidence Set
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(MCS) procedure of Hansen et al. (2011). It separates the best forecast methods with equal
predictive ability from the others, who perform significantly worse. We use the MCSprocedure
function in R to obtain a MCS that contains the best model with 75% confidence as done in

Hansen et al. (2011).

6.1 Macroeconomic Forecasting

We apply the proposed HLag methods to a collection of US macroeconomic time series compiled
by Stock & Watson (2005) and augmented by Koop (2013). The full data set, publicly available
at The Journal of Applied Econometrics Data Archive, contains 168 quarterly macroeconomic
indicators over 45 years: Quarter 2, 1959 to Quarter 4, 2007, hence T = 195. Following Stock &
Watson (2012), we classify the series into 13 categories, listed in Table 6 of the appendix. Further
details can be found in Section D of the appendix.

Following Koop (2013), we estimate four VAR models on this data set: The Small-Medium
VAR (k = 10) which consists of GDP growth rate, the Federal Funds Rate, and CPI plus 7
additional variables, including monetary variables. The Medium VAR (k = 20) which contains
the Small-Medium group plus 10 additional variables containing aggregated information on several
aspects of the economy. The Medium-Large VAR (k = 40) which contains the Medium group
plus 20 additional variables, including most of the remaining aggregate variables in the data
set. The Large VAR (k = 168) which contains the Medium-Large group plus 128 additional
variables, consisting primarily of the components that make up the aggregated variables. Note
that the number of parameters quickly increases from 4 x 10% + 10 = 410 (Small-Medium VAR)
over 4 x 20?7 + 20 = 1,620 (Medium VAR), 4 x 40% + 40 = 6,440 (Medium-Large VAR), to
4 x 168% 4+ 168 = 113,064 (Large VAR).

6.1.1 Forecast Comparisons

We compare the forecast performance of the HLag methods to their competitors on the four VAR
models with pmaz = 4, following the convention from Koop (2013). Quarter 3, 1977 (7}) to
Quarter 3, 1992 (T5) is used for penalty parameter selection; Quarter 4, 1992 (T3) to Quarter

4, 2007 (T) are used for out-of-sample rolling window forecast comparisons. We start with a
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Figure 12: Rolling out-of-sample one-step-ahead wM SF'E for the four VAR sizes. For each VAR
size, forecast methods in the 75% Model Confidence Set (MCS) are in black.

discussion on the forecast accuracy for all series combined, then break down the results across
different VAR sizes for specific variables.

Forecast performance across all series. We report the out-of-sample one-step-ahead weighted
mean squared forecast errors for the four VAR groups with forecast horizon h = 1 in Figure 12. We
discuss the results for each VAR group separately since the wM SF'E are not directly comparable
across the panels of Figure 12, as an average is taken over different component series which might
be more or less difficult to predict.

With only a limited number of component series k included in the Small VAR, the univariate
AR attains the lowest wM SFE, but own-other HLag, the lasso and FAVAR have equal predictive
ability since they are included in the MCS. As more component series are added in the Medium
and Medium-Large VAR, own-other and elementwise HLag outperform all other methods. The
more flexible own-other and elementwise structures perform similarly, and better than the com-
ponentwise structure. While the MCS includes own-other HLag, elementwise HLag and the lasso
for the Medium VAR, only own-other HLag survives for the Medium-Large VAR. This supports
the widely held belief that in economic applications, a components’ own lags are likely more in-
formative than other lags and that maxlag varies across components. Furthermore, the Bayesian
and factor models are never included in the MCS, nor are the least squares methods, or univariate
methods. For the Medium VAR, the information criteria AIC and BIC always select three lags.
Since a relatively large number of parameters need to be estimated, their estimation error becomes
large, and this, in turn, severely impacts their forecast accuracy.

Next, consider the Large VAR, noting that the VAR by AIC, BIC and VAR(1) are over-
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parametrized and not included. As the number of component series k£ further increases, the
componentwise HLag structure becomes less realistic. This is especially true in high-dimensional
economic applications, in which a core subset of the included series is typically most important
in forecasting. In Figure 12 we indeed see that the more flexible own-other and elementwise
HLag perform considerably better than the componentwise HLag. The MCS confirms the strong
performance of elementwise HLag.

HLag’s good performance across all series is confirmed by forecast accuracy results broken
down by macroeconomic category. The flexible elementwise HLag is the best performing method;
for almost all categories, it is included in the MCS, which is not the case for any other forecasting
method. Detailed results can be found in Figure 18 of the appendix.

Furthermore, our findings remain stable when we increase the maximal lag order pmax. In
line with Banbura et al. (2010), we re-estimated all models with pmax = 13. Detailed results are
reported in Figure 19 of the appendix. For the Small-Medium VAR, own-other HLag performs
comparable to the AR benchmark, while it outperforms all other methods for larger VARs. The
lasso (and to a lesser extent the lag-weighted lasso) loses its competitiveness vis-a-vis the HLag
approaches as soon as the maximal lag order pmax increases, in line with the results of Section
5.2.

Finally, we re-did our forecast exercise for longer forecast horizons h = 4 and h = 8. Detailed
results are reported in Figure 20 of the appendix. All forecast errors increase with distant forecast
horizons. Nonetheless, own-other HLag remains among the best forecast methods: it is the only
method that is always included in the MCS. Its performance gets closer to the sample mean as
the forecast horizon increases.

Comparing forecast performance across different VAR sizes. To investigate whether large VARs
improve forecast accuracy over smaller VARs, we turn to the MSFEs of the individual component
series obtained with the multivariate forecast methods. We focus on Real Gross Domestic Product
(GDP251), Consumer Price Index (CPIAUSL), and the Federal Funds Rate (F'YFF) which are
generally of primary interest to forecasters and policymakers. Figure 13 gives the MSFEs of these
three component series in the four VAR models.

Despite the fact that the Small-Medium VAR forecasts well for some component series, like
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Figure 13: Rolling out-of-sample one-step ahead mean squared forecast error of GDP251, CPI-
AUSL and FYFF for the different VAR sizes (bars from left to right: Small-Medium, Medium,
Medium-Large, Large). For each method, the lowest MSFE is indicated in black.

CPIAUSL, we often find, similar to Koop (2013), that moving away from small VARs leads to
improved forecast performance. Consider, for instance, GDP251 and FYFF where half of the
forecast methods give the best MSFE in the Large VAR. Across the £ = 10 component series
included in all four VARs, HLag, the lasso and factor methods produce the best MSFEs mainly
for the Medium-Large or Large VARs; the Bayesian methods mainly for the Small-Medium or
Medium VARs.

Furthermore, the loss in forecast accuracy when adding variables to the VAR, if it occurs,
remains relatively limited for HLag methods (on average, only 5%) but is severe for Bayesian
methods (on average, 46%). Although Bayesian methods perform shrinkage, all component series
remain included in the larger VARs, which can severely impede forecast accuracy. HLag methods,
in contrast, do not use all component series but offer the possibility to exclude possibly irrelevant
or redundant variables from the forecast model.

While factor-based models produce good forecasts for larger VARs, as the factors can be
estimated more precisely as the number of component series increases, the factors themselves do
not carry, in many cases, economic interpretation. The HLag methods, in contrast, facilitate
interpretation by providing direct insight into the component series that contribute to the good

forecast performance, as discussed next.
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Figure 14: The first three rows of L®. the estimated elementwise maxlag matrix in the Medium-
Large VAR for the HLag® method. Components with zero maxlag are left empty.

6.1.2 Lag Order Selection

The HLag methods provide direct insight into the series contributing to the forecasting of each
individual component. As an example, consider the estimated lag orders of the three main com-
ponent series (GDP251, CPIAUSL and FYFF) from a fitted HLag}), model of the Medium-Large
group in Figure 14. Elementwise HLag finds, for instance, that the Federal Funds Rate FYFF is
an important predictor of Gross Domestic Product since two of its lagged components are included
in the equation for forecasting GDP251.

Generally speaking, the lag selection results are considerably stable across time. Figure 21 in
Section D of the appendix gives, for each end point of the rolling window, the fraction of non-zero
coefficients in each of the 13 macroeconomic categories when forecasting GDP251, CPIAUSL, and
FYFF. To forecast GDP growth, for instance, GDP components, employment, interest rates and
stock prices have a stable and important contribution throughout the entire forecast evaluation

period.

6.2 Applications with High Sampling Rates

The HLag methods can also be used for applications with high sampling rates. To illustrate this,

we consider a financial and energy data set.
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Figure 15: Financial application. Panel (a): Rolling out-of-sample one-step-ahead wMSFE
with the forecast methods in the 75% MCS in black. Panel (b): Estimated maxlag matrix for
elementwise HLag and Panel (c): for the lasso.

6.2.1 Financial Application

We apply the HLag methods to a financial data set containing realized variances for £ = 16
stock market indices, listed in Table 7 of the appendix. Daily realized variances based on five
minute returns are taken from Oxford-Man Institute of Quantitative Finance (publicly available on
http://realized.oxford-man.ox.ac.uk/data/download). Our data set consists of T' = 4,163 trading
days between January 4, 2000 and December 30, 2019.

We compare the HLag methods to their competitors on estimated VARs with pmaz = 22 (one
trading month). The number of parameters is thus 22 x 162 + 16 = 5,648. December 7, 2018
to June 26, 2019 (104 observations) are used for penalty parameter selection; June 27, 2019 to
December 30, 2019 (104 observations) for forecast comparisons.

Figure 15, panel (a) presents the one-step-ahead weighted mean squared forecast errors.! All
three HLag methods are, together with the lasso, among the best performing methods, as confirmed
through the MCS. The HLag methods and lasso attain considerable forecast gains over all other
methods. The HLag methods’ performance remains stable across different values of the maximal
lag order, unlike the performance of the lasso. Furthermore, elementwise HLag achieves its good
forecast accuracy using a more parsimonious, more interpretable description of the data than the

lasso as can be seen from the estimated maxlag matrices in Figure 15 panel (b) and (c) respectively.

'We excluded the BVAR methods GLP and CCM as they are too time consuming for large-scale VARs.
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6.2.2 Energy Application

We apply the HLag methods to an energy data set (Candanedo et al. 2017) containing infor-
mation on £ = 26 variables related to in-house energy usage, temperature and humidity condi-
tions. The energy data was logged every 10 minutes for about 4.5 months, giving T" = 19,735
observations in total. A list of all variables and a short description is provided in Table 8 of
the appendix. Data are taken from the publicly available UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/data sets/Appliances+energy+prediction).

To evaluate the forecast performance of HLag, we estimate VAR models with pmaz = 6 (one
hour), thus containing 6 x 26% + 26 = 4,082 parameters. May 16, 18:10 to May 17, 2016 18:00
(144 observations) are used for penalty parameter selection; May 17, 18:10 to May 27, 2016 18:00
(1440 observations) for forecast comparisons.

Figure 16 presents the one-step-ahead weighted mean squared forecast errors.?2 As the sample
size is large, the least squares VAR-based methods do not suffer as much from the curse of
dimensionality. Still, HLag has an advantage by not imposing a universal maximal lag order. On
the whole data set (panel a), componentwise and elementwise HLag outperform all other methods
apart from the lasso and lag-weighted lasso. Yet, a subsample analysis reveals the dominance
of elementwise HLag. We split the data set into ten consecutive subperiods of equal length and
repeated the same forecast exercise. Results are displayed in panels (b)-(k). Elementwise HLag
maintains its good performance across the subperiods and performs best. It is included in the MCS

for all subperiods except for the second, making it a valuable addition to a forecaster’s toolbox.

2We excluded the BVAR methods GLP and CCM as they are too time consuming for large-scale VARs.
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Figure 16: Energy application. Rolling out-of-sample one-step-ahead wMSFE on the data set
and on ten subperiods. Forecast methods in the 75% MCS are indicated in black in each panel.

7 Discussion

By incorporating the property that more recent lags convey more information than distant
lags, the HLag framework offers substantial forecast improvements as well as greater insight into
lag order selection than existing methods. In addition, throughout our simulation scenarios, we
see that each method is fairly robust to deviations from its particular hierarchical structure. The
substantial improvements in forecasting accuracy in data applications provide justification for the
widely held belief that as the number of component series included in a model increases, the
maximal lag order is not symmetric across series.

To enforce the hierarchical lag structures, we use the nested group structure of Zhao et al.
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(2009). Alternatively, one could leverage the latent overlapping group lasso (LOG) proposed by
Jacob et al. (2009). While Yan & Bien (2017) indicate that the nested group structures might
suffer from a more aggressive shrinkage of parameters deep in the hierarchy (i.e. higher-order
autoregressive coefficients), in the VAR model, large amounts of shrinkage on the more distant
lags versus small amounts of shrinkage on the more recent lags may be desirable (Song & Bickel
2011). In our simulation studies, the nested group lasso structures significantly outperformed the
LOG structures in the large majority of cases. Especially as the maximal lag order increases, the
nested group lasso turned out to be more robust. Detailed results are available in Section C.3 of
the appendix.

Implementations of our methods are available in the R package BigVAR, which is hosted on the
Comprehensive R Archive Network (cran). Despite the more challenging computational nature
of overlapping group lasso problems compared to conventional sparsity or non-overlapping group
sparsity problems (e.g., Chen et al. 2014, Yuan et al. 2011, Mairal et al. 2010), our methods
scale well and are computationally feasible in high dimensions. For instance, for the Large VAR
(k = 168,77 = 195, and 113,064 parameters) estimated on the Stock and Watson data, the
HLag methods only require (on an Intel Xean Gold 6126 CPU @ 2.60GHz machine) around 1.5
(Own-Other), 2 (Componentwise) and 3.5 minutes (Elementwise), including penalty parameter
selection. This requires estimating the VAR 610 times (61 time points x 10 penalty parameters).
For fixed penalty parameter, the HLag methods can be computed in less than a second. The
computational bottleneck of our implementation thus concerns the penalty parameter selection.
Alternatives (information criteria or a time series cross-validation search where the models are
not re-estimated every single time point but at a lower sampling frequency) can be considered
to reduce the penalty parameter search for applications with high sampling rates. To be widely
adopted by practitioners, we do think that our methods have a considerable advantage compared
to more computationally intensive methods such as the lag-weighted lasso, the Bayesian CCM
and GLP approaches requiring around 33 minutes (Lag-weighted lasso) or even more than 2 hours
(Bayesian methods) for one model fit of the Large Stock and Watson VAR. At the very least, one
of the proposed HLag approaches can be quickly run to provide numerous insights before a more

computationally demanding method is adopted.
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The HLag framework is quite flexible and can be extended in various ways. For example,
more complicated weighting schemes (see e.g., Jenatton, Audibert & Bach 2011, Bien et al. 2016)
could be adopted to address the more aggressive shrinkage of parameters deep in the hierarchy,
but these make computation more involved (Yan & Bien 2017) and our simulations in Section
C.3 of the appendix indicate that this may not be beneficial in the VAR setting. Furthermore, if
the practitioner prefers to summarize the information content in large data sets by constructing
few factors, HLag penalties can, for instance, be applied with minimal adaption to the factors
augmenting the VAR in a FAVAR. The HLag framework would allow one to flexibly vary the
number of factors in each marginal equation of the FAVAR and to automatically determine the
lag order of the factors, in addition to the lag structure of the autoregressive components. Finally,
building on Basu & Michailidis (2015), we derive preliminary theoretical results on prediction
consistency for HLag in a high-dimensional regime. Given the complicated nested group structure
of the HLag penalty, work is needed to further explore its theoretical properties. To this end,
recent advances in the theory of the hierarchical group lasso (e.g., Yan & Bien 2017, Yu & Bien
2017) could be leveraged.

A Theoretical properties: Proofs
We start by proving two auxiliary results, then we combine these in the proof of Theorem 1.

For ease of notation and without loss of generality, we omit the intercept vector v from the VAR

model (3.1).

Lemma 1. If A > max || S Ve ||so, then

Proof. of Lemma 1. Since & is a minimizer of (3.4), we have that

p p

T T
1 ~ () 1
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Substituting the data generating process y; = ®Vy, | + -+ + QJ(p)yt_p + u; into the above, we

obtain
T
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Under the assumption on A, we get
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The result follows from observing that PgLag(i —-P) < PﬁLag(‘i)) + PiLag(®). O

Lemma 2. If T > 25log(pk?), T > 4, pk* > 1 and we choose X\ > 30v(®, X,,)\/log(pk?)/T, then

max]—Zyt U] <A

4,5,k
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with probability at least 1 — W.

Proof. of Lemma 2. In the middle of page 20 of Basu and Michailidis (2013)% (a preliminary
version of Basu & Michailidis 2015), it is shown that,

T 2
1 T b 2
. < —— 1mi — 2
¥ (T %}f?‘ztzl Yotgter] > b> = 12€Xp{ g M {1’ (6u(i>,2u) ﬁ) } log(ph )}

where

b= (184 6+/2(A+1))v(®,X,)\/log(pk?)/T

for some constant A > 0. For simplicity, we take A = 1. Note that the exponent can be written

as

2
/ 2\ _
—%min {1, (61}(1) _ 2>2} +log(pk?) = —z min ¢ 1, (5 log(pk ) 2) + 10g(p/€2)

5.5, VT VT
_ _% min {T, (5\/W - 2>2} + log(pk?).

2
Since T' > 25log(pk?) and T > 4, it follows that T' > (5 log(pk?) — 2) and the exponent is

—%[ log(pk?) — 2]* + log(pk?) = —(23/2) log(pk?) + 10\/log(pk?) — 2 ~ —(23/2) log(pk?),

where the last approximation follows from the assumption that pk? > 1.

Thus, for the choice of A\ given above, we have that

T
12
2
P (max| ;yt_mut,ﬂ < A) > 1—12exp {—(23/2) log(pk )} =1~ (k)72

£7j7k
[l

3S. Basu and G. Michailidis. Estimation in High-dimensional Vector Autoregressive Models. arXiv:1311.4175v1,
2013.
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Proof. of Theorem 1. Combining the results from Lemma 1 and 2, we have for T' > 25 log(pk?),
T > 4, pk? > 1 and X\ > 300(®, X,)+/log(pk?)/T, that

MSFE;, < tr(2,) + 4APfL,.(P)

or alternatively
2

S 4)‘7)I§Lag (@>
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(=1

12
(pk2)23/2 "

Assuming that all coefficients are bounded by M, we have that
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B Comparison Methods

B.1 Least Squares VAR

A standard method in lower dimensional settings is to fit a VAR (¢) with least squares for 0 <
¢ < pmax and then to select a universal lag order ¢ using AIC or BIC. Per Liitkepohl (2007), the
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AIC and BIC of a VAR (¢) are defined as

. 2k2
AIC(0) = log det(S%) + l;g,
2
BIC(f) = log det(2¢) + w,

in which f]f; is the residual sample covariance matrix having used least squares to fit the VAR ().
The lag order ¢ that minimizes AIC(¢) or BIC(¢) is selected. This method of lag order selection
is only possible when k¢ < T since otherwise least squares is not well-defined. In simulation
Scenarios 1-3 (7" = 100), we cannot use least squares for ¢ > 1, thus for a simple benchmark we

instead estimate a VARy(1) by least squares:
1
min{ —||Y —v1" — W ZW |24
v ® (27T
where ZW = [yq -+ yr_4].

B.2 Lasso VAR

We also include two well-known lasso-based VAR regularization approaches. The lasso estimates
the VAR using an L;-penalty:

min LHY —v1T —®Z|3+ )| 2|

V}I) oT 2 1(>
where ||®]|; denotes ||vec(®)||;. The lasso does not intrinsically consider lag order, hence Song

& Bickel (2011) propose a lag-weighted lasso penalty in which a weighted L;-penalty is used with

weights that increase geometrically with lag order:

1 p
ind —|lY —v1m —®Z|2+ 1) |e® .
ﬁl%{?TH % 15 + ; 2|1

The tuning parameter « € [0, 1] determines how fast the penalty weight increases with lag. While
this form of penalty applies greater regularization to higher order lags, it is less structured than

our HLag penalties in that it does not necessarily produce sparsity patterns in which all coefficients
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beyond a certain lag order are zero. The regularization parameters A and « are jointly selected
using a two-dimensional penalty parameter search. We have implemented these methods in R, the

code is available as Supplementary Material.

B.3 Bayesian VAR

We consider three Bayesian benchmarks: the method of Banbura et al. (2010), Giannone et al.
(2015) and Carriero et al. (2019). These approaches are also applicable to a situation like ours
where many parameters need to be estimated but the observation period is limited. However,
in contrast to the HLag methods, these methods are not sparse (parameter estimates are only
shrunken towards zero) and do not perform lag order selection.

Banbura et al. (2010) use a modified Minnesota prior which leads to a posterior for the au-
toregressive parameters, conditional on the error variance-covariance matrix, that is normal. As
we transformed all variables for stationarity, we set all prior means in the BGR implementation
to zeros. Following Banbura et al. (2010), we select the hyperparameter that controls the degree
of regularization as that which minimizes the h-step ahead MSFE across the k component series.
We have implemented this method in R, the code is available as Supplementary Material.

Giannone et al. (2015) choose the informativeness of the priors in an “optimal” way by treat-
ing the priors as additional parameters, as in hierarchical modeling. We use the authors’ replication
files (Matlab-code) publicly available at https://www.newyorkfed.org/research/economists/giannone/pub.

Carriero et al. (2019) use a general Minnesota-based independent prior to allow for a more
flexible lag choice. Note that the authors also allow for stochastic volatility, but we compare the
HLag methods to their “homoscedastic” BVAR that does not allow for stochastic volatility, in line
with the other methods considered in this paper. We adapt the authors’ code (publicly available
at http://didattica.unibocconi.eu/mypage/index.php?IdUte=49257&idr=27515&lingua=eng) to
this homoscedastic setting by combining it with Matlab code for BVAR using Gibbs sampling
available at https://sites.google.com/site/dimitriskorobilis/matlab/code-for-vars. For full techni-
cal details on the Bayesian methods, we refer the reader to Banbura et al. (2010), Giannone et al.

(2015) and Carriero et al. (2019) respectively.
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B.4 Factor Models

We consider two factor-based benchmarks: a Dynamic Factor Model (DFM, see e.g. Forni et al.
2000; Stock & Watson (2002)) and a Factor Augmented VAR Model (FAVAR, Bernanke et al.
2005). In contrast to the HLag methods, these methods do not achieve dimension reduction by
sparsity. Instead, the information contained in the large predictor set is summarized by few factors.
We estimate the factors by Principal Component Analysis and follow McCracken & Ng (2016) in
using the PC)y criterion, developed in Bai & Ng (2002), to select the number of factors
Regarding the DFM, the time series are regressed on lagged values of the factors. The factors
are obtained from the whole data set and their lag order is determined via AIC. Similar results are
obtained with BIC and available from the authors upon request. Regarding the FAVAR model,
we regress each time series on its own lagged values and lagged values of the factors. The factors
are obtained from the data set of all other variables. Lag selection is done via AIC, while similar
results are obtained with BIC. We have implemented both methods in R, the code is available as

Supplementary Material.

B.5 Other Methods

Finally, we compare against three simple baselines. The unconditional sample mean corresponds
to the intercept-only model,

1
min [V — w172,
v 2T

which makes one-step-ahead forecasts of the form y, . = %22:1 ye. The vector random walk

model, which corresponds to

= (1)

v=0 @ =1, & =0,

and makes one-step-ahead forecasts of the form y;,; = y;. Finally, we consider a separate autore-

gressive model for each time series. To simultaneously obtain parameter estimates and select the

46



lag order, we use the univariate analogue of equation (3.4)

(1 a ;
min {ﬁrm — X[+ ||¢5“>H2} -
¢ /=1

for each component series i = 1,...,k with X = [x; -+ x7] € RP*T | x; = [yir1 - Yisp)
€ RP*! and ¢; € R'P. As such, the univariate AR is a special univariate case of the multivariate
elementwise HLag introduced in Section 3.2. For each individual autoregression, we take the
maximal autoregressive order equal to the true VAR order p in the simulations. In the empirical

application we take four as maximal autoregressive order.

C Simulation Study
C.1 Simulation Scenarios

Simulation Scenario 1: Componentwise Lag Structure. In this scenario, we simulate according to

an HLag$(5) structure. In particular, we choose the maxlag matrix
L=11,2,3,4,5" ® (191};).

This 45 x 45 maxlag matrix is row-wise constant, meaning that all components within a row have
the same maxlag; we partition the rows into 5 groups of size 9, each group taking on a distinct
maxlag in {1,2,3,4,5}. A coefficient matrix ® with maxlag matrix L is used in Scenario 1’s
simulations and its magnitudes are depicted in Figure 4, panel (1) of the manuscript.

Stmulation Scenario 2: Own-Other Lag Structure. In this scenario, we create the matrix ®
in such a manner that it differentiates between own and other coefficients. The coefficients of a
series’ “own lags” (i.e., @Ef)) are larger in magnitude than those of “other lags” (i.e., @Ef) with
i # j). The magnitude of coefficients decreases as the lag order increases. The HLag%(2) model
we simulate is depicted in Figure 4, panel (2) of the manuscript. The first 15 rows can be viewed
as univariate autoregressive models in which only the own term is nonzero; in the next 15 rows, for
the first k£ coefficients, the coefficient on a series’ own lags is larger than “other lags,” and, for the
next k coefficients, only own coefficients are nonzero; the final 15 rows have nonzeros throughout

the first 2k coefficients, with own coefficients dominating other coefficients in magnitude.
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Stmulation Scenario 3: Elementwise Lag Structure. In this scenario, we simulate under an
HLagk (4) model, meaning that the maxlag is allowed to vary not just across rows but also within
rows. Each marginal series in each row is randomly assigned a maxlag of either 1 (with 90 percent
probability) or 4 (with 10 percent probability). The coefficient matrices are depicted in Figure 4,
panel (3).

Simulation Scenario 4: Data-based Lag Structure. Similar to Carriero et al. (2012), we carry
out a simulation by bootstrapping the actual Medium-Large macroeconomic data set with & = 40
and T = 195 as discussed in Section 6 of the manuscript. We start from the estimates obtained
by applying the Bayesian approach of Giannone et al. (2015) to this data set with pmaz = 4.
The obtained estimates of the autoregressive matrices are visualized in Figure 4, panel (4) and the
autoregressive matrices verify the VAR stability conditions. We then construct our simulated data
using a non-parametric residual bootstrap procedure (e.g., Kreiss & Lahiri 2012) with bootstrap

errors an i.i.d. sequence of discrete random variables uniformly distributed on {1,...,7T}.

C.2 Generation of Simulation Scenarios

All of our simulation structures were generated to ensure a stationary coefficient matrix, ®. In
order to construct a coefficient matrix for these scenarios, we started by converting the VAR (p)

to a VARg(1) as described in equation 2.1.8 of Liitkepohl (2007)

L o2 - @
I, 0 0 0 0
A=|0 I, 0 0 0 (C.1)

For A to be stationary, its maximum eigenvalue must be less than 1 in modulus. In general, it
is very difficult to generate stationary coefficient matrices. Boshnakov & Igelan (2009) offer a
potentially viable procedure that utilizes the unique structure of equation (C.1), but it does not
allow for structured sparsity. We instead follow the approach put forth by Gilbert (2005) in which

structured random coefficient matrices are generated until a stationary matrix is recovered.
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Simulation Scenarios

Order HLag 1. Componentwise 2. Own-Other 3. Elementwise 4. Data 5. Robustness

Known  Componentwise 1.036 0.980 0.946 1.019 1.004
Own-other 1.048 1.000 0.944 1.006 0.986
Elementwise 1.037 1.001 0.944 1.010 1.005

Unkown Componentwise 1.138 1.235 1.094 1.051 1.030
Own-other 1.119 1.171 1.064 1.031 1.014
Elementwise 1.053 1.142 1.030 1.028 1.037

Table 2: Out-of-sample mean squared forecast errors of the LOG relative to that of the nested
group lasso in Scenario 1 to 5. Outperformance (as confirmed with paired ¢-tests) by the nested
group lasso is indicated in bold.

Simulation Scenarios

Measure HLag 1. Componentwise 2. Own-Other 3. Elementwise 4. Data 5. Robustness
Ly-lag Componentwise 4.581 7.072 3.145 1.002 1.211
error Own-other 4.837 3.271 3.076 1.001 1.177
Elementwise 1.529 2.342 1.383 1.001 1.058
Lo-lag  Componentwise 2.418 3.150 1.752 1.281 1.203
error Own-other 2.513 4.979 1.780 1.138 1.741
Elementwise 1.015 3.091 1.683 1.636 1.266

Table 3: Lag order selection of the LOG relative to that of the nested group lasso in Scenario 1

to 5. Outperformance (as confirmed with paired ¢-tests) by the nested group lasso is indicated in
bold.

C.3 Sensitivity Analysis: Choice of Group Lasso Formulation

The hierarchical lag structures of the HLag methods can either be enforced via the nested group
structure of Zhao et al. (2009) or via the latent overlapping group lasso (LOG) proposed by Jacob
et al. (2009). We compare the LOG to the nested group structures in our simulation studies.

In Table 2, we present the MSFEs of the LOG structures relative to those of the nested group
lasso (for each HLag method). In Table 3 their lag order selection performance is compared.
Values above one indicate better performance of the nested group lasso compared to the LOG.
In both Tables, the nested group lasso significantly outperforms the LOG in the vast majority of
cases. Especially when the maximal lag order pmax increases, the nested group lasso structures
perform better than the LOG structures.

The finding that the nested group lasso structures are more robust than the LOG structures as
pmax increases, is confirmed through the Robustness simulation scenario. In Table 4, we report
the MSFEs and lag order measures as pmax increases from its true order (five) to pmaxz = 50.

On all performance measures, the nested group lasso structures perform, overall, better than the
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Performance Maximal lag order

measure HLag pmaxr =5 pmar =12 pmax =25 pmax = 50
MSFE Componentwise 1.004 1.030 1.061 1.114
Own-other 0.986 1.014 1.049 1.105
Elementwise 1.005 1.037 1.075 1.151
Ly-lag Componentwise 0.912 1.211 1.331 1.969
error Own-other 1.090 1.177 1.226 1.529
Elementwise 0.990 1.058 1.100 1.149
L.-lag Componentwise 0.985 1.203 1.399 2.491
error Own-other 1.127 1.741 2.263 4.130
Elementwise 1.000 1.266 1.898 2.630

Table 4: Robustness simulation scenario: Forecast performance and lag order selection of the
LOG relative to that of the nested group lasso for different values of the maximal lag order pmazx.
Outperformance (as confirmed with paired ¢-tests) by the nested group lasso is indicated in bold.

LOG structures and the margin by which the former outperforms the latter increases with pmazx.

C.4 Sensitivity Analysis: Impact of Increasing the Time Series Length

We investigate the impact of increasing the time series length on our forecast accuracy results.
We use the autoregressive parameter structure of Scenario 5 and increase the time series length
from from 7" = 200 over T" = 500 to T = 1000 while keeping the maximal lag order pmax = 5.
Figure 17 presents the MSFEs. The forecast errors of all methods decrease as T" increases, in line
with our expectations. While the difference between the methods decreases as the sample size

increases, all HLag methods sill significantly outperform the lasso.

C.5 Sensitivity Analysis: Choice of Error Covariance matrix

We investigate the sensitivity of our forecast accuracy results to the choice of error covariance
matrix. We start from the autoregressive parameter structure of Scenario 5 (pmaz = 5) and
consider, in turn, robustness to (i) varying the signal-to-noise ratio, (ii) unequal error variances

and (iii) time variation in the error covariance matrix (i.e. stochastic volatility).
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Figure 17: Robustness simulation scenario: Out-of-sample mean squared forecast errors, for dif-
ferent values of the sample size T'. Note that we have not included the BVAR methods GLP and
CCL as they are too time consuming for large-scale VARs.

Signal-to-noise ratio. In the paper, we consider 3, = 0.01 - I, corresponding to a signal-to-
noise ratio? of around 100. To investigate the sensitivity of the results to a lower signal-to-noise
ratio, we re-ran the simulation study with 3, = 0.1 - I, corresponding to a signal-to-noise ratio
around 10 and 32, = I}, corresponding to a signal-to-noise ratio around one.

Unequal error variances. We investigate whether the HLag methods behave comparably if one
group of time series has a large residual variance and another group has a small residual variance.
To this end, we consider one group (series 1 to 5) with residual variance one, and the other group
(series 6 to 10) with residual variance equal to 0.5.

Stochastic volatility. As stochastic volatility is an important feature for macroeconomic fore-
casting (Clark & Ravazzolo 2015), we investigate the performance of all methods in the presence of
parametric variation in the error covariance matrix. Note that none of the methods considered in
this paper account for stochastic volatility and, hence, their forecast accuracy is expected to suffer.
Nevertheless, it remains interesting to investigate their sensitivity to the presence of parametric

variation in the VAR errors.

We consider the VAR-SV model of Clark & Ravazzolo (2015) which includes the conventional

4Defined as the maximum eigenvalue of the parameter matrix over the maximum eigenvalue of the error covari-
ance matrix.
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Class  Method SNR=&100 SNR=10 SNR~1 Unequal Stochastic

(in paper) Variances Volatility
HLag Componentwise 0.0125 (0.0003)  0.1245 (0.0026)  1.1814 (0.0228)  0.0222 (0.0412)  3.5548 (0.2148)
Own-other 0.0128 (0.0003)  0.1278 (0.0027) 1.2075 (0.0234)  0.9414 (0.0421)  3.6507 (0.2188)
Elementwise 0.0126 (0.0003)  0.1262 (0.0026)  1.2000 (0.0230)  0.9414 (0.0421)  3.6122 (0.2168)
VAR  Lasso 0.0131 (0.0003)  0.1305 (0.0027)  1.2365 (0.0236)  0.9708 (0.0434)  3.6818 (0.2196)
Lag-weighted lasso  0.0144 (0.0007)  0.1439 (0.0066) 1.5636 (0.1402)  1.0803 (0.0483)  4.2317 (0.2927)
Least squares AIC 0.0136 (0.0003)  0.1358 (0.0029)  1.3250 (0.0261)  1.0134 (0.0453)  3.9678 (0.2260)
Least squares BIC  0.0155 (0.0003)  0.1554 (0.0034)  1.5189 (0.0304)  1.2491 (0.0559)  3.9970 (0.2333)
VAR(1) 0.0164 (0.0004)  0.1643 (0.0035) 1.5850 (0.0312)  1.2555 (0.0276)  4.4612 (0.2248)
BVAR BGR 0.0129 (0.0003)  0.1295 (0.0027) 1.2325 (0.0240)  0.9688 (0.0433)  3.6102 (0.2044)
GLP 0.0125 (0.0003)  0.1253 (0.0026) 1.2054 (0.0232)  0.9312 (0.0194)  3.6572 (0.2282)
CCM 0.0129 (0.0003)  0.1274 (0.0026)  1.2128 (0.0236)  0.9430 (0.0204)  3.5280 (0.2088)
Factor DFM 0.0214 (0.0005)  0.2142 (0.0054) 1.9738 (0.0421)  1.5231 (0.0395)  4.6188 (0.2338)
FAVAR 0.0101 (0.0004)  0.1913 (0.0043)  1.7898 (0.0380)  1.2090 (0.0293)  4.3722 (0.2346)
Other AR 0.0475 (0.0013)  0.4753 (0.0134)  4.5135 (0.1333)  3.4895 (0.0987)  11.9719 (0.6454)
Sample mean 0.2067 (0.0083)  2.0675 (0.0826) 20.0255 (0.8383) 14.5514 (0.6508)  69.9780 (7.4943)
Random walk 0.6268 (0.0256)  6.2679 (0.2561) 61.9335 (2.7009) 44.8748 (2.0068) 223.4107 (26.2932)

Table 5: Robustness to various choices of error covariance matrix: Out-of-sample mean squared
forecast error (standard errors are in parentheses).

macroeconomic formulation of a random walk process for log volatility. In particular, we take

u, = ATAY e,

1 0
with g, ~ N(0,1;) , A = and A; = diag(Ai¢, ..., A\xt) where
05 I,

log(Ai¢) = log(Nig—1) + vig,

with vy = (Vi ..., vk4) " ~ N(0,0.01-T4).

Table 5 gives the forecast performance of the methods under the various choices of error
covariance matrix. When decreasing the signal-to-noise ratio, the forecast accuracy of all methods
decreases accordingly, as expected. Similarly, under unequal error variances and in the presence
of stochastic volatility, the forecast accuracy of all methods suffers compared to their performance
in the original design (column 1). Importantly, the relative performance of the HLag methods
to the other methods is, mainly, unaffected. One exception concerns the presence of stochastic
volatility where even the homoscedastic BVAR of Carriero et al. (2019), which does not account
for stochastic volatility, outperforms the HLag methods. Their heteroskedastic BVAR, which

accounts for stochastic volatility, is expected to perform even better in such settings.
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C.6 Relaxed VAR Estimation

Since the lasso and its structured counterparts are known to shrink non-zero regression coefficients,
in practice, they are often used for model selection, followed by refitting the reduced model using
least squares (Meinshausen 2007). In this section, we detail our approach to refit based on the
support selected by our procedures while taking into consideration both numerical stability as well
as computational efficiency.

Let ® denote the coefficient matrix recovered from one of our sparsity-imposing algorithms
(e.g. HLag, Lasso-VAR) and suppose that it contains r nonzero coefficients. In order to take the
support recovered into account we introduce V, a k*p x r restriction matriz of rank r that denotes
the location of nonzero elements in ®. Defining /3 as the vec of the nonzero entries of C/I\’, we obtain

the relationship
vee(®) = V.
We can then express the Relaxed Least Squares estimator as:
vee(Preaed) = VIV (ZZT @ I)V]'VT(Z @ I})vec(Y), (C.2)

in which ® denotes the Kronecker operator. In general, it is ill-advised to directly form equation
(C.2). First, performing matrix operations with Z ® I, which has dimension kT x k*p, can be very
computationally demanding, especially if k is large. Second, in the event that r ~ T, the resulting
estimator can be very poorly conditioned. To obviate these two concerns, we propose a slight
adaptation of the techniques detailed in Neumaier & Schneider (2001) that computes a variant of
equation (C.2) using a QR decomposition to avoid explicit matrix inversion. Additionally, if the
resulting matrix is found to be ill-conditioned, a small ridge penalty should be utilized to ensure

numerically-stable solutions.
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C.7 Refinements

As opposed to performing a Kronecker expansion we instead consider imposing the restrictions
by row in @ and define Vi,..., Vi as kp x r; restriction matrices of rank ry,..., 7, denoting the

number of nonzero elements in each row of ®. We can then calculate each row of @Relaxed by
&:\)Relaxedi - (V;(‘/ITZZT%)_I‘/ZTZYJT

Now, following Neumaier & Schneider (2001), construct the matrix K; = [(V;Z)",Y;]. We then

compute a QR factorization of K;
K; = QR,

in which Q is an orthogonal matrix and R is upper triangular of the form:

T 1
R=| B R |
0 R22 T—r;

As expanded upon in Neumaier & Schneider (2001), we can compute

(iRelaxedi = (MRERU (RirlRll)il) T’

=(V;RLRu R (R))™) ',
=(V;RL(R[)™) ',

=(Vi(R{Ri2)") ",

which can be evaluated with a triangular solver, hence does not require explicit matrix inversion.
In the event that K is poorly conditioned, to improve numerical stability, we add a small ridge
penalty. It is suggested by Neumaier & Schneider (2001) to add a penalty corresponding to scaling
a diagonal matrix D consisting of the Euclidean norms of the columns of K by (72 4+ 7; + 1)émachine,

in which €yachine denotes machine precision. The full refitting algorithm is detailed in Algorithm
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3.

Algorithm 3 Relaxed Least Squares
Require: Z, Y, V;,...,V,
fori=1,2,...,k do
K« [(Vi2)",Y]]
D (7"12 +r; + 1)€machinediag(”Kz’-H2)
K,
rq«an())
Dreiaea, < (ViR Riz)")'
end for
return Prgaxed-

D Stock and Watson Application

To make the k = 168 variables of the Stock and Watson data approximately stationary, we
apply the transformation codes provided by Stock & Watson (2005). A brief description of each
variable, along with the transformation code to make them approximately stationary can be found
in the Data Appendix of Koop (2013).

All 168 variables are classified into one of 13 macroeconomic categories, detailed in Table 6.
The good performance of the HLag methods across all variables is confirmed by a sub-analysis
on the 13 macroeconomic categories. Figure 18 breaks down the results of the Large VAR by
the 13 macroeconomic categories. Generally speaking, the flexible elementwise HLag is the best
performing forecasting method; for 10 out of 13 categories, it is included in the MCS. The second
best performing methods are own-other HLag and the lag-weighted lasso (both for 6 out of 13
categories in the MCS).

Upon examination of the different categories, three groups can be distinguished. The first
group consists of categories with a single preferred forecast method, always an HLag method.
Elementwise HLag is preferred for interest rates and money; own-other HLag for employment
series. The second group consists of categories with several, but a limited number (between 2 and
4) of preferred methods. Series in the second group are major measures of real economic activity
(GDP components, industrial production, unemployment rate, prices), housing, and wages. The
strong performance of elementwise and own-other HLag is re-confirmed in the majority of cases

(3 out of 5 categories), but the MCS is extended by the lag-weighted lasso and DFM (2 out of
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Figure 18: Rolling out-of-sample one-step ahead wM SF'E of different categories of macroeconomic

indicators in the Large VAR. For each category, forecast methods in the 75% MCS are in black.
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Group Brief description Examples of series Number

of series
1 GDP components GDP, consumption, investment 20
2 IP IP, capacity utilization 15
3 Employment Sectoral and total employment and hours 20
4 Unemployment rate Unemployment rate, total and by duration 7
5 Housing Housing starts, total and by region 6
6 Inventories NAPM inventories, new orders 6
7 Prices Price indexes, aggregate and disaggregate; commodity prices 52
8 Wages Average hourly earnings, unit labor cost 9
9 Interest rates Treasuries, corporate, term spreads, public-private spreads 14
10 Money M1, M2, business loans, consumer credit 8
11 Exchange rates Average and selected trading partners 5
12 Stock prices Various stock price indexes 5
13 Consumer expectations Michigan consumer expectations 1

Table 6: Macroeconomic categories of series in the 168-variable data set, following the classification
of Stock & Watson (2012) their Table 1.
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Figure 19: Rolling out-of-sample one-step-ahead wM S F E for the four VAR sizes with pmaz = 13.
For each VAR size, forecast methods in the 75% Model Confidence Set are in black.

5 categories), or componentwise HLag, FAVAR and random walk (1 out of 5 categories). The
third group consists of categories which have a larger number of preferred forecast methods,
like inventories and hard-to-predict series such as exchange rates, stock prices and consumer
expectations. For the latter categories, in line with Stock & Watson (2012), we find multivariate
forecast methods to provide no meaningful reductions over simple univariate methods (AR or
sample mean).

Results on additional sensitivity analyses concerning the choice of the maximal lag order pmax
and forecasts horizon are provided in Figures 19 and 20 respectively. Results on the stability of
the lag selection results are displayed in Figure 21.

We focus on the Stock and Watson macroeconomic data set since it is readily available and
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Figure 21: Fraction of non-zero coefficients in each of the 13 macro-economic categories to the
total number of non-zero coefficients in the Medium-Large VAR estimated by elementwise HLag
when forecasting GDP251 (GDP growth, left), CPIAUSL (inflation, middle) and FYFF (Federal
Funds Rate, right). The horizontal axis represents the ending date of a rolling window.
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popular in the literature on macroeconomic forecasting. A more recent variant is available as the
FRED-QD data set, a quarterly version of the Federal Reserve Economic Data database introduced
in McCracken & Ng (2016). We have performed the same empirical analysis on the FRED-QD
containing k& = 210 variables from Quarter 3, 1959 to Quarter 4, 2018 (7" = 238). Similar findings
are obtained: (i) Own-other and elementwise HLag perform comparable to the lasso methods and
AR for small VAR sizes, but outperform all others for the Large VAR and a short forecast horizon.
(ii) Own-other HLag is the preferred forecast method for several major macroeconomic indicators
such as national income and product accounts and industrial production. For difficult to predict

indicators, such as exchange rates, gains over the AR model are difficult to attain.

E Financial Application
The financial data set contains information on the realized variances of k = 16 stock market

indices listed in Table 7. All time series are log-transformed to make them stationary.

Variable Description

AEX Amsterdam Exchange Index

AORD All Ordinaries Index

BFX Belgium Bell 20 Index

BVSP BOVESPA Index

DJI Dow Jones Industrial Average

FCHI Cotation Assistée en Continu Index
FTSE Financial Times Stock Exchange Index 100
GDAXI Deutscher Aktienindex

HSI HANG SENG Index

IXIC Nasdaq stock index

KS11 Korea Composite Stock Price Index
MXX IPC Mexico

RUT Russel 2000

SPX Standard & Poor’s 500 market index
SSMI Swiss market index

STOXX50E EURO STOXX 50

Table 7: Variables used in the financial application.

F Energy Application
The energy data set contains information on k = 26 variables. A brief description of each

variable, taken from https://archive.ics.uci.edu/ml/data sets/Appliances-+energy+prediction, is
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provided in Table 8, along with the transformation code to make it approximately stationary. The

transformation codes are: 1 = first difference of logged variables, 2 = first difference.

Variable Description Code
Appliances  energy use in Wh 1
Lights energy use of light fixtures in the house in Wh 2
T1 Temperature in kitchen area, in Celsius 1
RH1 Humidity in kitchen area, in % 1
T2 Temperature in living room area, in Celsius 1
RH2 Humidity in living room area, in % 1
T3 Temperature in laundry room area 1
RH3 Humidity in laundry room area, in % 1
T4 Temperature in office room, in Celsius 1
RH4 Humidity in office room, in % 1
TH Temperature in bathroom, in Celsius 1
RH5 Humidity in bathroom, in % 1
T6 Temperature outside the building (north side), in Celsius 2
RH6 Humidity outside the building (north side), in % 1
T7 Temperature in ironing room , in Celsius 1
RH7 Humidity in ironing room, in % 1
T8 Temperature in teenager room 2, in Celsius 1
RHS8 Humidity in teenager room 2, in % 1
T9 Temperature in parents room, in Celsius 1
RH9 Humidity in parents room, in% 1
To Temperature outside (from Chievres weather station), in Celsius 2
Pressure From Chievres weather station, in mm Hg 1
RHout Humidity outside (from Chievres weather station), in % 1
Wind speed From Chievres weather station in m/s 2
Visibility From Chievres weather station, in km 1
Tdewpoint  From Chievres weather station, C 2

Table 8: Variables used in the energy application.
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